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Bundle Concept

Section 1

Bundle Concept
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Bundle Concept

Nondifferentiable convex minimization problems

Let f : IRn → IR be a nondifferentiable convex function

Aim : design an efficient numerical method for finding the minimum
of f

Method : generate a sequence {xk} from a starting point x0

converging to a minimum of f

Strategy to pass from xk to xk+1 :

define a search direction dk

set xk+1 = xk + tkdk where tk > 0 is a well-chosen stepsize

Usually dk is chosen in order to reduce the value of f
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Bundle Concept

Descent direction

dk ∈ IRn is a descent direction at xk for f if

∃ δ > 0 such that ∀t ∈ (0, δ] f (xk + tdk) < f (xk)

xk 

xk + t
k
 dk 
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Bundle Concept

When f is convex and differentiable

d ∈ IRn is a descent direction at x for f ⇔ ∇f (x)T d < 0
d = −∇f (x) 6= 0⇒ d is a descent direction at x for f

Gradient method : xk+1 = xk + tkdk with dk = −∇f (xk)
and tk > 0 well chosen

x∗ is a minimum of f ⇔ ∇f (x∗) = 0
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Bundle Concept

When f is convex and nondifferentiable

The subdifferential of f at x :

∂f (x) = {s ∈ IRn | ∀y ∈ IRn f (y) ≥ f (x) + 〈s, y − x〉}

Elements of ∂f (x) are called subgradients of f at x

Geometric interpretation The inequality

∀y ∈ IRn f (y) ≥ f (x) + 〈s, y − x〉

means that s is the slope of an affine function

which is below f
which passes through the point (x , f (x))
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Bundle Concept

Examples

f (x) = |x |

∂f (0) = [−1, 1], ∂f (x) = {1} if x > 0, ∂f (x) = −1 if x < 0

f (x) = ex − 1 if x ≥ 0 and 0 if x < 0

∂f (0) = [0, 1], ∂f (x) = {ex} if x > 0, ∂f (x) = 0 if x < 0

x 

|x| 

x 

ex − 1 

0 
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Bundle Concept

Descent directions and Optimality

The following properties are equivalent :

d is a descent direction at x for f

f ′(x ; d) < 0

〈s, d〉 < 0 for all s ∈ ∂f (x).

There exists a descent direction at x for f if and only if 0 6∈ ∂f (x)

Optimality : x∗ is a minimum of f ⇔ 0 ∈ ∂f (x∗)
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Bundle Concept

Opposite of a subgradient

We know : when f is differentiable at x , d = −∇f (x) is a descent
direction at x if ∇f (x) 6= 0
When f is not differentiable, the opposite of a subgradient at x is not
necessarily a descent direction at x
Example : f (x) = max{−x1 − x2,−x1 + x2, x1}

the subdifferential ∂f (4, 8) is the convex hull of (−1, 1) and (1, 0)
the vector (1, 0) belongs to ∂f (4, 8) but d = −(1, 0) is not a descent
direction. Indeed, for s = (−1, 1) ∈ ∂f (4, 8), we have 〈s, d〉 = 1 > 0

∂ f(4,8) 

s = (−1,1) 

d=(−1,0) (1,0) 
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Bundle Concept

Steepest descent direction

Let x ∈ IRn such that 0 6∈ ∂f (x). To get the steepest descent direction
at x for f ,

replace min
‖d‖≤1

〈∇f (x), d〉 by min
‖d‖≤1

max
s∈∂f (x)

〈s, d〉

Let x ∈ IRn such that 0 6∈ ∂f (x). Then

the steepest descent direction at x for f is the vector − m
‖m‖ where m

is the vector of minimum norm in ∂f (x)

the vector of minimum norm in ∂f (x) exists and is unique. It is the
orthogonal projection of 0 onto ∂f (x)
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Bundle Concept

Steepest descent direction. Illustration

0
d

∂ f(x)
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Bundle Concept

Steepest descent method



0. Choose a starting point x0 and set k = 0,

1. Compute m, the vector of minimum norm in ∂f (xk)

2. If m = 0, Stop, xk is a minimum of f

3. Set dk = −m and find tk solution of the problem

mint>0 f (xk + tdk)

4. Set xk+1 = xk + tkdk

5. Set k := k + 1 and go to Step 1.
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Bundle Concept

Nonconvergence of the steepest descent method
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{xk}k converges (very slowly) to the origin x∗ = 0 which is not optimal
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Bundle Concept

Evaluating the whole subdifferential is too expensive

For computing the vector of minimum norm of ∂f (x), it is supposed
that the whole subdifferential is known.
Very often it is too expensive

Example :
Let λmax(M) = the largest eigenvalue of a symmetric matrix M.
It is easy to see that

∂λmax(M) = conv { qqT | qT q = 1, Mq = λmax(M)q }

To compute this set, all the normalized eigenvectors associated with
λmax must be found. This is too expensive
However, computing one subgradient is much cheaper because it
amounts to only determine one eigenvector
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Bundle Concept

Conclusion

It would be important to design an algorithm which is convergent and
where, at each iteration,

only the value of f and

one subgradient of f

are used.

The procedure that gives f (x) and one subgradient of f at x is called an
oracle

Strategy : Use the subgradients given by the oracle at points near x to
build a descent direction at x , i.e., to approximate ∂f (x)

We need to introduce the approximate subdifferential of f at xk
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Bundle Concept

Approximate subdifferential

Let f : IRn → IR be convex and let ε ≥ 0.

The ε–subdifferential of f at x ∈ IRn is the set

∂εf (x) = {s ∈ IRn | f (y) ≥ f (x) + 〈s, y − x〉 − ε ∀y ∈ IRn}

Each element s ∈ ∂εf (x) is called an ε–subgradient of f at x

Geometric interpretation The inequality

∀y ∈ IRn f (y) ≥ f (x) + 〈s, y − x〉 − ε

means that s is the slope of an affine function

which is below f
which passes through the point (x , f (x)− ε)
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Bundle Concept

Example f (x) = x2

The ε–subdifferential of f at x = 0 is

∂εf (0) = [−2
√
ε, 2
√
ε]

This set is reduced to the gradient of f at 0 when ε = 0

x2

(0,-1)

∂1f (0) = [−2, 2]

JJS (University of Namur) Bundle Proximal Point Methods 18 / 130



Bundle Concept

Transportation formula

Let x , y ∈ IRn and let s(y) ∈ ∂f (y). Then s(y) ∈ ∂α(x ,y) f (x) where
α(x , y) is the linearization error

α(x , y) ≡ f (x)− f (y)− s(y)T (x − y)

x y

α(x,y)

Let ε > 0. Then s(y) ∈ ∂εf (x) ⇐⇒ α(x , y) ≤ ε
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Bundle Concept

The direction-finding problem

Basic Assumption. At every point y ∈ IRn, only the value f (y) and a
subgradient s(y) ∈ ∂f (y) are available (by means of an oracle)

Using the approximate subdifferential, we replace the direction-finding
problem {

min ‖s‖
s.t. s ∈ ∂f (x)

by

{
min ‖s‖
s.t. s ∈ ∂εf (x)

Our aim is

to construct an approximation of ∂εf (x) thanks to the oracle
mentioned in the Basic Assumption.

This will be done by using subgradients computed at points in a
neighborhood of x

to get a descent direction when the approximation is “good”
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Bundle Concept

Dual approach of Bundle Methods

Suppose xk is the current iteration point and that y1, . . . , yp are
points in a neighborhood of xk . For simplicity, suppose yp = xk .

Let s j ∈ ∂f (y j), j = 1, . . . , p. We have

s j ∈ ∂αk
j

f (xk), j = 1, . . . , p

where αk
j = α(xk , y j) = f (xk)− f (y j)− s jT (xk − y j) is the

linearization error. (Here αk
p = 0)

The set {(s j , αk
j )}1≤j≤p is called a bundle. It represents a collection

of approximate subgradient information available around the point xk .

