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SKOLIAD no. 116

Lily Yen and Mogens Hansen

Please send your solutions to problems in this Skoliad by 1 October, 2009. A
copy of Crux will be sent to one pre-university reader who sends in solutions
before the deadline. The decision of the editors is final.

—_— N r———

Our contest this month is the Final Round of the Swedish Junior High
School Mathematics Contest 2007/2008. Our thanks go to Paul Vaderlind,
Stockholm University, Stockholm, Sweden for providing us with this contest
and for permission to use it. We also thank Jean-Marc Terrier of the Univer-
sity of Montreal for translating this contest from English into French.

Swedish Junior High School Mathematics Contest
Final Round, 2007/2008

3 hours allowed

1. values are assigned to a number of circles, and these values are written
in the circles. When two or more circles overlap, the sum of the values of the
overlapping circles is written in the common region. In the example on the
left below, the three circles have been assigned the values 1, 3, and 8. Where
the circle with value 1 overlaps the circle with value 3 we write 4 (= 1 + 3).
In the region in the middle, we add all three values and write 12.

In the figure on the right above are four circles and, thus, thirteen regions.
Find the number in the middle if the sum of all thirteen numbers is 294.

2. This is the 20t edition of the Swedish Ju-
nior High School Mathematics Contest. The
first qualification round was held in the fall of
1988, and this year’s final is held in 2008. That
is twenty-one calendar years, 1988-2008, but
the table below has room for only eighteen of
them. Which three must be omitted if the digit
sum in every row and every column must be
divisible by 9? (Two solutions exist.)
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3. The line segments DE, CE, BF, B _ c
and CF divide the rectangle ABCD : T
into a number of smaller regions. 9>
Four of these, two triangles and two
quadrilaterals, are shaded in the figure N\
at right. The areas of the four shaded D

regions are 9, 35, 6, and x= (see the e 35 N N
figure). Determine the value of x. A F D

4. A goody bag contains a two-digit number of goodies. Lisa adds the two
digits and then removes as many goodies as the sum yields. Lisa repeats
this procedure until the number of goodies left is a single digit number larger
than zero. Find this single digit number.

5. In how many ways can the list [1, 2, 3,4, 5, 6] be permuted if the product
of neighbouring numbers must always be even?

6. The digits of a five-digit number are abede. Prove that abede is divisible
by 7 if and only if the number abed — 2 - e is divisible by 7.

Concours suédois de mathématiques précollégiales
Ronde finale, 2007/2008

Durée : 3 heures

1. On attribue des valeurs 3 un certain nombre de cercles, et on les écrit dans
les cercles correspondants. Quand plusieurs cercles se coupent, la somme des
valeurs des cercles qui se recoupent est inscrite dans la région commune.
Dans I’exemple ci-dessous a gauche, les trois cercles ont comme valeurs 1,
3 et 8. La ou le cercle de valeur 1 recoupe le cercle de valeur 3, on écrit 4
(=1 + 3). Dans la région du milieu, on additionne les trois valeurs et on
écrit 12.

Dans la figure de droite ci-dessus, on a quatre cercles avec treize régions.
Trouver le nombre dans le milieu si la somme des treize nombres est 294.
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2. Ceci est la 20¢ édition du Concours suédois de
mathématiques précollégiales. La premiére ronde
de qualification a eu lieu en automne 1988, et
la finale de cette année a lieu en 2008. Cela fait
vingt-et-une années calendrier, 1988-2008, mais
la table ci-contre n’a de place que pour dix-huit
d’entre elles. Quelles sont les trois qui doivent
étre omises si la somme des chiffres dans chaque
ligne et dans chaque colonne doit étre divisible
par 9? (Il y a deux solutions.)

B &

3. Les segments DE, CE, BF et CF divisent \
le rectangle ABCD en un certain nombre de 9N\ —7
régions plus petites. Dans la figure de droite, EE Co g
quatre d’entre elles sont ombrées, deux tri- c i
angles et deux quadrilatéres. Les aires des i
quatre régions ombrées sont 9, 35, 6 et x (voir S35 0

la figure). Déterminer la valeur de x. B NI
A F D

4 1e nombre de surprises contenues dans un sac a surprises comporte deux
chiffres. Lise retire du sac autant de surprises que le total de son addition
des deux chiffres. Elle répéte la méme procédure jusqu’a ce que le nombre
de surprises restantes soit un nombre positif d’un seul chiffre. Quel est ce
nombre ?

5. De combien de maniéres la liste 1,2,3,4,5,6] peut-elle &tre permutée si
le produit de nombres voisins doit toujours étre pair ?

6. Un nombre comporte les cinq chiffres abcde. Montrer que abede est di-
visible par 7 si et seulement si le nombre abcd — 2 - e est divisible par 7.

—_—_—— N r——— S ———

Next we give solutions to the County Competition run by the Croatian
Mathematical Society 2007 given at [2008 : 195-196].

1. Find all integer solutions to the equation z2 + 112 = y?2.

Solution by Johan Gunardi, student, SMPK 4 BPK PENABUR, Jakarta, In-
donesia.

The given equation is equivalent to (y + z)(y — =) = 112,

Hence, y 4+ = and y — = are divisors of 112, namely +1, +11, and
+121. If y + = +1 and y — * = £121, then y = +61 and = F60. If
y+x==+1llandy —x = +11,theny = +11land x = 0. If y +x = £121
and y — x = =+1, then y = +61 and x = +60. Hence, the solutions for
(z,y) are (—60, 61), (60, —61), (0,11), (0, —11), (60, 61), and (—60, —61).

Also solved by SEFKET ARSLANAGIC‘, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina.
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2. 1In a circle with centre S and radius r = 2, two radii SA and SB are
drawn. The angle between them is 45°. Let K be the intersection of the line
AB and the perpendicular to line AS through point S. Let L be the foot
of the altitude from vertex B in AABS. Determine the area of trapezoid
SKBL.

Solution by Johan Gunardi, student, SMPK 4 BPK PENABUR, Jakarta, In-
donesia.

First, tan 2z = Lﬂﬁ, so we have K
1—tan“x
2t 135°/2
—1 = tan135° = an(2 /2)
1 — tan?(135°/2)

and thus tan % =14+ 2.

Since Z/SAB = %, we then have
SK = 2tan Z/SAB = 2 + 2+/2. Hence, the
area of ASAK is 1SA- SK =2 +2v2.

Also, SL = BL = SB - sin45° = /2,
so the area of ASBL is ;SL - BL = 1 and
the area of ASBA is 1SA - BL = v/2. The
area of ALBA is the difference of the areas of
ASBA and ASBL, which is v/2 — 1.
Therefore, the area of trapezoid SKBL is (24 2v2) — (vV2—1) =3+ /2.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina.
The use of trigonometry can be avoided by noting that AALB is similar to AASK.

3. Let a, b, and c be given nonzero real numbers. Find z, y, and z if

ay + bx _ bz + cy . cr + az . 4a? + 4b2 + 4c2

Ty Yz zZx o x2 4y 4 22

Solution by Johan Gunardi, student, SMPK 4 BPK PENABUR, Jakarta, In-
donesia.
We have that E+B = 9-1—5 =42 which implies that a_b_ ‘.
r y Yy =z z T Yy z
Let k be this common value. Then a = kx, b = ky, and ¢ = kz. Substituting
2, .2 2, 2 2_2
4k“x” 4+ 4k“y” + 4k*z — 4k2 hence
z? + y? + 22
k=0ork = % If k = 0, thena = b = ¢ = 0, contradicting the requirement
that a, b, and c are nonzero. If k£ = %, then £ = 2a, y = 2b, and z = 2c¢.

into the given equation yields that 2k =

Also solved by SEFKET ARSLANAGIC‘, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina.
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4. Let a and b be positive real numbers such that @ > b and ab = 1. Prove
the inequality
a—0>b < V2

a2 +b2 — 4
Determine a + b if equality holds.
Solution by Sefket Arslanagié¢, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina.

The given inequality is successively equivalent to

a-b ﬁ;
a? +b2 — 4
2
La=b < L
(a2 + %) 8
8(a —b)? < (a®+b%)%;
0 < (a®+b%)* — 8(a®+b%) + 16ab.

Since ab = 1, the last inequality is equivalent to
0 < (@®+b%)° — 8(a>+b%) + 16 = (a®+b*>—4)°,
which is obviously true. Moreover, equality holds if and only if
0 =a’+2+b>-6 = a®>+2ab+b*—-6 = (a+b)*—-6,
that is, if and only if a + b = V6.

5. The ratio between the lengths of two sides of a rectangle is 12 : 5. The
diagonals divide the rectangle into four triangles. Circles are inscribed in two
of them having a common side. Let r; and r5 be their radii. Find the ratio
T1 T2

Solution by Johan Gunardi, student, SMPK 4 BPK PENABUR, Jakarta, In-
donesia.

Recall that the radius of the circle inscribed in a triangle with area F
and perimeter P is 2F/P.

Let ABC D be the rectangle and assume without loss of generality that
AB = 5 and BC = 12. By the Pythagorean Theorem, each diagonal of
ABCD has length 13. Divide the rectangle into four triangles each with area
% = 15. The perimeters of adjacent triangles are then ? + % +5 =18
and % + % + 12 = 25. Therefore, the radii of the circles inscribed in these

2-15 ﬂ, so the ratio ry : r5 is 25 : 18.

triangles are ry = and ro =

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.
The Mayhem Editor is Ian VanderBurgh (University of Waterloo). The
other staff members are Monika Khbeis (Ascension of Our Lord Secondary
School, Mississauga) and Eric Robert (Leo Hayes High School, Fredericton).

_—_—m NS —————

Mayhem Problems

Please send your solutions to the problems in this edition by 15 July 2009.
Solutions received after this date will only be considered if there is time before pub-
lication of the solutions.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English.

The editor thanks Jean-Marc Terrier of the University of Montreal for transla-
tions of the problems.

—_— N r——

M388. Proposed by Kyle Sampson, St. John’s, NL.

A sequence is generated by listing (from smallest to largest) for each
positive integer n the multiples of n up to and including n2. Thus, the
sequence begins 1, 2, 4, 3, 6, 9, 4, 8, 12, 16, 5, 10, 15, 20, 25, 6, 12, ....
Determine the 2009t term in the sequence.

M389. Proposed by Lino Demasi, student, Simon Fraser University,
Burnaby, BC.

There are 2009 students and each has a card with a different positive
integer on it. If the sum of the numbers on these cards is 2020049, what are
the possible values for the median of the numbers on the cards?

M390. Proposed by Neculai Stanciu, Saint Mucenic Sava Technological
High School, Berca, Romania.

A Pythagorean triangle is a right-angled triangle with all three sides of
integer length. Let a and b be the legs of a Pythagorean triangle and let h be
the altitude to the hypotenuse. Determine all such triangles for which

S

+

SHN
S =

_+_
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M301. Proposed by Neculai Stanciu, Saint Mucenic Sava Technological
High School, Berca, Romania.

and

Determine all pairs (a, b) of positive integers for which both a 1— !

2 s .
b 1_ are positive integers.

M392. Proposed by the Mayhem Staff.

Determine, with justification, the fraction g, where p and q are positive

integers and ¢ < 1000, that is closest to, but not equal to, %'

M393. Proposed by the Mayhem Staff.

Inside a large circle of radius r two
smaller circles of radii @ and b are drawn,
as shown, so that the smaller circles are
tangent to the larger circle at P and Q.
The smaller circles intersect at S and T'.
If P, S, and Q are collinear (that is, they
lie on the same straight line), prove that
r=a-+b. P Q

M388. Proposé par Kyle Sampson, St. John’s, NL.

On engendre une suite en écrivant (en ordre croissant), pour chaque
entier n, les multiples de n jusqu’a et y compris n2. La suite commence donc
ainsi: 1, 2,4, 3,6,9,4,8,12, 16, 5, 10, 15, 20, 25, 6, 12, .... Déterminer
le 2009€ terme de la suite.

M389.  Proposé par Lino Demasi, étudiant, Université Simon Fraser,
Burnaby, BC.

On a 2009 étudiants ayant chacun une carte portant un nombre en-
tier positif difféerent. Si la somme des nombres figurant sur ces cartes est
2020049, quelles sont les valeurs possibles de 1a médiane des nombres sur
ces cartes?

M390. Proposé par Neculai Stanciu, Ecole Technique Supérieure de Saint
Mucenic Sava, Berca, Roumanie.

Un triangle pythagorique est un triangle rectangle dont les c6tés et
I’hypoténuse sont mesurés par des entiers. Soit a et b les longueurs des
cotés d’un triangle pythagorique et h la longueur de la hauteur abaissée sur
I’hypoténuse. Trouver tous les triangles de cette forme pour lesquels

1 1 1

4+ -4+ = =1.
a+b+h
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M301. Proposé par Neculai Stanciu, Ecole Technique Supérieure de Saint
Mucenic Sava, Berca, Roumanie.

Trouver toutes les paires (a, b) de nombres entiers positifs pour lesquels
a : ! et b l_ 2 sont des entiers positifs.

M392. Proposé par I'Equipe de Mayhem.
Trouver, avec preuve a I’appui, la fraction g, avec p et g entiers positifs

et g < 1000 et qui soit la plus proche de %, mais distincte de celle-ci.

M393. Proposé par I'Equipe de May-
hem.

Comme le montre la figure, on des-
sine deux petits cercles de rayon a et b
dans un grand cercle de rayon r de sorte
qu’ils soient tangents a celui-ci en P et Q.
Les petits cercles se coupent en S et T'. Si
P, S et Q sont colinéaires (c-a-d s'’ils sont
situés sur une méme droite), montrer que P
r =a-+b. Q

—_— e r————

Mayhem Solutions

M350. Proposed by the Mayhem Staff.

Dean rides his bicycle from Coe Hill to Apsley. By distance, one-third
of the route is uphill, one-third of the route is downhill, and the rest of the
route is on flat ground. Dean rides uphill at an average speed of 16 km/h and
on flat ground at an average speed of 24 km/h. If his average speed over the
whole trip is 24 km/h, then what is his average speed while riding downhill?

Solution by Jochem van Gaalen, student, Medway High School, Arva, ON.

Suppose that it took x hours for Dean to travel from Coe Hill to Apsley.
His average speed on this trip is 24 km/h, so he travelled a total distance of
24x km. Also, the total distance for each of the uphill, downhill, and level

sections of the trip was %(241:) = 8z km.
Dean rode at a speed of 16 km/h for a distance of 8¢ km, so his time

riding uphill was % = g hours.
Dean rode at a speed of 24 km/h for a distance of 8z km, so his time
8x

riding on flat ground was 51 = g hours.
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Adding the times so far, we obtain g + g — 5% hours. Since the
total time for the trip was x hours, this means that Dean rode downbhill for
S5x x
-5 =% hours. .
This means that his downhill speed was m—/wﬁ = 48 km/h.

Also solved by COURTIS G. CHRYSSOSTOMOS, Larissa, Greece; LUIS DE SOUSA, stu-
dent, IST-UTL, Lisbon, Portugal; IAN JUNE L. GARCES, Ateneo de Manila University, Quezon
City, The Philippines; ANTONIO GODOY TOHORIA, Madrid, Spain; RICHARD 1. HESS, Rancho
Palos Verdes, CA, USA; R. LAUMEN, Deurne, Belgium; CARL LIBIS, University of Rhode Island,
Kingston, RI, USA; KARAN PAHIL, student, Malcolm Munroe Junior High School, Sydney, NS;
RICARD PEIRO, IES “Abastos”, Valencia, Spain; KUNAL SINGH, student, Kendriya Vidyalaya
School, Shillong, India; MRIDUL SINGH, student, Kendriya Vidyalaya School, Shillong, India;
and ALEX SONG, Elizabeth Ziegler Public School, Waterloo, ON.

M351. Proposed by Kunal Singh, student, Kendriya Vidyalaya School,
Shillong, India.

Let C be a point on a circle with centre O and radius . The chord AB
is of length r and is parallel to OC. The line AO cuts the circle again at E
and it cuts the tangent to the circle at C at the point F'. The chord BE cuts
OC at L and AL cuts CF at M. Determine the ratio CF : CM.

Solution by Ian June L. Garces, Ateneo de Manila University, Quezon City,
The Philippines.

