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1. Let ω be a circle with a diameter BC and XY a chord of ω perpendicular to BC. Points P
and M are chosen on XY and CY , respectively, such that CY ||PB and CX||MP . Let K be
the intersection of CX and PB. Prove that PB is perpendicular to MK.

2. Let x, y, z be pairwise distinct non-negative real numbers. Prove that

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

≥ 4
xy + yz + zx

.

Determine when equality holds.

3. Given a set of 2009 points in the plane with no three collinear, prove that for every point
P ∈ S, there exists an even number of triangles ABC with A,B,C ∈ S such that P is in the
interior of ∆ABC.

4. Find all functions f : N → N such that (m2 +n)2 is divisible by f(m)2 +f(n) for all m,n ∈ N.

5. Given triangle ABC, let X be a point on ray BC beyond C. Prove that the radical axis of
the incircle of ∆ABX and the incircle of ∆ACX passes through a point independent of X.
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1. Let ω be a circle with a diameter BC and XY a chord of ω perpendicular to BC. Points P
and M are chosen on XY and CY such that CY ||PB and CX||MP . Let K be the intersec-
tion of CX and PB. Prove that PB is perpendicular to MK.

Solution: We will consider two cases: If XY is closer to or equidistant to B than to C and
if XY is closer to C than to B.

In the former case, let θ = ∠KBC. By parallel lines and symmetry, we get that ∠KBC =
∠Y CB = ∠KCB. Hence, BK = KC (1). By parallel lines, we have that ∠BKX =
∠KCM = 2θ (2). Also, ∠PXK = 90 − ∠Y XB = 90 − ∠Y CB = 90 − θ. Hence,
∠XPK = 180 − ∠PXK − ∠BKX = 90 − θ. Hence, ∆KXP is isosceles. Therefore,
KX = KP = MC (3) since KPMC is a parallelogram. By (1), (2) and (3), we conclude that
∆BKX is congruent to ∆KCM . Hence, 90 = ∠BXK = ∠KMC, as desired. The second
case can be handled similarly.

Source: Iran Math Olympiad 2005

2. Let x, y, z be non-negative real numbers. Prove that

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

≥ 4
xy + yz + zx

.

Determine when equality holds.

Solution: Let
f(x, y, z) =

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

.

and
g(x, y, z) =

4
xy + yz + zx

.

Note that f(x, y, z) = f(x + d, y + d, z + d) for all d ∈ R. Suppose x ≥ y ≥ z. Then
f(x, y, z) = f(x− z, y − z, 0). Note 4

xy+yz+zx strictly increases as x, y or z strictly decreases.
Hence, g(x, y, z) ≤ g(x − z, y − z, 0) with equality if and only if z = 0. Hence, it suffices to
show that f(a, b, 0) ≥ g(a, b, 0) for all a, b ≥ 0, i.e.

1
a2

+
1
b2

+
1

(a− b)2
≥ 4
ab
.

After some manipulation, we get this is in fact equivalent to

(a2 − 3ab+ b2)2

a2b2(a− b)2
≥ 0



with equality if and only if a2 − 3ab + b2 = 0 or a/b = (3 +
√

5)/2. Hence, equality holds if
and only if (x, y, z) = t(3 +

√
5, 2, 0) for any positive real number t or any of this solution’s

permutations.

Source: Vietnam Team Selection Test 2008

3. Given a set of 2009 points in the plane with no three collinear, prove that for every point
P ∈ S, there exists an even number of triangles ABC with A,B,C ∈ S such that P is in the
interior of ∆ABC.

Solution: We will first prove this problem for five points in the plane. If the convex hull
of the five points is a pentagon, then each point is in the interior of zero triangles. If the
convex hull of the five points is a quadrilateral ABCD, each point on the boundary of this
quadrilateral is in the interior of zero triangles. Let AC and BD intersect at Q. For the point
in the interior P , P is in exactly one of QAB,QBC,QCD,QDA. Without loss of generality,
suppose P is in QAB. Then P is in ABC and ABD, and not BCD,CDA. Hence, P is in
the interior of exactly two triangles. If the convex hull of the five points is a triangle ABC,
let P,Q be its interior points. Then P is in the interior of ABC, and in the interior of exactly
one of QAB,QBC,QCA. Hence, P is in the interior of two triangles. Similarly, Q is in the
interior of two triangles. This solves the case for five points.

Now consider n > 5 points in the plane where n is odd. Fix a point P ∈ S. Suppose we count
the number of triangles ABC such that P is in ABC. For each unordered triple of points
(A,B,C) where A,B,C 6= P , let nA,B,C = 1 if P is in the interior of ABC and nA,B,C = 0
otherwise. For each choice of 4-tuple A,B,C,D 6= P , we know that nA,B,C +nA,B,D+nA,C,D+
nB,C,D is 0 or 2, from our argument in the scenario for five points. By summing this over all
4-tuples, the eventual sum S is even, and each nA,B,C is counted exactly n − 4 times, which
is an odd number. Hence, ∑

A,B,C∈S

nA,B,C =
S

n− 4
,

which is even, which solves the problem.

Source: British Math Olympiad 2006

4. Find all functions f : N → N such that (m2 +n)2 is divisible by f(m)2 +f(n) for all m,n ∈ N.

Solution: Substituting m = n = 1 yields 4 is divisible by f(1)2 + f(1). Since f(1) ≤ 1,
then f(1) = 1. Substituting m = 1 yields (n + 1)2 is divisible by 1 + f(n) for all n ∈ N.
Substituting n = p−1 where p is a prime number yields p2 is divisible by 1+f(p−1). Hence,
f(p − 1) + 1 = p or p2 for each prime p. If f(p − 1) + 1 = p2, then m = p − 1 and n = 1
yields ((p− 1)2 +1)2 is divisible by (p2− 1)2 +1. Since p ≥ 2, the former term is smaller than
the latter term. Therefore, this divisibility is impossible. Therefore, f(p − 1) = p − 1 for all



primes p.

We now have infinitely many integers k such that f(k) = k. Let k ∈ N such that f(k) = k.
Then k2 + f(n) = f(k)2 + f(n) divides (k2 + n)2 = (k2 + f(n) + n − f(n))2. This implies
k2 + f(n) divides (n − f(n))2 for infinitely many integers k. Hence, f(n) = n for all n ∈ N,
which satisfies the conditions to the problem.

Source: Romanian Team Selection Test 2006

5. Given triangle ABC, let X be a point on ray BC beyond C. Prove that the radical axis of
the incircle of ∆ABX and the incircle of ∆ACX passes through a point independent of X.

Solution: Let ω1, ω2 be the incircles of ∆ABX, ∆ACX respectively. Let ω1 touch AX,BX
at M,N respectively and ω2 touch AX,BX at R,S respectively. Therefore, the radical axis
passes through the midpoint of M and R and the midpoint of N and S. Call these points
P,Q respectively. We now use the following lemma.

Lemma: Given a triangleABC with an incircle, with incentre I and touches sidesBC,CA,AB
at D,E, F respectively. Let A′, B′, C ′ be midpoints of BC,CA,AB respectively. Then
A′B′, DF,AI are concurrent.

Proof of Lemma: Let Q be the foot of the perpendicular on AI from C and T be the image
of the reflection of C through AI. Hence T is on line AB. Since Q is the midpoint of CC ′,
B′, A′ are midpoints of A,C and B,C respectively, then B′, A′, T ′ are collinear. It remains to
show that T,D, F are collinear.

Clearly, I, E,C,Q are concyclic since ∠IEC = ∠IQC = 90o. Since ∠IDC = ∠ITC = 90o,
then D is also on this circle, i.e. I, E,C,D,Q are concyclic. Now, ∠IDF = ∠B/2. Fur-
thermore, ∠ICT = ∠ACT − ∠ICT = 90 − ∠A/2 − ∠C/2 = ∠B/2. Since ICTD is cyclic,
∠ICT = ∠B/2 and ∠IDF = ∠B/2, we conclude T,D, F are collinear. End Proof of
Lemma.

Let’s return to the original problem. Let l be the line passing through the midpoint of AB
and AC. Then by this Lemma, l, MN , and the angle bisector of ABX are concurrent, say
U . Also, l, RS, and the angle bisector of ACX (which is independent of X) are concurrent,
say at V . Since U, V are independent of X, then PQ passes through the midpoint of U and
V , which is also independent of X.

Source: IMO Shortlist 2004
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1. Let m,n be positive integers such that gcd(m,n) = 1, m is even and n is odd. Evaluate the
expression

1
2n

+
n−1∑
k=1

(−1)b
km
n

c
{
km

n

}
,

where bxc is the largest integer less than or equal to x and {x} = x−bxc (called the fractional
part of x).

2. Find all positive real numbers r ≤ 1 such that there exists an infinite sequence {xn}n∈N of
positive real numbers such that for all n ≥ 1,

xn+2 = xr
n+1 − xr

n.

3. Let ABC be a triangle with circumcentre O such that the circumradius of ABC is equal to
the radius of the excircle opposite A. Let M,N,L be the points where the excircle opposite
A touches BC,CA,AB, respectively. Prove that O is the orthocentre of MNL.

4. There are 10 cities in the Fatland. Two airlines control all of the flights between the cities.
Each pair of cities is connected by exactly one flight (in both directions). Prove that one
airline can provide two traveling cycles with each cycle passing through an odd number of
cities and with no common cities by the two cycles.

5. Find all polynomials with integer coefficients such that for all positive integers a, b, c, f(a) +
f(b) + f(c) is divisible by a+ b+ c.



2009 Mock Olympiad 2: (APMO Mock)
Time: 4 Hours

1. Let m,n be positive integers such that gcd(m,n) = 1, m is even and n is odd. Evaluate the
expression

1
2n

+
n−1∑
k=1

(−1)b
km
n

c
{
km

n

}
,

where bxc is the largest integer less than or equal to x and {x} = x−bxc (called the fractional
part of x).

Solution: Let km = qkn+ rk where 1 ≤ rk < n. Note that since gcd(m,n) = 1, then none of
rk = 0. Note that qk = bkm/nc and rk = n{km

n }. We make the following two observations;

(a) Since gcd(m,n) = 1, then {r1, r2, · · · , rn−1} = {1, 2, · · · , n− 1}
(b) Since m is even, then km is even. Then since n is odd, then qk ≡ rk mod 2.

Hence, since n− 1 is even,

1
2n

+
n−1∑
k=1

(−1)b
km
n

c
{
km

n

}
=

1
2n

+
1
n

(−1 + 2− 3 + · · ·+ (n− 1)) =
1
2n

+
n− 1
2n

=
1
2
.

Therefore, the expression is equal to 1
2 .

Source: Romanian Team Selection Test 2005

2. Find all positive real numbers r ≤ 1 such that there exists an infinite sequence {xn}n∈N of
positive real numbers such that for all n ≥ 1,

xn+2 = xr
n+1 − xr

n.

Solution: We will prove that this not hold for any positive real number r ≤ 1. Suppose such
a sequence exist. Then for all n ≥ 1, xn+2 = xr

n+1 − xr
n. Since xn+2 > 0, then xn+1 > xn for

all n ≥ 1, implying {xn}n∈N is a strictly increasing sequence. Hence,

xr
n+1 − xr

n > xr
n − xr

n−1

which implies
xr

n+1 + xr
n−1

2
> xr

n

Hence, {xr
n}n∈N is term by term larger than the arithmetic sequence whose first two elements

are xr
1, x

r
2. Since xr

2 > xr
1, x

r
m > 1 for a sufficiently large m, which also implies xm > 1. But

xm+1 = xr
m − xr

m−1 < xr
m ≤ xm, since xm > 1 and r ≤ 1, contradicting that {xn}n∈N is

strictly increasing. �



Source: Generalization of a problem in the University of Waterloo Big E Com-
petition 1998

3. Let ABC be a triangle with circumcentre O such that the circumradius of ABC is equal to
the radius of the excircle opposite A. Let M,N,L be the points where the excircle opposite
A touches BC,CA,AB, respectively. Prove that O is the orthocentre of MNL.

Solution: Let’s set up notation first. Let ω be the circumcircle of ABC and γ be the excircle
opposite A. Let X be the excentre opposite A and D be the point (which is not A) where AX
intersect the circumcentre of ∆ABC. Note that OD ⊥ BC. Since the radii of ω and γ are
equal, then OD = XM . But both OD,MX ⊥ BC, this implies ODXM is a parallelogram,
implying OM ||DX, which implies OM ||AX. Since AX ⊥ LN , then OM ⊥ LN . Hence, O is
on the altitude of ∆MLN from M .

Let the internal angle bisector of ∠ABC intersect ω at E. Note that ∠EBX = 90o and
|EA| = |EC|. Let T be the point of intersection of BX and ω (which is not B). Then T is
diametrically opposite E which implies |TA| = |TC|. Let B′ be the foot of the perpendicular
on AC from T . Then TB′ passes through O. Since the radii of ω and γ are equal, then
OT = NX. But OT ||NX, since both are perpendicular to AC. Hence, TONX is a paral-
lelogram. Hence, TX||ON . But TX is parallel to BX (same line) which is perpendicular to
LM . This implies ON is perpendicular to LM . By symmetry, OL is perpendicular to MN .
Hence, O is the orthocentre of ∆MNL as desired. �

Source: Iran Math Olympiad 2005

4. There are 10 cities in the Fatland. Two airlines control all of the flights between the cities.
Each pair of cities is connected by exactly one flight (in both directions). Prove that one
airline can provide two traveling cycles with each cycle passing through an odd number of
cities and with no common cities by the two cycles.

Solution: In graph theory notation, we want to show that a complete graph K10, whose
edges are coloured one of two colours, contains a monochromatic subgraph consisting of two
disjoint odd cycles. We recall two basic facts.

Lemma 1: Given a complete graph K6 whose edges are red or blue, there exists a monochro-
matic triangle.

Lemma 2: Given a complete graph K5 whose edges are red or blue and no monochromatic
triangle, then the red edges and the blue edges both induce a five cycle.

Let vi, 1 ≤ i ≤ 10 be the vertices of K10. By Lemma 1, there exists a monochromatic triangle,
say v1v2v3. Suppose this is red. Amongst v4v5, · · · , v10, then there eexists a monochromatic



triangle, say v4v5v6. If this triangle is also red, we are done. Hence, suppose v4v5v6 is blue.
Consider the edges of the form vivj where 1 ≤ i ≤ 3 and 4 ≤ j ≤ 6. By Pigeonhole Principle,
five of these edges are of the same colour, say red. Then some vertex vj where 4 ≤ j ≤ 6
is incident to two of these red edges. Hence, we have a red and a blue triangle that share
exactly one common vertex.

Let’s relabel and let v1v2v3 be the red triangle and v3v4v5 be the blue triangle. Amongst
v6v7v8v9v10, if there is red or blue triangle, our problem is solved. Otherwise, by Lemma 2,
there is a red 5-cycle and a blue 5-cycle, and we are still done. �

Source: 102 Combinatorial Problems by Andreescu and Feng

5. Find all polynomials with integer coefficients such that for all positive integers a, b, c, f(a) +
f(b) + f(c) is divisible by a+ b+ c.