Assume αk
j ≤ ε, j = 1, . . . , p. Then s j ∈ ∂ε f (xk) for j = 1, . . . , p
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Bundle Concept

Inner approximation of the ε-subdifferential

The bundle {(s j , αk
j )}1≤j≤p allows us to build the following inner

approximation of ∂εf (xk) :

G (xk , ε) ={∑p
j=1 λjs

j | λj ≥ 0, j = 1, . . . , p,
∑p

j=1 λj = 1,
∑p

j=1 λjα
k
j ≤ ε

}
G (xk , ε) is a convex subset of ∂εf (xk)

Replace ∂εf (xk) by G (xk , ε) to compute the search direction
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Bundle Concept

Search of a descent direction

Strategy : Replace ∂εf (xk) by its approximation G (xk , ε)

⇒ direction dk ≡ the opposite of the vector of minimum norm in
G (xk , ε). This can be done as follows :

Step 1. Solve the convex quadratic problem

QD(xk , ε)


min 1

2‖
∑p

j=1 λjs
j ‖2

s.t.
∑p

j=1 λj = 1, λj ≥ 0, j = 1, . . . , p∑p
j=1 λjα

k
j ≤ ε

to obtain the solution λk
j , j = 1, . . . , p

Step 2. Set dk = −
∑p

j=1 λ
k
j s j
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Bundle Concept

Search of a descent direction. Illustration

0
d

G(xk,ε)
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Bundle Concept

Serious step versus null step

G (xk , ε) ≈ ∂εf (xk) ⇒ dk may not be a descent direction at xk

The linesearch must have two exits corresponding to :

(a serious step) there exists tk > 0 not too small such that the
reduction f (xk)− f (xk + tkdk) is sufficiently large, i.e., satisfies an
Armijo-type condition. In that case : xk+1 = xk + tkdk

(a null step) no such tk exists. In that case

xk+1 = xk and the approximation G(xk , ε) must be improved.

Practically the step tk > 0 is reduced along dk until the subgradient
s(tk) ∈ ∂f (xk + tkd

k) given by the oracle belongs to ∂m3εf (xk) where
0 < m3 < 1.

Add (s(tk), α(xk , xk + tkd
k)) to the bundle
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Bundle Concept

Linearly constrained problems

Consider the problem (P) : min f (x) s.t. Ax ≤ b
where f : IRn → IR is convex, A is an m× n matrix of rank m and b ∈ IRm.
We have

x∗ optimal solution to (P) ⇔ 0 ∈ ∂(f + ψS)(x∗) where S is the
feasible set and ψS denotes the indicator function of S .

∂ε (f + ψS)(x) =

∪0≤ε0≤ε {∂ε0f (x) + {AT v | v ≥ 0, vT (b − Ax) ≤ ε− ε0}}

The bundle {(s j , αk
j )}1≤j≤p allows us to build the following inner

approximation of ∂ε(f + ψS)(xk) :

G (xk , ε) ={∑p
j=1 λjs

j + AT v

∣∣∣∣ λj ≥ 0, j = 1, . . . , p,
∑p

j=1 λj = 1, v ≥ 0∑p
j=1 λjα

k
j + vT (b − Axk) ≤ ε

}
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Bundle Concept

Linearly constrained problems

Strategy : Replace ∂ε(f + ψS)(xk) by its approximation G (xk , ε)

⇒ direction dk ≡ the opposite of the vector of minimum norm in
G (xk , ε). This can be done as follows :

Step 1. Solve the convex quadratic problem

QD(xk , ε)


min 1

2‖
∑p

j=1 λjs
j + AT v ‖2

s.t.
∑p

j=1 λj = 1, λj ≥ 0, j = 1, . . . , p, v ≥ 0∑p
j=1 λjα

k
j + vT (b − Axk) ≤ ε

to obtain the solution λk
j , j = 1, . . . , p

Step 2. Set dk = −
∑p

j=1 λ
k
j s j−AT v
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Bundle Concept
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Bundle Concept

Primal Approach : Cutting Plane Model

The bundle {(s j , αk
j )}1≤j≤p allows us to build the following inner

approximation of ∂εf (xk) :

G (xk , ε) =


p∑

j=1

λjs
j | λj ≥ 0,

p∑
j=1

λj = 1,

p∑
j=1

λjα
k
j ≤ ε


The bundle {(s j , αk

j )}1≤j≤p also allows us to build the following piecewise
linear convex approximation of f :

f p(x) = max
1≤j≤p

{f (y j) + 〈s j , x − y j〉} ≤ f (x)

We have : ∂εf
p(xk) = G (xk , ε)

We will consider other approximations of f in the Proximal Point Method
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Bundle Concept

Nonconvex unconstrained problems

Assume f : IRn → IR is locally Lipschitz, i.e., f satisfies the property :
for each x ∈ IRn, there exist εx > 0 and Lx ≥ 0 s.t.

|f (y)− f (z)| ≤ Lx ‖y − z‖ for all y , z ∈ x + εxB

where B denotes the open unit ball in IRn.
The generalized gradient of f at x is defined as

∂f (x) = {s ∈ IRn | f ◦(x ; v) ≥ 〈s, v〉 for all v ∈ IRn}

where f ◦(x ; v) denotes the generalized directional derivative of f at x :

f ◦(x ; v) = lim sup
y→x ,λ↓0

f (y + λv)− f (y)

λ
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Bundle Concept

Difficulties for nonconvex problems

When f is nonconvex, we do not have the subgradient inequality :

s(x) ∈ ∂f (x) ⇔ f (y) ≥ f (x) + 〈s(x), y − x〉 for all y ∈ Rn

As a consequence the linearization error at x :
α(x , y) = f (x)− f (y)− s(y)T (x − y) may become negative and a
subgradient computed very far from x can be considered as an
approximating subgradient at x .
Furthermore the cutting plane model is no longer an approximation of
f from below.

To cope with this difficulty, we replace α(x , y) by

β(x , y) = max {α(x , y), c‖y − x‖2}

where c > 0 (c can be set to 0 when f is convex)
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Bundle Concept

Linearization Error

f

y x

α(x,y)<0
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Bundle Concept

The direction-finding problem

The bundle {(s j , βk
j )}1≤j≤p allows us to build the following inner

approximation of the generalized gradient ∂f (xk) :

G (xk , ε) ={∑p
j=1 λjs

j | λj ≥ 0, j = 1, . . . , p,
∑p

j=1 λj = 1,
∑p

j=1 λjβ
k
j ≤ ε

}
Step 1. Solve the convex quadratic problem

QD(xk , ε)


min 1

2‖
∑p

j=1 λjs
j ‖2

s.t.
∑p

j=1 λj = 1, λj ≥ 0, j = 1, . . . , p∑p
j=1 λjβ

k
j ≤ ε

to obtain the solution λk
j , j = 1, . . . , p

Step 2. Set dk = −
∑p

j=1 λ
k
j s j
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Bundle Concept

Convergence and references

Convergence of {xk} to a stationary point x∗ (0 ∈ ∂f (x∗)) is
obtained when f is weakly semi-smooth, i.e., when, for any x and v ,
f ′(x ; v) exists and

tj ↓ 0, sj ∈ ∂f (x + tjv) imply that 〈sj , v〉 → f ′(x ; v)

References (Generalization to the linearly constraint case)

Strodiot, J.J. and Nguyen, V.H. On the numerical treatment of the
inclusion 0 ∈ ∂f (x). In : Topics in Nonsmooth Mechanics (ed. by
Moreau J.J., Panagiotopoulos, P.D., and Strang, G.) Birkhauser Verlag
Basel, 1988, pp.267− 294.
Bihain, A., Nguyen, V.H. and Strodiot, J.J., A reduced subgradient
algorithm. Mathematical Programming Study, 1987, Vol.30,
pp.127− 149.
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Bundle Proximal Point Methods

Section 2

Bundle Proximal Point Methods for Minimization
Problems
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Bundle Proximal Point Methods

Moreau-Yosida Regularization

Strategy : Construct a differentiable convex function F approximating
the nondifferentiable convex function f in such a way that the minima
of f and F coincide

Classical methods as gradient methods or BFGS methods can be used
for minimizing F .
However these methods are often non implementable for minimizing F

In this section, other approximations than polyhedral models can be
considered
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Bundle Proximal Point Methods

Moreau-Yosida Regularization. Definition

Let f : IRn → IR convex and c > 0. The function F : IRn → IR defined
by

F (x) = min
y∈IRn
{f (y) +

c

2
‖ y − x ‖2}

is called the Moreau–Yosida regularization of f

The unique minimum denoted by pf (x) is called the proximal point of
x associated with f

When f = ψC is the indicator function associated with a convex
subset C :

F (x) = min
y∈IRn

{ψC (y) +
c

2
‖y − x‖2} = min

y∈C

c

2
‖y − x‖2

In that case, pf (x) is the orthogonal projection of x on C (hence the
name proximal point of x)
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Bundle Proximal Point Methods

