Olympiad Training Materials

©2007 The Author(s) and The IMO Compendium Group

Inversion

Dušan Djukić

Contents

1	General Properties	 1
2	Problems	 2
3	Solutions	 3

1 General Properties

Inversion Ψ is a map of a plane or space without a fixed point *O* onto itself, determined by a circle *k* with center *O* and radius *r*, which takes point $A \neq O$ to the point $A' = \Psi(A)$ on the ray *OA* such that $OA \cdot OA' = r^2$. From now on, unless noted otherwise, *X'* always denotes the image of object *X* under a considered inversion.

Clearly, map Ψ is continuous and inverse to itself, and maps the interior and exterior of *k* to each other, which is why it is called "inversion". The next thing we observe is that $\triangle P'OQ' \sim \triangle QOP$ for all point $P, Q \neq O$ (for $\angle P'OQ' = \angle QOP$ and $OP'/OQ' = (r^2/OP)/(r^2/OQ) = OQ/OP$), with the ratio of similitude $\frac{r^2}{OPOO}$. As a consequence, we have

$$\angle OQ'P' = \angle OPQ$$
 and $P'Q' = \frac{r^2}{OP \cdot OQ}PQ$.

What makes inversion attractive is the fact that it maps lines and circles into lines and circles. A line through O (O excluded) obviously maps to itself. What if a line p does not contain O? Let P be the projection of O on p and $Q \in p$ an arbitrary point of p. Angle $\angle OPQ = \angle OQ'P'$ is right, so Q' lies on circle k with diameter OP'. Therefore $\Psi(p) = k$ and consequently $\Psi(k) = p$. Finally, what is the image of a circle k not passing through O? We claim that it is also a circle; to show this, we shall prove that inversion takes any four concyclic points A, B, C, D to four concyclic points A', B', C', D'. The following angles are regarded as oriented. Let us show that $\angle A'C'B' = \angle A'D'B'$. We have $\angle A'C'B' = \angle OC'B' - \angle OC'A' = \angle OBC - \angle OAC$ and analogously $\angle A'D'B' = \angle OBD - \angle OAD$, which implies $\angle A'D'B' - \angle A'C'B' = \angle CBD - \angle CAD = 0$, as we claimed. To sum up:

- A line through O maps to itself.
- A circle through O maps to a line not containing O and vice-versa.
- A circle not passing through O maps to a circle not passing through O (not necessarily the same).

Remark. Based on what we have seen, it can be noted that inversion preserves angles between curves, in particular circles or lines. Maps having this property are called *conformal*.

When should inversion be used? As always, the answer comes with experience and cannot be put on a paper. Roughly speaking, inversion is useful in destroying "inconvenient" circles and angles on a picture. Thus, some pictures "cry" to be inverted:

• There are many circles and lines through the same point A. Invert through A.

Problem 1 (IMO 2003, shortlist). Let $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$ be distinct circles such that Γ_1, Γ_3 are externally tangent at P, and Γ_2, Γ_4 are externally tangent at the same point P. Suppose that Γ_1 and Γ_2 ; Γ_2 and Γ_3 ; Γ_3 and Γ_4 ; Γ_4 and Γ_1 meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$\frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.$$

Solution. Apply the inversion with center at *P* and radius *r*; let \widehat{X} denote the image of *X*. The circles $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$ are transformed into lines $\widehat{\Gamma_1}, \widehat{\Gamma_2}, \widehat{\Gamma_3}, \widehat{\Gamma_4}$, where $\widehat{\Gamma_1} \parallel \widehat{\Gamma_3}$ and $\widehat{\Gamma_2} \parallel \widehat{\Gamma_4}$, and therefore \widehat{ABCD} is a parallelogram. Further, we have $AB = \frac{r^2}{P\widehat{A} \cdot P\widehat{B}}\widehat{AB}$, $PB = \frac{r^2}{P\widehat{B}}$, etc. The equality to be proven becomes

$$\frac{P\widehat{D}^2}{P\widehat{B}^2} \cdot \frac{\widehat{A}\widehat{B} \cdot \widehat{B}\widehat{C}}{\widehat{A}\widehat{D} \cdot \widehat{D}\widehat{C}} = \frac{P\widehat{D}^2}{P\widehat{B}^2}$$

which holds because $\widehat{AB} = \widehat{CD}$ and $\widehat{BC} = \widehat{DA}$.