Solution: Recall that for all distinct integers m,n, we have m − n divides f(m) − f(n).
Therefore, a+ b+ c divides f(a)− f(−(b+ c)). Since a+ b+ c divides f(a) + f(b) + f(c), we
conclude that a+b+c divides f(b)+f(c)+f(−(b+c)). This holds for all positive integers a, by
choosing a to be sufficiently large, we conclude that f(b)+ f(c) = −f(−(b+ c)). Substituting
c = b yields 2f(b) = −f(−2b). Let t = deg(f) and s 6= 0 be the leading coefficient of f . Then
comparing leading coefficients of the left and right side yields 2s = −(−2)ts. Since s 6= 0, then
2 = −(−2)t implying t = 1. Therefore, f(x) = sx+ C for some constant C. Hence, a+ b+ c
divides sa+ sb+ sc+ 3C for all a, b, c, implying a+ b+ c divides 3C for all positive integers
a, b, c. Therefore, C = 0 and f(x) = sx for any positive integer s. This is easily verified as a
solution. �

Source: Iran Math Olympiad 2007
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1. Let A1, A2, · · · , A100 be a collection of subsets of {1, 2, 3, 4, 5, 6} such that for all pairwise
distinct i, j, k, we have |Ai ∪Aj ∪Ak| ≥ 5. Find the minimum possible value of

100∑
t=1

|At|.

2. Let r, s be fixed rational numbers. Find all functions f : Q → Q such that

f(x+ f(y)) = f(x+ r) + y + s

for all x, y ∈ Q, where Q denotes the rational numbers.

3. Let ω be a circle with centre O and l be a line that does not intersect ω. Let Q be the foot
of the perpendicular from O on l and P be any point on l different from Q. Let l1, l2 be the
lines tangent to ω passing through P and A,B be the feet of the perpendicular from Q on
l1, l2, respectively. Prove that AB passes through a point on OQ independent of the choice
of P .

4. Find all pairs of positive integers (m,n) such that

3m = 2mn+ 1.

5. Let n be a positive integer and x1, x2, · · · , xn ∈ R such that |xi| ≤ 1 for each i ∈ {1, 2, · · · , n}
and x1 + x2 + · · ·+ xn = 0.

a.) Prove that there exists k ∈ {1, 2, · · · , n} such that

|x1 + 2x2 + · · ·+ kxk| ≤
2k + 1

4
.

b.) For n > 2, prove that the bound in (a) is the best possible. i.e. there exists x1, x2, · · · , xn

satisfying the initial conditions such that for all k ∈ {1, 2, · · · , n}.

|x1 + 2x2 + · · ·+ kxk| ≥
2k + 1

4
.



2009 Mock Olympiad 3: (APMO Mock)
Time: 4 Hours

1. Let A1, A2, · · · , A100 be a collection of subsets of {1, 2, 3, 4, 5, 6} such that for all pairwise
distinct i, j, k, we have |Ai ∪Aj ∪Ak| ≥ 5. Find the minimum possible value of

100∑
t=1

|At|.

Solution: The answer is 70 · 5 + 30 · 4 = 470.

Let S be the desired sum. To minimize S, we may assume that |Ai| ≤ 5 for all 1 ≤ i ≤ 100.
Note that there are 15 subsets of size 4 of {1, 2, 3, 4, 5, 6}. I claim that there are at most
30 sets from A1, · · · , A100 of size at most 4. Suppose not. Suppose there are 31 sets from
A1, · · · , A100 that contains four or less elements. Then there exists a subset of size 4 that
contains three of these sets. This contradicts |Ai∪Aj ∪Ak| ≥ 5 for all pairwise distinct i, j, k.
Therefore, at most 30 sets have size at most 4. Therefore, the other 70 sets must have size 5.

To minimize S, I claim that the remaining 30 sets must all have size 4. Without loss of
generality, suppose these 30 sets are A1, · · · , A30. For each S ⊆ {1, 2, · · · , 6} such that |S| = 4,
let nS be the number of subsets in A1, · · · , A30 that is a subset of S. note that nS ≤ 2 for
each such S. Otherwise, we have three sets whose union is at most four elements, which is
impossible. For each i ∈ {0, 1, 2, · · · , 5}, let ai be the number of sets amongst A1, · · · , A30 that
have size i.

Let T =
∑

S:|S|=4

nS . Note that T ≤ 30. Each set of size 0 contributes 15 to T , each set of size

1 contributes
(
5
3

)
= 10 to T , each set of size 2 contributes

(
4
2

)
= 6 to T , each set of size 3

contributes
(
3
1

)
= 3 to T and each set of size 4 contributes 1 to T . Therefore,

15a0 + 10a1 + 6a2 + 3a3 + a4 ≤ 30.

We also note
a0 + a1 + · · ·+ a4 + a5 = 30.

We want to minimize the expression

a1 + 2a2 + 3a3 + 4a4 + 5a5

subject to these two conditions.

We have a4 = 30− (a0 + a1 + a2 + a3 + a5). Substituting this into the first condition yields

15a0 + 10a2 + 6a2 + 3a3 + 30− a0 − a1 − a2 − a3 − a5 ≤ 30



or equivalently
14a0 + 9a1 + 5a2 + 2a3 ≤ a5.

The expression we want to minimize is

= a1 + 2a2 + 3a3 + 4a4 + 5a5

= a1 + 2a2 + 3a3 + 4(30− a0 − a1 − a2 − a3 − a5) + 5a5

≥ 120− 4a0 − 3a1 − 2a2 − a3 + 14a0 + 9a1 + 5a2 + 2a3

= 120 + 10a0 + 6a1 + 3a2 + 2a3 ≥ 120.

Therefore, the expression |A1|+ · · ·+ |A30| has minimum possible value 120 and is attainable
by taking each subset of 4 exactly twice. This satisfies the condition that the union of any
three sets has at least five elements.

The explicit example is; each subset of size 4 is equal to exactly two sets from A1, · · · , A30.
The union of any three of these sets does indeed contain five elements. The remaining 70 sets
is any set of size 5. The desired sum does indeed have minimum value 470.

Source: British Mathematical Olympiad 2006

2. Let r, s be fixed rational numbers. Find all functions f : Q → Q such that

f(x+ f(y)) = f(x+ r) + y + s

for all x, y ∈ Q, where Q denotes the rational numbers.

Solution: The answers are f(x) = x+ r + s and f(x) = −x+ r − s.

To verify these are indeed solutions, if f(x) = x + r + s. Then LHS = f(x + f(y)) =
x + y + 2(r + s) and RHS = f(x + r) + y + s = x + 2r + s + y + s = x + y + 2(r + s). If
f(x) = −x+r−s, then LHS = f(x+f(y)) = f(x−y+r−s) = −x+y−r+s+r−s = −x+y
and RHS = f(x+ r) + y + s = −x− r + r − s+ y + s = −x+ y. Hence, these two solutions
do satisfy the given condition. Now we prove that these are the only functions.

Let g(x) = f(x − s) + r 1. Then f(x) = g(x + s) − r. Substituting into the equation in the
problem yields

g(g(y + s) + x+ r + s) = g(x+ r + s) + y + s.

Note that it suffices to show that g(x) = ±x are the only solutions. Since x+ r+ s, y+ s take
on any real value and are independent of each other, let u = x + r + s, v = y + s. Then we
have

g(g(v) + u) = g(u) + v.(∗)
1The motivation to make this definition is that we want to perform a transformation on f(x) = x + r + s and

f(x) = −x + r − s to g(x) = x and g(x) = −x respectively. It is easier to solve for g than it is for f .



Hence, g(g(g(v) + u)) = g(v) + u. Since g(v) + u take on all real values, we conclude that
g(g(x)) = x for all x ∈ Q. Hence, g is injective and surjective.

Substituting v = 0 into (*) yields g(g(0) + u) = g(u). Since g is injective, then g(0) + u = u.
Hence, g(0) = 0. Finally, substituting u = g(u) into (*) yields g(g(v) + g(u)) = g(g(u)) + v =
u + v. Applying g to both sides yield g(u) + g(v) = g(u + v), which is Cauchy’s equation.
Since we are over the rationals, then g(x) = kx for some k ∈ Q. Substituting into (*) yields
k(kv+u) = ku+v for all u, v ∈ Q. Therefore, k2 = 1 implying k = ±1. Therefore, g(x) = ±x,
which implies the given desired solutions for f , which we already verified to satisfy the given
condition.

Source: Romanian Team Selection Test 2005

3. Let ω be a circle with centre O and l be a line that does not intersect ω. Let Q be the foot
of the perpendicular from O on l and P be any point on l different from Q. Let l1, l2 be the
lines tangent to ω passing through P and A,B be the feet of the perpendicular from Q on
l1, l2, respectively. Prove that AB passes through a point on OQ independent of the choice
of P .

Solution: Let l1, l2 touch ω at X,Y respectively. Since ∠OXP = ∠OY P = ∠OQP = 90o,
then P,Q, Y,O,X are concyclic. Let C be the foot of the perpendicular on XY from Q. Let
XY intersect OQ at M . By the Simson Line Theorem, A,B,C are collinear. Let this line
intersect OQ at N . We need to show that N is independent of P .

Note that X,Y are on opposite sides of line OQ. Without loss of generality, suppose P is on
the same side of OQ as X.

Let ∠Y PQ = α, ∠XPY = 2θ. Therefore, ∠OXY = ∠OYX = θ. Since P,Q, Y,O,X
are concyclic, then ∠Y OQ = α. Since ABQP is cyclic, ∠BAQ = ∠BPQ = α. Hence,
∠XAC = 90− α. Since ∠OXY = θ, ∠AXC = 90− θ. Therefore, ∠ACX = θ+ α. However,
∠CMN = ∠MOY +∠MYO = θ+α and ∠MCN = ∠ACX = θ+α. Therefore, CM = CN .
But since ∠MCQ = 90o, then N is the midpoint of MQ. Since Q is a fixed point (independent
of P ), it suffices to show that M is independent of P .

Note that ∠OQY = ∠OPY = θ = ∠OYM . Therefore, OM ·OQ = OY 2 by Power of a Point.
Since OQ,OY are independent of P , so is OM . (Note that the line XMY does separate O
and Q into two separate planes, so this argument does work.) This proves the problem. �

Source: IMO Shortlist 1994

4. Find all pairs of positive integers (m,n) such that

3m = 2mn+ 1.



Solution: The only solutions are (1, 1), (2, 2) and (4, 5).

Substituting m = 1 yields the first solution. Suppose now m ≥ 2. Taking mod 4 on both
sides, we see that m is even. Therefore, let m = 2r(2s + 1) where r, s ∈ Z, r ≥ 1, s ≥ 0.
Rearranging terms and factoring yield

2mn = (3m − 1) = (32s+1 − 1)(32s+1 + 1)(32·(2s+1) + 1) · · · (32r−1(2s+1) + 1)

We now see how many powers of 2 divide both side of the equation.

By taking modulo 4, we see that 32s+1 − 1 ≡ (−1)2s+1 − 1 = −2 mod 4. Therefore 32s+1 − 1
is divisible by 2, but not by 4.

By taking modulo 8, we see that 32s+1 + 1 ≡ 3 · 9s + 1 ≡ 3 + 1 ≡ 4 mod 8. Hence, 32s+1 + 1
is divisible by 4 but not by 8.

By taking modulo 4, we see that 32t(2s+1)+1 ≡ (−1)2t(2s+1)+1 ≡ 2 mod 4. Hence, 32t(2s+1)+1
is divisible by 2 but not by 4.

Therefore, in (*), the highest power of 2 that divides the right-hand-side is r + 2. i.e.
2r+2||RHS. But 22r(2s+1) divides LHS. Therefore, r + 2 ≥ 2r(2s + 1). If r = 1, then
s = 0. This yields the solution (2, 2) If r = 2, then s = 0. This yields the solution (4, 5). If
r ≥ 3, then r + 2 < 2r(2s+ 1). Hence, there are no more solutions. �

Source: Romanian Team Selection Test 2005

5. Let n be a positive integer and x1, x2, · · · , xn ∈ R such that |xi| ≤ 1 for all i ∈ {1, 2, · · · , n}
and x1 + x2 + · · ·+ xn = 0.

a.) Prove that there exists k ∈ {1, 2, · · · , n} such that

|x1 + 2x2 + · · ·+ kxk| ≤
2k + 1

4
.

b.) For n > 2, prove that the bound in (a) is the best possible. i.e. there exists x1, x2, · · · , xn

satisfying the initial conditions such that for all k ∈ {1, 2, · · · , n}.

|x1 + 2x2 + · · ·+ kxk| ≥
2k + 1

4
.

Solution: (a) Let St = x1 +2x2 + · · ·+ txt. Since St remains unchange by changing the signs
of all the xi’s, we may assume that x1 ≥ 0. Therefore,

xt =
St − St−1

t
,



where we use the notation S0 = 0. Therefore,

0 = x1 + x2 + · · ·+ xn =
n∑

t=1

St − St−1

t
=
Sn

n
+

n−1∑
t=1

(
1

t− 1
− 1
t
)St =

Sn

n
+

n−1∑
t=1

1
t(t+ 1)

St.

Therefore, at least one Sk is negative. Let k be the smallest index such that Sk < 0.

However, k ≥ |kxk| = |Sk − Sk−1| = Sk−1 − Sk = |Sk−1| + |Sk|. But suppose |Sk−1| > 2k−1
4

and |Sk| > 2k+1
4 . Then |Sk−1|+ |Sk| > k. Contradiction. Therefore, |Sk| < 2k+1

4

(b) If n is odd, let (x1, x2, · · · , xn) = (3/4, 1/4,−1, 1, · · · ,−1). The sum is zero and for each
k, Sk ≥ 2k+1

4 .

If n is even, let (x1, x2, · · · , xn) = (1, 1/8,−1,−1/8, 1,−1, · · · , 1,−1). �

Source: Romanian Team Selection Test 2006



2009 Mock Olympiad 4: (APMO Mock)
Time: 4 Hours

1. Let n, k be positive even integers. A survey was done on n people where on each of k days,
each person was asked whether he/she was happy on that day and answered either ”yes” or
”no”. It turned out that on any two distinct days, exactly half of the people gave different
answers on the two days. Prove that there were at most n − n

k people who answered ”yes”
the same number of times he/she answered ”no” over the k days.

2. Given a triangle ABC with an interior point P , let A1 be the intersection of AP with the
circumcircle of ∆PBC which is not P . Define B1, C1 analogously. Prove that(

1 + 2 · |PA|
|PA1|

)(
1 + 2 · |PB|

|PB1|

)(
1 + 2 · |PC|

|PC1|

)
≥ 8.

3. Find all prime numbers p such that p = m2 + n2 and p divides m3 + n3 − 4 for some positive
integers m,n .

4. Consider a convex pentagon ABCDE such that

∠BAC = ∠CAD = ∠DAE and ∠ABC = ∠ACD = ∠ADE.

Let M be the midpoint of CD. Prove that AM,BD,CE are concurrent.

5. Find all functions f : R → R such that

f(xf(y) + f(x)) = 2f(x) + xy

for all x, y ∈ R.



2009 Mock Olympiad 4: (APMO Mock)
Time: 4 Hours

1. Let n, k be positive even integers. A survey was done on n people where on each of k days,
each person was asked whether he/she was happy on that day and answered either ”yes” or
”no”. It turned out that on any two distinct days, exactly half of the people gave different
answers on the two days. Prove that there were at most n − n

k people who answered ”yes”
the same number of times he/she answered ”no” over the k days.

Solution: Let P1, · · · , Pn be the people and D1, D2, · · · , Dk be the k days. We count the
number of triples (Pi, Dj , Dk) (where j < k) where person Pi gave different answers on Dj

and Dk. Since for every two days, exactly half of the people gave different answers on the two
days, the number of such triples is

n

2
·
(
k

2

)
=
nk(k − 1)

4
.