Moreau-Yosida Regularization. Properties

The Moreau–Yosida regularization F is finite everywhere, convex and
differentiable

Its gradient is

∇F (x) = sf (x) = c [x − pf (x)] ∈ ∂f (pf (x))

Its conjugate is F ∗ : IRn → IR F ∗(s) = f ∗(s) + 1
2c ‖s‖

2

Moreover, for all x and x ′ in IRn,

‖∇F (x)−∇F (x ′)‖2 ≤ c〈∇F (x)−∇F (x ′), x − x ′〉

and
‖∇F (x)−∇F (x ′)‖ ≤ c‖x − x ′‖

i.e., ∇F is Lipschitz continuous on IRn with constant c

JJS (University of Namur) Bundle Proximal Point Methods 38 / 130



Bundle Proximal Point Methods

Moreau-Yosida Regularization. Example

Let f (x) = |x |. The Moreau-Yosida regularization of f is

F (x) =

{
c
2 x2 if |x | ≤ 1

c
|x | − 1

2c if |x | > 1
c

The minima of f and F are the same

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5
Moreau − Yosida  Regularization

c=1 

c=2 

f(x)=|x| 

JJS (University of Namur) Bundle Proximal Point Methods 39 / 130



Bundle Proximal Point Methods

Main Result

infx∈IRn F (x) = infx∈IRn f (x) (equality in IR ∪ {+∞})

The following statements are equivalent

x minimizes f

pf (x) = x

x minimizes F

f (pf (x)) = f (x)

F (x) = f (x)
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Bundle Proximal Point Methods

Proximal Point Algorithm

Minimizing f is equivalent to finding a fixed point of pf .
Hence the fixed point iteration : xk+1 = pf (xk), i.e.,

xk+1 = arg min
y∈IRn

{
f (y) +

c

2
‖y − xk‖2

}
This algorithm is called the Proximal Point Algorithm

Since the gradient of the Moreau-Yosida regularization F at xk is

∇F (xk) = c(xk − pf (xk))

we have

xk+1 = pf (xk)⇔ xk+1 = xk − 1

c
∇F (xk)

So the proximal point algorithm is nothing else that the gradient
method with fixed stepsize applied to the Moreau-Yosida
regularization
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Bundle Proximal Point Methods

Proximal Point Algorithm

Step 1. Choose x0 ∈ IRn and t0 > 0. Set k = 0.

Step 2. Compute xk+1 = pf (xk) by solving the problem

min
y∈IRn
{f (y) +

1

2tk
‖y − xk‖2}

Step 3. If xk+1 = xk STOP, xk+1 is a minimum of f

Step 4. Choose tk+1 > 0. Replace k by k + 1 and go to Step 2.

Interpretation : Since xk+1 = argminy {f (y) + 1
2tk
‖y − xk‖2 } :

γk ≡ 1

tk
(xk − xk+1) ∈ ∂f (xk+1)

So the prox–iteration : xk+1 = xk − tkγ
k with γk ∈ ∂f (xk+1)
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Bundle Proximal Point Methods

Convergence

Let {xk}k∈IN be the sequence generated by the proximal point algorithm

If
∑+∞

k=0 tk = +∞, then

limk→∞ f (xk) = f ∗ = infx∈IRn f (x)

the sequence {xk} converges to some minimum of f (if there is one).

In particular, if tk = 1/c for all k with c > 0, the sequence {xk} generated
by the proximal point algorithm converges to some minimum of f (if there
exists one)
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Bundle Proximal Point Methods

Approximate Proximal Point Method

Very often the problem of finding pf (xk) i.e., of solving

min
y∈IRn
{f (y) +

1

2tk
‖y − xk‖2}

is as difficult as solving the initial problem

Strategy : replace f by a simpler convex function ϕk such that the
subproblems

min
y∈IRn
{ϕk(y) +

1

2tk
‖y − xk‖2}

are easier to solve and the convergence is preserved

The function ϕk must be built under the assumption :
At every point y ∈ IRn, only the value f (y) and a subgradient
s(y) ∈ ∂f (y) are available
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Bundle Proximal Point Methods

Example where the subproblems are easy to solve

If ϕk is chosen as a piecewise linear function :

ϕk(x) = max
1≤j≤m

{aT
j x + bj}

then the subproblem

min
y∈IRn

{ϕk(y) +
1

2tk
‖y − xk‖2}

can be rewritten as{
min v + 1

2tk
‖y − xk‖2

s.t. aT
j y + bj ≤ v , j = 1, . . . ,m.

This problem is a convex quadratic problem. Very efficient methods exist
for solving it
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σ-approximation of f . A General Algorithm

Let σ ∈ (0, 1) and xk ∈ IRn.

A convex function ϕk is said to be a σ-approximation of f at xk if
ϕk ≤ f and

f (xk)− f (xk+1) ≥ σ [ f (xk)− ϕk(xk+1) ]

where xk+1 = arg min{ϕk(y) + 1
2tk
‖y − xk‖2}

A General Algorithm
Let σ ∈ (0, 1) and {tk}k∈IN0 be a sequence of positive numbers. Choose
a starting point x0 and set k = 0.

Find ϕk a σ-approximation of f at xk and denote xk+1 the unique
solution of the subproblem
Increase k by 1 and start again.
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Convergence of the General Algorithm

Let {xk} be the sequence generated by the General Algorithm.

If
∑+∞

k=1 tk = +∞, then f (xk)↘ f̄ = infx f (x)

If, in addition, tk ≤ t̄ for all k , then xk → x∗ where x∗ is a minimum
of f (provided that some minimum exists).

How to construct σ-approximations of f ?
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An Example. The Cutting Plane Model

Let xk be the current point. Set yk
0 = xk

First Model ϕk
1(y) = f (yk

0 ) + 〈sk
0 , y − yk

0 〉 where sk
0 ∈ ∂f (yk

0 )

Solve

(Pk
1 ) min

y
{ϕk

1(y) +
1

2tk
‖y − xk‖2} to get yk

1

If f (xk)− f (yk
1 ) ≥ σ[f (xk)− ϕk

1(yk
1 )], then ϕk

1 is a σ-approximation

of f at xk . Set xk+1 = yk
1

Otherwise improve the model as follows :

ϕk
2(y) = max

j=0,1
{f (yk

j ) + 〈sk
j , y − yk

j 〉}
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Building σ-approximations
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Building σ-approximations

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

5

6

7

8

yk
0yk

1

JJS (University of Namur) Bundle Proximal Point Methods 51 / 130



Bundle Proximal Point Methods

Building σ-approximations
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Building σ-approximations at xk

Serious Step Algorithm.

Let xk ∈ IRn and σ ∈ (0, 1). Set i = 0 and yk
0 = xk

Step 1. Consider the model

ϕk
i+1(y) = max

0≤j≤i
{f (yk

j ) + 〈sk
j , y − yk

j 〉}

and solve the problem

(Pk
i+1) min

y
{ϕk

i+1(y) +
1

2tk
‖y − xk‖2} to get yk

i+1

Step 2. If f (xk)− f (yk
i+1) ≥ σ[f (xk)− ϕk

i+1(yk
i+1)], then set

xk+1 = yk
i+1 and STOP ; xk+1 is a serious step

Step 3. Increase i by 1 and go to Step 1.
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Three properties of the model functions ϕk
i

By construction, for each y ∈ IRn, we have

ϕk
i+1(y) = max

0≤j≤i
{f (yk

j ) + 〈sk
j , y − yk

j 〉} for i = 0, 1, . . .

So we get : (C1) ϕk
i ≤ f and (C2) ϕk

i+1 ≥ f (yk
i ) + 〈sk

i , · − y i 〉 for
i = 1, 2, . . .

yk
i = arg miny {ϕk

i (y) + 1
2tk
‖y − xk‖2}

⇒ γk
i := 1

tk
(xk − yk

i ) ∈ ∂ϕk
i (yk

i )

⇒ ϕk
i (y) ≥ ϕk

i (yk
i ) + 1

tk
〈γk

i , y − yk
i 〉 := lki (y) for each y ∈ IRn

Hence (C3) ϕk
i+1 ≥ ϕk

i ≥ lki for i = 1, 2, . . .
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Properties that must be satisfied by the model functions

In order to allow other examples of model functions ϕk
i , we will only

impose on them the three properties satisfied by the previous example
(see previous slide)

Let us recall them :

(C1) ϕk
i ≤ f on IRn for i = 1, 2, . . .