• There are many angles $\angle AXB$ with fixed A, B. Invert through A or B.

Problem 2 (IMO 1996, problem 2). Let P be a point inside $\triangle ABC$ such that $\angle APB - \angle C = \angle APC - \angle B$. Let D, E be the incenters of $\triangle APB, \triangle APC$ respectively. Show that AP, BD, and CE meet in a point.

Solution. Apply an inversion with center at *A* and radius *r*. Then the given condition becomes $\angle B'C'P' = \angle C'B'P'$, i.e., B'P' = P'C'. But $P'B' = \frac{r^2}{AP \cdot AB}PB$, so AC/AB = PC/PB. \triangle

Caution: Inversion may also bring new inconvenient circles and angles. Of course, keep in mind that not all circles and angles are inconvenient.

2 Problems

- 1. Circles k_1, k_2, k_3, k_4 are such that k_2 and k_4 each touch k_1 and k_3 . Show that the tangency points are collinear or concyclic.
- 2. Prove that for any points $A, B, C, D, AB \cdot CD + BC \cdot DA \ge AC \cdot BD$, and that equality holds if and only if A, B, C, D are on a circle or a line in this order. (*Ptolemy's inequality*)
- 3. Let ω be the semicircle with diameter *PQ*. A circle *k* is tangent internally to ω and to segment *PQ* at *C*. Let *AB* be the tangent to *k* perpendicular to *PQ*, with *A* on ω and *B* on segment *CQ*. Show that *AC* bisects the angle $\angle PAB$.
- 4. Points *A*, *B*, *C* are given on a line in this order. Semicircles ω , ω_1 , ω_2 are drawn on *AC*, *AB*, *BC* respectively as diameters on the same side of the line. A sequence of circles (k_n) is constructed as follows: k_0 is the circle determined by ω_2 and k_n is tangent to ω , ω_1 , k_{n-1} for $n \ge 1$. Prove that the distance from the center of k_n to *AB* is 2*n* times the radius of k_n .
- 5. A circle with center *O* passes through points *A* and *C* and intersects the sides *AB* and *BC* of the triangle *ABC* at points *K* and *N*, respectively. The circumscribed circles of the triangles *ABC* and *KBN* intersect at two distinct points *B* and *M*. Prove that $\angle OMB = 90^{\circ}$. (*IMO 1985-5*.)
- 6. Let *p* be the semiperimeter of a triangle *ABC*. Points *E* and *F* are taken on line *AB* such that CE = CF = p. Prove that the circumcircle of $\triangle EFC$ is tangent to the excircle of $\triangle ABC$ corresponding to *AB*.