Since AFE is a diameter of the circle with
centre O, we have that ZEBA = 90°. Since A B
AB is parallel to OC, we also have that )
/BAE = ZCOF. Since ZFCO is a right
angle (because C'F is the tangent to the circle

at C) and AB = OC = r, then AABE is o L C
congruent to AOCF'. Thus, BE = CF.
By the Pythagorean Theorem, M

CF = BE = +/AE2 - AB? E
= (2r)2—r2 = V3r.

Again, since AABE and AOCF are con-
gruent, AO+OF = AE = OF = OFE+ EF,
or AO = OFE = EF = r, which means that
E is the midpoint of OF.

Next, BE is parallel to CF because they are perpendicular to AB and
OC, respectively, which are parallel. Since BE is parallel to CF and E is
the midpoint of OF, it follows that L is also the midpoint of OC, whence

CL = %'r. Since BEF is perpendicular to AB which is parallel to OC, then

BE is perpendicular to OC as well.
Again since BE is parallel to CF, we deduce that ZCML = Z/BLA.
Also, /ZMCL = ZLBA = 90°, and hence AMCL is similar to ALBA.
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Since CL = %r = %AB, we have that CM = %BL. Since also BL = %BE

(because a radius perpendicular to a chord bisects the chord), we have that

1 _ \/g
CF 3r

Therefore, =~ = =4and CF:CM =4:1.
CM V3r /4

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; COURTIS G.
CHRYSSOSTOMOS, Larissa, Greece; LUIS DE SOUSA, student, IST-UTL, Lisbon, Portugal;
ANTONIO GODOY TOHORIA, Madrid, Spain; RICHARD 1. HESS, Rancho Palos Verdes, CA,
USA; RICARD PEIRO, IES “Abastos”, Valencia, Spain; MRIDUL SINGH, student, Kendriya
Vidyalaya School, Shillong, India; ALEX SONG, Elizabeth Ziegler Public School, Waterloo, ON;
and LUYUN ZHONG-QIAO, Columbia International College, Hamilton, ON. There was one
incorrect and one incomplete solution submitted.

Garces and Hess also considered the case of BE intersecting OC extended, rather than
OC itself.

M352. Proposed by the Mayhem Staff.

Consider the numbers 37, 44, 51, ..., 177, which form an arithmetic
sequence. A number n is the sum of five distinct numbers from this sequence.
How many possible values of n are there?

Solution by Ian June L. Garces, Ateneo de Manila University, Quezon City,
The Philippines.

The common difference of the given sequence is 7, and there are 21

terms in the sequence, since L;?ﬂ = 20. Let n be a sum of five terms in
the sequence; that is,
n = (374 7a)+ (37+7b) + (374 7c) 4+ (37 + 7d) + (37 + Te)

= 185 +7(a+b+c+d+e),

where a, b, ¢, d and e are distinct elements of the set {0, 1, 2, ..., 19, 20}.
Let X = a+ b+ c+ d+ e. Since we want to count the number of different
possible values of n, it suffices to count the number of possible values of X.

The least possible value of X is0+1+2+ 3 +4 = 10, and the largest
possible value of X is 16 4+ 17 4+ 18 + 19 + 20 = 90. We show that the
integers from 10 to 90 inclusive are possible values of X.

Whena =0,b=1,¢=2,d=3,ande =4,5, ..., 19, 20, the values
of X range from 10 to 26.

Whena =0,b=1,¢ =2,e =20,andd = 4, 5, ..., 18, 19, the
values of X range from 27 to 42.

Whena =0,b=1,d =19, e = 20,andc = 3, 4, ..., 17, 18, the
values of X range from 43 to 58.

Whena =0,¢c=18,d =19, e = 20,and b = 2, 3, ..., 16, 17, the
values of X range from 59 to 74.

Whenb =17, ¢=18,d =19, e = 20,anda =1, 2, ..., 15, 16, the

values of X range from 75 to 90.
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Thus, every integer from 10 to 90 is a possible value of X . Since 10 and
90 are the smallest and largest possible values of X, respectively, there are
90 — 10 + 1 = 81 possible values of X and so 81 possible values of n.

Also solved by LUIS DE SOUSA, student, IST-UTL, Lisbon, Portugal; JOHAN GUNARDI,
student, SMPK 4 BPK PENABUR, Jakarta, Indonesia; and RICHARD I. HESS, Rancho Palos
Verdes, CA, USA. There were four incorrect and four incomplete solutions submitted.

M353. Proposed by Mihaly Bencze, Brasov, Romania.

Determine all pairs (z, y) of real numbers for which

1 1 1
Yy + — + = — +xT + Y.
T Y Y

Solution by Antonio Godoy Tohoria, Madrid, Spain.

First, we note that x # 0 and y #% 0. Next, we rearrange, multiply by
xy and factor:

1 1 1
ry+—-—+-—-————x—y = 0;
Z Yy Ty

?yP’ +y+o—1-—2’y—axy® = 0
*y(y—1)+z(1-9*)+y—1 = 0
(y—1) (z*y —z(1+y)+1) = 0;
(y—1) (2’y —z —zy +1) 0
y—1(zy(z—-1) —(z—1)) = 0
(y—1)(z—1)(zy—1) = 0

Therefore, z =1l ory=1oraxzy = 1.
Thus, the pairs which solve the equation are (1, y) for any nonzero real

number y, and (x,1) for any nonzero real number z, and <t, %) for any
nonzero real number ¢.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; CAO MINH QUANG,
Nguyen Binh Khiem High School, Vinh Long, Vietnam; COURTIS G. CHRYSSOSTOMOS, Larissa,
Greece; LUIS DE SOUSA, student, IST-UTL, Lisbon, Portugal; IAN JUNE L. GARCES, Ateneo de
Manila University, Quezon City, The Philippines; RICHARD 1. HESS, Rancho Palos Verdes,
CA, USA; D. KIPP JOHNSON, Beaverton, OR, USA; CARL LIBIS, University of Rhode Island,
Kingston, RI, USA; KUNAL SINGH, student, Kendriya Vidyalaya School, Shillong, India; ALEX
SONG, Elizabeth Ziegler Public School, Waterloo, ON; and LUYUN ZHONG-QIAO, Columbia
International College, Hamilton, ON. There were two incorrect solutions submitted.

M354. Proposed by the Mayhem Staff.

Without using a calculating device, determine the prime factorization
of 320 4 319 — 12,
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Solution by Luis De Sousa, student, IST-UTL, Lishon, Portugal.

Factoring, we obtain
N =3%043"9-12=3"(341)-12=12(3"" - 1) =12 (3° + 1) (3° — 1).

The identitiesz3 —1 = (z—1)(z®+z+1)and 23 +1 = (z+1) (2 —x + 1),
giveus 3% —1=(32-1)(3+33+1)and 3° +1 = (33 +1)(3%° - 3% +1).
Thus, 32 —1 =26 x 757 and 3° + 1 = 28 x 703.

Sofar, N =12-28-757-26-703 =2%.3.7.13.703 - 757.

Lastly, we need to check if 703 and 757 are prime. Since 302 = 900,
we only need to check divisibility by primes less than 30. By brute force, we
obtain that 703 = 19 - 37 and that 757 is prime.

Therefore, the prime factorizationis N =25%.3.7.13.19.37.757.

Also solved by ROBERT BILINSKI, Collége Montmorency, Laval, QC; IAN JUNE
L. GARCES, Ateneo de Manila University, Quezon City, The Philippines; ANTONIO GODOY
TOHORIA, Madrid, Spain; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; D.,KIPP
JOHNSON, Beaverton, OR, U§A; R. I/.AUMEN, Deurne, Belgium; RICARD PEIRO, IES
“Abastos”, Valencia, Spain; JOSE HERNANDEZ SANTIAGO, student, Universidad Tecnolégica
de la Mixteca, Oaxaca, Mexico, KUNAL SINGH, student, Kendriya Vidyalaya School, Shillong,
India; MRIDUL SINGH, student, Kendriya Vidyalaya School, Shillong, India; MRINAL SINGH,
student, Kendriya Vidyalaya School, Shillong, India; and EDWARD T.H. WANG, Wilfrid Laurier
University, Waterloo, ON. There were two incorrect solutions submitted.

Some calculating can be saved by noting that 36 —33 4+1=3642.334+1—-3.33
= (3341)% —34 = (3% +1—32)(3%3 4+ 1+32) =19.37.

M355. Proposed by the Mayhem Staff.

A right circular cone with vertex C has a base with radius 8 and a slant
height of 24. Points A and B are diametrically opposite points on the cir-
cumference of the base. Point P lies on CB.

(a) If CP = 18, determine the shortest path from A through P and back
to A that travels completely around the cone.

(b) Determine the position of P on C'B that minimizes the length of the
shortest path in part (a).

Solution by Alex Song, Elizabeth Ziegler Public School, Waterloo, ON.

Cut the cone along CB and flatten C
out the lateral surface. We label the end-
points of the arc which previously formed
the circumference of the base as B and B’. B B’
Note that BC' B’ is a sector of the circle
with radius CB = CB’ = 24. We also
label the points on CB and C'B’ that are
at a distance of 18 from C as P and P, A

respectively.
Since the cone had radius 8, then the length of arc BB’ is 27w (8) = 167.

The entire circumference of the circle with centre C and radii BC and B’C
is 2w(24) = 48w, so BB’ is one-third of the total circumference, and so
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/BCB’ = 120°. Since A is the midpoint of arc BB’, then /BC A = 60°.
The shortest path from A to P and back to A consists of the line segments
AP and P’A, as the shortest distance between two points is a straight line.

By symmetry, AP = P’A. To find the length of AP, we use the Law
of Cosines in APC A, whence

AP = /CP2+4 CA2—-2(CP)(CA)cos(/PCA)
= /182 4 242 — 2(18)(24) cos(60°)
= /3241576 — 432 = V468 = 6V13.

Therefore, the length of the shortest path in part (a) is 2AP = 124/13.
If CP = x we again use the Law of Cosines to find the length of the
shortest path from A to P and back to A again, which is 24P, so we compute

AP = /CP%24 CA%—2(CP)(CA)cos(/PCA)
V2 + 242 — 22(24) cos(60°) = /x2 — 24x + 576
Since this length equals /(z — 12)2 + 432, the length of the path is mini-

mized when x = 12, so the length of the shortest path in part (b) is minimized
when P is the midpoint of CB.

Also solved by RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; and RICARD PEIRO,
IES “Abastos”, Valencia, Spain. There was one incomplete solution submitted.

For P on the line BC, the length of AP is shortest when AP 1. BC. Since AABC is
equilateral, this occurs when P is the midpoint of BC, in agreement with the featured solution.

M356. Proposed by Mihaly Bencze, Brasov, Romania.
Determine all pairs (k, n) of positive integers for which
k(k+1)(k+2)(k+3) = n(n+1).
Solution by Alex Song, Elizabeth Ziegler Public School, Waterloo, ON.
Note that
k(k+1)(k+2)(k+3) = k(k+3)(k+1)(k+2)
(k? + 3k) (k* + 3k + 2)
[(k* + 38k +1) — 1] [(k* + 3k + 1) + 1]
= (K+3k+1)7-1 =m?>—1,

where m = k2 4+ 3k -+ 1. Since k is a positive integer, m is a positive integer.

Now k(k + 1)(k +2)(k+3) = n?2 +n,som? —1 = n? +nor
m2=n?+n+1 Sincen? <n?4+n+1<n?2+2n+1=(n+1)>3.it
follows that n? < m? < (n+1)2, which is not possible since n? and (n+1)?2
are consecutive squares.

Therefore, there are no solutions.

Also solved by CAO MINH QUANG, Nguyen Binh Khiem High School, Vinh Long, Viet-
nam; LUIS DE SOUSA, student, IST-UTL, Lisbon, Portugal; IAN JUNE L. GARCES, Ateneo de
Manila University, Quezon City, The Philippines; RICHARD 1. HESS, Rancho Palos Verdes,

CA, USA; D. KIPP JOHNSON, Beaverton, OR, USA; and EDWARD T.H. WANG, Wilfrid Laurier
University, Waterloo, ON. There were three incomplete solutions submitted.
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Problem of the Month
Ian VanderBurgh

Have you ever looked at two things and tried to figure out which is
taller? Maybe two friends or two trees? This isn’'t so hard if the two things
are right next to each other, but to compare that maple tree in your backyard
with the the oak tree in your front yard isn’t that easy, since moving the trees
is difficult, unless of course you're in a production of “the Scottish play”.
With two friends, you could get them to stand “back-to-back” and compare
them, but what if the objects are not easily moveable? Some of us might be
tempted to use trigonometry or some other advanced techniques.

There is another good way to do this — compare them to a “standard”.
This could be your house, a long stick that you have, or maybe another tree
part way in between — basically, against anything that is easy to compare to
each of them.

How does this relate to mathematics?

111110
111111’
which of the following statements is correct?

Problem 1 (2002 UK Intermediate Challenge). Given that z =
_ 222221 _ _ 333331
Y= 222223" * ~ 333334

A z<y<z @Bz<z<y Oy<z<wz
D) z<zx<y (By<z<z

Now wait — no calculators allowed! What could we do? We could try
some long division. We could guess wildly. We could try comparing one of
these fractions to another of these and do some arithmetical manipulations.

Or, we could compare them to a common standard. Can you see a
“nice” number that is close to each of z, y, and 2?

Solution. Each of x, y, and z is close to 1, so let’s see how far each is from 1
and compare them this way:

1 2 3
- y=1—-—— z=1—-—
111111 222223 333334

So we’ve done an initial comparison of each of x, y, and z to 1. Can you tell
which is the biggest now and which is the smallest?

Perhaps my brother (the smart one in the family!) could tell, but I'm
not that quick. We’ve compared each to a common standard (that is, to 1)
but now what about these differences? Again, there are lots of ways to do
this, but let’s try a variation on the common standard approach.

If we wrote each of these differences as a fraction with numerator 1, we
could compare them relatively easily by comparing the sizes of the denomi-
nators. Let’s try this. First, we rewrite these as

1 1 1
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and then we convert each of the denominators to a mixed fraction:

1 _ 1 1
11111’ 77

z=1 -_—— z=1———.
1111111 1111112

Now, can you compare the denominators? With a little bit of thought, we

can see that 111111 < 111111% < 111111%.

. 1 1
This means that >
111111 ~ 1111111 7 111111

away from 1, since its difference with 13is the largest. Similarly, y is the
closest to 1, since its difference with 1 is the smallest. This tells us that
x < z < y, so answer (B) is correct.

It’s always satisfying to be able to answer this type of problem without
using either a calculator or any algebra. Here's another problem that can use

this “common standard” approach.

. So z is the furthest

Problem 2 (1999 Pascal Contest). If w = 2129.381.5128 5 — 2127381 5128
y = 2126 .382 . 5128 and » = 2125.382. 5129 then the order from smallest
to largest is

(A) w, T, Yy, z (B) T, w,Yy, =z (C) r,vYy,z w
(D) zZ,Y, T w (E) r,w,zqY

Here, your calculator wouldn’t do you much good, as these numbers
are likely way too big for your calculator to handle. So let's again try the
“common standard” technique. But what is our common standard going to
be?

Solution. We pick a common standard, IV, to be the product of the smallest
power of each of 2, 3, and 5 that occurs in each of the four original numbers.
(Some of you may recognize N as the greatest common divisor of w, x, vy,
and z.) Among the four numbers, the smallest power of 2 that occurs is 212,
the smallest power of 3 that occurs is 381, and the smallest power of 5 that
occurs is 5128, So we define N = 2125 . 381 . 5128,

How do we compare N to each of w, =, y and 2? Should we use subtrac-
tion again? It actually makes more sense to use multiplication (or division,
depending on your perspective).

Let’s first compare N to w. Since N contains 125 factors of 2 and w
contains 129 factors of 2, then we need to multiply IV by 24 to get the correct
number of factors of 2 for w. Since IN contains 81 factors of 3 and w contains
81 factors of 3, then IV already gives us the correct number of factors of 3
for w. Since N contains 128 factors of 5 and w contains 128 factors of 5,
then NN already gives us the correct numbers of factors of 5 for w. Thus,
w = (2125 . 381 . 5128) . 24 - N. 24‘

Similarly, s = N-22andy =N -2'-3'and z = NV - 3! . 51,

Put another way, w = 16N, x = 4N, y = 6NN, and z = 15N. Since
N is positive, 4N < 6N < 15N < 16N, orz < y < z < w, so answer (C)
is correct.
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THE OLYMPIAD CORNER
No. 277
R.E. Woodrow

We begin with the Team Selection Examination for the International
Mathematical Olympiad from the Scientific and Technical Research Institute
of Turkey. My thanks for obtaining the problems for the Corner to Robert
Morewood, Canadian Team Leader to the 47™ IMO in Slovenia.