Each person who answered ”yes” the same number of times he answered ”no” is in (k/2)(k/2) =
k2/4 such triples. Hence, the number of people who answered ”yes” the same number of times
he answered ”no” is at most

nk(k−1)
4
k2

4

=
n(k − 1)

k
= n− n

k

as desired. �

Source: Iran Mathematical Olympiad 2006

2. Given a triangle ABC with an interior point P , let A1 be the intersection of AP with the
circumcircle of ∆PBC which is not P . Define B1, C1 analogously. Prove that(

1 + 2 · |PA|
|PA1|

)(
1 + 2 · |PB|

|PB1|

)(
1 + 2 · |PC|

|PC1|

)
≥ 8.

Solution: I am sure there is a bash solution. But why bash when you can invert about P .
For a point X, let X ′ denote its image of the inversion.

Then note that B′, C ′, A′
1 are collinear since A1, B, C, P are conyclic. Similarly, A′, B′, C ′

1 are
collinear and C ′, A′, B′

1 are collinear. Consider triangle ∆A′B′C ′. The sides B′C ′, C ′A′, A′B′

contain points A′
1, B

′
1, C

′
1, respectively. Furthermore, A′A′

1, B
′B1, C

′C1 are concurrent. Fi-
nally, note that

|PA|
|PA1|

=
|PA′

1|
|PA′|

=
[PB′C ′]

[A′B′C ′]− [PB′C ′]

where [XY Z] denotes area of triangle XY Z. Similarly,

|PB|
|PB1|

=
[PC ′A′]

[A′B′C ′]− [PC ′A′]
,
|PC|
|PC1|

=
[PA′B′]

[A′B′C ′]− [PA′B′]
.



Let x = [PB′C ′], y = [PC ′A′], z = [PA′B′]. Then x + y + z = [A′B′C ′]. Then the problem
becomes equivalent to(

1 + 2 · x

y + z

)(
1 + 2 · y

z + x

)(
1 + 2 · z

x+ y

)
≥ 8.

Simplifying this reduces the problem to proving

2(x3 + y3 + z3) + 7
∑
sym

x2y + 16xyz ≥ 8
∑
sym

x2y + 16xyz

or equivalently
2(x3 + y3 + z3) ≥ x2y + xy2 + y2z + yz2 + z2x+ xz2

or equivalently

(x+ y)(x− y)2 + (y + z)(y − z)2 + (z + x)(z − x)2 ≥ 0

which is true. �

Source: China Team Selection Test 2008

3. Find all prime numbers p such that p = m2 + n2 and p divides m3 + n3 − 4 for some positive
integers m,n.

Solution: The answers are p = 2 and p = 5.

Computing modulo p, we have m3 + n3 − 4 = (m+ n)(m2 −mn+ n2)− 4. Hence, p divides
−mn(m + n) − 4 which divides 2mn(m + n) + 8. Since (m + n)2 ≡ 2mn mod p, then p
divides (m + n)3 + 8 = (m + n + 2)((m + n)2 − 2(m + n) + 4). Therefore, p | m + n − 2 or
p | (m+ n)2 + 2(m+ n) + 4.

If p | m + n + 2, then either m2 + n2 ≤ m + n + 2 or m + n + 2 = 0. The latter case is
impossible. In the former case, the expression is equivalent to (2m − 1)2 + (2n − 1)2 ≤ 10.
Hence, m,n ≤ 2. If m = 1, n = 1, then p = 2, which is prime. Then m3 + n3 − 4 = −2 and
therefore 2 | m3+n3−4. If m = n = 2, then m2+n2 = 8, which is not prime. If m = 1, n = 2,
then p = 12 + 22 = 5 which is prime. m3 + n3 − 4 = 5. Therefore, p | m3 + n3 − 4. Hence,
p = 2, 5 works.

We may assume now that p is an odd prime. If p | (m + n)2 − 2(m + n) + 4, then since
p = m2 + n2, we have p | 2mn − 2m − 2n + 4. Since p is odd, p | mn − m − n + 2.
Therefore, m2 + n2 ≤ mn − m − n + 2 or mn − m − n + 2 = 0. The latter is impossi-
ble since mn − m − n + 2 = (m − 1)(n − 1) + 1 > 0. The former case is equivalent to
(m− n)2 + (m+ 1)2 + (n+ 1)2 ≤ 6. Therefore, m,n ≤ 1, whose case has been accounted for.



Hence, the only solutions are p = 2, 5. �

Source: Iran Mathematical Olympiad 2004

4. Consider a convex pentagon ABCDE such that

∠BAC = ∠CAD = ∠DAE and ∠ABC = ∠ACD = ∠ADE.

Let M be the midpoint of CD. Prove that AM,BD,CE are concurrent.

Solution: Clearly, ∆ABC ∼ ∆ACD ∼ ∆ADE. Therefore,

AB

BC
=
AC

CD
=
AD

DE
(1), and

BC

AC
=
CD

AD
=
DE

AE
(2)

Therefore, AB/AD = BC/DE = AC/AE. Since ∠BAD = ∠CAE, ∆ABD ∼ ∆ACE.

Then let P = BD ∩ CE. Then ∠BDA = ∠CEA ⇒ ∠PDA = ∠PEA. Hence, APDE is
cyclic. Let the circle passing through these four points be ω1. Hence, ∠DAE = ∠DPE =
∠BPC = ∠BAC. Hence, ABCP is also cyclic. Let the circle passing through these four
points be ω2. Then AP is the radical axis of these two circles. To prove AP intersects CD at
M , it suffices to show that ω1 and ω2 are tangent to CD, as M would lie on the radical axis
of the two circles and have the same power with respect to both circles.

Since ∠ABD = ∠ACE and ∠ABC = ∠ACD, then ∠PBC = ∠PCD. Hence, ω1 is tangent
to CD. Since ∠ADC = ∠AED and ∠AEC = ∠ADB, then ∠DEP = ∠PDC. Hence, ω2 is
tangent to CD. Hence, the radical axis, AP intersects CD at M . Therefore, AM,BD,CE
are concurrent as desired. �

Source: IMO Shortlist 2006

5. Find all functions f : R → R such that

f(xf(y) + f(x)) = 2f(x) + xy

for all x, y ∈ R.

Solution: The answer is f(x) = x+ 1.

We first prove that f is injective; suppose f(a) = f(b). Then substituting y = a, and y = b
separately will yield that 2f(x) + xa = 2f(x) + xb for all x ∈ R. Hence, a = b. Therefore, f
is injective.



We next prove f is surjective, if we fix a non-zero x, the the right-hand side of the equation can
take on any real value as we vary y. This right-hand side is also in the range f(xf(y)+ f(x)).
Therefore, f is surjective.

We next prove that f(0) = 1 and f(−1) = 0. Let f(0) = a and f(b) = 0. Then substi-
tuting x = b, y = 0 into the original equation yields f(ba) = 0. Since f is injective and
f(b) = 0, ba = b. If b = 0, then f(0) = 0. Substituting y = 0 into the original equation
yields f(f(x)) = 2f(x). Since f is surjective, this yields f(t) = 2t for all t ∈ R. However,
by checking, we see that this is not a solution. Therefore, a = 1, which implies f(0) = 1.
Now, substituting x = y = b into the original equation yields f(f(b)) = b2. Hence, f(0) = b2.
Since f(0) = a = 1, then b2 = 1. If b = 1, then f(1) = 0. Substituting y = b fields
f(f(x)) = 2f(x) + x. Substituting x = 0 yields 0 = f(f(0)) = 2f(0) + 0 = 2, contradiction.
Therefore, b 6= 1. Since b2 = 1, this implies b = −1. Therefore, f(0) = 1 and f(−1) = 0.

Substituting y = −1 yields

f(f(x)) = 2f(x)− x,∀x ∈ R.(1)

Substituting x = 1, followed by y = x yields

f(f(x) + 2) = 4 + x,∀x ∈ R.(2)

Adding (1) and (2) yields f(f(x) + 2) + f(f(x)) = 2f(x) + 4. Since f is surjective, the
substitution x = f(x) yields

f(x+ 2) + f(x) = 2x+ 4.(3)

Substituting x = x+ 2 into (3) yields

f(x+ 4) + f(x+ 2) = 2x+ 8.(4)

Next, we want to expression f(x + 4) + f(x) in terms of x. Applying f to both sides of (2)
and applying (1) yields

f(f(f(x)+2)) = f(4+x) ⇒ 2f(f(x)+2)−(f(x)+2) = f(x+4) ⇒ 2(x+4)−f(x)−2 = f(x+4)

f(x+ 4) + f(x) = 2x+ 6.(5)

Adding (3), (4), (5) and dividing by 2 yields

f(x+ 4) + f(x+ 2) + f(x) = 3x+ 9.(6)

Subtracting (4) from (6) yields f(x) = x + 1. Finally, we verify that this solution works. If
f(x) = x+ 1, we get

f(xf(y) + f(x)) = f(x(y + 1) + x+ 1) = xy + x+ x+ 1 + 1 = xy + 2x+ 2

and
2f(x) + xy = 2(x+ 1) + xy = xy + 2x+ 2.

Therefore, f(x) = x+ 1 does satisfy the original equation. We are done. �

Source: Brazilian Mathematical Olympiad 2006



2009 Mock Olympiad 5: (APMO Mock)
Time: 4 Hours

1. Let {an}n∈N be a sequence of real numbers such that a1 = 1/2 and

an+1 =
a2

n

a2
n − an + 1

for all n ∈ N. Prove that a1 + a2 + · · ·+ aN < 1 for all positive integers N .

2. Given triangle ABC with |AB| < |AC|, let P be on side AC such that |CP | = |AB| and Q
be on ray BA such that |BQ| = |AC|. Let R be the intersection of PQ and the perpendicular
bisector of BC. Prove that

∠BAC + ∠BRC = 180o.

3. Prove that for any non-negative integer n, the number

n∑
k=0

(
2n+ 1

2k

)
4n−k3k

is the sum of two consecutive perfect squares.

4. Let x1, x2, · · · , xn be positive real numbers such that x1x2 · · ·xn = 1. Prove that

n∑
i=1

1
n− 1 + xi

≤ 1.

5. A finite set of (pairwise distinct) positive integers is said to be divisible-friendly if every
element in the set divides the sum of all of the elements in the set. Prove that every finite set
of positive integers is the subset of a divisible-friendly set of positive integers.



2009 Mock Olympiad 5: (APMO Mock)
Time: 4 Hours

1. Let {an}n∈N be a sequence of real numbers such that a1 = 1/2 and

an+1 =
a2

n

a2
n − an + 1

for all n ∈ N. Prove that a1 + a2 + · · ·+ aN < 1 for all positive integers N .

Solution: For each n ∈ N, let bn = 1
an

. (Since an = 0 if and only if an−1 = 0, and a1 = 1/2,
and a2

n − an + 1 > (an − 1/2)2 ≥ 0, each an is positive.)

By substituting into the original equation we get that

1
bn+1

=
1
b2n

1
b2n
− 1

bn
+ 1

=
1

b2n − bn + 1

or equivalently,
bn+1 = b2n − bn + 1.

Since b1 = 2, we get easily that b2 = 3, b3 = 7, b4 = 43. We will prove by induction
that bn+1 = 1 + b1b2 · · · bn for all positive integers n. This holds clearly for n = 1 since
b2 = 3 and 1 + b1 = 3. Suppose this holds for n = k for some positive integer k. Then
bk+1 = b2k − bk + 1 = bk(bk − 1) + 1 = bk(bk−1bk−2 · · · b1) as desired. This proves that
bn+1 = 1 + b1b2 · · · bn for all positive integers n.

I finally claim that a1 + a2 + · · ·+ aN = 1− a1a2 · · · aN for all positive integers N . This holds
for N = 1 since a1 = 1/2 and 1− a1 = 1/2. Suppose this holds for N = k. Then

a1 + a2 + · · ·+ ak+1 = 1− a1a2 · · · ak + ak+1 = 1− 1
b1b2 · · · bk

+
1

bk+1
= 1− bk+1 − b1b2 · · · bk

b1b2 · · · bk+1

= 1− 1
b1b2 · · · bk+1

= 1− a1a2 · · · ak+1

which completes the induction proof. Hence, a1 + a2 + · · · + aN = 1 − a1a2 · · · aN < 1 as
desired. �

Source: Romanian Math Olympiad 2003

2. Given triangle ABC with |AB| < |AC|, let P be on side AC such that |CP | = |AB| and Q
be on ray BA such that |BQ| = |AC|. Let R be the intersection of PQ and the perpendicular
bisector of BC. Prove that

∠BAC + ∠BRC = 180o.



Solution: Note that |AQ| = |BQ| − |AB| = |AC| − |CP | = |AP |. Therefore, |AQ| = |AP |.
Since ∠QAP = 180− ∠A,∠AQP = ∠APQ = ∠A/2.

Let A′ be external to triangle ABC such that ACA′B is a parallelogram. Then note ∆ABC ∼=
∆A′CB. Note also that ∠ABA′ = 180 − ∠A. Consider ∆BQA′. Since ∠QBA = 180 − ∠A
and ∠BQR = ∠A/2, then the angle bisector of ∠BA′C passes through R and Q. Since R is
on the perpendicular bisector of BC and is on the angle bisector of ∠BA′C, then R is on the
circumcircle of ∆A′BC. Furthermore, R is external to ∆A′BC. Therefore,

∠BAC + ∠BRC = ∠BA′C + ∠BRC = 180o

as desired. �

Source: British Mathematical Olympiad 2006

3. Prove that for any non-negative integer n, the number

n∑
k=0

(
2n+ 1

2k

)
4n−k3k

is the sum of two consecutive perfect squares.

Solution: Let Sn be the integer described in the question. It is easy to see that S0 = 1 and
S1 = 13. Then

Sn =
n∑

k=0

(
2n+ 1

2k

)
4n−k3k =

n∑
k=0

(
2n+ 1

2k

)
22n−2k

√
3
2k

=
1
2

n∑
k=0

(
2n+ 1

2k

)
2(2n+1)−k

√
3
2k

=
1
4
((2 +

√
3)2n+1 + (2−

√
3)2n+1)

by the Binomial Theorem.

We prove the following lemma; a positive integer N is the sum of two consecutive perfect
squares if and only if 2N − 1 is a perfect square. This is easy to prove. We leave it to the
reader.

Therefore, it suffices to show that 2Sn − 1 is a perfect square. Note that

2Sn − 1 =
2 +

√
3

2
(2 +

√
3)2n +

2−
√

3
2

(2−
√

3)2n − 1

=
(1 +

√
3)2

4
(2 +

√
3)2n +

(1−
√

3)2

4
(2−

√
3)2n − 1

=

(
1 +

√
3

2
(2 +

√
3)n +

1−
√

3
2

(2−
√

3)n

)2



I claim that this expression is indeed a perfect square. Let Tn = 1+
√

3
2 (2 +

√
3)n + 1−

√
3

2 (2−√
3)n. Note that T0 = 1 and T1 = 5. Since 2 +

√
3, 2−

√
3 are roots of x2 − 4x+ 1,

Tn+2 = 4Tn+1 − Tn,

which implies the Tn’s are integers. Therefore, Tn are integers which implies 2Sn−1 are indeed
integral perfect squares. By the Lemma, Sn is the sum of two consecutive perfect squares. �

Source: Romanian Mathematical Olympiad 1999

4. Let x1, x2, · · · , xn be positive real numbers such that x1x2 · · ·xn = 1. Prove that
n∑

i=1

1
n− 1 + xi

≤ 1.