- 7. Prove that the nine-point circle of triangle *ABC* is tangent to the incircle and all three excircles. (*Feuerbach's theorem*)
- 8. The incircle of a triangle *ABC* is tangent to *BC*, *CA*, *AB* at *M*, *N* and *P*, respectively. Show that the circumcenter and incenter of $\triangle ABC$ and the orthocenter of $\triangle MNP$ are collinear.
- 9. Points *A*, *B*, *C* are given in this order on a line. Semicircles *k* and *l* are drawn on diameters *AB* and *BC* respectively, on the same side of the line. A circle *t* is tangent to *k*, to *l* at point $T \neq C$, and to the perpendicular *n* to *AB* through *C*. Prove that *AT* is tangent to *l*.
- 10. Let $A_1A_2A_3$ be a nonisosceles triangle with incenter *I*. Let C_i , i = 1, 2, 3, be the smaller circle through *I* tangent to A_iA_{i+1} and A_iA_{i+2} (the addition of indices being mod 3). Let B_i , i = 1, 2, 3, be the second point of intersection of C_{i+1} and C_{i+2} . Prove that the circumcenters of the triangles A_1B_1I , A_2B_2I , A_3B_3I are collinear. (*IMO 1997 Shortlist*)
- 11. If seven vertices of a hexahedron lie on a sphere, then so does the eighth vertex.
- 12. A sphere with center on the plane of the face *ABC* of a tetrahedron *SABC* passes through *A*, *B* and *C*, and meets the edges *SA*, *SB*, *SC* again at A_1, B_1, C_1 , respectively. The planes through A_1, B_1, C_1 tangent to the sphere meet at a point *O*. Prove that *O* is the circumcenter of the tetrahedron $SA_1B_1C_1$.
- 13. Let *KL* and *KN* be the tangents from a point *K* to a circle *k*. Point *M* is arbitrarily taken on the extension of *KN* past *N*, and *P* is the second intersection point of *k* with the circumcircle of triangle *KLM*. The point *Q* is the foot of the perpendicular from *N* to *ML*. Prove that $\angle MPQ = 2 \angle KML$.
- 14. The incircle Ω of the acute-angled triangle *ABC* is tangent to *BC* at *K*. Let *AD* be an altitude of triangle *ABC* and let *M* be the midpoint of *AD*. If *N* is the other common point of Ω and *KM*, prove that Ω and the circumcircle of triangle *BCN* are tangent at *N*. (*IMO 2002 Shortlist*)

3 Solutions

- 1. Let k_1 and k_2 , k_2 and k_3 , k_3 and k_4 , k_4 and k_1 touch at A, B, C, D, respectively. An inversion with center A maps k_1 and k_2 to parallel lines k'_1 and k'_2 , and k_3 and k_4 to circles k'_3 and k'_4 tangent to each other at C' and tangent to k'_2 at B' and to k'_4 at D'. It is easy to see that B', C', D' are collinear. Therefore B, C, D lie on a circle through A.
- 2. Applying the inversion with center A and radius r gives $AB = \frac{r^2}{AB'}$, $CD = \frac{r^2}{AC'AD'}C'D'$, etc. The required inequality reduces to $C'D' + B'C' \ge B'D'$.
- 3. Invert through *C*. Semicircle ω maps to the semicircle ω' with diameter P'Q', circle *k* to the tangent to ω' parallel to P'Q', and line *AB* to a circle *l* centered on P'Q' which touches *k* (so it is congruent to the circle determined by ω'). Circle *l* intersects ω' and P'Q' in *A'* and *B'* respectively. Hence P'A'B' is an isosceles triangle with $\angle PAC = \angle A'P'C = \angle A'B'C = \angle BAC$.
- 4. Under the inversion with center A and squared radius $AB \cdot AC$ points B and C exchange positions, ω and ω_1 are transformed to the lines perpendicular to BC at C and B, and the sequence (k_n) to the sequence of circles (k'_n) inscribed in the region between the two lines. Obviously, the distance from the center of k'_n to AB is 2n times its radius. Since circle k_n is homothetic to k'_n with respect to A, the statement immediately follows.
- 5. Invert through *B*. Points A', C', M' are collinear and so are K', N', M', whereas A', C', N', K' are on a circle. What does the center *O* of circle *ACNK* map to? *Inversion does not preserve centers*. Let B_1 and B_2 be the feet of the tangents from *B* to circle *ACNK*. Their images B'_1 and B'_2 are the feet of the tangents from *B* to circle A'C'N'K', and since *O* lies on the circle BB_1B_2 ,

its image O' lies on the line $B'_1B'_2$ - more precisely, it is at the midpoint of $B'_1B'_2$. We observe that M' is on the polar of point B with respect to circle A'C'N'K', which is nothing but the line B_1B_2 . It follows that $\angle OBM = \angle BO'M' = \angle BO'B'_1 = 90^\circ$.