The Scientific and Technical Research Institute
of Turkey

Team Selection Examination for the International
Mathematical Olympiad

First Day (1 April 2006)

1. Find the largest area of a heptagon two of whose diagonals are perpen-
dicular and whose vertices lie on a unit circle.

2. Let n be a positive integer. In how many different ways can a 2 x n
rectangle be partitioned into rectangles with sides of integer length?

3. Letz, y, z be positive real numbers with zy + yz + zz = 1. Prove that

Te+y+2)GE+a) > Voty+VyTa+vVzTa)? > 6v3.

Second Day (2 April 2006)

4.  Find the smallest positive integer x; such that 2006 divides x2gog, if
Tpt1 = @3 + x3 + -+ - + 2 for each integer n > 1.

5. Given a circle with diameter AB and a point Q on the circle different
from A and B, let H be the foot of the perpendicular dropped from Q to
AB. Prove that if the circle with centre @Q and radius QH intersects the
circle with diameter AB at C and D, then CD bisects QH.

0. In a university entrance examination with 2006000 students, each student
makes a list of 12 colleges from a total of 2006 colleges. It turns out that for
any 6 students, there exist two colleges such that each of the 6 students
included at least one of these two colleges on his or her list. An extensive
list is a list which includes at least one college from each student’s list.

(a) Prove that there exists an extensive list of 12 colleges.

(b) Prove that the students can choose their lists so that no extensive list
of fewer than 12 colleges can be found.
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Next we give the two days of the XIII National Mathematical Olympiad
of Turkey, given under the auspices of the Scientific and Technical Research
Institute of Turkey.

The Scientific and Technical Research Institute
of Turkey

XIII National Mathematical Olympiad

Second Round

First Day (10 December 2005)

1. Let a, b, ¢, and d be real numbers. Prove that

Vat+ct+Vat +di+ Vbt + et + Vbt 4+ dt > 2v2(ab + be) .

2. Inatriangle ABC with |AB| < |AC| < |BC]|, the perpendicular bisector
of AC intersects BC at K and the perpendicular bisector of BC intersects
AC at L. Let O, Oq, and O, be the circumcentres of the triangles ABC,
CKL, and OAB, respectively. Prove that OCO; 0O, is a parallelogram.

3. Some of the n + 1 cities in a country (including the capital city) are con-
nected by one-way or two-way airlines. No two cities are connected by both
a one-way airline and a two-way airline, but there may be more than one
two-way airline between two cities. If d4 denotes the number of airlines
flying from a city A, then d4 < n for any city A other than the capital city
and d4 + dp < m for any two cities A and B other than the capital city and
which are not connected by a two-way airline. Every airline has a return,
possibly consisting of several connecting flights. Find the largest possible
number of two-way airlines and all configurations of airlines for which this
largest number is attained.

Second Day (11 December 2005)
4. Find all triples (m, n, k) of nonnegative integers such that 5™ + 7" = k3.

5. Let a, b, and c be the side lengths of a triangle whose incircle has radius .

Prove that
1 1 1 1

2t ta S g
6. Let {a,} be asequence of integers for which there exists a positive integer
N such that foranyn > N, a, = |[{i:1 <i<mnanda; +i>n}|. Deter-
mine the maximum number of distinct values that can be attained infinitely
many times by this sequence.

—_— e r————
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Next we give the 2005 Australian Mathematical Olympiad, written in
February 2005. Thanks for collecting these problems again goes to Robert
Morewood, Canadian Team Leader to the 47t IMO.

2005 Australian Mathematical Olympiad
Paper 1

1. Let ABC bea right-angled triangle with the right angle at C. Let BCDE
and ACFG be squares external to the triangle. Furthermore, let AFE inter-
sect BC at H, and let BG intersect AC at K. Find the size of /DK H.

2. Consider a polyhedron whose faces are convex polygons. Show that it has
at least two faces with the same number of edges.

3. Letnbea positive integer, and let aq, a2, .. ., a,, be positive real numbers
such that ¢y + a2 + - -+ 4+ a,, = n. Prove that
ax az an 1 1 1
a§+1+a§—|—1+ +a721—|—1_a1+1+a2—|—1+ +an—|—1

4. prove that for each positive integer n there exists a positive integer

such that /= + 2004™ + /= = (/2005 +1)".
Paper 2

5. In a multiple choice test there are ¢ > 10 questions. For each question
there are a > 1 possible answers, exactly one of which is right. A student
who gets r» answers right, w answers wrong and does not attempt the other
100(r — w)
q(a—1)
which all possible scores are integers.

questions will receive a score of . Determine the pairs (g, a) for

6. Let ABC be a triangle. Let D, E, and F be points on the line segments
BC, CA, and AB, respectively, such that line segments AD, BE, and CF
meet in a single point. Suppose that ACDF and BCEF are cyclic quadri-
laterals. Prove that AD is perpendicular to BC, BE is perpendicular to AC,
and CF is perpendicular to AB.

7. Let ag, ai, az, ... and by, by, ba, ... be two sequences of integers such
that ag = by = 1 and for each nonnegative integer k

(@) ak+1 =bo + b1 + b2+ -+ bi, and
() bet1 =(0*+0+1)ag+ (12 +1+1)ay +---+ (K2 + k + 1)a.
For each positive integer n show that

bibg---by,

a, = .
a’laz . ..a,n
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8 Inann xn array, each of n distinct symbols 1|21 3

occurs exactly n times. An example with n = 3 is

shown at right. 1132
Show that there is a row or a column in the

array containing at least v/n distinct symbols. 3121

—_—_—— N r—— S ————

Our next set of problems is the 56 Belarusian Mathematical Olympiad,
Category C, Final Round. Thanks go to Robert Morewood, Canadian Team
Leader to the 47t IMO, for collecting them for our use.

56" Belarusian Mathematical Olympiad 2006
Category C, Final Round

1. (E. Barabanov) Is it possible to partition the set of all integers into three
nonempty pairwise disjoint subsets so that for any two numbers a and b from
different subsets

(a) there is a number c in the third subset such that a + b = 2¢?

(b) there are numbers c; and ¢ in the third subset such that a+b = ¢;+¢2?

2. (S. Mazanik) The points X, Y, and Z lie on the sides AB, BC, and CD of
the thombus ABCD, respectively, so that XY||AZ. Prove that XZ, AY,
and BD are concurrent.

3 (V. Karamzin) Let a, b, and c be positive real numbers such that abc = 1.
Provethat2(a2+b2—|—c2) +a+b+c>ab+ bec+ ca+ 6.

4. (D. Dudko) Triangle ABC has /A = 60°, AB = 2005, and AC = 2006.
Alice and Betty take turns cutting the triangle with Alice going first. A player
may cut a triangle along any straight line provided that two new triangles
are formed and each has area at least 1. After each move an obtuse-angled
triangle (or any one of two right-angled triangles) is removed and the next
player cuts the remaining triangle. A player loses if she cannot move. Which
player has a winning strategy?

5. (I. Voronovich) Let AA;, BB;, and CC; be the altitudes of an acute
triangle ABC. Prove that the feet of the perpendiculars from C; to the
segments AC, BC, BB;, and AA; are collinear.

6. (V. Karamzin) Let a, b, and k be real numbers with & > 0. A circle with
centre (a, b) has at least three common points with the parabola y = k2: one
of them is the origin (0, 0) and two of the others lie on the line y = kx + b.
Prove that b > 2.
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7. (I. Zhuk) Let x, y, and =z be real numbers greater than 1 such that
azy2 — y2 +4xy + 4 — 4y = 4004,
xz? — 2?2 + 6xz +9x — 6z = 1009.

Determine all possible values of xyz + 3zy + 2xz — yz + 6 — 3y — 2=z.

8. (I. Akulich) A 2n x 2n square is divided into 4n? unit squares. What is
the greatest possible number of diagonals of these unit squares one can draw
so that no two of them have a point in common (including the endpoints of
the diagonals)?

—_—_— N S ————

As a final set for this number we give Category B of the 56" Belarusian
Mathematical Olympiad 2006. Again thanks go to Robert Morewood for
obtaining them for our use.

56" Belarusian Mathematical Olympiad 2006
Category B, Final Round

1. (I.Voronovich) Given a convex quadrilateral ABCD with DC = a,
BC = b, /ZDAB = 90°, /DCB = ¢, and AB = AD, find the length
of the diagonal AC.

2. (E.Barabanov) Is it possible to partition the set S into three nonempty
pairwise disjoint subsets so that for any two numbers a and b from different
subsets the number 2(a + b) belongs to the third subset, if

(a) S is the set of all integers?

(b) S is the set of all rational numbers?

3. (I. Biznets) Let a, b, and ¢ be positive real numbers. Prove that

b+e¢ c+a a+b - 27

a® —2a+2 b2 —2b+2 A —2c+2 > 3

4 (1. voronovich) Let @ and b be positive integers such that a + 77b is
divisible by 79 and a + 79b is divisible by 77. Find the smallest possible
value of the sum a + b.

5. (1. zhuk) Three distinct points A, B, and C lie on the parabola y = z2.
Let R be the circumradius of the triangle ABC.
(a) Prove that R > 1.
(b) Does there exist a constant ¢ > % such that for any three distinct points
A, B, and C on the parabola y = 2 the inequality R > ¢ holds?
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6. (1. Voronovich) A sequence {(an,bn)}>2, of pairs of real numbers is such
that (an+1, bn+1) = (ai — 2bn, bi — 2an) for all n 2 1. Find 25120,10 — blO
if 40,1 - 2b1 =17.

7. (1. Voronovich) The point K (distinct from the orthocentre) lies on the
altitude CC; of the acute triangle ABC'. Prove that the feet of the perpen-
diculars from C; to the segments AC, BC, BK, and AK lie on a circle.

8. (E. Barabanov, V. Kaskevich, S. Mazanik, I. Voronovich) An equilateral
triangle of side n is divided into n? unit equilateral triangles by lines paral-
lel to its sides. Determine the smallest possible number of small triangles
that must be marked so that any unmarked triangle has at least one side in
common with a marked triangle.

—_—_— N~ S ———

Next we turn to the file of solutions from our readers to problems
given in the May 2008 number of the Corner, starting with the Mathematical
Competition Baltic Way 2004 given at [2008 : 211-213].

1. Let ai, az, asz, ... be a sequence of nonnegative real numbers such that
for each n > 1 both a,, + a2, > 3n and ap+1 + n < 2¢/(n + 1)a, hold.
(a) Prove that a,, > n for each n > 1.

(b) Give an example of such a sequence.

Solved by Jean-David Houle, student, McGill University, Montreal, QC;
Pavlos Maragoudakis, Pireas, Greece; Edward T.H. Wang, Wilfrid Laurier
University, Waterloo, ON; and Titu Zvonaru, Comanesti, Romania. We give
Wang’s write up.

(a) Suppose that a,, < n for some n. Then

ant+1+n < 2y/(n+1)a, < 2¢v/(n+1)n
= Van2 +4n < Van2 +4n+1 = 2n+1

implies that a1 < n + 1.
Now suppose that a,4+r < n + k for some k£ > 1. Then

nprsr+ (n+k) < 20/ (n+k+Dange < 2V/(n+k+1)(n+k)
VAa(n + k)2 +4(n + k)
< VA(n+ k)2 +4(n+k)+1 = 2n+2k+1

implies that a,4+x+1 < m + k 4+ 1. By induction on k, we conclude that
an+r < n+kforeachinteger k > 1. In particular, a,, + a2, < n+2n = 3n,
a contradiction. Therefore, a,, > n for all n.
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(b) If a,, = n + 1 for each n, then a,, + a2, = 3n + 3 > 3n and also

any1+n =2n+2 = 2,/(n+ 1)a,. Hence, {a,}® = {n + 1}{°is an
example of such a sequence.

2. Let P(z) be a polynomial with nonnegative coefficients. Prove that if

P(2)P@ 21

i
for £ = 1, then the same inequality holds for each positive x.

Solved by George Apostolopoulos, Messolonghi, Greece; Jean-David
Houle, student, McGill University, Montreal, QC; Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON; and Titu Zvonaru, Comanesti,
Romania. We give the solution of Apostolopoulos.

Let P(x) = anz™ + an_1z™ ' + --- + ag. For x = 1 we have
P1)P(1) >1,s0 P(1)2 =(an +an_1+---+ag)? > 1.
For x > 0 let

= / -1
u = (\/anw”, Ap_1T™ 4, ... ,1/a0) s
Qn Ap_—1
~ / /
v = — — ... yA/a .
( SC", xn—l’ 9 0

Applying the Cauchy-Schwarz Inequality to % and ¥ yields

P(z)P(3)

Ap—1
wn—l

an
= (anmn+an_1mn—1+...+a0) <$n+ +...+a0)

Z (an+an—1+"'+a1+a0)2 21
3. Let p, q, and r be positive real numbers and let n be a positive integer.
If pgr = 1, prove that

1 1 1
+ +
p"+qr+1 g+ +1 rt4+pt+1

Solved by George Apostolopoulos, Messolonghi, Greece; Michel Bataille,
Rouen, France; Pavlos Maragoudakis, Pireas, Greece; and Titu Zvonaru, Comanesti,
Romania. We give Zvonaru’s version.

Let p™ = z3, ¢™ = y3, and »™ = 23. We must prove that if zyz = 1,

then
1 1 1

3 +y3+1 + y3 4+ 2341 + 23+ a3 +1

<1,
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or equivalently we must prove that
1 1 1
+ +
3 + y3 4+ zyz y3 4+ 23 + zyz 23+ y3 4+ zyz

Since x and y are positive, (z —y)2(z+y) > 0, hence (z — y)(z* —y?) > 0,
hence z3 + y3 > zy(x + y). It follows that

1 1 1
3 + y3 + zyz + Y3 + 23 + zyz + 23 + 28 + zyz
1 1 1
+ +
zy(r +vy) + zyz yz(y + z) + zyz zx(z + x) + zy=z
r+y+ =z

zyz(r +y + 2) -

Equality holds if and only if £ =y = 2 =1, orifand onlyif p=q =r = 1.

4 Let {x1, ©2, ..., x,} be a set of real numbers with arithmetic mean X.
Prove that there is a positive integer K such that the arithmetic mean of each
of the sets

{w17$27~”9wK}y {5B2,$3a~-,wK}y ceey {-’BK—h fBK}y {CBK}
is not greater than X.

Solved by Oliver Geupel, Briihl, NRW, Germany; Jean-David Houle, student,
McGill University, Montreal, QC; and Titu Zvonaru, Comanesti, Romania.
We give Houle’s approach.

Suppose otherwise. That is, for each integer k with 1 < k < n suppose
that one of the sets [ Ed.: indeed the problem statement and the following
argument can be adapted for sequences xy, T2, ..., Tn.

{-’B1afﬂ2,-~>$k}, {-’Bzafﬂaa-u,wk}, ceey {wk—lvwk}y {wk}

has arithmetic mean greater than X. Now we show by induction on k that
this implies that the mean of {x4, x2, ..., xx} is greater than X for each k,
which is a contradiction.

For k = 1 it is obvious that &; > X by our assumption. Assume that
the result holds for all positive integers less than some k& > 1. Then there is
an i < k such that the set {«;, ®;41, ..., zx} has a mean greater than X.
But we know that {x;, 2, ..., ;—1} is either empty or has a mean greater
than X, hence

v+ w2+t @ = (@1t i) + (Tt 4 o)
> ((—1)X+(k—i+1)X = kX,

so that w > X, as required.
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5. For integers k and n let (k)2,+1 be the multiple of 2n 4 1 closest to k.
Determine the range of the function f(k) = (k)s + (2k)s + (3k)7 — 6k.