Solution: Suppose
n∑

i=1

1
n−1+xi

> 1. Then for each j ∈ {1, 2, · · · , n},

1
n− 1 + xj

> 1−
∑
i6=j

1
n− 1 + xj

=
∑
i6=j

1
n− 1

− 1
n− 1 + xi

=
∑
i6=j

xi

(n− 1)(n− 1 + xi)

≥
∏
i6=j

n−1

√
xi

n− 1 + xi
.

by the AM-GM inequality. Therefore,
n∏

j=1

1
n− 1 + xj

>

n∏
j=1

∏
i6=j

n−1

√
xi

n− 1 + xi
=

n∏
j=1

xj

n− 1 + xj
=

n∏
j=1

1
n− 1 + xj

,

contradiction. Hence, the equality does hold. �

Source: Romanian Mathematical Olympiad 1999

5. A finite set of (pairwise distinct) positive integers is said to be divisible-friendly if every ele-
ment in the set divides the sum of all of the elements in the set. Prove that every finite set of
positive integers is the subset of a divisible-friendly set of positive integers.

Solution 1: It suffices to show that for every positive integer n, there exists a divisible-
friendly set that contains {1, 2, · · · , n}. The sum of these elements is n(n + 1)/2. We add
n(n + 1)/2 to the set. Now, the sum of the elements is n(n + 1). My goal is to create a
divisibly-friendly set containing these n+ 1 elements whose sum is (n+ 1)!. The sum of the
remaining elements must be (n+ 1)!− n(n+ 1). However, by telescoping sums, we have

(n+ 1)!− n(n+ 1) =
n−1∑
j=1

((n+ 1)n(n− 1) · · · j − (n+ 1)n(n− 1) · · · (j + 1))



=
n−1∑
j=1

(n+ 1)n(n− 1) · · · (j + 1)(j − 1).

Hence, if I add the terms (j − 1)(j + 1)(j + 2) · · ·n(n + 1) for j ≥ 2, then the sum of all
elements is n! and clearly, every term in the set divides (n + 1)! and the terms are pairwise
distinct. We have created our divisible-friendly set. �

Solution 2: Let S be a finite set of integers. If |S| = 1, then clearly S is divisible-friendly.
Now suppose |S| > 1. Let N be the sum of the elements in S. Let x ∈ S such that x - N . I
will create a set S′ that contains S, x divides the sum of the elements in S′, if y ∈ S divides
N , then y also divides the sum of the elements in S′ and for all y ∈ S′\S, y divides the sum of
the elements in S′. Repeated application of this will create a divisible-friendly set, since the
number of elements in the sets we create that does not divide the set’s sum, strictly decreases.
This will finish the problem.

Let x ∈ S such that x does not divide N . We write x = 2m · n, where m is a non-negative
integer and n is a positive odd integer. (Clearly x 6= 1.) If n = 1, then add to S the ele-
ments N, 2N, · · · , 2m−1N . The sum of S is now 2mN . Clearly, if y | N , then y | 2mN . Also,
2iN | 2mN for all 0 ≤ i < m. Finally, x = 2m | 2mN . In the case where x is a power of 2, we
are done.

Now suppose x = 2m · n where n is an odd positive integer greater than one. Again, we add
N, 2N, · · · , 2m−1N . The sum so far is 2mN . Of course, x still may not divide 2mN . Let t be
a positive integer such that N | 2t − 1. (For example, choose t = ϕ(n) by Euler’s Theorem.)
We further add the following elements to the set;

2 · 2mN, 22 · 2mN, · · · , 2t−1 · 2mN

The new elements have sum (2t−2)2mN . Hence, the sum of the sets of elements is (2t−1)2mN .
Therefore, n divides this sum and therefore x divides this sum. But 2i ·2mN may not. Damn.
Let’s add even more elements. Let’s add

(2t − 1) · 2mN, 2(2t − 1) · 2mN, 22(2t − 1) · 2mN, · · · , 2t−1(2t − 1) · 2mN.

The sum of these new elements is (2t − 1)(2t − 1) · 2mN and therefore the sum of all of the
elements is 2t(2t − 1)2mN . Now, 2i2mN divides this new sum for all 0 ≤ i ≤ t − 1 and
2i(2t − 1) · 2mN also divides this new sum. And we are finally done. Our set works. �

Source: United States of America Mathematical Olympiad Proposal 1997



2009 Mock Olympiad 6: (APMO Mock)
Time: 4 Hours

1. Let n, k be positive integers. In a certain library, there are n shelves, each holding at least
one book. k new shelves are acquired and the books are arranged on the n+ k shelves, again
with at least one book on each shelf. A book is said to be special if it is in a shelf with fewer
books in the new arrangement than it was in the original arrangement. Prove that there are
at least k + 1 special books in the rearranged library.

2. Let a, b, c be positive real numbers such that a3 + b3 = c3. Prove that

a2 + b2 − c2 > 6(c− a)(c− b).

3. Given triangle ABC, whose incircle touches BC,CA,AB at D,E, F , respectively, let AD in-
tersect the incircle again at P . Let Q be the intersection of EF and the line passing through
P perpendicular to AD. Let AQ intersect DE,DF at X,Y respectively. Prove that A is the
midpoint of XY .

4. For a positive integer a , let Sa be the set of primes p for which there exists an odd integer b
such that p divides (22a

)b − 1. Prove that for every a, there exist infinitely many primes that
are not contained in Sa.

5. Find the largest positive integer k such that for any ten points in the plane with the property
that every subset of five points contains at least four concyclic points, there exist k concyclic
points.



2009 Mock Olympiad 6: (APMO Mock)
Time: 4 Hours

1. Let n, k be positive integers. In a certain library, there are n shelves, each holding at least
one book. k new shelves are acquired and the books are arranged on the n+ k shelves, again
with at least one book on each shelf. A book is said to be special if it is in a shelf with fewer
books in the new arrangement than it was in the original arrangement. Prove that there are
at least k + 1 special books in the rearranged library.

Solution: Let B1, B2, · · · , Bm be the books. For each i ∈ {1, 2, · · · ,m}, let ai, bi be the num-
ber of books on shelf containing Bi before and after the acquired shelves arrive, respectively.
Then note that

n∑
i=1

1
ai

= n and
n∑

i=1

1
bi

= n+ k.

Note that a book Bi is special if and only if bi < ai. Since the difference between these two
expressions is k, and two terms of the form 1

t , where t is a positive integer, differ by strictly less
than 1, bi < ai for at least k+1 values of i. Therefore, there are at least k+1 special books. �

Source: Australian Mathematical Olympiad 1990

2. Let a, b, c be positive real numbers such that a3 + b3 = c3. Prove that

a2 + b2 − c2 > 6(c− a)(c− b).

Solution: Since the equation and the initial condition are homogeneous, we may assume that
c = 1. Therefore, it suffices to prove the inequality

a2 + b2 − 1 > 6(1− a)(1− b)

where a3 + b3 = 1. By expanding, this inequality is equivalent to

a2 + b2 + 6(a+ b)− 6ab− 7 > 0.

Let a + b = u, ab = v. Since a3 + b3 = 1, we have (a + b)(a2 − ab + b2) = 1. This implies
u(u2 − 3v) = 1. Therefore, v = u3−1

3u .

Hence our inequality becomes equivalent to

u2 − 2v + 6u− 6v − 7 > 0(⇔)u2 + 6u− 8
u3 − 1

3u
− 7 > 0(⇔)5u3 − 18u2 + 21u− 8 < 0.

This factors as
(u− 1)2(5u− 8) < 0.



This inequality is true if and only if u < 8/5, i.e. a+b < 8/5. Since a3 +b3 = 1 and (a+b)3 =
a3+b3+3ab(a+b) ≤ a3+b3+3(a3+b3) = 4, we conclude that a+b ≤ 3

√
4 < 3

√
512/125 = 8/5.

This proves the inequality.

Source: Indian Mathematical Olympiad 2009

3. Given triangle ABC, whose incircle touches BC,CA,AB at D,E, F , respectively, let AD in-
tersect the incircle again at P . Let Q be the intersection of EF and the line passing through
P perpendicular to AD. Let AQ intersect DE,DF at X,Y respectively. Prove that A is the
midpoint of XY .

Solution: Let M be the midpoint of EF and I be the centre of ∆ABC. Note that A,M, I
are collinear. First, we note that |AE|2 = |AF |2 = |AI| · |AM |. (You can prove this latter
fact in one of many ways.) Therefore, |AM | · |AI| = |AF |2 = |AP | · |AD| by power of a
point. Therefore, PMID is cyclic. Therefore, ∠AMP = ∠ADI since A,M, I are collinear
and |AM | · |AI| = |AP | · |AD|. Hence, 90− ∠AMP = 90− ∠ADI or equivalently,

∠ADB = ∠PMF. (1)

Another observation is that ∠AMQ = 90o. Without loss of generality, suppose Q is on ray
FE. Since ∠APQ = 90o, APMQ is cyclic. Therefore, ∠GAD = ∠GAP = ∠PMF = ∠ADB
by (1). Hence,

AQ||BC.

Next, we prove that ∆ARE and ∆ASF are isosceles. This is true since ∠AER = ∠CED =
∠CDE = ∠ARE (by AQ||BC). Therefore, |AR| = |AE|. Similarly, |AS| = |AF |. Since
|AE| = |AF |, we conclude that |AR| = |AS|.

Source: Korean Mathematical Olympiad 2006

4. For a positive integer a , let Sa be the set of primes p for which there exists an odd integer b
such that p divides (22a

)b − 1. Prove that for every a, there exist infinitely many primes that
are not contained in Sa.

Solution: Let Fn = 22n
+ 1. We recall some properties regarding these numbers. Note that

Fn =
n−1∏
j=1

Fj + 2

for all positive integers n. Since Fn is odd for each n, this implies that

gcd(Fm, Fn) = 1, (1)



for all distinct m,n and
Fm | Fn − 2, (2)

for all m < n. We now return to our problem.

Let a be an integer. Then p ∈ Sa if and only if p | (22a
)b − 1 for some odd positive integer b.

Suppose p is a prime number such that p | Fn for some n > a. I claim that p ∈ Sa for only
finitely many such p. This finishes the problem since by (1), there are infinitely many primes
p such that p | Fn for some n > a.

Suppose p ∈ Sa and p | Fn for some n > a. Then p | Fm− 2 for all m > n. Since p | (22a
)b− 1

and p | 22m − 1,
p | gcd(22a·b − 1, 22m − 1) = 2gcd(2a,2m) − 1.

Since m > n > a, p | 22a − 1. This latter number contains finitely many prime divisors.
Therefore, there are finitely many choices for p such that p ∈ Sa and p | Fn. This completes
the problem. �

Source: Korean Mathematical Olympiad 2006

5. Find the largest positive integer k such that for any ten points in the plane with the property
that every subset of five points contains at least four concyclic points, there exist k concyclic
points.

Solution: The answer is k = 9.

Consider the ten points, nine of which are the vertices of a cyclic 9-gon and the tenth point
is the centre of the circle. Clearly, for any choice of five points, at least four of them are
concyclic. Hence, k ≤ 9.

Clearly k ≥ 4. We first prove that k ≥ 5. Let A,B,C,D be four conyclic points. Let
E,F,G,H, I, J be the remaining six points. Consider five points A,B,C, P,Q where P 6= Q
and P,Q ∈ {E,F,G,H, I, J}. Four of these points are concyclic. Two of these points are
P and Q. Otherwise, A,B,C and one of P,Q is conyclic, implying A,B,C,D and one of
P,Q is concyclic, implying k ≥ 5. Hence, two of these points are P and Q and the other
two points are chosen from {A,B,C}. Since there are 15 choices for (P,Q), there exists two
points A′, B′ from {A,B,C} such that A′, B′, P,Q are concyclic for five distinct pairs (P,Q)
from {E,F,G,H, I, J}. These five pairs consists of two pairs that overlap.. Hence, A′, B′ and
three other points are concyclic. Therefore, k ≥ 5.

Let A,B,C,D,E be concyclic points and X,Y are not on the circle. Consider the points
A,B,C,X, Y . Four of these points are concyclic and two of them are X,Y . Without loss of
generality, suppose A,B,X, Y are concyclic. Now consider A,C,D,X, Y . Four of these are
concyclic and two of them are X,Y . If A is one of these points, then C or D is the fourth



point, say C. Then A,B,C,X are conyclic and X lies on the circle. Impossible. Therefore,
C,D,X, Y are concyclic. Finally, consider A,D,E,X, Y . Four of these points are concyclic
and two of them are X,Y . If A,D,X, Y are concyclic, then A,C,D,X are concyclic and X
lies on the circle. If A,E,X, Y are concyclic, then A,B,E,X, Y are concyclic and X,Y lies
on the circle. A similar conclusion holds if D,E,X, Y are concyclic. Therefore, there cannot
be two points outside of five concyclic points. Since five concyclic points exist, k ≤ 9. From
our construction in the first paragraph, we conclude k = 9.

Source: Iran Mathematical Olympiad 1997



2009 Mock Olympiad 7: (CMO Mock)
Time: 3 Hours

1. Consider the inequality

(a1 + a2 + · · ·+ an)2 ≥ 4(a1a2 + a2a3 + a3a4 + · · ·+ an−1an + ana1), n ≥ 3.

Find all positive integers n for which this inequality is true for all real numbers a1, a2, · · · , an.

2. Let AB be a chord, which is not a diameter, of a circle ω that has centre O. Let D be a
point on ray AB past B. Let ω1, ω2 be circles passing through D and tangent to ω at A,B,
respectively. Let P be the intersection of ω1 and ω2 which is not D. Prove that ∠OPD = 90o.

3. The entries of a 2010×2010 board are chosen from {0, 1} such that each row and each column
contains an odd number of 1’s. Suppose the board is coloured like a chessboard. Prove that
the number of white squares with a 1 on it, is even.

4. Let k be a positive integer. Let a1, a2, · · · , ak be positive integers and d = gcd(a1, a2, · · · , ak)
and n = a1 + a2 + · · ·+ ak. Prove that

d · (n− 1)!
a1!a2! · · · ak!

is an integer.

5. Let n ≥ 2 be a positive integer and X be a set with n elements. Let A1, A2, · · · , A101 be
subsets of X such that the union of any 50 of these subsets has more than 50n/51 elements.
Prove that amongst these 101 subsets, there exist three subsets such that any two of them
have a common element.
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1. Consider the inequality

(a1 + a2 + · · ·+ an)2 ≥ 4(a1a2 + a2a3 + a3a4 + · · ·+ an−1an + ana1), n ≥ 3.

Find all positive integers n for which this inequality is true for all real numbers a1, a2, · · · , an.