(C2) ϕk
i+1 ≥ f (yk

i ) + 〈s(yk
i ), · − yk

i 〉 on IRn for i = 1, 2, . . .

(C3) ϕk
i+1 ≥ lki on IRn for i = 1, 2, . . . ,

where

s(yk
i ) denotes the subgradient of f available at yk

i

lki (y) = ϕk
i (yk

i ) + 〈γk
i , y − yk

i 〉 and γk
i =

1

tk
(xk − yk

i )
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Another model for the functions ϕk
i

Another example : for i = 1, 2, . . .

ϕk
i+1(y) = max {lki (y), f (yk

i ) + 〈s(yk
i ), y − yk

i 〉} ∀y ∈ IRn

where lki (y) = ϕk
i (yk

i ) + 1
tk
〈γk

i , y − yk
i 〉

lki plays the same role as the i linear functions

fk(yk
j ) + 〈s(yk

j ), y − yk
j 〉, j = 0, . . . , i − 1

It is the reason why this function lki is called the aggregate affine
function

The advantage of this example is that it limits the size of the bundle
to two elements (and thus the number of constraints in the
subproblem)

Many other examples between these two extreme cases can be
considered
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Serious Step Algorithm

Let xk ∈ IRn, tk > 0 and σ ∈ (0, 1). Set i = 1 and yk
0 = xk

Step 1. Choose a convex model ϕk
i satisfying conditions

(C 1) – (C 3) and solve the problem

(Pk
i ) min

y
{ϕk

i (y) +
1

2tk
‖y − xk‖2} to get yk

i

Step 2. If f (xk)− f (yk
i ) ≥ σ[f (xk)− ϕk

i (yk
i )], then set

xk+1 = yk
i and STOP ; xk+1 is a serious step

Step 3. Increase i by 1 and go to Step 1.
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Convergence

Assume that
∑

tk = +∞ and tk ≤ t̄ for all k

If the sequence {xk} generated by the algorithm is infinite, then {xk}
converges to some minimum of f

If after some k has been reached, the criterion

f (xk)− f (yk
i ) ≥ σ[f (xk)− ϕk

i (yk
i )]

is never satisfied, then xk is a minimum of f
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Stopping Criterion

x̄ is an ε–stationary point if there exists

s ∈ ∂εf (x̄) with ‖s‖ ≤ ε

Since, by optimality of yk
i , γk

i ∈ ∂ϕk
i (yk

i ), it is easy to prove that

γk
i ∈ ∂εki f (yk

i )

where εki = f (yk
i )− ϕk

i (yk
i )

Stopping criterion :

f (yk
i )− ϕk

i (yk
i ) ≤ ε

‖γk
i ‖ ≤ ε

}
⇒ yk

i is an ε-stationary point
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Stopping Criterion. Justification

Assume 0 < t ≤ tk ≤ t̄ for all k.

If the sequence {xk} generated by the previous algorithm is infinite,
then f (yk

ik
)− ϕk

ik
(yk

ik
)→ 0 and ‖γk

ik
‖ → 0 when k → +∞

If the sequence {xk} is finite with k the latest index, then
f (yk

i )− ϕk
i (yk

i )→ 0 and ‖γk
i ‖ → 0 when i → +∞
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Bundle Proximal Point Algorithm

Let an initial point x0 ∈ C , together with a tolerance σ ∈ (0, 1), ε > 0,
and a positive sequence {tk}k∈IN . Set y0

0 = x0 and k = 0, i = 1.
Step 1. Choose a piecewise linear convex function ϕk

i satisfying
(C 1)− (C 3) and solve

(Pk
i ) miny {ϕk

i (y) + 1
2tk
‖y − xk‖2}

to obtain the unique optimal solution yk
i .

Compute γk
i = (xk − yk

i )/tk
If ‖γk

i ‖ ≤ ε and f (yk
i )− ϕk

i (yk
i ) ≤ ε, then STOP, yk

i is an ε-stationary
point
Step 2. If f (xk)− f (yk

i ) ≥ σ[f (xk)− ϕk
i (yk

i )] then set xk+1 = yk
i ,

yk+1
0 = xk+1, increase k by 1 and set i = 0.

Step 3. Increase i by 1 and go to Step 1.
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Convergence

Assume 0 < t ≤ tk ≤ t̄ for all k.

The Bundle Proximal Point Algorithm exits after finitely many
iterations with an ε–stationary point

In other words, there exist k and i such that

‖γk
i ‖ ≤ ε and f (yk

i )− ϕk
i (yk

i ) ≤ ε
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Numerical Results

The function f is the maximum of five quadratic functions :

fj(x) = xT C jx − d jT x , j = 1, . . . , 5

where C j is a n × n symmetric matrix defined by

C j
ik = exp(

i

k
) cos(ik) sin j , i < k C j

ii =
i

n
| sin j | +

∑
i 6=k

| C j
ik |

and d j is a vector in IRn whose components are

d j
i = exp(i/k) sin(ij)
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Choice of the Parameters

the parameter σ is initialized at 0.4

the starting point is x0 = (1, ..., 1)

the stopping criterion for the outer loop is

‖xk+1 − xk‖ ≤ η where η = 10−3

the bundle is emptied after each serious step

the maximal model has been chosen

the number of variables is n = 10.

the parameter tk is constant equal to t
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Results and Comments

In the next table, k denotes the number of serious steps, µ the average
number of null steps by outer iteration and c = 1/t

c k µ Optimal value

1 15 55.8 -0.8414065
25 19 9.47 -0.8413951
50 29 7.27 -0.8412801
75 42 7.14 -0.8411583

Large value of c ⇒ more serious steps and less null steps

Small value of c ⇒ less serious steps and more null steps
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Section 3

Bundle Proximal Point Methods for Equilibrium Problems
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Equilibrium Problems

Consider

C ⊂ IRn a nonempty closed convex subset and

f : C × C → IR an equilibrium function, i.e., f (x , x) = 0 ∀x ∈ C .

Problem EP : Find x∗ ∈ C such that f (x∗, y) ≥ 0 for all y ∈ C .

In this talk we assume that

f (x , ·) : C → IR is convex and lower semicontinuous for all x ∈ C

f (·, y) : C → IR is upper semicontinuous for all y ∈ C
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Examples of Equilibrium Problems

Convex Minimization Problems
Let C ⊂ IRn be closed and convex and let f (x , y) = h(y)− h(x)
where h : IRn → IR is l.s.c. and convex. Then

(EP) ⇔ Find x∗ ∈ C s.t. h(x∗) ≤ h(y) for all y ∈ C

Variational Inequality Problems
Let C ⊂ IRn be closed and convex and let f (x , y) = 〈F (x), y − x〉
where F : C → IRn is continuous. Then

(EP) ⇔ (VIP) Find x∗ ∈ C s.t. 〈F (x∗), y − x∗〉 ≥ 0 for all y ∈ C

When C = IRn
+, then

(EP) ⇔ (NCP) Find x∗ ∈ IRn
+ s.t. F (x∗) ∈ IRn

+ and 〈F (x∗), x∗〉 = 0
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Nash Equilibrium Problem

N players, each player controls the decision variables xν ∈ IRnν

x = (x1, . . . , xN) ; x−ν = (x1, . . . ,��ZZxν , . . . , xN) ; n =
∑N

ν=1 nν

Each player has an objective function θν : IRn → IR depending on xν
and x−ν

Each player’s strategy belongs to a set Cν ⊂ IRnν

Aim of player ν : given the other players’ strategy x−ν

find xν = arg min {θν(xν , x−ν) | xν ∈ Cν}

Nash equilibrium problem : find x∗ ∈ C := C1 × · · · × CN such that

θν(x∗ν , x
∗
−ν) ≤ θν(yν , x

∗
−ν) for all ν and all y ∈ C

No player can decrease his objective function by changing x∗ν
Here f (x , y) =

∑N
ν=1

{
θν(yν , x

∗
−ν)− θν(x∗ν , x

∗
−ν)
}
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Proximal Point Method for EP

The proximal point algorithm for EP is defined as follows : Given xk ∈ C

Find xk+1 ∈ C s.t. f (xk+1, y) +
1

c
〈xk+1 − xk , y − xk+1〉 ≥ 0 ∀y ∈ C .