Solution by Titu Zvonaru, Comanesti, Romania.
We have |(k)2n4+1 — k| < n, hence

lf(k)| = [(k)s — k+ (2k)5 — 2k + (3k)7 — 3K|
< |(k)s — k| + |(2k)s — 2k| + |(3k)r —3k| < 1+2+3 = 6.

It follows that f(Z) C {0, £1, +2, ..., £6}. Note also that f is an odd
function, that is, f(—k) = —f(k) for each k. By direct computation we find
that .f(O) =0, f(6) =1, .f(16) = -2, f(?’) = -3, f(20) =4, f(31) = —9,
and f(1) = —6. It follows that the range of f is {0, &1, £2, ..., +6}.

6. A positive integer is written on each of the six faces of a cube. For each
vertex of the cube we compute the product of the numbers on the three ad-
jacent faces. The sum of these products is 1001. What is the sum of the six
numbers on the faces?

Solved by George Apostolopoulos, Messolonghi, Greece; Oliver Geupel,
Briihl, NRW, Germany; Jean-David Houle, student, McGill University,
Montreal, QC; and Titu Zvonaru, Comanesti, Romania. We give the write
up of Houle.

Let the numbers on the faces be x4, z2, ..., ¢ such that ; and ¢ are
on opposite faces, as are £ and =5, and z3 and x4. Then we have

T1X2x3 + T1X3L5 + T1T5L4 + T1T4X2

+ Tex2x3 + TET3Ts + TeT5T4 + TeTarz = 1001;
(x1 + x6) (x23 + T35 + T5T4 + T42) = 1001;
(:1:1 + .’1}6)(.’B3 + .’1}4)(.’B2 + .’1}5) = 1001 = 7-11-13.

Since 7, 11, and 13 are primes and (x; + x¢), (3 + x4), and (z2 + x5) are
integers greater than 1, the latter are the former in some order. it follows
that the desired sumis 7 + 11 + 13 = 31.

7. Find all sets X consisting of at least two positive integers such that for
every pair m,n € X, where n > m, there exists k € X such that n = mk2.

Solved by George Apostolopoulos, Messolonghi, Greece; and Titu Zvonaru,
Comanesti, Romania. We give the solution by Apostolopoulos.

Let the set X satisfy the conditions and let m and n, where m < n, be
the two smallest elements in the set X. There is a k € X so that n = mk?,
but as m < k < n, either kK = n or k = m. In the first case mn =1, a
contradiction. In the second case n = m3 with m > 1. Suppose |X| > 3
and let ¢ € X be the third smallest element. Then there is kg € X such
that g = mkag. We have q > kg, so kg = m or kg = n. However, kg = m
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implies ¢ = n, a contradiction, thus kg = n = m?3 and ¢ = m”. Now there
exists k1 € X such that ¢ = nk?, hence k; = m?. Since m? ¢ X, we have
a contradiction if | X| > 3.

Therefore, the only elements that the set X can contain are m and m3
for some m > 1.

8. Let f(x) be a nonconstant polynomial with integer coefficients. Prove
that there is an integer n such that f(n) has at least 2004 distinct prime
factors.

Solved by George Apostolopoulos, Messolonghi, Greece; and Jean-David
Houle, student, McGill University, Montreal, QC. We give the argument of
Apostolopoulos.

Suppose the contrary. Choose an integer ng such that f(ng) has the
highest number of distinct prime factors. By translating the argument of
the polynomial, we may assume that no = 0. Setting k = f(0), we have
f(wk?) = k (mod k?), or f(wk?) = ak® + k = (ak + 1)k. Now, since
ged(ak+1,k) = 1 and k has the highest number of distinct prime factors of
any admissible value of f, we must have ak + 1 = +1. This cannot happen
for each w since f is nonconstant (in particular | f(x)| — co as ¢ — oo) so
our supposition leads to a contradiction.

10. 1s there an infinite sequence of prime numbers pq, p2, p3, - .. such that
|Pn4+1 — 2pn| = 1 for eachn > 1?

Solution by George Apostolopoulos, Messolonghi, Greece.

No, there is no such sequence.

Suppose the contrary. Clearly ps > 3 and ps = £1 (mod 3).

Further suppose that p3 =1 (mod 3). Then py = 2p3 — 1 (otherwise
ps =0 (mod 3)), sops =1 (mod 3). Similarly, ps = 2ps—1, ps = 2p5s—1,
and so forth. By induction we have p,,+1 =1+ 2"~2(ps — 1) forn > 3. If
we set n = p3 + 1, then using Fermat’s little theorem we have

Ppayz = 1+2P 7Y (p3—1) = 1+1-(ps—1) = ps = 0 (mod p3) ,

a contradiction.

If p; = —1 (mod 3), then p,,1 1 = —1+ 2" 2(p3 + 1) forn > 3 is
obtained by similar arguments. Taking n = p3 + 1 then leads again to the
contradiction py, 42 = 0 (mod p3).

11. An m x n table is given with +1 or —1 written in each cell. Initially
there is exactly one —1 in the table and all the other cells contain a +1.
A move consists of choosing a cell containing —1, replacing this —1 by a 0,
and then multiplying all the numbers in the neighbouring cells by —1 (two
cells are neighbouring if they share a side). For which (m,n) can a sequence
of such moves always reduce the table to all zeros, regardless of which cell
contains the initial —1?
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Solution by Oliver Geupel, Briihl, NRW, Germany.

Let (m,n) have the desired property. Perform a sequence of moves
that reduces the table to all zeros, and let e; be the total number of edges
after the k™ move which border two zero cells. We will prove by induction
thatep, =k — 1 (mod 2) for1 < k < mn.

For k = 1 this is clear. For the induction step, it suffices to prove that
ext+1 = e — 1 (mod 2). Now, each time a cell changes from +1 to F1,
one of its neighbours changes to a zero. Hence, if a cell initially contained
+1, then whenever it contains —1 an odd number of its neighbours contain
zeros. Therefore, if a —1 is changed to a zero, then an odd number of edges
bordered by zeros are created. This means that ex11 and e differ by an odd
number, verifying the induction step.

We have

emn = (M—1n+mn—1) = 2mn — (m+n)

and by setting k = mn in the relation e, = k — 1 (mod 2) we obtain

2mn — (m+n) = mn—1 (mod 2) ,
mn—m-n+1 = 0 (mod 2),
(m—-1)(n—-1) = 0 (mod 2) .

Thus, m or n is odd.

Conversely, if m or n is odd, then we show how to reduce the table to
all zeros. Let cell (i,4) be the cell in the i*" row and 5™ column. Let n be
odd and let the cell (k, £) contain the initial —1. We reduce each of the cells
(k,£), (k—1,£),...,(1,£) and also the cells (k+1,¢), (k+2,£), ..., (m,£)
to zero, in the order given. Now the ¢ column is all zeros, whereas the
(¢ — 1)t and the (€ + 1) columns (if present) are all —1's. A column with
all —1 entries and an odd number n of cells is reduced to zero by changing
the 15t, 314 5t nth cells to zero followed by the 27, 4 ... (n —1)®
cells to zero, leaving behind columns of —1’s. In this way we can reduce the
whole table to zeros.

13. The 25 member states of the European Union set up a committee with
the following rules.

(a) The committee shall meet every day.
(b) At each meeting, at least one member state shall be represented.

(c) At any two different meetings, a different set of member states shall be
represented.

(d) The set of states represented at the nth meeting shall include, for every
k < m, at least one state that was represented at the k" meeting.

For how many days can the committee have its meetings?
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Solution by George Apostolopoulos, Messolonghi, Greece.

If one member state is always represented, then rules (b) and (d) will be
satisfied. There are 224 different subsets of the remaining 24 member states,
so there can be at least 224 meetings. However, rule (c) forbids complimen-
tary sets in two different meetings, so the number of meetings cannot exceed
1 .225 = 224 Therefore, the committee can have its meetings for 224 days.

14 A pile of one, two, or three nuts is small, while a pile of four or more nuts
is large. Two persons play a game, starting with a pile of n nuts. A player
moves by taking a large pile of nuts and splitting it into two non-empty piles
(either pile can be large or small). If a player cannot move, he loses. For
which values of n does the first player have a winning strategy?

Solution by Jean-David Houle, student, McGill University, Montreal, QC.

We prove by induction that the Sprague-Grundy function satisfies
g(n) = n — 3 (mod 4), which shows that the second player has a winning
strategy if and only if n = 3 (mod 4) orn < 3. Itis straightforward to show
tfzat) 9(0) = g(1) =g(2) =9(3) =0,9(4) =1,9(5) = 2,9(6) =3, and
g(7) = 0.

Now suppose that g(k) = k — 3 (mod 4) for k < n.

Casel n = 0 (mod 4). By the induction hypothesis, we have that
glx —1,1) = gz —1)Pdg(l) =060 = 0, sincex —1 = 3 (mod 4).
Suppose there are a, b such that a + b = n and g(a,b) = g(a) ® g(b) = 1.
Then it follows that |g(a) — g(b)| = 1, hence a + b = 1 (mod 2), a contra-
diction. Thus, g(n) = 1.

Case 2 n =1 (mod 4). Bythe induction hypothesis, we have g(x—1,1)=1
and g(x — 2,2) = 0, similarly as above. Suppose there are a, b such that
a+ b =nand g(a,b) = g(a) ® g(b) = 2. It follows that |g(a) — g(b)| = 2,
hence a + b = 0 (mod 2), a contradiction. Thus, g(n) = 2.

Case3 n = 2 (mod 4). From the induction hypothesis, we have that
gz —1,1) = 2, g(x — 2,2) = 1 and g(x — 3,3) = 0. Suppose there
are a, b such that a + b = n and g(a, b) = g(a) & g(b) = 3. Then by induc-
tion we must have either g(a) = 3 and g(b) = 0, or g(ae) = 2 and g(b) =1,
assuming for definiteness that g(a) > g(b). But then n = 2 + 3 (mod 4)
orn =1+ 0 (mod 4), both contradictions. Thus, g(n) = 3.

Case 4 n = 3 (mod 4). If there are a, b such that a + b = n and also
g(a,b) = g(a) ® g(b) = 0, then it would follow that g(a) = g(b). However,
since n = 3 (mod 4), this is possible only if one of a, bis 1, 2, or 3. But
then it would be impossible for the other to be 3 modulo 4. Thus, g(n) = 0.

[Ed.: See http://www.math.ucla.edu/ tom/Game_Theory/comb.pdf for
a gentle introduction to the Sprague-Grundy function, as well as the book
Winning Ways for your Mathematical Plays (2" ed., A K Peters, Ltd., 2001)
by Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy.]
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15. A circle is divided into 13 segments, numbered consecutively from 1 to
13. Five fleas called A, B, C, D, and E sit in the segments 1, 2, 3, 4, and
5, respectively. A flea can jump to an empty segment five positions away in
either direction around the circle. Only one flea jumps at a time, and two
fleas cannot occupy the same segment. After some jumps, the fleas are back
in the segments 1, 2, 3, 4, and 5, but possibly in some other order than they
started in. Which orders are possible?

Solved by Oliver Geupel, Briih, NRW, Germany; and Jean-David
Houle, student, McGill University, Montreal, QC. We give Geupel’s version.

The segments are labelled consecutively Sy, Ss, ..., S13. We define an
alternative labelling Ty, T>, ..., T13 by the correspondence

T T T3 Ty Ts T T Tz Ty Tyo Thi Tiz Tis
S1 S¢ S11 S3 Sg Si3 S5 Sio S22 Sz Si2 Sa So '

The T-labelling is such that if a flea jumps five positions away, then its
T-index changes by £=1. Two fleas cannot occupy the same segment, hence
the order of the fleas with respect to the T-numbering is invariant up to cyclic
S1 S2 S3 Si4 Ss or Tn T, T Ty Tio ) is
A B C D E A C E B D

the order of the fleas. Therefore, the possible finishing positions are

shifts. Initially,

Tn Ty T7 Ty Ti2 S1 S22 S3 Si Ss
A C E B D A B C D EFE
D A C E B D E A B C
B D A C E or B C D E A |’
F B D A C EFE A B C D
C E B D A C D E A B

which are the five cyclic shifts of the initial ordering of the fleas.

We prove that these five orders are reachable. Let A, B, C, D, and E
jump, once each, in the same direction. The new (consecutive) positions then
have indices that are 5 more modulo 13 than the original indices, reduced to
therange 1, 2, ..., 13. Since 5 and 13 are coprime, they eventually reach the
Sz S3 Si S5 Se
A B C D E
a cyclic shift of the starting order. The other required finishing positions
are reached by iterating. The following generalization is now obvious: For
s segments and n fleas (n < s) where a jump is n positions away, if s and
n are coprime, then the possible finishing positions are the n cyclic shifts of
the starting order.

position > If E jumps backwards, then we obtain

16. Through a point P exterior to a given circle pass a secant and a tangent
to the circle. The secant intersects the circle at A and B, and the tangent
touches the circle at C' on the same side of the diameter through P as A
and B. The projection of C onto the diameter is Q. Prove that QC bisects
/AQB.
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Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Michel
Bataille, Rouen, France; Babis Stergiou, Chalkida, Greece; and Titu Zvonaru,
Comanesti, Romania. We give the solution by Amengual Covas.

Let O be the centre of the given
circle.

By the theorem of the power of
a point with respect to a circle applied
to P,

PA.PB = PC?.

Now, in right triangle CPO, CQ is the
altitude to the hypotenuse. By a stan-
dard mean proportion we then have

PC? = PO-PQ.
Hence,

PA.-PB = PO-PQ,

PQ _ PB4 PQ _ PA -
A= po M 55 = po’ S° that triangles APQ, APO

are similar to triangles BPQ, APO; respectively. Observing proportional

sides, we have AQ _ OB d QB _ 04 Since OA = OB, it follows that

; - A~ Po " PB~ PO

P—g = g—B’ hence PO is the external bisector of the angle at Q in triangle
AQB. However CQ L PQ, so CQ is the internal bisector of the angle at Q
in triangle AQ B, yielding ZAQC = ZCQ@QB, as required.

or equivalently,

17. consider a rectangle with sides of lengths 3 and 4, and on each side pick
an arbitrary point that is not a corner. Let x, y, z, and u be the lengths of
the sides of the quadrilateral spanned by these points. Prove that

25 < w2+y2+z2+u2 < 50.

Solved by George Apostolopoulos, 4—c c
Messolonghi, Greece; Oliver Geupel,
Briihl, NRW, Germany; Jean-David 3—b
Houle, student, McGill University,
Montreal, QC; and Titu Zvonaru,
Comanesti, Romania. We give the
presentation of Geupel.

We assume that the four points
divide the respective sides in the

a b c and d
4—a’'3—-0b" 4—¢' 3—d’

ratios
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We have

:c2—|—y2—|—z2—|—u2
= 4—a)’+b>+B3-b)2+c+(A—-0c)*+d*+(83—-d)?+a’

= 25+2(a—2)2+2(b_;)2+2(C_2)2+2<d_g)2

The desired bounds now follow readily from the inequalities

2
0 < (a-2?<4; 0< (b-3) <

O RA[©

2
0 < (e-2?<4; 0< (d-3) <

18. A ray emanating from the vertex A of the triangle ABC intersects the
side BC at X and the circumcircle of ABC at Y. Prove that

1 1 4
Loy > 2
AX + XY — BC

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; George
Apostolopoulos, Messolonghi, Greece; Michel Bataille, Rouen, France; and
Titu Zvonaru, Comanesti, Romania. We give Bataille’s solution.

The proposed inequality can be rewritten as
BC-AY > 4AX -XY. 1)

First, we suppose AY < BC. Since XY = AY — AX, the inequality (1) is
equivalent to each of the following, the latter being obvious:

4AX?% —4AX - AY + BC - AY > 0,
(2AX — AY)? + AY(BC — AY) > 0.
Now, suppose that AY > BC. Observing that BC = XB + XC and

AX - XY = XB - XC (by the Intersecting Chord Theorem), inequality (1)
may be written as

AY(XB+ XC) > 4XB-XC.
This inequality certainly holds, since

AY(XB + XC) > BC(XB+ XC) = (XB+ XC)?> > 4XB-XC.