- 6. The inversion with center *C* and radius *p* maps points *E* and *F* and the excircle to themselves, and the circumcircle of $\triangle CEF$ to line *AB* which is tangent to the excircle. The statement follows from the fact that inversion preserves tangency.
- 7. We shall show that the nine-point circle ε touches the incircle k and the excircle k_a across A. Let A_1, B_1, C_1 be the midpoints of BC, CA, AB, and P, Q the points of tangency of k and k_a with BC, respectively. Recall that $A_1P = A_1Q$; this implies that the inversion with center A_1 and radius A_1P takes k and k_a to themselves. This inversion also takes ε to a line. It is not difficult to prove that this line is symmetric to BC with respect to the angle bisector of $\angle BAC$, so it also touches k and k_a .
- 8. The incenter of $\triangle ABC$ and the orthocenter of $\triangle MNP$ lie on the Euler line of the triangle *ABC*. The inversion with respect to the incircle of *ABC* maps points *A*,*B*,*C* to the midpoints of *NP*,*PM*,*MN*, so the circumcircle of *ABC* maps to the nine-point circle of $\triangle MNP$ which is also centered on the Euler line of *MNP*. It follows that the center of circle *ABC* lies on the same line.
- 9. An inversion with center *T* maps circles *t* and *l* to parallel lines *t'* and *l'*, circle *k* and line *n* to circles *k'* and *n'* tangent to *t'* and *l'* (where $T \in n'$), and line *AB* to circle *a'* perpendicular to *l'* (because an inversion preserves angles) and passes through $B', C' \in l'$; thus *a'* is the circle with diameter B'C'. Circles *k'* and *n'* are congruent and tangent to *l'* at *B'* and *C'*, and intersect *a'* at *A'* and *T* respectively. It follows that *A'* and *T* are symmetric with respect to the perpendicular bisector of B'C' and hence $A'T \parallel l'$, so *AT* is tangent to *l*.
- 10. The centers of three circles passing through the same point *I* and not touching each other are collinear if and only if they have another common point. Hence it is enough to show that the circles A_iB_iI have a common point other than *I*. Now apply inversion at center *I* and with an arbitrary power. We shall denote by *X'* the image of *X* under this inversion. In our case, the image of the circle C_i is the line $B'_{i+1}B'_{i+2}$ while the image of the line $A_{i+1}A_{i+2}$ is the circle $IA'_{i+1}A'_{i+2}$ that is tangent to $B'_iB'_{i+2}$, and $B'_iB'_{i+2}$. These three circles have equal radii, so their centers P_1, P_2, P_3 form a triangle also homothetic to $\triangle B'_1B'_2B'_3$. Consequently, points A'_1, A'_2, A'_3 , that are the reflections of *I* across the sides of $P_1P_2P_3$, are vertices of a triangle also homothetic to $B'_1B'_2B'_3$. It follows that $A'_1B'_1, A'_2B'_2, A'_3B'_3$ are concurrent at some point *J'*, i.e., that the circles A_iB_iI all pass through *J*.
- 11. Let AYBZ, AZCX, AXDY, WCXD, WDYB, WBZC be the faces of the hexahedron, where A is the "eighth" vertex. Apply an inversion with center W. Points B', C', D', X', Y', Z' lie on some plane π , and moreover, C', X', D'; D', Y', B'; and B', Z', C' are collinear in these orders. Since A is the intersection of the planes YBZ, ZCX, XDY, point A' is the second intersection point of the spheres WY'B'Z', WZ'C'X', WX'D'Y'. Since the circles Y'B'Z', Z'C'X', X'D'Y' themselves meet at a point on plane π , this point must coincide with A'. Thus $A' \in \pi$ and the statement follows.
- 12. Apply the inversion with center *S* and squared radius $SA \cdot SA_1 = SB \cdot SB_1 = SC \cdot SC_1$. Points *A* and *A*₁, *B* and *B*₁, and *C* and *C*₁ map to each other, the sphere through *A*, *B*, *C*, *A*₁, *B*₁, *C*₁ maps to itself, and the tangent planes at *A*₁, *B*₁, *C*₁ go to the spheres through *S* and *A*, *S* and *B*, *S* and *C* which touch the sphere *ABCA*₁*B*₁*C*₁. These three spheres are perpendicular to the plane *ABC*, so their centers lie on the plane *ABC*; hence they all pass through the point \overline{S} symmetric to *S* with respect to plane *ABC*. Therefore \overline{S} is the image of *O*. Now since $\angle SA_1O = \angle S\overline{S}A = \angle OSA_1$, we have $OS = OA_1$ and analogously $OS = OB_1 = OC_1$.