If C = IRn and f (x , y) = h(y)− h(x) with h : IRn → IR l.s.c. and convex,
then by definition of ∂h(xk+1), we have

1

c
(xk − xk+1) ∈ ∂h(xk+1),

which is the optimality condition of the subproblem :

xk+1 = arg min
y∈C
{h(y) +

1

2c
‖y − xk‖2}
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Convergence

The function f is said to be

monotone if ∀x , y ∈ C f (x , y) + f (y , x) ≤ 0

strongly monotone if ∀x , y ∈ C f (x , y) + f (y , x) ≤ −γ‖x − y‖2

Convergence

f monotone ⇒ xk → x∗ solution to EP

f strongly monotone ⇒ xk → x∗ the unique solution to EP

When f is monotone,

the function (x , y) 7→ f (x , y) + 1
c 〈x − xk , y − x〉 is strongly monotone

So the subproblems are strongly monotone equilibrium problems

There is a need of an efficient algorithm for solving such problems
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Another Generalization of the Proximal Point Method

It is easy to see that x∗ ∈ C is a solution to problem EP if and only if

x∗ ∈ arg min
y∈C

{
f (x∗, y) +

1

2c
‖y − x∗‖2

}
(c > 0)

The corresponding algorithm : Auxiliary Problem Principle Algorithm

Data : Let x0 ∈ C and c > 0. Set k = 0.

Step 1 Compute xk+1 = arg miny∈C

{
f (xk , y) + 1

2c ‖y − xk‖2
}

.

Step 2 If xk+1 = xk , then STOP : xk is a solution to EP.

Replace k by k + 1, and go to Step 1.

When C = IRn and f (x , y) = h(y)− h(x), Step 1 becomes :

xk+1 = arg min
y∈C
{h(y) +

1

2c
‖y − xk‖2}
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Convergence of the Auxiliary Problem Principle Algorithm

Theorem (Mastroeni)

Assume

(a) f (·, y) : C → IR is continuous for all y ∈ C

(b) f is strongly monotone (with modulus γ > 0)

(c) There exists d1 > 0 and d2 > 0 such that, for all x , y , z ∈ C ,

f (x , y) + f (y , z) ≥ f (x , z)− d1 ‖y − x‖2 − d2 ‖z − y‖2

Then xk → x∗ the unique solution to EP provided that

c ≤ d1 and d2 < γ

This algorithm can be used for solving the subproblems of the proximal
point algorithm.
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Comments on Assumption (c)

There exists d1 > 0 and d2 > 0 such that, for all x , y , z ∈ C ,

f (x , y) + f (y , z) ≥ f (x , z)− d1 ‖y − x‖2 − d2 ‖z − y‖2

When f (x , y) = 〈F (x), y − x〉 with F : IRn → IRn, problem EP becomes
the variational inequality problem :

Find x∗ ∈ C s.t. 〈F (x∗), y − x∗〉 ≥ 0 for all y ∈ C

In that case f (x , y) + f (y , z)− f (x , z) = 〈F (x)− F (y), y − z〉 for all
x , y , z ∈ C and it is easy to see that if F is Lipschitz continuous (with
constant L), then for all x , y , z ∈ C ,

|〈F (x)− F (y), y − z〉| ≤ L‖x − y‖ ‖y − z‖ ≤ L

2
‖x − y‖2 +

L

2
‖y − z‖2

and thus f satisfies condition (c).
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Convergence under weaker assumptions

Recently (*) convergence has been obtained under weaker assumptions
than (b) and (c) :

There exist γ, d1, d2 > 0 and a nonnegative function g : C × C → IR
such that

(i) f (x , y) ≥ 0⇒ f (y , x) ≤ −γg(x , y)

(ii) f (x , z)− f (y , z)− f (x , y) ≤ d1g(x , y) + d2‖z − y‖2

(*) Nguyen Thi Thu Van, J.J. Strodiot, and V.H. Nguyen, A Bundle
Method for Solving Equilibrium Problems, Mathematical Programming,
2009, Vol.116, pp.529− 552.
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Approximate Auxiliary Problem Principle

Let xk ∈ C and let f k := f (xk , ·).
Strategy : Approximate f k in the subproblem

(Pk) xk+1 = arg min
y∈C

{
f k(y) +

1

2c
‖y − xk‖2

}
by a simpler function ϕk in such a way that the convergence is preserved.
Definition Let σ ∈ (0, 1]. A convex function ϕk : C → IR is a
σ-approximation of f k at xk if

ϕk ≤ f k and f k(yk) ≤ σϕk(yk),

where yk is the unique solution to problem (APk) :

(APk) min
y∈C

{
ϕk(y) +

1

2ck
‖y − xk‖2

}
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Approximate Auxiliary Problem Principle Algorithm

Since ϕk(xk) ≤ f k(xk) = 0, the inequality f k(yk) ≤ σϕk(yk) implies :

f k(xk)− f k(yk) ≥ σ (ϕk(xk)− ϕk(yk))

The reduction on f k is greater than a fraction of the reduction on ϕk .

Data : Let x0 ∈ C and σ ∈ (0, 1]. Set k = 0

Step 1. Find ϕk a σ-approximation of f k at xk and solve

(APk) xk+1 = arg min
y∈C

{
ϕk(y) +

1

2ck
‖y − xk‖2

}
to get xk+1.

Step 2. Replace k by k + 1 and go to Step 1.
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Convergence

Assume ck ≥ c > 0. Then

{xk} bounded
‖xk+1 − xk‖ → 0

}
⇒ any limit point of {xk} is solution to EP

Suppose that there exist γ, d1, d2 > 0 and a nonnegative function
g : C × C → IR such that

(i) f (x , y) ≥ 0⇒ f (y , x) ≤ −γg(x , y)

(ii) f (x , z)− f (y , z)− f (x , y) ≤ d1 g(x , y) + d2 ‖z − y‖2

If {ck} is nonincreasing and ck <
σ

2d2
and if d1

γ ≤ σ ≤ 1,

then {xk} is bounded and ‖xk+1 − xk‖ → 0
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Properties that must be satisfied by the model functions

As previously, to get ϕk a σ-approximation of f k , we construct
successively model functions ϕk

i , i = 1, 2, . . . satisfying the conditions

(C1) ϕk
i ≤ f k on IRn for i = 1, 2, . . .

(C2) ϕk
i+1 ≥ f k(yk

i ) + 〈s(yk
i ), · − yk

i 〉 on IRn for i = 1, 2, . . .

(C3) ϕk
i+1 ≥ lki on IRn for i = 1, 2, . . . ,

where

s(yk
i ) denotes the subgradient of f available at yk

i

lki (y) = ϕk
i (yk

i ) + 〈γk
i , y − yk

i 〉 and γk
i =

1

tk
(xk − yk

i )

We stop when for some ik , the function ϕk
ik

is a σ-approximation of

f k . In that case we set ϕk = ϕk
ik

.
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Serious Step Algorithm

Let xk ∈ IRn and σ ∈ (0, 1]. Set i = 1 and yk
0 = xk

Step 1. Choose a convex model ϕk
i satisfying conditions

(C 1) – (C 3) and solve the problem

(Pk
i ) min

y

{
ϕk

i (y) +
1

2ck
‖y − xk‖2

}
to get yk

i

Step 2. If f k(yk
i ) ≤ σϕk

i (yk
i ), then set xk+1 = yk

i and STOP ;

xk+1 is a serious step

Step 3. Increase i by 1 and go to Step 1.

xk not a solution ⇒ after finitely many iterations ϕk
i is a σ-approximation
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Convergence

Suppose that there exist γ, d1, d2 > 0 and a nonnegative function
g : C × C → IR such that

(i) f (x , y) ≥ 0⇒ f (y , x) ≤ −γg(x , y)

(ii) f (x , z)− f (y , z)− f (x , y) ≤ d1g(x , y) + d2‖z − y‖2

If {ck} is nonincreasing and 0 < c ≤ ck <
σ

2d2
and if d1

γ ≤ σ ≤ 1,

then {xk} converges to some solution to problem EP.

Nguyen Thi Thu Van, Strodiot, J.J., and Nguyen, V.H. A Bundle Method
for Solving Equilibrium Problems, Mathematical Programming, 2009,
Vol.116, pp.529− 552.
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Application to Mixed Variational Inequality Problems

(MVIP) : Find x∗ ∈ C such that for all y ∈ C

〈F (x∗), y − x∗〉+ h(y)− h(x∗) ≥ 0,

where F : IRn → IRn is continuous and h : IRn → IR is convex.