19. In triangle ABC let D be the midpoint of BC and let M be a point on
the side BC such that /BAM = /DAC. Let L be the second intersection
point of the circumcircle of triangle CAM with AB, and let K be the second
intersection point of the circumcircle of triangle BAM with the side AC.
Prove that KL || BC.
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Solved by Oliver Geupel, Briih, NRW, Germany; D.]. Smeenk, Zaltbommel,
the Netherlands; and Titu Zvonaru, Comanesti, Romania. We give Smeenk’s
solution.

Let oy = Z/BAM = ZCAD
and as = Z/BAD = /CAM,
sOo a1 +ax = o = LZBAC.
Let 8 = ZABC, v = LACB.
From the Sine Law in AABM
and ACAM, we see that

BMsin3 _ CM siny
sinay ~ sinaz

AM =

Therefore,

2

BM sin 3 sin as
= CMsin~vsina; . (1)
Similarly, by the Sine Law in ABAD and ACAD we deduce that
BCsin(8sina; = CDsin~vysinas. (2)

2
Now BD = CD, so (1), (2) imply BM :CM = c?:b%, hence CM = %.

AsCK -CA = CM - CB, we find that CK : b = a® : (b* + ¢?) and
BL:c=a?: (b*+ c?), hence KL || BC.

B M C

20. Three circular arcs w1, we, and wz with common end-points A and B
are on the same side of the line AB, and w lies between w; and ws. Two
rays emanating from B intersect these arcs at My, M>, M3 and K, K2, K3,
respectively. Prove that

M1M2 _ K1K2
My;Ms =~ K:Ks3 '
Solution by George Apostolopoulos, Messolonghi, Greece.
One less an index is so many dashes. K"

We have ZAKB = /AMB and
/AK'B = AM'’B, because these
are inscribed angles. It follows that A
ANAKK' is similar to AAMDM’, and
KK' _ AK'
MM’ ~— AM'

X MII
Similarly, AAK'K" is similar to ‘ l,
K/K// _ AK/ w'

hence

ANAM'M"”, hen = .
e MM AN
Thus, VM = MM and it fol-

/7 /7
lows that %ﬁ,, = Igg"’ as desired. AVB

April’s Corner is complete. Send your nice solutions soon!
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BOOK REVIEWS
Amar Sodhi

Polynomia and Related Realms: Uncommon Mathematical Excursions

By Dan Kalman, Dolciani Mathematical Expositions #35, Mathematical
Association of America, 2009

ISBN 978-0-88385-341-2, cloth, 265 +xv pages, US$61.95

Reviewed by Edward Barbeau, University of Toronto, Toronto, ON

By the seventeenth century, research into the systemic properties of
polynomials and techniques for obtaining, approximating, and classifying
their roots was well underway, and there is hardly a great mathematician
of the last four hundred years who has not made a significant contribution
in this area. Polynomials with real and complex coefficients is still an active
area of mathematics, and there are lots of open problems. While many re-
sults are abstruse, technical, and very specialized, there is much to appeal to
the general mathematician. The author of any book has a wealth of material
to choose from for whatever audience is to be reached.

This book is a worthy addition to the Dolciani series. It is well written
and contains material that is appealing (but perhaps not familiar) to every
reader. However, it is not just about polynomials, which occupy only the
first third of the book. The second part has to do with optimization while
the third treats calculus. The author supplements the book by a website
http://www.maa.org/ume in which he presents some additional material, in
particular animated illustrations of topics in the book.

However, this is by no means a retail selling of standard topics. He
casts the book as a travelogue, and decides not to go to the most popular
and well-known sites, but to expand the visitor's experience by “seeking out
lesser known destinations”. While some students may enjoy the book, the
author has written it more for their teachers who “have travelled through
the standard curriculum” and “may wish to seek out new vistas and explore
unsuspected wonders a bit off the beaten track”. He also hopes that the book
will be read by those who apply mathematics, such as scientists, engineers,
and analysts. 1 am willing to bet that most readers will find something that
is new to them.

The first destination is The Province of Polynomia. The trip opens
with a brief prospectus and review of basic material. Chapter One discusses
Horner’s method for representing and evaluating polynomials; this is used
to justify a geometric visualization of the roots of a polynomial due to an
Austrian engineer, M.E. Lill, who published it in the Nouvelles annales de
mathématiquesin 1867. This method had been largely forgotten, and the au-
thor learned about it at a lecture by Tom Hull on origami (Hull's website is
now at http://mars.wnec.edu/~thull, which supersedes the reference given
in the book). The website for the book gives some dynamic illustrations of
Lill’s method.
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The second chapter offers a fresh look at solving quadratic and cubic
equations, and introduces Newton’s method, Lagrange Interpolation and
palindromic polynomials to the reader. It includes a discussion of Marden’s
theorem, to wit that, if p(z) is a cubic complex polynomial with distinct non-
collinear zeros, then the foci of the unique ellipse that touches the sides of
the triangle determined by the zeros at their midpoints are the zeros of the
derivative p’(z); the website links to a proof. The third chapter treats roots,
coefficients, and symmetric functions, while the fourth returns to equation
solving.

The next port of call, Maxministan, focusses in particular on Lagrange
multipliers. It is evident that the author has given a great deal of thought
to what they signify and how they can be envisaged, so that this would be
a valuable section for any undergraduate wanting to get beyond the usual
cursory treatment. The multipliers are applied to a variety of situations,
including the problem of finding the longest ladder that can be taken around
a corner in a building and the problem of determining the maximum angle
between the normal at a point of an ellipse and the line joining the point to
the centre. There is a nice discussion of duality that relates a maximization
problem to a corresponding minimization one. One topic that makes its first
appearance here and is taken up in the last section of the book is that of an
envelope of a family of curves.

Envelopes is a topic that used to be a common part of the tertiary syl-
labus but which has been absent for about the last half century. It is revisited
in the Calculusian Republic where it is given a thorough treatment. However,
this republic has other sites worthy of visit. Attention is focussed on equa-
tions of the form a®* = mx +b, where a, b, and m are parameters. Just as the
logarithm function can be invented to solve the particular equation a® = b,
we can define the glog function in terms of which solutions of a more general
form can be described; y = glog(x) if and only if e¥ = zy and the appropri-
ate branch of the graph of the equation is taken. Properties and applications
of this function are explored.

The book comes full circle back to polynomials and division by the
monomial x — a in its discussion of an algebraic approach to differentia-
tion, “derivatives without limits”. Glossing over questions of existence, this
method can be extended to radicals, exponentials and trigonometric func-
tions, where the treatment is incomplete for the last. The author concludes
with a chapter giving a number of examples that evoke an appreciation of
calculus, in particular its two miracles, much out of little and more accuracy
for less effort.

There are several attractive features: essays in sidebars on particular
topics, historical notes, and a section at the end of the chapter that pro-
vides historical background and a guide to the literature. There is a generous
bibliography, with links provided on the author’s website to electronic ref-
erences. For lecturers in search of novel material and teachers interested in
professional development, this book is highly recommended.
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The Shape of Content: Creative Writings in Mathematics and Science
Edited by Chandler Davis, Marjorie Wikler Senechal, and Jan Zwicky, pub-
lished by A.K. Peters, Ltd., 2008

ISBN 978-1-56881-444-5, hardcover, 194 +xvii pages, US$39.00

Reviewed by Georg Gunther, Sir Wilfred Grenfell College (MUN), Corner
Brook, NL

In 1959, C.P. Snow suggested that there had been a breakdown in com-
munication between the “two cultures” of modern society — the sciences on
the one hand, the humanities on the other. Since that time, this matter has
been hotly contested by both sides and the debate continues to this day.
Some argue that the differences between these “two cultures” can be traced
down to the roots of our human creativity. They are seen as arising in part
out of a biological asymmetry in the human brain, a lateralization of brain
function, where the left hemisphere controls analytical and logical thought,
while the right is the home of more holistic and creative mental activities.

The town of Banff is one of the great beauty spots in Canada, indeed, in
the whole world. In addition to great scenery and spectacular skiing, Banff
boasts of two world-class facilities. The first is the Banff Centre (founded in
1933), Canada’s acclaimed artistic, cultural, and educational institute. The
mission of the Banff Centre is expressed in two simple words: inspiring cre-
ativity. This mission, which had been limited to the arts and humanities, was
expanded in the year 2000, when the Banff International Research
Station for Mathematical Innovation and Discovery (BIRS) was established
as part of the Banff Centre.

The first director of the BIRS was Robert Moody, not only a leading
Canadian mathematician, but a serious photographer as well. Moody quickly
realized that the presence of the BIRS on the campus of the Banff Centre
provided a unique opportunity to bring together leading practitioners from
both cultures in an attempt to see what sort of dialogue might develop. This
idea led to a number of workshops on creative writing in mathematics and
science; the first three of these were held in 2003, 2004, and 2006.

The book The Shape of Content, is a selection of contributions drawn
from those three workshops, chosen because they “best conveyed the spirit,
the meaning, and the achievements of the series”. The contributing authors
come from a wide range of disciplines; included in these are mathematics,
biology, earth science, physics, chemistry, and philosophy. As well, there
are pieces written by poets and playwrights, musicians and creative writers.
The contributions themselves cover the spectrum of creative writing: prose
pieces, biographical sketches, poetry, and excerpts of plays created during
these workshops.

The Shape of Content is a wonderful book. It is not to be read in a
single sitting, there are too many layers, too many subtleties. It needs to
be sipped slowly, with the same appreciation that is due a very fine brandy.
Nor is it to be read for its mathematical content; mathematics and science
lurk in the backgrounds of many of the pieces, but their presence is largely
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metaphorical, as befits such powerful manifestations of our human creativity.

While the individual contributions differ greatly in the shape of their
content, they all display “a crossing between the platonic world of ideas we
mathematicians might be exploring, and the ‘ideaspace’ some philosophers
(and some magicians) wonder about, a dimension inhabited by all the con-
cepts humans (and aliens) could imagine, where all stories are true”. [Marco
Abarte, Evariste and Héloise, p. 5]. In Active Pass [p. 37], Isabel Burgess
says “Not all things vanish into darkness. Some vanish into light”; so it is
with many of the ideas, images, and phrases encountered in this volume.

Cosmologists speak of the Big Bang, a concept too grandiose, too stag-
gering for us to comprehend. And yet, in his poem The All of It [p. 47],
Robin Chapman makes it comprehensible, makes it human, when he writes
«Still, the dark blue backdrop/ offers hope of god or natural law/ where
beginnings are small enough/ to hold us all, the way the mind/ can hold the
drinking glass/ or see the newborn child, thatlove/ set going from incomplete
halves.” As we ponder these words, our musings are enriched by Chandler
Davis, when he writes, in the poem Cold Comfort [p. 53], “To fall back
on predictability:/ All is caused, nothing will be forthcoming/ but what is
embryonically already here,/ the mathematics tells truth about emergence”.

The penultimate contribution to this volume is a description of a simple
“kitchen-chemistry” experiment exploring the nature of soap. Single drops of
food colour are added to a dish of milk; the colour droplets remain apart until
a drop of soap is added; now “the isolated colours dance, play, and merge.
Their yearning for community has been answered. They join together, ready
to paint a picture of beauty and truth... All these miracles result from the
simple fact that soap is able to operate at the same time in two worlds”.
[Randall Wedin, Breaking Down the Barriers, p. 182.]

Are there two cultures? Perhaps there are, but this volume is strong
evidence that, no matter how far apart the sciences and the humanities might
at times seem to be, bridges can be built, and when the effort is made to build
them, the results can be spectacular, resulting in colours that dance, play,
and merge. “Whatever is, is right./ This is not an order, but a riddle, not a
single thought, but many”, writes Adam Dickinson in his poem Great Chain
of Being [p. 84]. So it is with The Shape of Content: not a single thought
but many, many voices, singing together in harmony.

——— | NS
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A Useful Inequality Revisited

Pham Van Thuan and Lé Vi

Abstract
We give a geometrical interpretation of a powerful inequality, and give
some natural derivations of the inequality. We use this inequality to solve
a large class of symmetric inequalities with four variables by using Rolle’s
theorem and some appropriate substitutions.

1 Introduction

Can V6 Qubc B3, [1] established a powerful inequality involving symmet-
ric expressions, presumably stronger than the Schur Inequality. Later Roy
Barbara [2] introduced another version of this inequality. However, it is not
clear from [2] how the author could establish the set of coefficients for which
the equality holds at two distinct points, say (k, k, k) or (0,1,1) and its per-
mutations, where k and I are nonnegative real numbers. Moreover, most
problems in [2] are not strong enough to demonstrate the efficiency of this
result. Herein we will give some interesting applications of this theorem.

Geometrically, if the z-intercepts of a cubic polynomial occur at distinct
points a, b, and ¢, then its local maximum and local minimum values occur
on opposite sides of the z-axis.

.fmax'

fmin S

That is, the values of the cubic polynomial at these points are of opposite
sign. This can be arrived at by noticing that the derivative has two distinct
roots, in particular the discriminant of the derivative must be nonnegative.

Copyright © 2009 Canadian Mathematical Society
Crux Mathematicorum with Mathematical Mayhem, Volume 35, Issue 3
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We claim that the crux of the problem lies in this geometrical property
of cubic polynomial functions. Indeed, the algebraic manipulations in the
theorem below nicely reflect the geometric properties of the preceding figure.

Theorem 1 Let a, b, and ¢ be nonnegative real numbers, let p = a + b + ¢,

2 42
and suppose that ¢ = ab + bc + ca = p 3 " for some ¢ > 0. Then,

P02 _ (=0t
27 = 4% = 27 '

Proof: Let f(x) = (x — a)(x — b)(z — ¢). We have

f(x) = 23— (a+b+c)x? + (ab+ bec + ca)x — abe,
F(x) = 32> —-2(a+b+c)x+ (ab+ bc+ ca).

The discriminant, A, of the quadratic polynomial f/(x) is nonnegative, since

A = 4(a+b+c)2—12(ab—|—bc—|—ca)
= 2[(a—b)?+ (b—c)®>+ (c—a)?].

Alternatively, A = 4(p%—3q) = 4t2, so that v/ A = 2tsincet > 0. It follows

that f/(x) has the roots ¢; = p g ¢ and c; = pT_H, and that ¢; < c5.

If the roots a, b, and ¢ of f(x) are distinct or if two of these roots
are equal but distinct from the remaining root, then by the usual methods
of calculus for finding local extrema we find that fiax = f(c1) > 0 and
Sfmin = f(c2) < 0. This last fact together with the computations

—t —t)%(p+ 2t
.fmax == .f(cl) - .f <p3) - (p )2(7p ) - abc,
+t +t)%2(p — 2t
fmin = f(c2) = f <1)3) = (P )2(7p ) — abc,
gives us the desired inequality
200 _ _ )2
(p+1t)*(p — 2t) < abe < (p—t)°*(p+2t)
27 27
If a = b = ¢, then the inequality is trivial. [ ]

2 Applications

Theorem 1 has been employed to prove numerous inequalities of three vari-
ables, some of which are very hard, as shown in [1], [3]. The attempt to
formulate an analogue of this inequality for four numbers, with the aim of
proving a large class of four variable inequalities, has not yielded any fruitful
results. In the following we shall provide some advances in this area.
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Problem 1. Prove that if a, b, ¢, and d are nonnegative real numbers, then
(a+b+c+d)(a+b2+c+d2)** >
%(a3—|—b3+03+d3) (a+b+c+d)
+ (ab + bc + ca + da + db + dc) (a® + b* + c® + d?) .

Solution. It is a consequence of Rolle’'s theorem (note that if f is the monic
quartic polynomial with roots a, b, ¢, and d, then f’ has three real zeros)
that there exist nonnegative numbers x, y, and z such that

rt+y+z = Z(a+b+c+d),
Ty +yz +zx = %(ab+bc+cd+da+ac+bd),
TYyz = i(abc—i— bed + cda + dab) . €))

We also have the identities
a’+ 2’4+ c?+d®> = (a+b+c+d)? —2(ab+ be+ ca + da + db + dc),
a®+b*+c3+d® = (a+ b+ c+ d)® + 3(abc + bed + cda + dab)

= —3(ab+bc+ca+da+db+dc)(a+b+c+d).
Hence, we need to show that

3/2
s@ty+2) (Jety+2)?—d@y+yzt22) >
(g—i(m-l—y—l—z)s—|—12:cyz—8(:cy—|—yz+z:c)(:c+y—|—z))-g(w—l—y—l-z)
+ 2(zy + yz + zx) (%(w+y—|—z)2—4(wy+yz+zw)) .