Solution: The answer is n = 4. If n = 3, setting a1 = a2 = a3 = 1 gives a contradiction since
(a1 +a2 +a3)2 = 9 and 4(a1a2 +a2a3 +a3a1) = 12. If n ≥ 5 and n is odd, then let n = 2k+1.
Let a1 = a2 = · · · = ak = 1, ak+1 = 0, ak+2 = ak+3 = · · · = a2k+1 = −1. Then the left-hand
side is zero and the right-hand side is (k − 1) + (k − 1) − 1 = 2k − 3 > 0. If n ≥ 5 and n is
even, let n = 2k. Let a1 = a2 = · · · = ak = 1 and ak+1 = ak+2 = · · · = a2k = −1. Then the
left-hand side is zero and the right-hand side is (k− 1) + (−1) + (k− 1) + (−1) = 2k− 4 > 0.
Finally if n = 4, we have (a1+a2+a3+a4)2 ≥ 4(a1a2+a2a3+a3a4+a4a1) = 4(a1+a3)(a2+a4).
Let x = a1 + a3 and y = a2 + a4. Then the inequality is equivalent to (x+ y)2 ≥ 4xy, which
is true. �

Source: Italian Mathematical Olympiad 2008

2. Let AB be a chord, which is not a diameter, of a circle ω that has centre O. Let D be a
point on ray AB past B. Let ω1, ω2 be circles passing through D and tangent to ω at A,B,
respectively. Let P be the intersection of ω1 and ω2 which is not D. Prove that ∠OPD = 90o.

Solution: Let O1, O2 be the centres of ω1, ω2 respectively. By the tangency property, A,O,O1

are collinear and B,O,O2 are collinear. Therefore, since OA = OB and O1A = O1D, we have
that OB||O1D. Furthermore, ∠O2DB = ∠O2BD = ∠OBA = ∠OAB. therefore, AO1||DO2.
Hence, OO1DO2 is a parallelogram. Let E be the midpoint of OD, which hence is the mid-
point of O1O2. Since O1D = O1P , we conclude that O1O2 ⊥ PD. Since E is on O1O2, we
have that EP = ED = EO. Therefore, E is the centre of the circle with diameter OD which
passes through P . We conclude that ∠OPD = 90o. �

Source: In Polya’s Footstep by Ross Honsberger

3. The entries of a 2010×2010 board are chosen from {0, 1} such that each row and each column
contains an odd number of 1’s. Suppose the board is coloured like a chessboard. Prove that
the number of white squares with a 1 on it, is even.

Solution: Without loss of generality, suppose the top-left square of the board is white. Let
W1 be the white squares in the odd numbered rows and odd numbered columns, W2 the white
squares in the even numbered row and even numbered column, B1 be the black squares in
the odd numbered rows and even numbered columns and B2 be the black squares in the even



numbered rows and odd numbered columns. Note W1 ∪ B1 are the odd numbered rows, of
which are there are an odd number of them (1005 to be exact). Hence, the number of ones
in W1 ∪ B1 is odd. Similarly the number of ones in each of W1 ∪ B2, W2 ∪ B1, W2 ∪ B2

is odd. Then the number of ones in W1 has a different parity than the number of ones in
B1, which has a different parity than the number of ones in W2. Hence, the number of ones
in W1 and that in W2 have the same parity, implying the number of ones in W1∪W2 is even. �

Source: 102 Combinatorics Problems by Titu Andreescu and Zuming Feng

4. Let k be a positive integer. Let a1, a2, · · · , ak be positive integers and d = gcd(a1, a2, · · · , ak)
and n = a1 + a2 + · · ·+ ak. Prove that

d · (n− 1)!
a1!a2! · · · ak!

is an integer.

Solution: Let u1, · · · , uk be integers such that u1a1 + · · ·ukak = d. Then

d · (n− 1)!
a1!a2! · · · ak!

=
(u1a1 + · · ·+ ukak) · (n− 1)!

a1!a2! · · · ak!
=

k∑
i=1

ui ·
(n− 1)!

a1!a2! · · · ai−1!(ai − 1)!ai+1! · · · ak!
,

which is an integer since a1 + a2 + · · ·+ ai−1 + (ai − 1) + ai+1 + · · ·+ ak = n− 1. �

Source: Romanian Masters of Mathematics 2009

5. Let n ≥ 2 be a positive integer and X be a set with n elements. Let A1, A2, · · · , A101 be
subsets of X such that the union of any 50 of these subsets has more than 50n/51 elements.
Prove that amongst these 101 subsets, there exist three subsets such that any two of them
have a common element.

Solution: We represent this by a graph. Let A1, A2, · · · , A101 be the vertices and Ai be
adjacent to Aj if and only if Ai ∩ Aj is non-empty. It suffices to prove that this graph con-
tains a triangle. Note that if degAi ≤ 50, then there are 50 sets not adjacent to Ai. The
union of these 50 sets contains more than 50n/51 elements. Since Ai is disjoint from these
50 sets, Ai contains at most n/51 elements. Hence, if degAi ≤ 50, then Ai contains at most
n/51 elements. If there are 50 such sets, then the union of these 50 sets contains at most
50n/51 elements, which is impossible. Therefore, degAi ≤ 50 for at most 49 sets. Therefore,
degAi ≥ 51 for at least 52 sets. Since for each such Ai, there are at most 49 sets not adjacent
to it, there must be two adjacent sets Ai, Aj such that degAi,degAj ≥ 51. Each of Ai, Aj

are each adjacent to at least 50 sets not in {Ai, Aj}. Since there are 99 sets remaining, these
two sets are adjacent to a common set. This forms a triangle in the graph, as desired. �

Source: Romanian Team Selection Test 2004
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1. Let two circles C1, C2 with different radii be externally tangent at a point T . Let A be on C1

and B be on C2, with A,B 6= T such that ∠ATB = 90o.

(a) Prove that all such lines AB are concurrent.

(b) Find the locus of the midpoints of all such segments AB.

2. Let S be a set with 2009 elements. Find the smallest positive integer k such that for any subsets
A1, A2, · · · , Ak of S, for each i ∈ {1, 2, · · · , k} we can choose either Bi = Ai or Bi = S − Ai

such that
k⋃

i=1

Bi = S.

3. Let ABC be a triangle with an interior point P such that ∠BPC = 90o and ∠BAP = ∠BCP .
Let M,N be midpoints of AC,BC, respectively. Suppose BP = 2PM . Prove that A,P,N
are collinear.

4. Find all pairs of positive integers (n, k) such that the following statement is true: there exist
integers a, b such that gcd(a, n) = 1, gcd(b, n) = 1 and a+ b = k.

5. Let a, b, c be fixed positive real numbers. Find all triples of positive real numbers (x, y, z)
such that x+ y + z = a+ b+ c and

4xyz = a2x+ b2y + c2z + abc.
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1. Let two circles C1, C2 with different radii be externally tangent at a point T . Let A be on C1

and B be on C2, with A,B 6= T such that ∠ATB = 90o.

(a) Prove that all such lines AB are concurrent.

(b) Find the locus of the midpoints of all such segments AB.

Solution: (a) Let O1, O2 be the centres of C1, C2, with radii r1, r2 respectively, with r1 < r2.
Since ∠ATB = 90o, we have ∠O1TA + ∠O2TB = 90o. Therefore, ∠TO1A + ∠TO2B =
180 − 2∠O1TA + 180 − 2∠O2TB = 180o. Therefore, O1A||O2B. Let AB intersect O1O2 at
X. Then XO1/XO2 = O1A/O2B = r1/r2. Since X is on ray O2O1 beyond O1, the point X
is independent of A,B. Hence, X is the desired concurrent point.

(b) Let M be the midpoint of AB. Let N be the midpoint of O1O2. Then MN = 1
2(r1+r2) =

NO1 = NO2. Therefore, M lies on the circle with centre N passing through O1, O2. Since
A,B 6= T and A,B are on the same side of the line O1O2, M cannot be O1 or O2. Conversely,
let M be any point on the circle with centre N passing through O1, O2, which is not O1 or O2.
Let A,B be points on the same side of O1O2 as M such that O1A||NM ||O2B. Then M is the
midpoints of AB. Since O1A||O2B, we have that ∠AO1T + ∠TO2B = 180o, which implies
∠O1TA+ ∠O2TB = 90− (∠AO1T/2) + 90− (∠TO2B/2) = 90. This implies ∠ATB = 90o.
Hence, all M is the midpoint of AB where ∠ATB = 90o. Therefore, the locus of such
midpoints is the circle with diameter O1O2 excluding the points O1 and O2. �

Source: Hong Kong Team Selection Test 2008

2. Let S be a set with 2009 elements. Find the smallest positive integer k such that for any subsets
A1, A2, · · · , Ak of S, for each i ∈ {1, 2, · · · , k} we can choose either Bi = Ai or Bi = S − Ai

such that
k⋃

i=1

Bi = S.

Solution: Since S has 2009 elements, at least one of A1, S − A1 contains at least half of S.
Choose B1 such that |B1| ≥ |S|/2. Iteratively define Si = S − B1 − B2 · · · − Bi. Choose
Bi+1 such that Bi+1 contains at least half of the elements from Si. Since |Si+1| ≤ |Si| < 2,
eventually Sk is empty. This happens when k = dlog2(2009 + 1)e = 11. Therefore, k ≤ 11.

Suppose k ≤ 10. Then we choose A1, A2, · · · , Ak such that there exist at least one element in
each of the 2k regions of the Venn diagram for A1, · · · , Ak. This is possible since 2009 > 210.
Then after choosing B1, B2, · · · , Bk, there is one region in the Venn diagram missing. The ele-
ment in this region is not in B1∪B2∪· · ·∪Bk, so this union cannot equal S. Therefore, k = 11.

Source: Brazilian Mathematical Olympiad 2003



3. Let ABC be a triangle with an interior point P such that ∠BPC = 90o and ∠BAP = ∠BCP .
Let M,N be midpoints of AC,BC, respectively. Suppose BP = 2PM . Prove that A,P,N
are collinear.

Solution: Let X be the midpoint of PC and Y be the midpoints of PB. Then MX||AP ,
NX||PB. Furthermore, |MX| = 1

2 |AP | and |XN | = 1
2 |PB|. Therefore, ∠BAP = ∠NMX.

But since ∠BPC = 90o, we have that ∠NPC = ∠NCP = ∠BCP = ∠BAP . Therefore,
PMXN are cyclic. Note that PXNY is a rectangle. Therefore, PMXNY is cyclic.

Since |BP | = 2|PM |, we have |PM | = |PY | = |XN |. Since PMXNY is cyclic, we have that
∠PXM = ∠NPX. This implies MX||PN . But since MX||AP , we conclude that A,P,N
are collinear. �

Source: Indian Mathematical Olympiad 2009

4. Find all pairs of positive integers (n, k) such that the following statement is true: there exist
integers a, b such that gcd(a, n) = 1, gcd(b, n) = 1 and a+ b = k.

Solution: The answer is all (n, k) such that n is odd, or n is even and k is even.

If n is even and k is odd, then since gcd(a, n) = gcd(b, n) = 1, we have that a, b are odd.
Therefore, a+ b is even. This implies k cannot be odd.

If n is odd, let p1, · · · , pt be the prime divisors of n. Note that pi ≥ 3 for each i. Let a be
chosen such that a 6≡ 0, k mod pi. This is possible by Chinese Remainder Theorem and pi ≥ 3.
Therefore, gcd(a, n) = 1 and gcd(k − a, n) = 1. Therefore, setting b = k − a yields a+ b = k.

If n is even and k is even, let 2, p1, · · · , pt be the prime divisors of n. Then note k ≡ 0 mod
2. Then similarly, we can choose a such that a 6≡ 0, k mod pi. Therefore, gcd(a, n) = 1 and
gcd(k − a, n) = 1. Setting b = k − a yields a+ b = k. This finishes the problem. �

Source: IberoAmerican Mathematical Olympiad 2004

5. Let a, b, c be fixed positive real numbers. Find all triples of positive real numbers (x, y, z)
such that x+ y + z = a+ b+ c and

4xyz = a2x+ b2y + c2z + abc.

Solution: We recall that u2+v2+w2+2uvw = 1 if and only if u = cosA, v = cosB,w = cosC
where A,B,C are angles of a triangle. Note that

a2

4yz
+

b2

4zx
+

c2

4xy
+

abc

4xyz
= 1.



Therefore, there exist angles of a triangle A,B,C such that

cosA =
a

2
√
yz
, cosB =

b

2
√
zx
, cosC =

c

2
√
xy
.(∗)

Therefore,

x+ y + z = a+ b+ c = 2(
√
yz cosA+

√
zx cosB +

√
xy cosC).

I now claim that

x+ y + z ≥ 2(
√
yz cosA+

√
zx cosB +

√
xy cosC).

Let C = π −A−B. Then this inequality becomes equivalent to

(
√
z − (

√
x cosB +

√
y cosA))2 + (

√
x sinB −√

y sinA)2 ≥ 0

and equality holds if and only if
√
z =

√
x cosB +

√
y cosA and 0 =

√
x sinB −√

y sinA.

Squaring these two equations and adding them and using the relation in (*) yields c = x+y−z.
Similarly, a = y + z − x and b = z + x− y. Solving this for x, y, z yields

x =
b+ c

2
, y =

c+ a

2
, z =

a+ b

2
.

This is easily verified as a solution to the equation since clearly x+ y + z = a+ b+ c and

4xyz−a2x−b2y−c2z−abc = 4 · b+ c

2
· c+ a

2
· a+ b

2
−a2 · b+ c

2
−b2 · c+ a

2
−c2 · a+ b

2
−abc = 0.

Source: IMO Shortlist 1995
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1. A positive integer m is said to be a left-block of a positive integer n if m occurs as the left-most
digits of n in decimal representation. For example, 137 is a left-block of 13729. But 1373
is not a left-block of 13729. An integer is a left-block of itself. Let a1, a2, · · · at be a finite
sequence of positive integers such that no number in the sequence is the left-block of another
number in the sequence. Find the maximum possible value of

t∑
k=1

1
ak
.

2. Let x, y, z be positive real numbers in the range [1, 2]. Prove that

(x+ y + z)
(

1
x

+
1
y

+
1
z

)
≥ 6

(
x

y + z
+

y

z + x
+

z

x+ y

)
.

Determine when equality holds.

3. Given an acute-angled triangle ABC, a line l intersect the lines BC,CA,AB at D,E, F re-
spectively, where E,F lie on their respective sides. Let O1, O2, O3 be the circumcentres of
∆AEF,∆BFD,∆CDE, respectively. Prove that the orthocentre of ∆O1O2O3 lies on l.
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1. A positive integer m is said to be a left-block of a positive integer n if m occurs as the left-most
digits of n in decimal representation. For example, 137 is a left-block of 13729. But 1373
is not a left-block of 13729. An integer is a left-block of itself. Let a1, a2, · · · at be a finite
sequence of positive integers such that no number in the sequence is the left-block of another
number in the sequence. Find the maximum possible value of

t∑
k=1

1
ak
.

Solution: The answer is 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 + 1

9 and is attained when t = 9 and
ak = k for k = 1, 2, · · · , 9.

We will prove this by induction on t. If t ≤ 9, then the maximum of the sum is clear since no
two numbers in the sequence are the same. The maximum holds when t = 9 and ak = k for
k = 1, 2, · · · , 9. Now suppose t > 9. Let b1, · · · , b10 be the 10 largest numbers in the sequence
with b1 < b2 < · · · < b10.

If b1 ≥ 10, then bb1/10c is not in the sequence since bb1/10c is the left-block of b1. Then

1
bb1/10c

>
1
b1

+
1

b1 + 1
+ · · ·+ 1

b1 + 9
≥ 1
b1

+
1
b2

+ · · ·+ 1
b10

.

Hence the sequence with b1, · · · , b10 replaced by bb1/10c is a sequence satisfying the desired
property with t− 9 elements. By induction hypothesis, this sum is at most 1 + 1

2 + · · ·+ 1
9 .