13. Apply the inversion with center *M*. Line *MN'* is tangent to circle *k'* with center *O'*, and a circle through *M* is tangent to *k'* at *L'* and meets *MN'* again at *K'*. The line *K'L'* intersects *k'* at *P'*, and *N'O'* intersects *ML'* at *Q'*. The task is to show that $\angle MQ'P' = \angle L'Q'P' = 2\angle K'ML'$.

Let the common tangent at L' intersect MN' at Y'. Since the peripheral angles on the chords K'L' and L'P' are equal (to $\angle K'L'Y'$), we have $\angle L'O'P' = 2\angle L'N'P' = 2\angle K'ML'$. It only remains to show that L', P', O', Q' are on a circle. This follows from the equality $\angle O'Q'L' = 90^\circ - \angle L'MK' = 90^\circ - \angle L'N'P' = \angle O'P'L'$ (the angles are regarded as oriented).

14. Let *k* be the circle through *B*,*C* that is tangent to the circle Ω at point *N'*. We must prove that *K*,*M*,*N'* are collinear. Since the statement is trivial for AB = AC, we may assume that AC > AB. As usual, $R, r, \alpha, \beta, \gamma$ denote the circumradius and the inradius and the angles of $\triangle ABC$, respectively.

We have $\tan \angle BKM = DM/DK$. Straightforward calculation gives $DM = \frac{1}{2}AD = R\sin\beta\sin\gamma$ and $DK = \frac{DC - DB}{2} - \frac{KC - KB}{2} = R\sin(\beta - \gamma) - R(\sin\beta - \sin\gamma) = 4R\sin\frac{\beta - \gamma}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}$, so we obtain $\tan \angle BKM = \frac{\sin\beta\sin\gamma}{4\sin\frac{\beta - \gamma}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}} = \frac{\cos\frac{\beta}{2}\cos\frac{\gamma}{2}}{\sin\frac{\beta - \gamma}{2}}$.

To calculate the angle BKN', we apply the inversion ψ with center at K and power $BK \cdot CK$. For each object X, we denote by \hat{X} its image under ψ . The incircle Ω maps to a

line $\widehat{\Omega}$ parallel to \widehat{BC} , at distance $\frac{BK \cdot CK}{2r}$ from \widehat{BC} . Thus the point \widehat{N}' is the projection of the midpoint \widehat{U} of \widehat{BC} onto $\widehat{\Omega}$. Hence

$$\tan \angle BKN' = \tan \angle \widehat{B}K\widehat{N}' = \frac{\widehat{U}\widehat{N}'}{\widehat{U}K} = \frac{BK \cdot CK}{r(CK - BK)}$$

Again, one easily checks that $KB \cdot KC = bc \sin^2 \frac{\alpha}{2}$ and $r = 4R \sin \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$, which implies

$$\tan \angle BKN' = \frac{bc \sin^2 \frac{\alpha}{2}}{r(b-c)}$$
$$= \frac{4R^2 \sin\beta \sin\gamma \sin^2 \frac{\alpha}{2}}{4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \cdot 2R(\sin\beta - \sin\gamma)} = \frac{\cos \frac{\beta}{2} \cos \frac{\gamma}{2}}{\sin \frac{\beta-\gamma}{2}}.$$

Hence $\angle BKM = \angle BKN'$, which implies that K, M, N' are indeed collinear; thus $N' \equiv N$.