For simplicity, we suppose without loss of generality that x +y+2 = 1. Let
g = zy + yz + zx and r = zyz. The inequality then reads

3/2
(18 _4)" > 2 16

64
3\ 9 = 3 ?7+12T_8q)+2q(?_4q)’

which is equivalent to each of the following inequalities:

v

3/2

12 (% - 4q) % + 72r — 48q + 329 — 7242,
3/2

12(%—4(1) > 1§—8+72r—16q—72q2.

1—¢2 t)%(1 + 2t)

For q = ,0 <t <1, wehave by Theorem 1 that » < a- T
Thus, it suffices to show that

3/2
12(E—é(1—t2)) > %+§(1—t)2(1+2t)

—13—6(1—t2)—8(1—t2)2.
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This is equivalent to each of the following

8 2
g "4 (1+3t7)

3/2 32 40 ,2 16 ,3 4
> — 4+ =t —1° — 8t
2 5 tgti+3 )

16 (14 3t2)° — (4 + 613 + 15t — 9¢*)*
3t? (8 — 16t + 93t% — 60t> + 222¢* + 361> — 27t°)
and the latter is clearly true for 0 < ¢ < 1.

Vv v

Problem 2. Let a, b, ¢, and d be nonnegative real numbers which satisfy
a? 4+ b% + %2 + d? = 1. Prove that
(a—i—b—i—c—{—d)2 > a®+ b2+ B+ d® + abe+ bed + cda + dab

+ (ab+bc+ca+da+db+de)(a+b+c+d).

Solution. Write the desired inequality in homogenous form,

(a+b+c+d)?(a®+b%+c2+d?)"? >
a® + b2 +c+d® + abe + bed + eda + dab
+ (ab+bc+ca+da+db+de)(a+b+c+d).
We substitute as in (1) of the preceding solution and write p = z+y+z,
q = zy + yz + zx, and » = xyz to obtain the equivalent inequality
ot (g —aa) " 2 3

We group like terms and without loss of generality assume that p = 1, so
that the inequality reads

16 /16 1/2 64 16
2 (22 - > 2= — q.
9 (9 4q) 2 57 T16r— 34

2 2
Letq = 1-t ,0 <t < 1. By Theorem 1, we have that r < w

Thus, it suffices to show that

16 /16 4 o\ 1/2 64 16 5 16 5
?(?—5(1—”) > (-2 +2t) - T (17

8
p° +12r —8pg+4r + _pq.

After some algebraic manipulations, this is equivalent to 14 3¢% > (1 + t3)2,
or t? (3 — 2t — t*) > 0, which is obvious since 0 < ¢t < 1. [

It is impossible to reduce an inequality involving the product of four
variables to a three-variable inequality using Rolle’s theorem. Without Rolle’s
theorem, the idea is to reduce the number of variables by exploiting the
homogeneity and arranging the given variables.

Problem 3 (Janos Suranyi’s inequality). Prove that if a, b, ¢, and d are non-
negative real numbers, then

3(a*+b*+c*+d*) +4abed > (a+b+c+d)(a®+b*+c+d°) .
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Solution If one of a, b, c, or d is zero, then the desired inequality is true
(for instance, one may cancel terms and apply the Rearrangement Inequality
twice). If a, b, ¢, and d are all positive, then (due to homogeneity) we can
suppose without loss of generality that

d = min{a,b,c,d} = 1. (2)
The desired inequality becomes
3(a*+b*+c*+1)+4abc > (a+b+c+1)(a®+b2+c*+1). (3)

Letp =a+ b+ ¢, q =ab+ bc+ ca, and r = abe. By the assumption we
made in (2), we have p > 3. Since

a*+ b+t = (p2—2q)2—2(q2—2pr) ,
a®+b*+c = p(p®—3q) +3r,
the inequality (3) takes the form
2p* —p® —p+2—9p°q+3pg+6¢°+9pr+r > 0. (4)

By Theorem 1,

1 /3 2 3
r > ﬁ(p — 3pt —2t).
Therefore, it suffices to show that

2 2 2 2
p°—t p°—t
2p4—p3—p+2—9p2<3>+3p( )

3
+6-M+1—)( 5 _3pt? — 26%) + — (p° — 3pt? —2%) > 0
9 3 27 =
which is equivalent to
(p—3)%(p+6)+2t? (9p> —15p — 9pt + 9> —t) > 0. (5)

Now 3p? 4+ 9t2 > 9pt and furthermore since p > 3 and p > t, we have
6p? > 18p > 15p + t. It follows that

9p% —15p — 9pt +9t> —t > 0,
hence (5) is true and the inequality is proved. |

Problem 4 (IMO Shortlist 1993). Prove that if a, b, ¢, and d are nonnegative
integers, then

(a+b+ c+d)4 4+ 176abcd > 27(a+ b+ c+ d)(abc + bed + cda + dab) .
Solution. If one of the four numbers is zero, then the inequality follows from

the AM-GM Inequality. Otherwise we suppose (due to homogeneity) as in
(2) above that d = min{a, b, ¢, d} = 1. We then need to prove that

(a+b+c+1)4+176abc > 27(a+ b+ c+1)(abc + ab+ ac+ be) .
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Letp =a+b+c, q =ab+ bc+ ca, and r = abe. From our assumption we
have p > 3 and g > 3, and the desired inequality takes the form

p* +4p® + 6p® + 4p + 1 — 2Tpq — 27q + (149 — 27p)r > 0.  (6)
For q = %(p2 —t2), 0 < t < p, we have by Theorem 1 that

P02 _ -0+ 20
27 =" = 27 '

f3<p< 124—79, then 149 — 27p > 0. In this case, by Theorem 1, in order to
prove (6) it suffices for us to show that

1 68 298
= (14p + 3)(p — 3)% + 17 (3p2 —SP+9-— Wt+2pt) > 0.

The inequality
3p? — 69—8p+9—¥t+2pt > 0

is proved by adding across the following four inequalities

14 5 14 40 5 136
7P = o7

2 > . - -_= > .
p°+9 > 6p; o7P" 2 P 2pt > 6t;

The last inequality is valid since it follows from ¢ = %(p2 — t2) > 3 that
p? > t%2 4+ 9 > 6t.
If 149 — 27p < 0, then to prove (6) it suffices for us to show that

1 _ 3)2 2( 2 _ 68 298, )>
- (14p+3)(p—3)° +° (3p° — "p+ 9+ -t —2pt) > 0.
Consider the function
fp) = 3p° — Sp+9+ 20t —2pt.

We have
68

Fp) = 6p— " —2t.

Since p > t and p > 12, then f’(p) > 0. Thus, f(p) is increasing for

p > max {t,222}. It follows that

149
F®) > f (max{t,2}) > o,
and the inequality is proved. ]
Problem 5. Let m, n, u, and v be real numbers such that all of the roots of
4

x —ma:3+nsc2—usr:+v = 0.

are nonnegative. Prove that m* + 32v > 3m?2n.
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Solution. Given m, n, u, and v as above, let a, b, ¢, and d be nonnegative real
numbers such that z* —mz® +nx? —uzx+v = (x —a)(z—b)(z —c)(z —d).
Then we need to prove that
(a+b+c+d)*+32abcd > 3(a+b+c+d)?(ab+be+ca+ad+bd+cd) . (7)
The problem can be restated as follows: Prove that if four nonnegative
real numbers a, b, ¢, and d satisfy a + b+ ¢+ d = 1, then
1+ 32abed > 3(ab+ bc+ ca + ad + bd + cd) .

In this form of the problem we see that if one of the four numbers is zero,
then the desired inequality follows immediately from the Cauchy Inequality.

Thus, we can suppose that a, b, ¢, and d are all positive, and further-
more we can suppose (due to homogeneity) that

d = min(a,b,c,d) = 1. (8)
The inequality (7) then takes the form
(a—l—b—l—c—|—1)4+32abc > 3(a+b+c+ 1)2(ab—|—bc—|—ca—|—a—|—b—|—c).

Letp=a+b+c, q=ab+bc+ ca, and r = abe. By our assumption (8) we
have that p > 3 and ¢ > 3. In terms of p, q, and r the inequality becomes

(p+1)*+32r > 3(p+1)*(a+p).
Expanding this yields
p*+p®+p+1—3p3q—6pg—3q+32r > 0.
Let ¢ = 2(p® — t?), 0 < t < p. By Theorem 1 we have that
P> (Pt p—2t) = 5 (b0 —3pt? —2t7) .
Thus, it suffices to show that

P+ +p+1—- (P> +2p+1) (pz—t2)+%(p3—3pt2—2t3) > 0,

which is equivalent to

1 2 2 (, 2 14 64
=(6p+3)(p—3)2+ ¢ (p*+1-Tp—2t) > 0. 9)

Moreover, since p > 3 we have 12p? > Lp and since ¢ = (p® — t?) > 3

we have p? > t2 + 9. Consequently,

13 , 13,, 16 64
—_— + > = _ > __t.
P Tl 2 Fth+5 2 37t
It follows that
2 14 64
— -t >
p“+1 9p 27t >0

and hence the inequality (9) is true. Equality occurs when (a, b, ¢, d) is the

vector (5, 1,1, %) or some permutation of the vector (0, 3, 5, 3). n
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3 Exercises

Problem 6. Let x, vy, z, and w be nonnegative real numbers. Prove that
(a:4—|— yr4+ 24 w4) (zy+yz+zet+wz+wytwz) < g (m2—|— y24+ 224 w2)3.
Problem 7. Let a, b, ¢, and d be nonnegative real numbers. Prove that

%(a2+b2+cz +d?)*? 4 2abed(a + b+ c+d) >
(ab+ bc + cd + da + ac + bd) (a3+b3—|—c3—|—d3) .
Problem 8. Let a, b, ¢, and d be nonnegative real numbers. Prove that
32abcd

3 3 3 3
EE— .
a”+b°>+c’+d° + atbrerd = 3(abc + bed + cda + dab)

Problem 9. Let a, b, ¢, and d be nonnegative real numbers which satisfy
a? 4+ b% + c2 + d? = 1. Prove that

a+b+c+d > a®>+b3+c2+d® + ab+bec+ ca+ cd+ da+ bd.

Problem 10. Let m, n, u, and v be real numbers such that all zeros of the
quartic polynomial # — ma® 4+ na? — ux + v are nonnegative real numbers.
Prove that

(m2 — 2n)5/2 + 8mv > 4(m2 - 2n)u.
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PROBLEMS

Solutions to problems in this issue should arrive no later than 1 October 2009.
An asterisk (x) after a number indicates that a problem was proposed without a
solution.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English. In the solutions’ section, the problem will be stated in
the language of the primary featured solution.

The editor thanks Jean-Marc Terrier of the University of Montreal for transla-
tions of the problems.

—_— N r———

3426. Proposed by Salvatore Tringali, student, Mediterranea University,
Reggio Calabria, Italy.

Find all prime numbers p, g, and r such thatp +q = (p — q)".

3427. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

The numbers a, b, ¢, and d all lie in the interval (1, 00) and are such
that a + b+ ¢ + d = 16. Prove that

Zloga(m—ka) > %

cyclic

3428%. Proposed by ]. Walter Lynch, Athens, GA, USA.

Fix an integer n > 2 and let I be the interval of all positive ratios r
such that there exists an n-gon whose sides consist of n terms of a geometric
sequence with common ratio . Prove that the endpoints of I are reciprocals
of each other.

[Ed.: The proposer refers to Crux M67 [2003 : 430-431] and 3082 [2006 : 477
for the special cases n = 3 and n = 4. ]

3429. Proposed by Vaclav Konecny, Big Rapids, M1, USA.

The line £ passes through the point A and makes an acute angle with
the segment AB. The line m passes through B and is perpendicular to AB.
Construct a point C on the line £ and a point P on the line m such that the
triangle BPC is isosceles with BP = PC and

(a) the line CP trisects ZBCA,

(b) the line CP bisects /ZBCA.
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3430. Proposed by Michel Bataille, Rouen, France.

Let n be a positive integer. Determine the coefficients of the unique
polynomial P, (z) for which the relation

cos®™ 0 +sin®" 0 = P, (sin’(26))
holds for all real numbers 6.
3431. Proposed by Michel Bataille, Rouen, France.
Let f : R — R be a continuous function that satisfies
fl+y) = f(f(@)-f(»)
for all real numbers = and y. Prove that f is constant.

3432. Proposed by Michel Bataille, Rouen, France.
Let a, b, and ¢ be real numbers satisfying a < 2(b+ ¢), b < 2(¢c + a),
and ¢ < 2(a + b). Prove that
3 4 (a3 + b3 + c3) + 15abc
~ (a4+ b+ c)(ab+ bec+ ca) ’

3433. Proposed by an unknown proposer.

For each positive integer n prove that
i 1 (2k> <2n - 2k> 2 <2n> -t
Z2k+1\k/\n—-k /) 2n+1\n/)

3434, Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Given the line segment LM N with LM : MN =1 : Xand XA > 0, and
given the triangle ABC with ZABC = z + y and tanz _ 1, construct the

tany A
angle x using only a straight edge and compass.

3435. Proposed by Dragoljub MilosSevié¢, Gornji Milanovac, Serbia.

Let a, b, ¢, and d be positive integers. Prove that

1 1 5
_ < .
at+b+ct+d+2 (a+1)(b+1)(c+1)(d+1) — 48
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3436. Proposed by Dragoljub Milosevi¢, Gornji Milanovac, Serbie.

Let ABC be aright-angled triangle with hypotenuse AB. Let m, and
mp be the lengths of the medians to the sides BC and AC, respectively.
Prove that

Ve matmy 3
2 - a+b 2

3437. Proposed by Pham Huu Duc, Ballajura, Australia and Vo Quoc Ba
Can, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam.

Let a, b, and ¢ be positive real numbers. Prove that

a? 4+ be b2 4+ ca c2 4 ab
_— - — > /3 b .
b+ec t c+a t a+b — (a+b+c)

3438%. Proposed by Vo Quoc Ba Can, Can Tho University of Medicine
and Pharmacy, Can Tho, Vietnam.

Let a, b, and ¢ be nonnegative real numbers. Prove the inequality
below for all k > 0, or give a counterexample:

a? + kbe %
Z b2 & 2 2+ 2
cyclic tc

3426. Proposé par Salvatore Tringali, €tudiant, Université Mediterranea,
Reggio Calabria, Italie.

Trouver tous les nomhres premiers p, g et r telsque p+q = (p — q)".

3427. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Les nombres a, b, ¢ et d sont tous dans I’ intervalle (1, oo) et sont tels
que a + b+ ¢+ d = 16. Montrer que

11

Z loga(m—i—a) > o

cyclique

3428%. Proposé par J. Walter Lynch, Athens, GA, E-U.

On fixe un entier n > 2 et soit I 'intervalle de tous les quotients positifs
r tel qu'il existe un n-gone dont les cotés consistent en n termes d’une suite
géométrique de raison . Montrer que les extrémités de I sont réciproques
I'un de I'autre.

[N.d.R : Pour les cas spéciaux n = 3 et n = 4, le proposeur renvoie a Crux
M67 [2003 :430-431] et 3082 [2006 :477]].
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3429. Proposé par Viclav Konecny, Big Rapids, MI, E-U.

La droite £ passe par le point A et fait un angle aigu avec le segment
AB. La droite m passe par B et est perpendiculaire 3 AB. Construire un
point C sur la droite £ et un point P sur la droite m de sorte que le triangle
BPC soit isocéle avec BP = PC et que

(a) la droite C P soit une trisection de I'angle BC A,
(b) la droite C P soit la bissectrice de ’angle BC A.

3430. Proposé par Michel Bataille, Rouen, France.

Soit m un entier positif. Déterminer les coefficients de l'unique po-
lynéme P, (z) pour lequel la relation

cos®™ 0 +sin®” 0 = P, (sin’(26))
est satisfaite pour tous les nombres réels 6.

3431. Proposé par Michel Bataille, Rouen, France.
Soit f : R — R une fonction continue satisfaisant
fl+y) = f(f(=)- f(y))
pour tous les nombres réels x et y. Montrer que f est constante.