If b1 < 10, then let c1 < · · · < cm be the numbers in the sequence greater than or equal 10.
Note 1 ≤ m ≤ 9 since there are at least 10 numbers in the sequence. Then since bc/10c is not
in the sequence, we have that

1
bc1/10c

>
1
c1

+ · · ·+ 1
cm
.

Then replacing c1, · · · , cm with bc1/10c leaves a sequence with t −m terms with the desired
property. By induction hypothesis, the sum is at most 1 + 1

2 + · · ·+ 1
9 . �

Source: Iran Mathematical Olympiad 1998



2. Let x, y, z be positive real numbers in the range [1, 2]. Prove that

(x+ y + z)
(

1
x

+
1
y

+
1
z

)
≥ 6

(
x

y + z
+

y

z + x
+

z

x+ y

)
.

Determine when equality holds.

Solution: Let

f(x, y, z) = (x+ y + z)
(

1
x

+
1
y

+
1
z

)
− 6

(
x

y + z
+

y

z + x
+

z

x+ y

)
.

Without loss of generality, suppose x ≥ y ≥ z. Let t = (y + z)/2. Note that x ≥ t. We will
prove that f(x, y, z) ≥ f(x, t, t) ≥ 0.

Then f(x, y, z)− f(x, t, t)

= (x+ y + z)( 1
x + 1

y + 1
z )− (x+ t+ t)( 1

x + 1
t + 1

t )− 6( x
y+z + y

z+x + z
x+y −

x
2t −

t
t+x −

t
x+t)

= (x+ y + z)( 1
y + 1

z −
2
t )− 6( y

z+x + z
x+y −

2t
x+t)

= lots of work that you will do
= (y − z)2(x+ y + z)( 1

yz(y+z) −
3

(x+y)(x+z)(x+t)).

Using the fact that x ≥ y+z
2 , we get that this expression is greater than or equal to

1
4
(y − z)2(x+ y + z)

(
3y3 + y2z + yz2 + 3z3

yz(y + z)(x+ y)(x+ z)(x+ t)

)
≥ 0

with equality if and only if y = z. Therefore, f(x, y, z) ≥ f(x, t, t) with equality if and only if
y = z.

Now we prove that f(x, t, t) ≥ 0. We have that

f(x, t, t) = lots of work =
−(x− t)2(x− 2t)

xt(x+ t)
.

Since x, y, z, t ∈ [1, 2], we have that x− 2t ≤ 0. Therefore, f(x, y, z) ≥ f(x, t, t) with equality
if and only if x = 2, t = 1 or x = t. Therefore, f(x, y, z) ≥ f(x, t, t) ≥ 0 with equality if and
only if x = y = z or (x, y, z) = (2, 1, 1), (1, 2, 1), (1, 1, 2). �

Source: Vietnamese Mathematical Olympiad 2003



3. Given an acute-angled triangle ABC, a line l intersect the lines BC,CA,AB at D,E, F re-
spectively, where E,F lie on their respective sides. Let O1, O2, O3 be the circumcentres of
∆AEF,∆BFD,∆CDE, respectively. Prove that the orthocentre of ∆O1O2O3 lies on l.

Solution: I claim that the circumcircles of ∆AEF,BFD,CDE,ABC are concurrent at a
point P . (This is actually a version of Miquel’s Theorem. But the proof is presented here.)

In the first case, without loss of generality suppose E,F are the points on the sides CA,AB,
respectively and F be on ray CB. Let P be the intersection of the circumcircles of ∆AEF
and ∆BFD. Then

∠BPD = ∠BFD = ∠AFE = ∠APE.

Furthermore,
∠FPD = ∠ABC and ∠EPF = ∠EAF = ∠BAC.

Therefore, ∠EPD = ∠EPF + ∠FPD = ∠BAC + ∠ABC. This implies ∠EPD + ∠ECD =
∠EPD+ ∠ACB = 180o. Therefore, PECD is cyclic. This implies P lies on the circumcircle
of ∆CDE. Furthermore, this also implies ∠CDE = ∠CPE. Therefore,

∠APC = ∠APE + ∠EPC = ∠BFD + ∠FDB = ∠ABC.

this implies APBC is cyclic. Therefore, P lies on the circumcircle of ∆ABC.

Therefore, O1, O2, O3 are the circumcentres of ∆PEF,PFD,PDE, respectively. Note that
D,F,E are collinear, in that order. We now prove that the orthocentre of ∆O1O2O3 lies on
this point. Let X,Y, Z be the feet of the altitude from O1, O2, O3, respectively in triangle
∆O1O2O3. Since O1X and PD are both perpendicular to O2O3, we have that O1X||PD.
similarly, O2Y ||PE and O3Z||PF . Let O3Z intersects l at H. It suffices to prove that
O1,H,X are collinear and O2,H, Y are collinear. Let ∠DPE = α,∠PDE = β,∠PED = γ.
Let ∠DPF = θ. Hence, ∠EPF = α − θ. Let U, V be the midpoints of PD,PF , respec-
tively. Then since PUO2V is cyclic, we have that θ = ∠DPF = ∠O1O2O3, which implies
∠ZHX = 180 − θ. However, since O1X||PD and O3Z||PF , it implies that O3Z intersect
O1X at an angle of θ. But ∠ZHX = 180− θ. This implies O1,H,X are collinear. Similarly,
O2,H, Y are collinear. Therefore, the orthocentre of ∆O1O2O3 lies on l, as desired. �

Source: China Team Selection Test 2008
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1. Given a triangle ABC and an interior point P , prove that

min{|PA|, |PB|, |PC|}+ |PA|+ |PB|+ |PC| < |AB|+ |BC|+ |CA|.

2. At a math contest, there are 2n students participating. Each of them submits a problem
to the jury, which thereafter gives each student one of the 2n problems submitted. We say
that the contest is fair if there are n participants who receive their problems from the other
n participants. Prove that the number of distributions of the problems that results in a fair
contest is a perfect square. 2

3. Let x, y, z be real numbers such that x + y + z = xy + yz + zx. Find the minimum possible
value of

x

x2 + 1
+

y

y2 + 1
+

z

z2 + 1
.

2Just to be clear, each student receives a unique problem.
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1. Given a triangle ABC and an interior point P , prove that

min{|PA|, |PB|, |PC|}+ |PA|+ |PB|+ |PC| < |AB|+ |BC|+ |CA|.

Solution: Let D,E, F be midpoints of BC,CA,AB respectively. Note that P is in at least
two of the quadrilaterals ABDE,BCEF,CAFD. Without loss of generality, suppose that P
is in ABDE and BCEF . I claim that |AP | + |PB| < |AE| + |ED| + |DB|. We know that
AP intersects either side BD or D. If AP intersect side BD, say at Q, then |PA|+ |PB| <
|PA|+ |PQ|+ |QB| = |AQ|+ |QB| < |AE|+ |ED|+ |DQ|+ |QB| = |AE|+ |ED|+ |DB|. If AP
intersectsDE, say at R, then |PA|+|PB| < |PA|+|PR|+|RD|+|DB| = |AR|+|RD|+|DB| <
|AE|+ |ER|+ |RD|+ |DB| = |AE|+ |ED|+ |DB|, as desired.

Similarly, |BP |+ |PC| < |BF |+ |FE|+ |EC|. Adding these two equations yield

|BP |+ |PA|+ |PB|+ |PC| < |AE|+ |EC|+ |EF |+ |BD|+ |ED|+ |BF | = |AB|+ |BC|+ |CA|.

Therefore,

min{|PA|, |PB|, |PC|}+ |PA|+ |PB|+ |PC| < |AB|+ |BC|+ |CA|.

as desired. �

Source: IMO Shortlist 1999

2. At a math contest, there are 2n students participating. Each of them submits a problem
to the jury, which thereafter gives each student one of the 2n problems submitted. We say
that the contest is fair if there are n participants who receive their problems from the other
n participants. Prove that the number of distributions of the problems that results in a fair
contest is a perfect square. 3

Solution: We label the people 1, 2, · · · , 2n. We construct a directed graph where each person
is represented by a vertex and an edge is drawn from person i to person j if and only if the
problem proposed by person i is sent to person j or vice versa. There is a 1-1 correspondence
between the distributions of a fair contest and such a graph with a perfect matching. But
such a graph has 2n vertices and 2n edges and every vertex has degree two. Hence, such a
graph is a collection of directed cycles. Furthermore, such a graph has a perfect matching if
and only if each cycle has even length. Hence, it suffices to find the number of graphs, with
labelled vertices consisting of even vertices.

Let S be the set of pairings of {1, 2, · · · , 2n} into n pairwise disjoint pairs. We will construct
a 1 − 1 correspondence between S2 and labelled directed graphs consisting entirely of even

3Just to be clear, each student receives a unique problem.



directed cycles. Let (M1,M2) ∈ S2. Let ψ map (M1,M2) to the graph corresponding formed
by the union of M1 and M2 where the edges from M1 are coloured red and the edges from
M2 are coloured blue. For each component (which is an even cycle), we choose the smallest
number and put an arrow leaving this smallest number along the red edge. This determines
the direction of all cycles in the graph. I claim that ψ gives a one-to-one correspondence
between S2 and labelled directed graphs consisting of even cycles. Given such a graph, for
each component, consider the smallest number and the edge that leaves this number. We
colour this edge red. The remaining edges can then be uniquely coloured red and blue so that
no two edges of the same colour are adjacent. This gives us a matching M1 of red edges and
M2 of blue edges. Clearly, ψ(M1,M2) gives us the original graph. Therefore, the number of
such graphs is |S|2 which is a perfect square. (This number is in fact 12 · 32 · · · (2n− 1)2.) �

Source: Romanian Team Selection Test 2003

3. Let x, y, z be real numbers such that x + y + z = xy + yz + zx. Find the minimum possible
value of

x

x2 + 1
+

y

y2 + 1
+

z

z2 + 1
.

Solution: The answer is −1/2 and occurs at x = 1, y = −1, z = −1 and its permutations.

Let a = x+ y + z = xy + yz + zx and b = xyz. Then the inequality

x

x2 + 1
+

y

y2 + 1
+

z

z2 + 1
≥ −1

2

is equivalent to
2
∑
cyc

x(y2 + 1)(z2 + 1) ≥ −(x2 + 1)(y2 + 1)(z2 + 1)

2xyz(xy + yz + zx) + 2(
∑
sym

x2y) + 2(x+ y + z) ≥ −x2y2z2 −
∑
cyc

x2y2 −
∑
cyc

x2 − 1

2xyz(xy + yz + zx) + 2(x+ y + z)(xy + yz + zx)− 6xyz + 2(x+ y + z)

≥ −x2y2z2 − (xy + yz + zx)2 + 2xyz(x+ y + z)− (x+ y + z)2 + 2(xy + yz + zx)− 1.

Hence.
b2 + 4a2 − 6b ≥ 1.

We can write this as

x2y2z2 − 6xyz + 2(x+ y + z)2 + 2(xy + yz + zx)2 + 1 ≥ 0.

By a lot of work and creativity, we can write this as

(x− yz)2 + (y − zx)2 + (z − xy)2 + (1 + xy + yz + zx)2 + (x+ y + z + xyz)2 ≥ 0

which is clearly true. �

Source: Brazilian Mathematical Olympiad 2005
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1. Let S be a set of 2009 elements and P (S) be the set of all subsets of S. Let f : P (S) → R be
a function such that

f(X ∩ Y ) = min{f(X), f(Y )}

for all X,Y ∈ P (S). Find the maximum possible number of elements in the range of f .

2. Let P be a convex polygon. Prove that P contains an interior point Q such that for every
line l passing through Q, if we let X,Y be the two intersection points of l and the boundary
of P, we have

1
2
≤ |QX|
|QY |

≤ 2.

3. Let m,n be positive integers. Prove that there exists a positive integer k such that 2k −m
contains at least n distinct prime divisors.
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1. Let S be a set of 2009 elements and P (S) be the set of all subsets of S. Let f : P (S) → R be
a function such that

f(X ∩ Y ) = min{f(X), f(Y )}

for all X,Y ∈ P (S). Find the maximum possible number of elements in the range of f .

Solution: The answer is 2010.

Let S = {1, 2, · · · , 2009}. For each i ∈ S, let Si = S − {i}. Note that for each X ∈ P (S) with
X 6= S, X can be written uniquely as the intersection of sets chosen from Si. Specifically,

X =
⋂
i/∈X

Si.

Note that inductively, we can prove that for any subset I of {1, 2, · · · , 2009}

f(
⋂
j∈I

Sj) = min
j∈I

{f(Sj)}.

Therefore, if we are given values for f(S1), · · · , f(S2009) and f(S), then f is determined for
all of P (S). Specifically, for each X ∈ P (S) − S, f(X) must take on one of the values of
f(S1), · · · , f(S2009). Hence by including the value for f(S), the number of elements in the
range of f is at most 2010. We now construct a function f that satisfies the given condi-
tions and have 2010 elements in its range. We let f(S) = 2010 and for all X ∈ P (S) − S,
f(X) to be equal to the smallest element in {1, 2, · · · , 2009} not in X. The condition
f(X ∩ S) = min{f(X), f(S)} is clearly satisfied since f(S) > f(X) for all X ∈ P (S), X 6= S.
Finally, f(X ∩ Y ) is the smallest element not in X ∩ Y , which is the smallest element not in
X or not in Y , which is min{f(X), f(Y )}. The range of f is {1, 2, · · · , 2010}. �

Source: Romanian Team Selection Test 2007

2. Let P be a convex polygon. Prove that P contains an interior point Q such that for every
line l passing through Q, if we let X,Y be the two intersection points of l and the boundary
of P, we have

1
2
≤ |QX|
|QY |

≤ 2.

Solution: For each point A on the boundary of P, Let SA be the image of the dilation of P
about A by ratio 2/3. We will prove that there exists a point Q in the interior of P such that Q
is in SA for all A on the boundary of P. Let A,B,C be three distinct points on the boundary
of P. Let G be the centroid of ∆ABC, D,E, F be the midpoints of BC,CA,AB, respectively,
and A′, B′, C ′ be the intersection of AG,BG,CG with the boundary of P. Therefore,

AG

AA′ ≤
AG

AD
= 2/3.



Hence, G ∈ SA. Similarly, G ∈ SB and G ∈ SC . Therefore, G ∈ SA ∩ SB ∩ SC . By Helly’s
Theorem, there exists a point Q is in all SA for all A on the boundary of P. Let l be a line
passing through Q and intersecting the boundary at X,Y . Then

XQ

XY
≤ 2

3
⇒ |QX|

|QX|+ |QY |
≤ 2

3
⇒ |QX|

|QY |
≤ 2.

Similarly,
Y Q

Y X
≤ 2

3
⇒ |QX|

|QY |
≥ 1

2
.

This solves the problem. �

Source: Iran Mathematical Olympiad 2004

3. Let m,n be positive integers. Prove that there exists a positive integer k such that 2k −m
contains at least n distinct prime divisors.