Here f (x , y) = 〈F (x), y − x〉+ h(y)− h(x)

At xk ∈ C , the function f k(y) := f (xk , y) is approximated by

ϕk
i (y) = 〈F (xk), y − xk〉+ hk

i (y)− h(xk),

where hk
i is an approximation of the convex function h at xk
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Application to Mixed Variational Inequality Problems

As previously, the model functions hk
i , i = 1, 2, . . . satisfy the conditions :

(C1) hk
i ≤ h on IRn for i = 1, 2, . . .

(C2) hk
i+1 ≥ h(yk

i ) + 〈s(yk
i ), · − yk

i 〉 on IRn for i = 1, 2, . . .

(C3) hk
i+1 ≥ lki on IRn for i = 1, 2, . . . ,

where

s(yk
i ) denotes the subgradient of h available at yk

i

lki (y) = hk
i (yk

i ) + 〈γk
i , y − yk

i 〉 and γk
i =

1

ck
(xk − yk

i )− F (xk)
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Application to Mixed Variational Inequality Problems

Let σ ∈ (0, 1). The condition of σ-approximation : f k(yk
i ) ≤ σϕk

i (yk
i )

becomes :

h(xk)− h(yk
i ) ≥ σ

(
h(xk)− hk

i (yk
i )
)

+ (1− σ) 〈F (xk), yk
i − xk〉

Assumption : F is h-co-coercive (with modulus γ > 0), i.e., for all
x , y ∈ C ,

〈F (x), y − x〉+ h(y)− h(x) ≥ 0

⇒ 〈F (y), y − x〉+ h(y)− h(x) ≥ γ ‖F (y)− F (x)‖2
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Bundle Methods for EP

Assumption and Convergence

It is easy to see that if F is h-co-coercive, then the two following
conditions (used for the convergence of the Bundle Proximal Point
Algorithm for EP) are satisfied :

(i) f (x , y) ≥ 0 ⇒ f (y , x) ≤ −γg(x , y)

(ii) f (x , z)− f (y , z)− f (x , y) ≤ 1
2 g(x , y) + 1

2 ‖z − y‖2

where g(x , y) = ‖y − x‖2.

So, if F is h-co-coercive, {ck} is nonincreasing, 0 < c ≤ ck < σ and
2σγ ≥ 1, then the sequence {xk} (if infinite) converges to a solution
of (MVIP)

JJS (University of Namur) Bundle Proximal Point Methods 85 / 130



Bundle Methods for EP

Application to Multivalued Variational Inequality Problems

(GVIP) : Find x∗ ∈ C and ξ∗ ∈ F (x∗) such that for all y ∈ C

〈ξ∗, y − x∗〉 ≥ 0,

where F : IRn → 2IRn

is continuous.

Here f (x , y) = supξ∈F (x) 〈ξ, y − x〉

At xk ∈ C , the function f k(y) := f (xk , y) is approximated by

ϕk(y) = 〈ξk , y − xk〉,

where ξk is any element in F (xk).

Question : When is ϕk a σ-approximation of f k ?
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σ-Approximation

Assumption : F is co-coercive on C , i.e., there exists γ > 0 such that for
all x , y ∈ C and for all ξx ∈ F (x) and ξy ∈ F (y), one has :

〈ξx − ξy , x − y〉 ≥ γ g(x , y),

where g(x , y) = supξ1∈F (x) infξ2∈F (y) ‖ξ1 − ξ2‖2

Suppose F is co-coercive on C with constant γ > 0.

Let σ ∈ (0, 1) and xk ∈ C . Then

ck ≤ 4γ (1− σ) ⇒ ϕk is a σ-approximation of f k

Algo : Given xk ∈ C and ck > 0, choose ξk ∈ F (xk) and compute :

xk+1 = arg min
y∈C

{
〈ξk , y − xk〉+

1

2ck
‖y − xk‖2

}
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Convergence

It is easy to see that if F is co-coercive on C , then the two following
conditions (used for the convergence of the Bundle Proximal Point
Algorithm for EP) are satisfied :

(i) f (x , y) ≥ 0 ⇒ f (y , x) ≤ −γg(x , y)

(ii) f (x , z)− f (y , z)− f (x , y) ≤ 1
2 g(x , y) + 1

2 ‖z − y‖2

where g(x , y) = supξ1∈F (x) infξ2∈F (y) ‖ξ1 − ξ2‖2.

So if F is co-coercive with constant γ > 0, {ck} is nonincreasing,
0 < c ≤ ck < σ and ck < 4(2−

√
3)γ for all k , then the sequence

{xk} converges to a solution of (GVIP)
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Extragradient Methods

Our Aim : We do not want to assume hypothesis (i) below (because too
strong) to obtain the convergence of the Proximal Point Method.

(i) f (x , y) ≥ 0 ⇒ f (y , x) ≤ −γ‖y − x‖2

(ii) f (x , z)− f (y , z)− f (x , y) ≤ d1 ‖y − x‖2 + d2 ‖z − y‖2

Strategy : Add an extra step to obtain the convergence under the sole
assumption (ii), i.e., under a Lipschitz-type condition.
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Proximal Extragradient Method for VIP

(VIP) : Find x∗ ∈ C such that for all y ∈ C

〈F (x∗), y − x∗〉 ≥ 0

Data : Let x0 ∈ C and c > 0. Set k = 0.

Step 1. Compute yk = PC (xk − c F (xk))

If yk = xk , then STOP : xk is a solution to VIP.

Step 2. Compute xk+1 = PC (xk − c F (yk)).

Replace k by k + 1 and go to Step 1.
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Extragradient Method for VIP. Convergence

Definition : F is said to be pseudomonotone on C if for all x , y ∈ C ,

〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), x − y〉 ≤ 0

Assume F is pseudomonotone and Lipschitz continuous on C with
constant L > 0. Then

0 < c < 1
L ⇒ {xk} converges to a solution of VIP
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Extragradient Method for EP

(EP) : Find x∗ ∈ C such that for all y ∈ C , f (x∗, y) ≥ 0

To get the extragradient method for EP :

replace yk = PC (xk − c F (xk)) by

yk = arg min
y∈C
{f (xk , y) +

1

2c
‖y − xk‖2}

and xk+1 = PC (xk − c F (yk)) by

xk+1 = arg min
y∈C
{f (yk , y) +

1

2c
‖y − xk‖2}

Reminder : for VIP, we have f (x , y) = 〈F (x), y − x〉
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Extragradient Method for EP

Data : Let x0 ∈ C and c > 0. Set k = 0.

Step 1. Find

yk = arg min
y∈C
{f (xk , y) +

1

2c
‖y − xk‖2}

If yk = xk , then STOP : xk is solution to EP.

Step 2. Find

xk+1 = arg min
y∈C
{f (yk , y) +

1

2c
‖y − xk‖2}

Replace k by k + 1 and go to Step 1.
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Extragradient Method for EP. Convergence

Definition : f is pseudomonotone on C × C if for all x , y ∈ C ,

f (x , y) ≥ 0 ⇒ f (y , x) ≤ 0

Assume f is pseudomonotone and l.s.c. on C × C . If there exist
d1, d2 > 0 such that

f (x , z)− f (y , z)− f (x , y) ≤ d1 ‖y − x‖2 + d2 ‖z − y‖2,

then {xk} converges to a solution of EP

Reference :

Tran Dinh Quoc, Le Dung Muu, and Nguyen Van Hien, Extragradient
Algorithms Extended to Equilibrium Problems, Optimization, Online First.
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Approximate Extragradient Method for EP.

For Step 1, we have arg minx∈C {f (xk , y) + 1
2c ‖y − xk‖2}

and we consider a σ-approximation of f (xk , y).

For Step 2, we write

arg minx∈C {f (yk , y) + 1
2c ‖y − xk‖2} =

arg minx∈C {f (yk , y) + 1
c 〈y − yk , yk − xk〉+ 1

2c ‖y − yk‖2}

and we consider a σ-approximation of f (yk , y) + 1
c 〈y − yk , yk − xk〉

The Bundle Method can be used for building these two
σ-approximations.