3432. Proposé par Michel Bataille, Rouen, France.

Soit a, b et ¢ trois nombres réels satisfaisant a < 2(b+c¢), b < 2(c+a)
et ¢ < 2(a + b). Montrer que

4(a3+b3+c3)+15abc <6
~ (a4+ b+ c)(ab+ be+ ca) ’

3433. Proposé par un proposeur anonyme.

Pour tout entier positif n, montrer que
f: 1 (2k> (2n = 2k> 24 <2n> -t
Z2k+1\k/\n—-k /) 2n+1\n/)

3434, Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

Sur une droite, on donne le segment LM N avec LM : MN =1: X
et A > 0, et on considére le triangle ABC avec I'angle ABC = = + y et

tanx

tang = % On demande de construire I'angle = en n'utilisant que la régle et

le compas.




176

3435. Proposé par Dragoljub MiloSevié, Gornji Milanovac, Serbie.

Soit a, b, c et d quatre entiers positifs. Montrer que
1 1 5

- g
at+b+ct+d+2 (a+1)(b+1)(c+1)(d+1) — 48

3436. Proposé par Dragoljub MiloSevi¢, Gornji Milanovac, Serbie.

Soit ABC un triangle rectangle d’hypoténuse AB. Soit respectivement
m, et my les longueurs des médianes aboutissant sur les cotés BC et AC.
Montrer que
5 m m 3
£ < g < —.
2 a+b 2

3437. Proposé par Pham Huu Duc, Ballajura, Australie and Vo Quoc Ba
Can, Université de Médecine et Pharmacie de Can Tho, Can Tho, Vietnam.

Soit a, b et c trois nombres réels positifs. Montrer que

a? 4+ be b2 + ca c2 4+ ab
\[ 57— \ | ———— — > /3 b .
b+ec t c+a t a+b — (a+b+c)

3438%. Proposé par Vo Quoc Ba Can, Université de Médecine et Phar-
macie de Can Tho, Can Tho, Vietnam.

Soit a, b et c trois nombres réels non négatifs. Montrer la validité de
I'inégalité ci-dessous pour tout x > 0, ou donner un contre-exemple :

a? + kbc %
Z b2 2 > 2+ 9"
cyclique +c

Fib!

Lie!

Tell it!

Who is it

Made this story up?

Can you find the answer to this?

There is glory waiting for the correct solution!

(This is a Fibonacci poem!
Search for ”pincus+fibonacci” on the web to find out more.)

——— | NS




177

SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

Last year we received a batch of correct solutions from Steven Karp, stu-
dent, University of Waterloo, Waterloo, ON, to problems 3289, 3292, 3294,
3296, 3297, 3298, and 3300, which did not make it into the December issue
due to being misfiled. Our apologies for this oversight.

_—_—m T~ @ &—
3326. [2008 : 170, 173] Proposed by Mihaly Bencze, Brasov, Romania.

Let a, b, and ¢ be positive real numbers.

(a) Show that ] (a®* +2) +4 [[(a®> +1) > 6(a+ b+ ).
cyclic cyclic

(b)* What is the largest constant k& such that
[[@+2)+4][(@®*+1) > k(a+b+c)??

cyclic cyclic

The same solution to part (a) by George Apostolopoulos, Messolonghi, Greece
and the proposer, modified and expanded by the editor.

Let P, = [] (a®+2) and P, = ][] (a® 4 1). We first prove that

cyclic cyclic
P, > 3(a+b+c)?, ¢))

or equivalently

2 _ 1 b 2
cyclic 3 9

We consider three cases:

Case 1 At least two of a, b, and c are at least 1.
Saya >1and b > 1. Thensince (1+z)(14+y) >1+x+yforz >0
and y > 0, we have

H<1+a2—1) S <1+a2—1+b2—1> (c2—|—2)
. 3 - 3 3 3
cyclic
<a2+b2+12> (12+12+c2) S (a+b+c)?
3 3 - 9

by the Cauchy-Schwarz Inequality.
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Case 2 One of a, b, or cis at least 1.
Saya>1,b<1l,ande< 1. Wehave 1+ z)(1+y) > 1+ x + y if
2

-1 -1

x and y are both in the interval (—1,0). Taking x = b and y =

we then obtain

H(1+a2—1>><1+a2—1><1+b2—1+c2—1>
cyclic 3 B 3 3 3
(a2+12—|—12> <12—|—b2+02> S (a+b+c)?
3 3 = 9 '

3

Case 3 Each of a, b, and c is less than 1.

We have (1 +z2)(1 +y)(1 +2) > 1+ x+y+ z if xz, y, and z are

2 2 2
in (—1,0). Hence, since a 3 1, b 3 1, and £ 3 1 each lie in the interval

(—1,0) we have

H <1+a2—1) S 1+a2—1+b2—1+c2—1
3 = 3 3 3

cyclic
a? + b2 + ¢

g > (a—i—b—i—c)z.

(a® + % + %) (1% + 1% + 1?) 9

O] =

Therefore, equation (2) holds in all cases, and the proof of equation (1)
is complete.

Next we replace a, b, and ¢ in equation (1) by v/2a, v/2b, and v/2c,
respectively. Then (1) becomes 8 J] (a® 4+ 1) > 6(a + b+ c)? or

cyclic
4P; > 3(a+b+c)?. (3)

The conclusion now follows by adding (1) and (3).

Part (a) also solved by MICHEL BATAILLE, Rouen, France; and CHIP CURTIS, Missouri
Southern State University, Joplin, MO, USA.

Oliver Geupel, Briihl, NRW, Germany pointed out that part (a) follows from Problem
3327, part (a).

No complete solution to part (b) was received. Both Walther Janous, Ursulinengym-
nasium, Innsbruck, Austria and Stan Wagon, Macalester College, St. Paul, MN, USA produced
complicated expressions for the constant k in part (b). Wagon obtained his ”in a moment” using
Mathematica’s Maximize Function and evaluated k = 6.24347 to 5 decimal places. ]Janous
obtained a similar expression and evaluated k = 6.243471387 to 9 decimal places. However,
he stated his result as a conjecture, since he assumed in the course of his calculations that the
ratio (Py + 4P2)/(a + b + c)? is minimized when a = b = c. The editor strongly suspects
these answers are correct, but has received only incomplete arguments of their validity.

Y WSS L W
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3327. [2008 : 170, 173] Proposed by Mihaly Bencze, Brasov, Romania.
Let a, b, and c be positive real numbers.

(a) Show that [] (a*+3a*+2) > %(a +b+ )t

cyclic

(b)* What is the largest constant k& such that

H(a4+3a2—|—2) > k(a+b+c)*?

cyclic

Similar solutions by George Apostolopoulos, Messolonghi, Greece; Michel
Bataille, Rouen, France; and Chip Curtis, Missouri Southern State Univer-
sity, Joplin, MO, USA.

First, observe that a* + 3a? + 2 = (a®? + 2) (a® + 1). In the solution
of the preceding problem the inequality

H (a2—+—2) > 3(a—+—b—+—c)2

cyclic

and the inequality

H (a2—|-1) > %(a—l—b—l—c)2

cyclic

was proven. The result now follows by multiplying across these two inequal-
ities.
Part (a) was also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck,

Austria; and the proposer. There was one incomplete solution submitted. Part (b) remains
open.

NN —

3328%. [2008 :170, 172] Proposed by Mihaly Bencze, Brasov, Romania.

Let aq, az, ..., a, be positive real numbers. For 1 < k < n, define

L k 3 ko -1
Ak, = EZai, Gk = <H a,-) , and Hk, =k (Z ) .
=1 =1

=1 ai

3=

(a) Show that

S|

o< (4)

k=1
) ()
1) > Hk>.
le k=1

3

(b) Show that n (
K
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Similar solutions by Walther Janous, Ursulinengymnasium, Innsbruck,
Austria and Xavier Ros, student, Universitat Politécnica de Catalunya,
Barcelona, Spain.

The inequality in part (a) is known: see Kiran S. Kedlaya, “Proof of a
mixed arithmetic-mean, geometric-mean inequality”, Amer. Math. Monthly,
Vol. 101, No. 4 (1994), pp. 355-357.

To prove part (b), we replace the numbers a4, az, ..., a, in part (a)

with their reciprocals e al and for each k£ we let A} and G/, be the
1 2 n
resulting arithmetic and geometric means. Clearly, G}, = Gi and A) = Hi
k k

By part (a) we have

therefore,

and

as required.

Part (a) also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO,
USA; and OLIVER GEUPEL, Briihl, NRW, Germany.

Curtis cites the reference in our featured solution and in addition he cites Takashi
Matsuda, ”An inductive proof of a mixed arithmetic-geometric mean inequality”, Amer. Math.
Monthly, Vol. 102, No. 7 (1995), pp. 634-637. He informs us that Kedlaya’s proof is combina-
torial in nature, while Matsuda’s proof uses induction and Lagrange Multipliers.

B WS D W

3329. [2008 : 171, 173] Proposed by Arkady Alt, San Jose, CA, USA.

Let r be a real number, 0 < r < 1, and let x, y, and z be positive real
numbers such that xyz = r3. Prove that

1 1 1 3
< .
\/1+:c2+\/1+y2+\/1—|—z2 — V1472

Solution by Roy Barbara, Lebanese University, Fanar, Lebanon.

First we prove that for 0 < s < 1 and z, y > 0 such that zy = s?,

1 1 2

_ < . 1
Vit T v S Vit M




181

Let o = arctanz and 3 = arctany. Since tanatanB8 = zy = s? < 1, we
have a 4+ 3 < g Thus tan atan 3 < tan? (#) (see the book by Ivan

Niven and Lester H. Lance, Maxima and Minima Without Calculus, p. 103).
Therefore

cosa+cos3 = 2cos <QT+’8) cos (a _ﬁ)

2
2 cos (a—i—ﬁ
2

IN

) _ 2
\/1+tan2 (a—;ﬂ)
2
< .
~— J1+tanatanf

This inequality implies (1). For zyz = r3, we have min{zy, yz, zz} < 1.
We may assume (by symmetry) that zy < 1. Set zy = s2. By the previous

result
1 1 2

<
\/1—|—332+\/1—|—y2 — V142

and to obtain the given inequality it is enough to prove that if z > 0 and
s?z = r3, then

2 4+t < 3 @
VIFs2 1422 — Vi+7r2'
For z > 0 let
1 2 1 2z
f(z) = + = b2
V14 22 1_'_1’3 V14 22 Vz+rs
z

3

. . . , _ z T
Direct computation gives f/(z) = a5 227 + NCCEROEER Further

calculations reveal that f/(z) = 0 if and only if (z — ) ((1 — 7%)z 4+ r) =0,
hence z = r is the only (positive) zero of f’. Since 1im+ f(z) = 1 and we
z—0

3 > % > 2, it follows that f has an absolute

V1i+7r2 —

maximum at z = r and the inequality (2) holds.

also have f(r) =

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO,
USA; OLIVER GEUPEL, Briihl, NRW, Germany;, WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; XAVIER ROS, student, Universitat Politécnica de Catalunya, Barcelona,
Spain; ADAM STRZEBONSKI, Wolfram Research Inc., Champaign, IL, USA and STAN WAGON,
Macalester College, St. Paul, MN, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA;
and the proposer. There were two incorrect solutions submitted.

——— | NS
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3331. [2008 : 171, 174] Proposed by José Gibergans-Baguena and José
Luis Diaz-Barrero, Universitat Politécnica de Catalunya, Barcelona, Spain.

Let a, b, and ¢ be the lengths of the sides of triangle ABC, and let R
be its circumradius. Prove that

va2b + vVb2c + vVc2a < 3V3R.

Solution by Mihaly Bencze, Brasov, Romania.

We prove the following generalization: If x, y, and z are (fixed) positive
real numbers, then

3 (a®b¥e?) = < 3V3R.

cyclic

Using the weighted AM-GM Inequality and the well-known inequality
a+b+c < 3V3R (item 5.3 in Geometric Inequalities by O. Bottema et
al., Groningen, 1969), we obtain

b
> (aprer) s < 3 EEWEE _ qibte < 3VR,
Y+ =z

cyclic cyclic

which completes the proof. Taking x = 2, y = 1, and z = 0 yields the
desired inequality.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; SEFKET
ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; ROY BARBARA,
Lebanese University, Fanar, Lebanon;, MICHEL BATAILLE, Rouen, France; CAO MINH
QUANG, Nguyen Binh Khiem High School, Vinh Long, Vietnam; CHIP CURTIS, Missouri
Southern State University, Joplin, MO, USA; CHARLES R. DIMINNIE, Angelo State University,
San Angelo, TX, USA; OLIVER GEUPEL, Briihl, NRW, Germany; JOHN G. HEUVER, Grande
Prairie, AB; JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; KEE-WAI LAU, Hong Kong, China; SALEM MALIKIC’, student, Sarajevo
College, Sarajevo, Bosnia and Herzegovina;, DAVID E. MANES, SUNY at Oneonta, Oneonta,
NY, USA; XAVIER ROS, student, Universitat Politécnica de Catalunya, Barcelona, Spain;
GEORGE TSAPAKIDIS, Agrinio, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA;
TITU ZVONARU, Comanesti, Romania; and the proposers.
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3332. [2008 : 171, 174] Proposed by Panos E. Tsaoussoglou, Athens,
Greece.

Let a1, a2, az, and a4 be positive real numbers and let A and u be
positive integers.

(a) Prove that

aj as as 3
>

+ + :
Aaz 4+ paz  Aasz+par Aar +paz T A+p
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(b) Prove that
ay a2

+
paz + pasz + pas  Aaz + Aag + Aay
as ay 8

+ + > o
pag + Aay + paz - Aai + paz + Aag 3(A+p)

Similar solutions by Mihaly Bencze, Brasov, Romania and George Tsapakidis,
Agrinio, Greece.

Let X and p be positive real numbers.

(a) We have
aj + as + as
Aaz + pas  Aaz + pay Aai 4 pas
(12 az (13
— 1 + 2 + 3
Aaza; + paza;  Aaszaz + pajaz  Aaijas + pazas
(a1 + a2 + as)? 3
= (A+p)(araz +azaz +aza;) — A+p’

since (a1 + a2 + a3)? > 3(ajaz2 + azas + azay). [Ed.: The Cauchy-Schwarz
Inequality is used for the first inequality in the above display; multiplying
each side by (Aaza1 + pasay) + (Aasas + pajaz) + (Aayas + pazaz) makes
this more apparent. ]

(b) We have
ax + az
paz + pasz + pas - Aaz + Aag + Aay
ag + ay
pag + Aay + paz  Aap + paz + Aag
_ N
" paza; + paza; + paga; - Aasaz + Aagaz + Aajas
a? a?
3 + a
pagaz + Aaijas + pazaz  Aaiag + pazays + Aazay
(a1 + a2 + as + a4)? 8

> > ,
~ (A4 p)(araz + ara3 + a1a4 + azas + azas + azas) — 3(A+ p)

since (a1 + a2 + as + a4)? > 8(a1az + a1as + a1a4 + azas + azas + azaq).

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; GEORGE APOSTOLOPOULOS, Messolonghi, Greece; MICHEL BATAILLE, Rouen,
France; MIHALY BENCZE, Brasov, Romania; CAO MINH QUANG, Nguyen Binh Khiem High
School, Vinh Long, Vietnam; CHIP CURTIS, Missouri Southern State University, Joplin, MO,
USA; OLIVER GEUPEL, Briihl, NRW, Germany; JOE HOWARD, Portales, NM, USA; WALTHER
JANOUS, Ursulinengymnasium, Innsbruck, Austria; SALEM MALIKIC‘, student, Sarajevo
College, Sarajevo, Bosnia and Herzegovina; PETER Y. WOO, Biola University, La Mirada, CA,
USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

Almost all solvers showed that the inequalities hold for positive real numbers X\ and p.
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3333. [2008 : 172, 174] Proposed by Vaclav Konecny, Big Rapids, MI,
USA.

The n points Py, Ps, ..., P,, labelled counterclockwise about a circle,
form a convex n-gon Q. Denote by P/ the point where the interior angle
bisector at P; intersects the circle. Suppose that the points P/ determine
another convex, cyclic n-gon Q’, whose interior angle bisectors intersect the
circle in the vertices of Q. In this manner, we construct a sequence of con-
vex, cyclic n-gons Q). For which values of n can we start with an n-gon
that is not equiangular and arrive in k steps at an equiangular n-gon Q(*)?