Solution: By repeated division by 2, we may assume that m is odd. Suppose there exists a
positive integer N such that all numbers of the form 2k −m has at most N prime divisors
p1, p2, · · · , pN . Let M be a positive integer such that pM

i - 2k −m for all i ∈ {1, 2, · · · , N}.
Let b be a positive integer such that pM

i |2b− 1 for all i ∈ {1, 2, · · · ,M}. Then 2k+lb−m must
be of the form pe1

1 · · · peN
N , by the maximality of N and since pi must divide 2k+lb −m. We

can choose l large enough so that some ei > M . Then pM
i |2k+lb−m. But since pM

i |2b− 1, we
conclude that pM

i |2k−m, which contradicts the choice of M . Therefore, there is no maximum
value for N . This problem is solved. �

Source: China Team Selection Test 2006



2009 Mock Olympiad 12: (USAMO Mock)
Time: 4.5 Hours

1. Let R+ denote the positive real numbers. Let f : R → R+ be a function such that x ≤ y
implies f(x) ≤ f(y) for all x, y ∈ R. Prove that there exists t ∈ R such that

f

(
t+

1
f(t)

)
< 2f(t).

2. Prove that for all positive integers m,n with m odd, the following number is an integer:

1
3mn

m∑
k=0

(
3m
3k

)
(3n− 1)k.

3. A word is a sequence of 2009 letters from the alphabet a, b, c, d. A word is said to be com-
plicated if it contains two consecutive groups of identical letters. The words caab, baba and
cababdc, for example, are complicated words, while bacba and dcbdc are not. A word that is
not complicated is a simple word. Prove that the numbers of simple words with 2009 letters
is greater than 22009.
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1. Let R+ denote the positive real numbers. Let f : R → R+ be a function such that x ≤ y
implies f(x) ≤ f(y) for all x, y ∈ R. Prove that there exists t ∈ R such that

f

(
t+

1
f(t)

)
< 2f(t).

Solution: Suppose f(x+ 1
f(x)) ≥ 2f(x) for all x ∈ R. Fix x0 ∈ R and define

xn = xn−1 +
1

f(xn−1)

for all n ∈ N. Then

f(xn) = f

(
xn−1 +

1
f(xn−1)

)
≥ 2f(xn−1),∀n ∈ N.

Therefore, we conclude that
f(xn) ≥ 2nf(x0),∀n ∈ N.

By summing over all k ∈ {1, 2, · · · , n}, we have that

n∑
k=1

xk =
n∑

k=1

(
xk−1 +

1
f(xk−1)

)
.

This implies

xn = x0 +
n−1∑
k=0

1
f(xk)

≤ x0 +
n−1∑
k=0

1
2k · f(x0)

< x0 +
2

f(x0)

which is a constant. Therefore, the sequence {xn}n∈N is non-decreasing and bounded above
by a constant, which implies it has a least upper bound, say y. Therefore, f(xn) ≤ f(y) for
all n ∈ N. But since f(xn) ≥ 2nf(x0), we conclude that f(y) ≥ 2nf(x0) for all n ∈ N, which
is impossible. Therefore, f(t+ 1

f(t)) ≤ 2f(t) for some t ∈ R.

Source: Iran Mathematical Olympiad 2002

2. Prove that for all positive integers m,n with m odd, the following number is an integer:

1
3mn

m∑
k=0

(
3m
3k

)
(3n− 1)k.

Solution: Let ω be a primitive cube root of unity. Then

m∑
k=0

(
3m
3k

)
(3n− 1)k =

1
3
·
(
(1 + 3

√
3n− 1)3m + (1 + 3

√
3n− 1ω)3m + (1 + 3

√
3n− 1ω2)3m

)
.



Let α = 1 + 3
√

3n− 1, β = 1 + 3
√

3n− 1ω, γ = 1 + 3
√

3n− 1ω2. Then it is easy to calculate
that α + β + γ = 3, αβ + βγ + γα = 3, αβγ = 3n. (Simply use the facts that ω3 = 1 and
1 + ω + ω2 = 0.) Therefore, if we let Sk = 1

3 · (α
k + βk + γk), then S0 = 1, S1 = 1, S2 = 1 and

Sk+3 = 3Sk+2 − 3Sk+1 + 3n · Sk.

We need to prove that 3mn divides S3m for all positive integers m,n and m odd. It suffices
to prove the following two facts;

(a) If we view each Sk, k ∈ N as a polynomial in n, then the constant term in S3m is zero
for each odd m ∈ N.

(b) For each oddm, the coefficients of S3m, S3m+1, S3m+2, S3m+3, S3m+4, S3m+5 (when viewed
as a polynomial in n) are divisible by 3m.

After we prove these two facts, we can conclude that 3m ·n divides S3m for all positive integers
m,n with m odd and we have solved the problem.

We will prove (a) by induction on m. Let ci be the constant term of Si. Then ck+3 =
3ck+2 − 3ck+1. Since c0 = c1 = c2 = 1, we have that c3 = 0. We prove that c3m = 0 and
c3m−1 = c3m−2 by induction. We have proved the case for m = 1. Now suppose we have
proved this for a given m. Let t = c3m−1 = c3m−2. Then c3m+1 = −3t, c3m+2 = −9t, c3m+3 =
−18t, c3m+4 = −27t, c3m+5 = −27t, c3m+6 = 0. This proves (a) by induction.

We will prove (b) by induction on m. Clearly the statement is true for m = 1 since Sk+3

in the recurrence relation is a multiple of 3. Suppose 3m divides all of the coefficients of
S3m, · · · , S3m+5. Then S3m+6 is 3 times a linear combination of S3m+3, S3m+4, S3m+5, imply-
ing 3m+1 divides the coefficients of S3m+6. Similarly, we can prove that 3m+1 divides the
coefficients of S3m+6, · · · , S3m+11. This proves (b) by induction.

Source: Romanian Team Selection Test 2004

3. A word is a sequence of 2009 letters from the alphabet a, b, c, d. A word is said to be com-
plicated if it contains two consecutive groups of identical letters. The words caab, baba and
cababdc, for example, are complicated words, while bacba and dcbdc are not. A word that is
not complicated is a simple word. Prove that the numbers of simple words with 2009 letters
is greater than 22009.

Solution: We will prove this by induction on n. Let f(n) be the number of simple words
with n letters. It is easy to see that f(1) = 4 and f(4) = 12. It suffices to prove that
f(n + 1) > 2f(n) for all n ∈ N. Given the set of simple words with n letters, we can form
words by appending each word in the set by one of four letters in the alphabet to form 4f(n)
words. Let Tn be this set of 4f(n) words of n+ 1 letters, whose first n letters form a simple
word. If a word in this set is complicated, then since the first n letters form a simple word,
the last letter in the word makes the whole word complicated. There exists a minimal positive



integer k such that the last two consecutive blocks of k letters are identical. Therefore, we
can partition the complicated words in Tn into pairwise disjoint sets U1, U2, · · · , Uk where
k = bn/2c where the last two consecutive blocks of k letters are identical. Each of these
blocks are also simple, for otherwise the first n letters would form a complicated word, which
is impossible. Therefore, |Ui| ≤ f(n− i), since a word in Ui can be formed by taking a simple
word of length n − i and adding the i letters which is the last i letters of this simple word.
Therefore, the number of simple words of length n+ 1 is

4f(n)−
k∑

i=1

|Ti| ≥ 4f(n)−
k∑

i=1

f(n− i) > 2f(n) +
k∑

i=1

(
1

2i−1
f(n)− f(n− i))

By strong induction, since f(n) > 2if(n− i), we conclude that this number is strictly greater
than 2f(n), which completes the proof. �

Source: Romanian Team Selection Test 2003
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1. Find all positive integers n ≥ 3 such that there exists a convex polygon with n vertices on the
Cartesian coordinate plane such that the side lengths are all odd integers and every vertex
has integer coordinates. 4

2. Let d, n be positive integers such that d divides n. Let S be the set of all (ordered) n-tuples of
integers (x1, x2, · · · , xn) such that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ n and d divides x1+x2+ · · ·+xn.
Prove that exactly half of the n-tuples in S has the property that xn = n.

3. Let ABCDEF be a convex hexagon with area S. Prove that

|AC|·(|DB|+|BF |−|FD|)+|CE|·(|FD|+|DB|−|BF |)+|EA|·(|BF |+|FD|−|DB|) ≥ 2
√

3S.

4Just to be clear, all interior angles of the convex polygon must be strictly less than 180o, i.e. no three vertices
are collinear.
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1. Find all positive integers n ≥ 3 such that there exists a convex polygon with n vertices on the
Cartesian coordinate plane such that the side lengths are all odd integers and every vertex
has integer coordinates. 5

Solution: The answer is all n ≥ 4 even.

Let (x1, y1), · · · , (xn, yn) be the coordinates of the vertices in order around the polygon. Sup-
pose n is odd. Since the side lengths of each polygon is an odd integer, either xi, xi+1 have
different parities or yi, yi+1 have different parities (but not both). (We are using the notation
that xi = xn+i.) We call a pair (x, y) red if x, y are the same parity and blue otherwise. Then
(xi, yi) must have different colours than (xi+1, yi+1). Since n is odd, this is impossible.

To prove that n is even works, note that (2k + 1, 2k2 + 2k, 2k2 + 2k + 1) is a primitive
Pythagorean triple. Let ak = 2k+1 and bk = 2k2 +2k. Then a triangle with with leg lengths
ak, bk will have a hypotenuse with odd integral length. Also note that ak/bk < 1 and bk/ak is
a strictly increasing function in variable k ≥ 1.

If n = 4, then we can simply choose the vertices of a square to be (0, 0), (1, 0), (1, 1), (0, 1). Let
n = 2m. LetX1 = (4, 3) andXi = (ai, bi) for i = 2, · · · , 2m−3. Let S = 4+a2+a3+· · ·+a2m−3,
i.e. the sum of the x-coordinates of these points and T = 3 + b2 + b3 + · · ·+ b2m−3, the sum
of the y-coordinates of these points. Since bi − ai > 1 for i ≥ 2, we have that S < T .
Since a1 is even and bi’s are odd, we have that S is even and T is odd. Let P0 = (0, 0) and
Pi+1 = Pi + X2m−3−i for i = 1, 2, · · · , 2m − 4, P2m−2 = (T, T ) and P2m−1 = (T, 0). I claim
that P0, · · · , P2m−1 are the vertices of a convex n-gon with odd integral sides. Since T is odd,
the segments P2m−2P2m−1 and P2m−1P0 have odd integral length. By choice of (ai, bi), PiPi+1

have odd lengths for i = 1, 2, · · · , 2m − 4. Finally, note that P2m−2 = (T − S, T ). Since S is
even and T is odd, T − S is odd, therefore, P2m−2P2m−1 has odd length. It remains to show
that the polygon is convex. The only points on the line y = x are P0 and P2m−2, this is be-
cause PiPi+1 has slope greater than 1 for all i = 0, 1, · · · , 2m− 4. Therefore, the y-coordinate
of P2m−3 is at least 2m − 3 > 1 more than the x-coordinate. Since P2m−2 = P2m−3 + (4, 3),
the point P2m−2 is also above the line y = x. The point P2m−1 = (T, 0) is clearly below the
line y = x. To show that it is convex, note that the slopes PiPi+1 for i = 0, 1, · · · , 2m − 4
are greater than 1 and in strictly decreasing order and P2m−3P2m−2 has slope less than 1.
Therefore, the points P0, · · · , P2m−1 are points lying on or above y = x and the slopes of the
lines PiPi+1 are in strictly decreasing order. Therefore, the polygon is convex. �

Source: China Team Selection Test 2008

5Just to be clear, all interior angles of the convex polygon must be strictly less than 180o, i.e. no three vertices
are collinear.



2. Let d, n be positive integers such that d divides n. Let S be the set of all (ordered) n-tuples of
integers (x1, x2, · · · , xn) such that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ n and d divides x1+x2+ · · ·+xn.
Prove that exactly half of the n-tuples in S has the property that xn = n.

Solution: We will create a bijection between the subset of S with the property xn = n and
the subset of S without the property xn = n.

For each (x1, · · · , xn), we define a part of this element to be each component xi > 0. Hence,
xn is the largest part. Let X be the subset of S with xn = n. Let X1 be the subset of X with
less than n parts. Let X2 be the subset of X with exactly n parts.

Each element of S can be represented as follows: Given an n by n grid, where the ith row
has its first xi columns coloured red. Note that such a colouring corresponds to an element
in S if and only if each row has at least as many coloured squares as any row above it. Also
note that each column has at least as many coloured squares as any column to the right of
it. Therefore, if we reflect this about the diagonal containing the lower-left, the resulting
colouring still corresponds to an element of S. Hence, there is a bijection of X1: elements of
S with largest part n with less than n parts with elements of S with largest part less than n
with exactly n parts. Let this latter set be Y1. Hence, |X1| = |Y1|.

Consider X2, the subset of S with largest part n and with exactly n parts. Given U ∈ X2,
remove all parts equal to n and pre-append 0’s to the beginning of U . Formally, if U con-
tains k n′s for some k > 1, then erase xn, xn−1, · · · , xn−k+1, then replace xi with xi−k for
i ∈ {k + 1, · · · , n} and set xj = 0 for all j ∈ {1, · · · , k}. This results in an element of S with
largest part less than n and number of parts less than n, since d|n and the resulting element
has sum which is a multiple of n less than the original element, which means the property
that d divides the sum of the elements is preserved. Call elements of this form Y2. Conversely,
given an element in Y2, we can erase the 0’s and append n’s to the element to recover the
corresponding element of X2. Therefore, there is a bijection between X2 and Y2. Therefore,
|X2| = |Y2|. All elements of S with largest part less than n is in Y1 ∪ Y2 and Y1 ∩ Y2 = ∅.
All elements in S with largest part n is exactly X1 ∪ X2 and X1 ∩ X2 = ∅. Furthermore,
X1, X2, Y1, Y2 are pairwise non-intersecting. Therefore, |X1|+ |X2| = |Y1|+ |Y2| meaning the
number of elements in S with largest part n is equal to the number of elements in S with
largest part not equal to n. This solves the problem. �

Source: China Team Selection Test 2006



3. Let ABCDEF be a convex hexagon with area S. Prove that

|AC|·(|DB|+|BF |−|FD|)+|CE|·(|FD|+|DB|−|BF |)+|EA|·(|BF |+|FD|−|DB|) ≥ 2
√

3S.

Solution: Let O be any point in the interior of ABCDEF . Note that |AC|·|BO| ≥ 2[ABCO]
(where [· · ·] denotes area). Similarly, |CE| · |DO| ≥ 2[CDEO] and |EA| · |FO| ≥ 2[EDAO].
Since [ABCO] + [CDEO] + [EFAO] = [ABCDEF ], we have that

|AC| · |BO|+ |CE| · |DO|+ |EA| · |FO| ≥ 2[ABCDEF ] = 2S.

Let the incircle of ∆BDF touch DF,FB,BD at X,Y, Z, respectively. Note that

|BY | = |BD|+ |BF | − |DF |
2

, |DZ| = |BD|+ |DF | − |BF |
2

, |FX| = |BF |+ |DF | − |BD|
2

.

Hence, it suffices to show that there exists a point O such that

|BY |
|BO|

≥
√

3
2
,
|CZ|
|CO|

≥
√

3
2
,
|AX|
|AO|

≥
√

3
2
,

since this would imply LHS of inequality equals 2(|AC| · |BY |+ |CE| · |DZ|+ |EA| · |FX|) ≥√
3(|AC| · |BO|+ |CE| · |DO|+ |EA| · |FO|) ≥ 2

√
3S, which proves the problem.