Convergence is obtained under the same assumptions as in the exact
case.
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Extragradient Method for VIP without Lipschitz Continuity

Strategy : At xk ∈ C

First compute yk = PC (xk − c F (xk))

Then use an Armijo-type linesearch to get zk ∈ [xk , yk ] such that the
hyperplane Hk = {x ∈ IRn | 〈F (zk), x − zk〉 = 0} strictly separates xk

from the solution set

Compute wk = PHk (xk) and xk+1 = PC (wk)

Armijo Condition : 〈F (zk), xk − yk〉 ≥ α
c ‖y

k − xk‖2

Projection : wk = xk − 〈F (zk ), xk−zk 〉
‖F (zk )‖2 F (zk)

Convergence : If F is continuous and pseudomonotone,

then {xk} converges to a solution of VIP
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Extragradient Method for EP without Lipschitz Condition

(EP) : Find x∗ ∈ C such that for all y ∈ C , f (x∗, y) ≥ 0

Since f (x , y) = 〈F (x), y − x〉 for VIP,

the Armijo condition for VIP : 〈F (zk), xk − yk〉 ≥ α
c ‖y

k − xk‖2
becomes

f (zk , xk)− f (zk , yk) ≥ α

c
‖yk − xk‖2

F (zk) is replaced by gk ∈ ∂f (zk , ·)(xk)

wk = xk − 〈F (zk ), xk−zk 〉
‖F (zk )‖2 F (zk) (for VIP) becomes

wk = xk − f (zk , xk)

‖gk‖2
gk

Convergence : If f is continuous on C × C and pseudomonotone,

then {xk} converges to a solution of EP
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Interior Proximal Algorithms for EP

Consider the simplest case : C = {x ∈ IRn | x ≥ 0}
Use a barrier method for treating the constraint set C :

The subproblem minx∈C {ck f (xk , y) + 1
2‖y − xk‖2} is replaced by the

unconstrained problem :

min
x∈IRn

++

ck f (yk , y) +
ν

2
‖y − xk‖2 + µ

n∑
j=1

xk 2
j h

(
yj

xk
j

)
where ν > µ > 0 and h : IR++ → IR is defined by h(t) = t − log t − 1

Notation : ϕ(t) = µh(t) + ν
2 (t − 1)2 (log-quad function) and

Dϕ(y , xk) :=
n∑

j=1

xk 2
j ϕ

(
yj

xk
j

)
=
ν

2
‖y − xk‖2 + µ

n∑
j=1

xk 2
j h

(
yj

xk
j

)
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Log-quad function

0 1 3

μ = 1; ν = 2

ϕ(t) = µ(t − log t − 1) +
ν

2
(t − 1)2
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x 7→ Dϕ(x , y)
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x 7→ Dϕ(x , y) with y = (1, 1)
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Interior Proximal Extragradient Method for EP. Algo IPE

Data : Let x0 ∈ C and c > 0. Set k = 0.

Step 1. Find

yk = arg min
y∈IRn

++

{ck f (xk , y) + Dϕ(y , xk)}

If yk = xk , then STOP : xk is solution to EP.

Step 2. Find

xk+1 = arg min
y∈IRn

++

{ck f (yk , y) + Dϕ(y , xk)}

Replace k by k + 1 and go to Step 1.
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Convergence

Assume that f is pseudomonotone on C × C and that there exist
d1, d2 > 0 such that

f (x , z)− f (y , z)− f (x , y) ≤ d1 ‖y − x‖2 + d2 ‖z − y‖2

If 0 < c < ck < min
{
ν−5µ
2d1

, ν−3µ
2d2

}
, then {xk} converges to a solution

of EP
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Interior Proximal Extragradient Method without Lipschitz
Continuity. Algo IPLE

At xk ∈ IRn
++

First compute yk = arg miny∈IRn
++
{ck f (xk , y) + Dϕ(y , xk)}

Then use an Armijo-type linesearch to get zk ∈ [xk , yk ] such that

f (zk , xk)− f (zk , yk) ≥ α

ck
Dϕ (yk , xk)

Take gk ∈ ∂f (zk , ·)(xk)

Compute wk = xk − f (zk ,xk )
‖gk‖2 gk

Set xk+1 = (1− τ) xk + τPC (wk) where τ ∈ (0, 1)
So xk+1 ∈ IRn

++
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Algo IPLE. Convergence

If 0 < c ≤ ck ≤ c̄ for all k , then every limit point of {xk} is a
solution to problem EP

If, in addition, f is pseudomonotone, then the whole sequence {xk}
converges to a solution of problem EP

Reference :

Nguyen Thi Thu Van, Strodiot J.J., and Nguyen Van Hien, The
Logarithmic-Quadratic Extragradient Method for Solving Equilibrium
Problems, Journal of Global Optimization, Online First.
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Difficulties

This time, the subproblems

yk = arg min
y∈IRn

++

{ck f (xk , y) + Dϕ(y , xk)}

are no more quadratic and defined on an open set IRn
++.

So, in general, they are difficult to solve.
When the conjugate of the convex function f (xk , ·) is finite on IRn

and easily computable, then the strategy is
first solve the Fenchel dual

min
u∈IRn

{f (xk , ·)∗(u) + Dϕ(·, xk)∗(−u)} to obtain u∗

because ϕ∗(t) and (ϕ∗)′(t) can be explicitly computed.
then recover the solution yk by using the formula :

(yk)j = xk
j (ϕ∗)′

(
−

u∗j
xk
j

)
for all j = 1, . . . , n
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Example where Fenchel duality is useful

Let f (x , y) = 〈Px + Qy + q, y − x〉 for x , y ∈ C := IRn
+

The corresponding EP is related to the Nash Cournot equilibrium
model. Reference :

Le Dung Muu, Nguyen Van Hien, and Nguyen Van Quy,
On Nash-Cournot Oligopolistic Market Equilibrium Models with
Concave Cost Functions,
Journal of Global Optimization, Vol.41, pp.351− 364, 2008.

Assumptions : Q symmetric positive definite and Q − P negative
semidefinite.

⇒ f is continuous, monotone and Lipschitz (in the sense of (ii))

Convergence assumptions are satisfied
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Example where Fenchel duality is useful

The subproblems can be written

min
y∈IRn

++

{
g(y) + Dϕ (y , xk)

}
where g(y) = ckyT Qy + ckbT y and b = (P − Q)x + q

g∗(u) = 1
4ck
〈u − ckb, Q−1(u − ckb)〉 for u ∈ IRn

The Fenchel dual

min
u∈IRn

{
g∗(u) + Dϕ(·, xk)∗(−u)

}
can be solved using a unconstrained optimization method
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Numerical Results

Example 1 Example 2 Example 3
Algorithm IPE IPLE IPE IPLE IPE IPLE
it 19 1305 20 1342 40 228
cpu (sec.) 1.078 26.89 1.296 27.64 10.875 13.25
optimality -0.00000 -0.00257 -0.00000 -0.00237 -0.00006 -0.00152

Three examples randomly generated where n = 5 and C = IRn
+

it := number of iterations ; cpu := cpu time (in seconds)

optimality at x ⇔ miny∈IRn
+

f (x , y) = 0

IPE by far better than IPLE
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Other Applications

Section 4

Other Applications of the Bundle Proximal Point Method

1. Generalized Fractional Programming Problems

2. Bilevel Problems

3. D.C. Programming Problems
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Dinkelbach-type Methods

Generalized Fractional Programming Problems

Consider the nonlinear program

(P) λ∗ = infx∈X

{
max1≤i≤m

{
fi (x)
gi (x)

}}

where

X ⊆ IRn nonempty closed

fi (x), gi (x) continuous for all 1 ≤ i ≤ m

gi > 0 on X for all 1 ≤ i ≤ m

When m = 1, the problem is called a fractional problem

Question : find λ∗ and a solution x∗ of (P)

JJS (University of Namur) Bundle Proximal Point Methods 112 / 130



Dinkelbach-type Methods

Auxiliary Parametric Problems

For each λ ∈ IR, we introduce a parametric problem with a simpler
structure :

(Pλ) F (λ) = infx∈X {max1≤i≤m {fi (x)− λgi (x)}}

If F (λ∗) = 0, then problems (P) and (Pλ∗) have the same set of
optimal solutions (which may be empty)
⇒ two steps : first find λ∗ a zero of F and then solve (Pλ∗)

F is nonincreasing and F (λ) < 0 if and only if λ > λ∗

Strategy : Let λk > λ∗. Then

solve (Pλk
) to get xk

approximate F (λ) by F (λ, xk) = max1≤i≤m {fi (xk)− λgi (xk)}
find λk+1 a zero of F (λ, xk)
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Local Approximation of F (λ)

Consider again : F (λ) = infx∈X {max1≤i≤m {fi (x)− λgi (x)}}
and define

F (λ, x) = max
1≤i≤m

{fi (x)− λgi (x)} for all λ ∈ IR, and x ∈ X

The function λ→ F (λ, xk) is decreasing, piecewise linear and convex

Let λk > λ∗. Then

xk is solution to (Pλk
)⇔ xk is the minimum over X of F (λk , x)

F (λk , x
k) = F (λk) < 0 and F (λ) ≤ F (λ, xk), ∀λ

Finding λk+1 a zero of F (λ, xk) amounts to compute

λk+1 = max
1≤i≤m

{fi (xk)/gi (xk)}.
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Geometric Interpretation

λ* λk+1 λk

F(λ)

F(λ, xk)

λ
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Dinkelbach-type Methods

Dinkelbach-type algorithm (DTA)

Step 0 Let x0 ∈ X , λ1 = max1≤i≤m{fi (x0)/gi (x0)}, and k = 1

Step 1 Determine an optimal solution xk of

(Pλk
) F (λk) = infx∈X {max1≤i≤m {fi (x)− λkgi (x)}}

Step 2 If F (λk) = 0, xk is an optimal solution of (P) and

λk is the optimal value, and STOP

Step 3 Let λk+1 = max1≤i≤m{fi (xk)/gi (xk)}.

Replace k by k + 1 and repeat Step 1.
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The Auxiliary Problems

The performances of the DTA algorithm heavily depend on the effective
solution of the auxiliary problems :

(Pλk
) F (λk) = inf

x∈X

{
max

1≤i≤m
{fi (x)− λkgi (x)}

}
Let us denote F (x , λk) = max1≤i≤m {fi (x)− λkgi (x)}

Difficulties :

F (x , λk) is in general nonsmooth

Problems (Pλk
) may have several solutions

Strategy : add a prox-regularization term to F (x , λk) to obtain a strongly
convex function.
Here in this talk, we assume that the functions F (x , λk) are convex.
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Inexact Proximal Point Method

Given (xk−1, λk), the prox-regularization method replaces
minx∈X F (x , λk) by

(Pλk
) min

x∈X
{F (x , λk) +

1

2ck
‖x − xk−1‖2}

Strategy : approximate F (·, λk) by a convex function ϕk(·, λk) such that

the convergence is preserved. As previously, we choose for ϕk(·, λk) a
σ-approximation of F k(·, λk)

the problem

(APλk
) min

x∈X
{ϕk(x , λk) +

1

2ck
‖x − xk−1‖2}

is easy to solve exactly. As previously, we choose for ϕk(·, λk) a
piecewise linear function
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Inexact proximal point algorithm

Step 0 Choose x0 ∈ X , c1 > 0, σ > 0, and set λ1 = maxi
fi (x

0)
gi (x0)

,

and k = 1

Step 1 Construct a σ-approximation ϕk(·, λk) of F (·, λk) and find xk ∈ X

the unique solution of problem

(APλk
) min

x∈X
{ϕk(x , λk) +

1

2ck
‖x − xk−1‖2}

Step 2 Set λk+1 = maxi
fi (x

k )
gi (xk )

, choose ck+1 > 0

Step 3 Replace k by k + 1 and repeat Step 1.
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Convergence

Let σ ∈ (0, 1). Assume 0 < ν ≤ gi (xk) ≤ γ for all k and 1 ≤ i ≤ p.
Assume also that

∑
k≥0 ck = +∞ and that either ck ≤ c̄ for all k or

ck ≤ ck+1 for all k

Then

the sequence {λk} generated by the inexact proximal point algorithm
converges to λ∗, the optimal value of problem (P).

if ck ≤ c̄ for all k and the solution set of problem (P) is nonempty,
then the sequence {xk} converges to some solution of (P).
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Reference

Strodiot, J.J., Crouzeix, J. P., Ferland, J.A., and Nguyen, V.H.

Inexact Proximal Point Method for Solving Generalized Fractional
Programs

Journal of Global Optimization, Vol. 42, No 1, pp. 121− 138, 2008.
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Bilevel Problems

Bilevel Problems

Consider the bilevel problem{
min f1(x)
s.t. x ∈ S2 := arg min{f2(x) | x ∈ IRn},

where f1, f2 : IRn → IR are nondifferentiable convex functions.

The classical convex problem{
min f1(x)
s.t. gi (x) ≤ 0, i = 1, . . . ,m,

where gi : IRn → IRn, i = 1, . . . ,m are nondifferentiable convex functions,

is an example of Bilevel Problem : take f2(x) =
∑m

i=1 max {0, gi (x)}
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Bilevel Problems

Bilevel Problems

For each value of τ > 0, we introduce the penalty function

Fτ (x) = τ f1(x) + f2(x).

Given (xk , τk), the prox-regularization method replaces minx∈IRn Fτk (x) by

(Pk,τk ) min
x∈IRn

{Fτk (x) +
1

2ck
‖x − xk‖2}

Strategy : replace Fτk by a σ-approximation ϕk by using the bundle
concept.

Let xk = arg minx∈IRn

{
ϕk(x) + 1

2ck
‖x − xk‖2

}
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Bilevel Problems

Convergence

Let f1 and f2 be convex functions such that f1 is bounded below and the
solution set of the bilevel problem is nonempty and bounded.
Suppose that 0 < c ≤ ck ≤ c̄ .
If the sequence {xk} is infinite and if τk → 0 and

∑∞
k=1 τk = +∞, then

each limit point of {xk} is a solution to the bilevel problem.

Advantage of the method :

no need of regularity assumptions on constraints, such as the Slater
condition.

So we can consider complementarity constraints which do not satisfy
constraint qualifications.

−Qx − q ≤ 0, −x ≤ 0, 〈Qx + q, x〉 ≤ 0,

where Q is a positive semidefinite matrix.
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Bilevel Problems

Reference

Reference :

M. Solodov, A bundle method for a class of bilevel nonsmooth convex
minimization problems, SIAM J. Optimization, Vol. 18, pp. 242− 259,
2007.
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D.C. Programming

D.C. Programming

Consider the D.C. programming problem{
min f (x)
s.t. x ∈ IRn,

where f = g − h with g and h convex from IRn to IR.

Necessary condition :

x∗ optimal solution ⇒ ∂h(x∗) ⊂ ∂g(x∗) ⇒ ∂g(x∗) ∩ ∂h(x∗) 6= ∅
The first necessary condition is hard to obtain.

We try to find a critical point x∗ of f , i.e., a point x∗ such that

∂g(x∗) ∩ ∂h(x∗) 6= ∅
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D.C. Programming

Two Lemmas

Let x ∈ IRn and c > 0. Then

∀w ∈ ∂h(x), w 6= 0 h(x + cw) > h(x)

Let x ∈ IRn, w ∈ ∂h(x) and c > 0. Then

x is a critical point of f if and only if

x = arg min
y∈IRn

{
g(y) +

1

2c
‖y − (x + cw)‖2

}
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D.C. Programming

Proximal Point Algorithm

Data : Let x0 ∈ IRn and c0 > c > 0. Set k = 0.

Step 1. Calculate wk ∈ ∂h(xk) and set zk = xk + ckwk

Step 2. Find

xk+1 = arg min
y∈IRn

{
g(y) +

1

2ck
‖y − zk‖2

}
Step 3. If xk+1 = xk , then STOP : xk is a critical point of f

Otherwise replace k by k + 1, choose ck > c and go to Step 1.
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D.C. Programming

Inexact Proximal Point Algorithm

Data : Let x0 ∈ IRn and c0 > c > 0. Choose α ∈ (0, 1). Set k = 0.

Step 1. Calculate wk ∈ ∂h(xk) and set zk = xk + ckwk

Step 2. Using the bundle concept, choose ĝk an approximation of g at zk

such that

ĝk ≤ g and g(xk+1)− ĝk(xk+1) ≤ α

ck
‖xk+1 − xk‖2

where

xk+1 = arg min
y∈IRn

{
ĝk(y) +

1

2ck
‖y − zk‖2

}
Step 3. Replace k by k + 1, choose ck > c and go to Step 1.
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D.C. Programming

Convergence

Assume f = g − h is bounded below and ck > c > 0 for all k .

Then {f (xk)} is convergent and limk→∞ c−1
k ‖x

k+1 − xk‖ = 0

Moreover, if {xk} and {wk} are bounded, then the limit points x∞

and w∞ of {xk} and {wk} are critical points of f = g − h and
h∗ − g∗, respectively

Reference :

Wen-yu Sun, R.J.B. Sampaio, and M.A.B. Candido, Proximal point
algorithm for minimization of DC function, Journal of Computational
Mathematics, Vol. 21, pp. 451− 462, 2003.
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