Solution by Oliver Geupel, Briihl, NRW, Germany.

We prove that n has the desired property if and only if it is a multiple
of 4. Let Ry, Ry, ..., R,_1 be the vertices of Q*~V ¢q, ¢1, ..., pn_1 be
the corresponding interior angles, and Sy, Si, ..., S,_1 be the vertices of
Q™). The subscripts are taken modulo n. Since the vertices are cyclic and
labeled counterclockwise, for each 57 we have

£8;_18;8;41 = 4S;_1S;R; + ZR;S;Sj+1
£8j—1Rj—1R; + ZRjR;115j+1
¢ji—1+ djq1

= Pt )

Assume that Q(*—1) is not equiangular, whereas Q) is equiangular. The
equality of the angles £S;_1S;S;41 in (1) implies ¢; + ¢pj12 = Pjtr2+ djta
for each j, that is,

bj = Pjta-

Thus, if n were odd, then all the ¢; would be equal, contradicting our as-
sumption that Q(*—1) is not equiangular. Next, we suppose to the contrary
that n = 2 (mod 4). We would then have ¢g = ¢p2 = -+ = dp—g4 = Pn—_2,
whence the circular arcs R,,_1 Ry, R1R3, ..., R,_3R,,_; would be equal,

and the points R;, Rg3, ..., R,,_; would be the vertices of a regular (%) -gon.

It would then follow that ¢pg = ¢p2 = - = g = Ppu_2 = M.

n
Moreover, the same argument would apply to the odd subscripts; conse-
quently, all the ¢; would be equal, again contradicting our hypothesis.
It remains to give an example for Q(*—1) with n = 4m, where m is a

positive integer: inscribe four regular (%) -gons in a circle in such a way that

their initial vertices are not evenly spaced. For an explicit example with O
the centre of the circumcircle, let

135° 45°
ZR4jOR4j11 = i ZR4j110R4542 = ol

m
90°

ZR4j420Raj43 = ZRaj130R4j14 =
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Note that the interior angles, namely

450° 360°
¢ps; = 180° — —, Pajy1 = 180° — )
n n
270° 360°
Pajr2 = 180° — T QPajy3 = 180° — —

are not all equal. By (1) it is readily seen that Q) is equiangular.

Also solved by JOSEPH DiMURO and PETER Y. WOO, Biola University, La Mirada, CA,
USA; and WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria. There was one incom-
plete submission.

DiMuro and Woo used a pictorial approach that focused on the short diagonals of the
inscribed polygons—the chords joining R;_; to R;y1. An m-gon inscribed in a circle is
equiangular if and only if these n chords have equal lengths. The point S; where the bi-
sector of ZRj_, R; R;, again meets the circle is where the perpendicular bisector of the
chord R; 1 R; 1 meets the corresponding arc that does not contain R;. They prove that the
derived n-gon Q' is necessarily convex whenever the initial n-gon Q is (so that the assumption
of the convexity of Q' was not needed in the statement of the problem): the perpendicular
bisector of the segment R;_1 R; 1 passes through S;, and one moves counterclockwise to
reach the next chord R; R; 2, whose perpendicular bisector passes through S; 1. By looking
at the diagonals, one easily sees that if Q is any cyclic quadrilateral, then Q' is a rectangle (and
is therefore equiangular); for an 8-gon, if the alternate vertices of Q(*=1) form two nonsquare
rectangles, then it is not equiangular but Q(*), which consists of two squares, is equiangular.
They raise the question of how wild the ancestors of Q*~1) can be, but they do not pursue the
answer.

SN —

3334. [2008 : 172, 175] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

(a) Prove that
n—+1 (_1)k:—1(n;ci-1)
X, = k
2Ty T EO:

n=0
(b) Prove that
n+1 (_l)k—l(n;i—l)

[ <] kz 4

k=1 _ 77_ —
2 (n+1)2 30 3¢(4).

n=0

oo
[The function ¢ is the Riemann Zeta Function: {(s) = > %.]
n=1
Solution by Oliver Geupel, Briih, NRW, Germany.

n
Let H, = > % be the n'™® partial sum of the harmonic series. The
k=1
following identity is well known [1]:

é(—l)“%(;‘) - H,. M



186

The identity below has appeared in this journal [2]:
oo Hn
S = = 2(3). @)
n=1 n

From (1) and (2) we have

oo n+1
_1\k—1 n+1 —
Z ((n+ 7 2 Z( 1) ( >> Z i = XO),

which establishes part (a).

To prove (b), we use the following identities due to D. Borwein and
J.M. Borwein [3]:

11

2_: 1)2 = ZC(4); 2_:

=) ©

and the following summation trick [4]:

Z ajar = L Zak - Zaz . (4)
2 k=1 k=1

1<j<k<n

Let T, = z( 1)k—1 ("jgl).

From (1) we have

ro= S ()+(0)
- i<—1>k—%(:>+"z“< )

k=1

= +§(— 1)kt (n+ ) = + B
= Tn k(n-l—l) k = Tn n+1"

Since Ty = 1, from this recurrence relation and induction we easily obtain

J’_
ZHT. ©
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Using (4), we find that

"1 1
E E — = lim E
= <(n + 1)2 k2> MU gn<m k2n?2
1 UL |
= lim E — 4+ E —
m— oo 212 4
1<k<n<m k*n n=1"

= 2 (Z%) -y ) = @@ - @)
1/5 3
- 5 (@ -c) = Faw. ©)

2 4
[Ed: It is well known that ¢(2) = % and ¢(4) = g—o.]
Applying (3), (4), (5), and (6) we then have

i <(ni1)27§(‘ (" )) i T

n(]
1
°°< 1

B B oo 1 oo n H,
= 2 m§7> Z(n+1)3+2<2 R )

n=0 nel k=L
= @ Z (2( il)z ’2‘+§':>>
= Z¢(4) + = —C(4) + 5 Z <(ni1)2 2 k2>
_ <Z+%+g>¢(4) = 3¢(4) = 3_;

This completes the proof of part (b).

Also solved by MOHAMMED AASSILA, Strasbourg, France; PAUL BRACKEN, Univer-
sity of Texas, Edinburg, TX, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria
(part (a) only); and the proposer.

Aassila remarked that many similar and/or related identities can be found in the book
Combinatorial Identities by H.W. Gould.

References

[1] Loren C. Larson, Problem Solving Through Problems, Springer-Verlag, New York, 1983,
p- 160 [item 5.1.4.]

[2] Crux Mathematicorum with Mathematical Mayhem, Solution to Problem 2984, Vol. 31,
No. 7 (Sept., 2005) pp. 478-480.
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[3] Jonathan Sondow and Eric W. Weisstein, MathWorld entry Harmonic Number, items 17
and 19, http://mathworld.wolfram.com/HarmonicNumber.html

[4] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, 1994, p. 37.
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3335. [2008 : 172, 175] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.
Let a and b be positive real numbers with a < b.

(a) Prove that
Inb—1Ina pb—a _ gb—e

b—a+1 > pb—a+1 _ gb—a+1 "’

(b) Prove that
b— a)a+b

’ —a)’(b—2z)%dz
/a“” ) (b—2) dz < -

(ba—l—b—l-l _aa+b+1) (
a+b+1

Solution by Charles R. Diminnie, Angelo State University, San Angelo, TX,
USA.

Both inequalities are proved by using the General AM—-GM Inequality,
which states that if a1, a2 > 0 and w;, ws > 0 with w; + ws = 1, then

alay? < wia; + waaz,
equality holding if and only if a; = as.
(@) Forxz € (a,b) leta; = a, a2z = b, wy; = ::—Z, and wy, =
Since 0 < a < b, the General AM-GM Inequality impies that

g_JbP < (b—:c) + (az—a)b
a°—*0°-« a = x,
b—a b—a

hence a®~*b*—2 < b= It follows that

r —a

b—a’

b b bb—a+1 _ CLb—a—i—l
b—xzpxr—a b—a _
/ a b der < / T dr = .
a a b —a + 1
Since
b b b x
/ a® Tp* % dx = il <2) dx
a ba a a
b\ [°
I ) (oY - (LY
b 1 (9) be(Inb—1na) |\a a
a a
bb—a _ ab—a

’

Inb—1Ina
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we have
bb—a _ ab—a bb—a—|—1 _ ab—a—|—1
- < ,
Inb—1Ina b—a+1
and this is equivalent to the first inequality.
b
(b) Forz € (a,b)leta; = z—a,az = b—z, w, = Py and wy = - j_ 5

The General AM-GM Inequality then implies

@-aFe-oF < (2 e-a+ (S5)e-o

(s72)
= T
b+ a

with equality if and only if z — @ = b — z, or if and only if z = & to
Therefore, for all z € (a,b) — {“T’Lb},
b _ a+b
(:E—b)b(b—lt)a < (b+2) :Ea—H’,
and we have
b b—a a+b b
_ b b— a4 ( ) / a+b d
/a(m a)’( )%dx < bt a a:c x
a+b
_ 1 (ba+b+1 _ aa+b+1) (b - a) ‘
at+b+1 b+a

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; PAUL BRACKEN,
University of Texas, Edinburg, TX, USA (in memory of James Totten); OLIVER GEUPEL,
Briihl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; PETER
Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Bataille noted that the double integral I = [ [, (2~ —y®~%) (1/z — 1/y) dzdy
is negative, where A = [a, b] X [a, b], and he obtained the inequality upon expanding it. He
remarked that if one considers I = [ [, (¢(xz) — ¢(y)) (¥(x) — ¥ (y)) dx dy, where ¢ and v
are continuous, monotonic real functions on [a, b], then the method generalizes.

Y WSS L W

3336. Proposed by Michel Bataille, Rouen, France.

Let ABC be a triangle, and let B; and B, be points on AC and C,
and C be points on AB such that AB; = CBy, AC; = BC,, and B, C,
intersects BoC; at a point P in the interior of AABC. If [KLM] denotes
the area of AK LM, show that

[PCB] > [PCA]+ [PAB].
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I. Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let M be the midpoint of AC and let N be the midpoint of AB; let
¢ = AN(= 1AB) and b’ = AM(= 1AC). Assume that the points B; and
C; lie on the sides AC and AB of AABC. Note that for P to lie inside
the triangle, both B; and C; must be closer to A than B, and C, are, or
both must be farther away. Let us label the points so that both are closer:
B lies between A and M while C; lies between A and IN. Finally, let
m = MBy; = MB; and n = NC; = NC,, and let NM meet B;C5 at Q
and C, B, at R. Our goal in what follows is to reduce the problem to proving
that the points on N M are in the order N, Q, R, M.

Note that

[PCB] > [PCA] + [PAB] if and only if [PCB] > %[ABC] )

(since [ABC] = [PCB] + [PCA] + [PAB]). The conditions in (1) hold if

e - . . NQ _ 'NR
and only if P is inside A AN M, which is true if and only if oM < = °F
NQ-RM
NQ-RM-_ -y @)
NR.-QM

By Menelaus’ theorem applied to the transversal C2Q B, of triangle AN M,

QM_C’zA.BlM_c’—l-n. m

NQ NCZ AB1 n ¥ —m

Similarly, Menelaus’ theorem applied to the transversal C; RB- gives us

NR NC]_ ABZ _ n b’+m
RM CiA B:M ¢ —n m

Consequently,
NQ-RM  c—n b —-m

NR-QM o c’—l—n. v+m’
which is less than 1, as required by condition (2).

I1. Outline of the solution by Joel Schlosberg, Bayside, NY, USA, modified
by the editor.

Because ratios of areas, ratios of segments on a line or on parallel lines,
and concurrence of lines are all affine properties, we may, without loss of
generality, introduce a Cartesian coordinate system with

A=(0,1), B=(-2,-1), and C=(2,-1).
With these coordinates, the midpoints of AC and AB are, respectively,

M = (1,0) and N = (-1,0).
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As in the first solution, we take B; between A and M, and C; between A
and N. Letting the vertical distance from M to B; be m and from N to C;
be n, we have

B; = (1—m,m), By = (14+m,—m),
Ci = (-1+n,n), C; = (—-1—n,—n).

Again, as in the first solution, we wish to prove that the point P where B;Cy
intersects C; B, lies above the line N M, which here satisfies the equation
y = 0. A straightforward computation shows that the y-coordinate of P is
mn > 0, which completes the proof.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; ROY BARBARA,
Lebanese University, Fanar, Lebanon; RICARDO BARROSO CAMPOQS, University of Seville,
Seville, Spain; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVER
GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; VACLAV KONECV‘N)/’, Big Rapids, MI, USA; TITU ZVONARU, Comanesti, Romania; and
the proposer.

In addition to his solution, Geupel showed that our statement of the problem was faulty:
it should have explicitly stated that By and Bz are taken on the “side” AC (as opposed to the
line AC), and similarly for the points C1 and C2 on side AB. Otherwise, with m > 0 and
n < 0 in the notation of the second solution, it is easy to adjust these numbers so that P lies
inside ANABC and below the line N M, in which case the inequality in the problem would be
reversed. In fact, the proposer had it correct, but the word “side” was unfortunately omitted
from the printed version.

Nt —

3337. [2008 : 173, 175] Proposed by Michel Bataille, Rouen, France.

In the plane of AABC, what is the locus of points P such that the
circumradii of APBC, APCA, and APAB are all equal?

Solution by Oliver Geupel, Briihl, NRW, Germany.

Denote the desired locus by IT, and let " and H be the circumcircle and
the orthocentre of AABC, respectively. We will prove that

Im = (FU{H})\{AaB’C}'

Let P € II. Then P is distinct from A, B, and C. [Ed.: Whether or not
one wants to include the vertices as part of the locus depends on how one
interprets the question; most readers felt that the vertices should be omitted
from the locus because a circumcircle is not well defined for a triangle when
two of its vertices coincide.] 1f two of the circumcircles of the triangles PBC,
PCA, and PAB coincide, then all three circles coincide with I', and we
conclude that P € I'. Otherwise, the centres of these congruent circumcircles
will be distinct. Call them O4, Op, and O¢, respectively, and let A’, B, and
C’ be the respective midpoints of the line segments PA, PB, and PC. Then
AC || A’C’. Moreover, Oc is the reflection of Op in the mirror PA (which
is the common chord of two congruent circles). Therefore, O A’ = A’Oc;
similarly, OgC’ = C’O 4, whence A’C’ || OcO4. We deduce that AC and
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0 40¢ are parallel. Since PB is perpendicular to O,0¢ and, thus, to AC,
the point P is on the altitude from B to C A. Similarly, P is on the other
altitudes, whence P = H, as claimed.

Conversely, each point on T distinct from the vertices A, B, C belongs
to the desired locus. It remains only to show that when ABC is not a right
triangle (in which case H would be a vertex), the triangles HBC, HC A, and
H AB have congruent circumcircles. This is a standard theorem—these cir-
cumcircles all have radii equal to the radius of I'—but its proof is easy: Draw
the lines through the vertices of AABC that are parallel to the opposite
sides, forming a triangle A*B*C*. Let O4, Og, and O¢ be the midpoints of
HA*, HB*, and HC*, respectively. Since A, B, and C are the midpoints
of B*C*, C*A*, and A*B*, respectively, we see that H is the circumcentre
of AA*B*C*, and

O.B OoH = 0,C = OgC = OpH

= OpA = OcA = OcH = O¢B.

This completes the proof.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; RICARDO BARROSO
CAMPOS, University of Seville, Seville, Spain; WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; SALEM MALIKIC, student, Sarajevo College, Sarajevo, Bosnia and
Herzegovina; D.]. SMEENK, Zaltbommel, the Netherlands; and the proposer. There were five
incomplete submissions.

Our result follows immediately from the 3-circle Theorem of Gheorghe TiTeica from 1908:
1f three congruent circles pass through a common point, then their other three intersection points
lie on a fourth circle of the same radius. The result was independently discovered by Roger
A. Johnson (“A Circle Theorem”, Amer. Math. Monthly, 24:5 (May, 1916), 243-244) and is
sometimes attributed to him. Geupel’s argument says that the four intersection points of these
four congruent circles form an orthocentric quadrilateral (that is, each point is the orthocentre
of the triangle formed by the other three). Because this configuration has been studied for such
a long time, it seems likely that the result might be more than a century old.
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