Let r be the real number such that be the three circles, centred at B,D,F , respectively, which
are the images of a dilation of ratio r of the circles with centres B,D,F respectively, have
exactly one point O in common. It suffices to show that r ≤ 2√

3
. Suppose r > 2√

3
. At least

one angle ∠BOD,∠DOF,∠FOB is at least 120o. Suppose it is ∠BOD. Then

cos ∠BOD =
|OB|2 + |OD|2 − |BD|2

2 · |OB| · |OD|
>

4
3 |BZ|

2 + 4
3 |DZ|

2 − (|BZ|+ |DZ|)2
8
3 |BZ||DZ|

≥ −1
2
,

by AM-GM inequality, contradicting ∠BOD > 120o. Therefore, r ≤ 2√
3
. This completes the

problem.

Source: International Zhautykov Olympiad 2009
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1. Let ABC be a triangle with circumcircle Γ. Let γ be a circle tangent to side BC at a point
Q and internally tangent to Γ at a point P on the arc BC on Γ, not containing A. Let J be
the centre of γ. Suppose J lies on the internal angle bisector of ∠BAC. Prove that J lies on
the internal angle bisector of ∠PAQ.

2. Let f, g, b be polynomials with real coefficients such that f, g are in one variable and b is in
two variables. Suppose that

f(x)− f(y) = b(x, y)(g(x)− g(y))

for all x, y ∈ R. Prove that there exists a polynomial h with real coefficients such that
f(x) = h(g(x)) for all x ∈ R.

3. Prove that for any odd prime number p, the number of positive integers n such that p divides
n! + 1 is less than or equal to cp

2
3 , where c is a constant independent of p.
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1. Let ABC be a triangle with circumcircle Γ. Let γ be a circle tangent to side BC at a point
Q and internally tangent to Γ at a point P on the arc BC on Γ, not containing A. Let J be
the centre of γ. Suppose J lies on the internal angle bisector of ∠BAC. Prove that J lies on
the internal angle bisector of ∠PAQ.

Solution: Let M be the midpoint of the arc BC on Γ not containing A. I hope you guys
know by now that this implies A, J,M are collinear. We will now prove that the quadrilateral
APJQ is cyclic. Let φ : be the dilation that maps γ to Γ with the centre of dilation at P . This
is possible since γ is internally tangent to Γ. Consider the point where φ maps Q, and call it
X. Then the line tangent to Γ at X is parallel to BC, since γ is tangent to BC at Q. There-
fore, X is on the midpoint of the arc BC containing A. Hence, X is diametrically opposite M .

Therefore, ∠AJQ = ∠AMX = ∠APX = ∠APQ. This implies APJQ cyclic. Since
∠JPQ = ∠JQP , we have that ∠JAQ = ∠JAP , which implies J lies on the angle bisec-
tor of ∠QAP , as desired. �

Source: Japan Mathematical Olympiad 2009 Final Round

2. Let f, g, b be polynomials with real coefficients such that f, g are in one variable and b is in
two variables. Suppose that

f(x)− f(y) = b(x, y)(g(x)− g(y))

for all x, y ∈ R. Prove that there exists a polynomial h with real coefficients such that
f(x) = h(g(x)) for all x ∈ R.

Solution: If deg g = 0, then g(x) − g(y) = 0 for all x, y ∈ R. Therefore, f(x) − f(y) = 0
for all x, y ∈ R. Therefore, f is a constant. Setting h to be this constant gives the desired
function. We will henceforth assume that deg g > 0. Note that by interchanging x, y, we can
conclude that b(x, y) = b(y, x). Therefore, degx(b) = degy(b).

Clearly, deg f − deg g ≥ 0. We will solve the problem by induction on deg f − deg g. If
deg f − deg g = 0, then degx(b) = degy(b) = 0. Hence, b(x, y) is a constant polynomial. Let
c be this constant. Then f(x) − f(y) = c(g(x) − g(y)) for all x, y ∈ R. Substituting y = 0
yields f(x) = cg(x). Let h(x) = cx. Then h(g(x)) = c · g(x) = f(x) for all x ∈ R. Therefore,
we have found the desired h.

Now suppose this holds for all f, g such that deg f − deg g ∈ {0, 1, · · · , r − 1}. Suppose
deg f − deg g = r. Let F (x) = f(x) − f(0) and G(x) = g(x) − g(0) and B(x) = b(x, 0).
Then we have that F (x) = B(x)G(x) and F (x) − F (y) = b(x, y)(G(x) − G(y)). Note that



F (x) − F (y) = B(x)G(x) − B(y)G(y) = B(x)G(x) − B(x)G(y) + B(x)G(y) − B(y)G(y) =
B(x)(G(x)−G(y))+G(y)(B(x)−B(y)). SinceG(x)−G(y) divides F (x)−F (y) andG(x)−G(y)
is relatively prime to G(y), we conclude that G(x)−G(y) divides B(x)−B(y), i.e. there exists
a two variable polynomial a(x, y) with real coefficients such that

B(x)−B(y) = a(x, y)(G(x)−G(y)).

Since deg g > 0, degG > 0 and subsequently, degB − degG < degF − degG. By in-
duction hypothesis, we have that B(x) = J(G(x)) for some polynomial J with real coeffi-
cients. Therefore, F (x) = J(G(x))G(x)). Let K(x) = xJ(x). Then F (x) = K(G(x)). Then
f(x) = F (x)+f(0) = K(G(x))+f(0). Setting H(x) = K(x)+f(0) gives us f(x) = H(G(x)),
as desired. This completes the proof. �

Source: IMO 1992 Shortlist

3. Prove that for any odd prime number p, the number of positive integers n such that p divides
n! + 1 is less than or equal to cp

2
3 , where c is a constant independent of p.

Solution: Clearly all possible integers n are in the range 1 ≤ n < p. Let a1, a2, · · · , ar be all
of the integers in this range such that p divides ai! + 1 with a1 < a2 < · · · < ar. We need to
prove that r < cp2/3 for some constant c independent of p. For each j ∈ {1, 2, · · · , p− 2}, let

xj = |{i ∈ {1, 2, · · · , r − 1} such thatai+1 − ai = j|.

Then
x1 + x2 + · · ·+ xp−2 = r − 1.

Furthermore,
x1 + 2x2 + 3x3 + · · ·+ (p− 2)xp−2 = ar − a1 = p− 2.

Since a1 = 1 and ar = p − 1 since (p − 1)! = −1 mod p by Wilson’s Theorem. I also
claim that xj ≤ j for each j. Suppose ai+1 − ai = j. Since p|ai! + 1 and p|ai+1! + 1, we
have that p divides ai+1! − ai!. Since ai is relatively prime with p, we have that p divides
(ai+1)(ai+2) · · · (ai+(ai+1−ai))−1. But the polynomial (x+1)(x+2) · · · (x+(ai+1−ai))−1 =
(x+ 1)(x+ 2) · · · (x+ j)− 1 has at most j solutions modulo p. Therefore, xj ≤ j.

We want to maximize S = x1 + x2 + · · ·+ xp−2 if x1, · · · , xp−2 are non-negative real numbers
such that x1 +2x2 + · · ·+(p−2)xp−2 = p−2 and 0 ≤ xi ≤ i. Note that S is maximized when
the terms with the smallest indices xi are maximized. Let m be the largest index such that
12 +22 + · · ·+m2 < p− 2. Then p− 2 = 12 +22 + · · ·+m2 +(m+1)t for some 0 ≤ t < m+1.
Therefore,

m(m+ 1)(2m+ 1)
6

< p− 2 ⇒ m3

3
< p⇒ m < (3p)1/3.

Then, the maximum possible value of r is S + 1 = 1 + 2 + · · · + m + t + 1 = m(m+1)
2 + t <

(m+1)(m+2)+2
2 < 8m2

2 = 4m2 = 4(3p)2/3. Setting c = 4 · 32/3 gives the desired result. �

Source: China Team Selection Test 2009



2009 Mock Olympiad 15: (IMO Mock)
Time: 4.5 Hours

1. Find the maximum possible finite number of roots to the equation

|x− a1|+ . . .+ |x− a50| = |x− b1|+ . . .+ |x− b50|,

where a1, a2, . . . , a50, b1, . . . , b50 are distinct reals.

2. Let m,n be positive integers and f(x) be a degree polynomial of degree n such that each coef-
ficient of the polynomial is odd. Suppose f has a factor of (x− 1)m. If m ≥ 2k(k ≥ 2, k ∈ N),
prove that n ≥ 2k+1 − 1.

3. Let ABC be an acute triangle, let M,N be the midpoints of minor arcs ĈA, ÂB of the
circumcircle of triangle ABC, point D is the midpoint of segment MN , point G lies on minor
arc B̂C. Denote by I, I1, I2 the incenters of triangle ABC,ABG,ACG respectively. Let P be
the second intersection of the circumcircle of triangle GI1I2 with the circumcircle of triangle
ABC. Prove that the points D, I, P are collinear.
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1. Find the maximum possible finite number of roots of the equation

|x− a1|+ . . .+ |x− a50| = |x− b1|+ . . .+ |x− b50|,

where a1, a2, . . . , a50, b1, . . . , b50 are distinct reals.

Solution: The answer is 49.

Let

f(x) =
50∑
i=1

|x− ai| −
50∑
i=1

|x− bi|.

Let {c1, c2, · · · , c100} = {a1, a2, · · · , a50} ∪ {b1, b2, · · · , b50} with c1 < c2 < · · · < c100. For each
i ∈ {1, 2, · · · , 100}, let εi = 1 if ci = aj for some j and −1 if ci = bj for some j. Note that
f(x) is continuous and consists of 101 piece-wise linear functions.

If x < c1, then

f(x) =
50∑
i=1

(ai − x)−
50∑
i=1

(bi − x) =
50∑
i=1

(ai − bi),

which is a constant. Similarly, if x > c100, then

f(x) =
50∑
i=1

(bi − ai).

This constant cannot be zero, for otherwise f(x) would have infinitely many roots. Therefore,
we have that f(∞) + f(−∞) = 0.

If cj ≤ x < cj+1, we have that

f(x) =
100∑
i=1

εi|x− ci| =
j∑

i=1

εi(ci − x) +
100∑

i=j+1

ε(x− ci)

= (ε1 + · · ·+ εj − εj+1 − · · · − ε100)x+ (−ε1c1 − · · · − εjcj + εj+1cj+1 + · · ·+ ε100c100).

Let mj be the coefficient of x of this expression and bj be the constant. Then mj is the slope
of the function in the interval [cj , cj+1]. Note that since εi ∈ {−1, 1}, mj is an even integer
and mj and mj+1 differ by 2. If mj = 0, then bj 6= 0 since otherwise, this would imply that
every number in the interval [cj , cj+1] is a root of f , which is impossible since f has finitely
many roots. Since mj < 0 and mj+1 > 0 is impossible (since mj is even and |mj+1−mj | = 2,
we have that no adjacent intervals of the form [cj , cj+1] can have roots. There are 99 intervals
between [c1, c100]. Therefore, f has at most 50 roots. But if f has exactly 50 roots, then the



intervals that have roots are [c1, c2], [c3, c4], · · · , [c99, c100]. Furthermore, by a parity argument,
m1,m3,m5, · · · ,m99 must have alternating signs. This means m1,m99 have opposite signs.
This is impossible since f(∞) and f(−∞) have opposite signs. Therefore, f has at most 49
roots.

Now, we construct an example. Let {ai}50
i=1 = {1, 4, 5, 8, 9, · · · , 93, 96, 97, 100 − 0.5} and

{bi}50
i=1 = {2, 3, 6, 7, · · · , 94, 95, 98, 99}. Then f(−∞) = −1/2 and f(∞) = 1/2. (Note that we

cannot set a50 = 100 for otherwise, f(−∞) = 0, which is not allowed. So we tweak it and set
a50 = 99.5.) Define mj , bj as previously for these specific values of ai and bi. Therefore,

{mj}100
j=1 = {2, 0,−2, 0, 2, 0,−2, 0, · · · , 2, 0,−2, 0}

and

{bj}100
j=1 = {−2.5, 1.5, 7.5,−0.5,−10.5, 1.5, 15.5,−0.5, · · · ,−194.5, 1.5, 199.5, 0.5)}.

(The last term deviates from the pattern due to the tweak of a50.) Then we have that
f(c1) = −0.5, f(c2) = f(c3) = 1.5, f(c4) = f(c5) = −0.5, · · · , f(c98) = f(c99) = 1.5, f(c100) =
0.5. Therefore, by Intermediate Value Theorem, there is a root in each of the intervals
[c1, c2], [c3, c4], · · · , [c97, c98]. Therefore, f has 49 roots. �

Source: Russian Mathematical Olympiad 2005 - Grade 11

2. Let m,n be positive integers and f(x) be a degree polynomial of degree n such that each coef-
ficient of the polynomial is odd. Suppose f has a factor of (x− 1)m. If m ≥ 2k(k ≥ 2, k ∈ N),
prove that n ≥ 2k+1 − 1.

Solution: Given a polynomial f with integer coefficients, let f be the polynomial whose
coefficients are reduced modulo 2. Since f(x) has coefficients in {1,−1}, we have that f(x) =
xn + xn−1 + · · · + x + 1. Since f(x) = (x − 1)2

k
g(x) for some polynomial g with integer

coefficients, we have that

xn + xn−1 + · · ·+ x+ 1 = (x− 1)2
k
g(x).

We will leave to the reader to prove that
(
2k

a

)
is even for 1 ≤ a ≤ 2k − 1. Therefore,

xn + xn−1 + · · ·+ x+ 1 = (x2k − 1)g(x).

Suppose deg g ≤ 2k − 2. Then the coefficient of x2k−1 of (x2k − 1)g(x) would be zero. But it
must be one since the left-hand side is equal to xn+xn−1+· · ·+x+1. Therefore, deg g ≥ 2k−1,
which means deg g ≥ 2k − 1. Hence, deg f ≥ 2k + 2k − 1 = 2k+1 − 1, as desired. �

Source: China Team Selection Test 2009



3. Let ABC be an acute triangle, let M,N be the midpoints of minor arcs ĈA, ÂB of the
circumcircle of triangle ABC, point D is the midpoint of segment MN , point G lies on minor
arc B̂C. Denote by I, I1, I2 the incenters of triangle ABC,ABG,ACG respectively. Let P be
the second intersection of the circumcircle of triangle GI1I2 with the circumcircle of triangle
ABC. Prove that three points D, I, P are collinear.

Solution: We claim that
PN

NA
=
PM

MA
.

Note that G, I1, N are collinear andG, I2,M are collinear. Also recall thatNA = NI = NB =
NI1 and MA = MI = MC = MI2. Since PI1I2G is cyclic, we have that ∠PI1G = ∠PI2G.
We have that ∠NI1P = ∠MI2P . Also, ∠PNI1 = ∠PNG = ∠PMG = ∠PMI2. Therefore,
∆PI1N ∼ ∆PI2M . Since NI1 = NA and MI2 = MA, we have that

PN

NA
=
PM

MA
.

This proves our claim.

Note that since NA/NM = NI/IM = NP/PM , then the circumcircle of ∆AIP is an Apol-
lonius circle for M,N . We leave for the reader to show that the power of the point of D with
respect to the circumcircle of ∆AIP is DN2. Let DI intersect the circumcircle of ∆ABC at
A′ and P ′, where A′ is on the same side of line MN as A. Since D is the midpoint of MN ,
we have that A′ is the reflection of A about the perpendicular bisector of MN . Therefore,
∠NP ′I = ∠NMQ = ∠ANM = ∠INM since ANIM is a rhombus since NA = NI and
MA = MI. Therefore, DN2 = DI ·DP ′. The former is the power of a point to the circum-
circle of ∆AIP . Therefore, P = P ′. This proves that D, I, P are collinear. �


