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1 Basic Methods For Solving Functional Equations

• Substituting the values for variables. The most common firstattempt is with some constants
(eg. 0 or 1), after that (if possible) some expressions whichwill make some part of the equation
to become constant. For example iff (x+ y) appears in the equations and if we have found
f (0) then we plugy=−x. Substitutions become less obvious as the difficulty of the problems
increase.

• Mathematical induction. This method relies on using the value f (1) to find all f (n) for n

integer. After that we findf
(1

n

)

and f (r) for rationalr. This method is used in problems

where the function is defined onQ and is very useful, especially with easier problems.

• Investigating for injectivity or surjectivity of functions involved in the equaiton. In many of
the problems these facts are not difficult to establish but can be of great importance.

• Finding the fixed points or zeroes of functions. The number ofproblems using this method is
considerably smaller than the number of problems using someof the previous three methods.
This method is mostly encountered in more difficult problems.

• Using the Cauchy’s equation and equation of its type.

• Investigating the monotonicity and continuity of a function. Continuity is usually given as
additional condition and as the monotonicity it usually serves for reducing the problem to
Cauchy’s equation. If this is not the case, the problem is on the other side of difficulty line.

• Assuming that the function at some point is greater or smaller then the value of the function
for which we want to prove that is the solution. Most often it is used as continuation of the
method of mathematical induction and in the problems in which the range is bounded from
either side.

• Making recurrent relations. This method is usually used with the equations in which the range
is bounded and in the case when we are able to find a relashionship betweenf ( f (n)), f (n),
andn.
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• Analyzing the set of values for which the function is equal tothe assumed solution. The goal
is to prove that the described set is precisely the domain of the function.

• Substituting the function. This method is often used to simplify the given equation and is
seldom of crucial importance.

• Expressing functions as sums of odd and even. Namely each function can be represented
as a sum of one even and one odd function and this can be very handy in treating ”linear”
functional equations involving many functions.

• Treating numbers in a system with basis different than 10. Ofcourse, this can be used only if
the domain isN.

• For the end let us emphasize that it is very important to guessthe solution at the beginning.
This can help a lot in finding the appropriate substitutions.Also, at the end of the solution,
DON’T FORGET to verify that your solution satisfies the givencondition.

2 Cauchy Equation and Equations of the Cauchy type

The equationf (x+ y) = f (x)+ f (y) is called the Cauchy equation. If its domain isQ, it is well-
known that the solution is given byf (x) = x f(1). That fact is easy to prove using mathematical
induction. The next problem is simply the extention of the domain fromQ to R. With a relatively
easy counter-example we can show that the solution to the Cauchy equation in this case doesn’t have
to be f (x) = x f(1). However there are many additional assumptions that forcesthe general solution
to be of the described form. Namely if a functionf satisfies any of the conditions:

• monotonicity on some interval of the real line;

• continuity;

• boundedness on some interval;

• positivity on the rayx≥ 0;

then the general solution to the Cauchy equationf : R → Shas to bef (x) = x f(1).
The following equations can be easily reduced to the Cauchy equation.

• All continuous functionsf : R → (0,+∞) satisfying f (x+ y) = f (x) f (y) are of the form
f (x) = ax. Namely the functiong(x) = log f (x) is continuous and satisfies the Cauchy equa-
tion.

• All continuous functionsf : (0,+∞) → R satisfying f (xy) = f (x) + f (y) are of the form
f (x) = logax. Now the functiong(x) = f (ax) is continuous and satisfies the Cauchy equation.

• All continuous functionsf : (0,+∞) → (0,+∞) satisfying f (xy) = f (x) f (y) are f (x) = xt ,
wheret = loga b and f (a) = b. Indeed the functiong(x) = log f (ax) is continuous and satisfies
the Cauchy equation.

3 Problems with Solutions

The following examples should illustrate the previously outlined methods.

Problem 1. Find all functions f: Q → Q such that f(1) = 2 and f(xy) = f (x) f (y)− f (x+y)+1.
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Solution. This is a classical example of a problem that can be solved using mathematical induction.
Notice that if we setx = 1 andy = n in the original equation we getf (n+ 1) = f (n) + 1, and
since f (1) = 2 we havef (n) = n+ 1 for every natural numbern. Similarly for x = 0 andy = n
we get f (0)n = f (n)−1 = n, i.e. f (0). Now our goal is to findf (z) for eachz∈ Z. Substituting
x = −1 andy = 1 in the original equation gives usf (−1) = 0, and settingx = −1 andy = n gives
f (−n) = − f (n−1)+ 1= −n+ 1. Hencef (z) = z+ 1 for eachz∈ Z. Now we have to determine

f
(1

n

)

. Pluggingx = n andy =
1
n

we get

f (1) = (n+1) f
(1

n

)

− f
(

n+
1
n

)

+1. (1)

Furthermore forx = 1 andy = m+
1
n

we get f
(

m+1+
1
n

)

= f
(

m+
1
n

)

+1, hence by the mathe-

matical inductionf
(

m+
1
n

)

= m+ f
(1

n

)

. Iz (1) we now have

f
(1

n

)

=
1
n

+1,

for every natural numbern. Furthermore forx = m andy =
1
n

we get f
(m

n

)

=
m
n

+ 1, i.e. f (r) =

r +1, for every positive rational numberr. Settingx=−1 andy= r we getf (−r) =− f (r−1)+1=
−r +1 as well hencef (x) = x+1, for eachx∈ Q.
Verification:Sincexy+1 = (x+1)(y+1)− (x+y+1)+1, for all x,y∈ Q, f is the solution to our
equation.△

Problem 2. (Belarus 1997) Find all functions g: R → R such that for arbitrary real numbers x and
y:

g(x+y)+g(x)g(y) = g(xy)+g(x)+g(y).

Solution. Notice thatg(x) = 0 andg(x) = 2 are obviously solutions to the given equation. Using
mathematical induction it is not difficult to prove that ifg is not equal to one of these two functions
theng(x) = x for all x ∈ Q. It is also easy to prove thatg(r + x) = r + g(x) andg(rx) = rg(x),
wherer is rational andx real number. Particularly from the second equation forr = −1 we get
g(−x) = −g(x), hence settingy = −x in the initial equation givesg(x)2 = g(x2). This means that
g(x) ≥ 0 for x ≥ 0. Now we use the standard method of extending toR. Assume thatg(x) < x.
Chooser ∈ Q such thatg(x) < r < x. Then

r > g(x) = g(x− r)+ r ≥ r,

which is clearly a contradiction. Similarly fromg(x) > x we get another contradiction. Thus we
must haveg(x) = x for everyx ∈ R. It is easy to verify that all three functions satisfy the given
functional equation.△

Problem 3. The function f: R → R satisfies x+ f (x) = f ( f (x)) for every x∈ R. Find all solutions
of the equation f( f (x)) = 0.

Solution. The domain of this function isR, so there isn’t much hope that this can be solved using
mathematical induction. Notice thatf ( f (x))− f (x) = x and if f (x) = f (y) then clearlyx = y. This
means that the function is injective. Sincef ( f (0)) = f (0) + 0 = f (0), because of injectivity we
must havef (0) = 0, implying f ( f (0)) = 0. If there were anotherx such thatf ( f (x)) = 0= f ( f (0)),
injectivity would imply f (x) = f (0) andx = 0. △

Problem 4. Find all injective functions f: N → R that satisfy:

(a) f ( f (m)+ f (n)) = f ( f (m))+ f (n), (b) f (1) = 2, f (2) = 4.



4 Olympiad Training Materials, www.imomath.com

Solution. Settingm= 1 andn first, andm= n, n = 1 afterwards we get

f ( f (1)+ f (n)) = f ( f (1))+ f (n), f ( f (n)+ f (1)) = f ( f (n))+ f (1).

Let us emphasize that this is one standard idea if the expression on one side is symmetric with
respect to the variables while the expression on the other side is not. Now we havef ( f (n)) =
f (n)− f (1)+ f ( f (1)) = f (n)−2+ f (2) = f (n)+2. From here we conclude thatf (n) = m implies
f (m) = m+ 2 and now the induction givesf (m+ 2k) = m+ 2k+ 2, for everyk ≥ 0. Specially
if f (1) = 2 then f (2n) = 2n+ 2 for all positive integersn. The injectivity of f gives that at odd
numbers (except 1) the function has to take odd values. Letp be the smallest natural number such
that for somek f(k) = 2p+ 1. We havef (2p+ 2s+ 1) = 2p+ 2s+ 3 for s≥ 0. Therefore the
numbers 3,5, . . . ,2p−1 are mapped into 1,3, . . . ,2p+1. If f (t) = 1 for somet, then form= n = t
4 = f (2) = f ( f (t)+ f (t)) = f ( f (t))+ f (t) = 3, which is a contradiction. If for somet such that
f (t) = 3 then f (3+2k) = 5+2k, which is a contradiction to the existence of sucht. It follows that
the numbers 3,5, . . . ,2p−1 are mapped into 5,7, . . . ,2p+ 1. Hencef (3+ 2k) = 5+ 2k. Thus the
solution is f (1) = 2 and f (n) = n+2, for n≥ 2.
It is easy to verify that the function satisfies the given conditions.△
Problem 5. (BMO 1997, 2000) Solve the functional equation

f (x f(x)+ f (y)) = y+ f (x)2, x,y∈ R.

Solution. In probelms of this type it is usually easy to prove that the functions are injective or
surjective, if the functions are injective/surjective. Inthis case forx = 0 we getf ( f (y)) = y+ f (0)2.
Since the function on the right-hand side is surjective the same must hold for the function on the
left-hand side. This implies the surjectivity off . Injectivity is also easy to establish. Now there
existst such thatf (t) = 0 and substitutionx = 0 andy = t yields f (0) = t + f (0)2. Forx = t we get
f ( f (y)) = y. Thereforet = f ( f (t)) = f (0) = t + f (0)2, i.e. f (0) = 0. Replacingx with f (x) gives

f ( f (x)x+ f (y)) = x2 +y,

hencef (x)2 = x2 for every real numberx. Consider now the two cases:
First case f(1) = 1. Pluggingx = 1 gives f (1+ f (y)) = 1+y, and after taking squares(1+y)2 =
f (1+ f (y))2 = (1+ f (y))2 = 1+ 2 f (y) + f (y)2 = 1+ 2 f (y) + y2. Clearly in this case we have
f (y) = y for every realy.
Second case f(1) = −1. Pluggingx = −1 gives f (−1+ f (y)) = 1+ y, and after taking squares
(1+y)2 = f (−1+ f (y))2 = (−1+ f (y))2 = 1−2 f (y)+ f (y)2 = 1−2 f (y)+y2. Now we conclude
f (y) = −y for every real numbery.
It is easy to verify thatf (x) = x and f (x) = −x are indeed the solutions.△
Problem 6. (IMO 1979, shortlist) Given a function f: R → R, if for every two real numbers x and
y the equality f(xy+x+y) = f (xy)+ f (x)+ f (y) holds, prove that f(x+y) = f (x)+ f (y) for every
two real numbers x and y.

Solution. This is a clasical example of the equation that solution is based on a careful choice of
values that are plugged in a functional equation. Plugging in x = y = 0 we get f (0) = 0. Plugging
in y = −1 we get f (x) = − f (−x). Plugging iny = 1 we get f (2x+ 1) = 2 f (x)+ f (1) and hence
f (2(u+v+uv)+1)= 2 f (u+v+uv)+ f (1)= 2 f (uv)+2 f (u)+2 f (v)+ f (1) for all realu andv. On
the other hand, plugging inx= uandy= 2v+1 we getf (2(u+v+uv)+1)= f (u+(2v+1)+u(2v+
1)) = f (u) + 2 f (v) + f (1) + f (2uv+ u). Hence it follows that 2f (uv)+ 2 f (u)+ 2 f (v) + f (1) =
f (u)+2 f (v)+ f (1)+ f (2uv+u), i.e.,

f (2uv+u) = 2 f (uv)+ f (u). (1)

Plugging inv=−1/2 we get 0= 2 f (−u/2)+ f (u)=−2 f (u/2)+ f (u). Hence,f (u) = 2 f (u/2) and
consequentlyf (2x) = 2 f (x) for all reals. Now (1) reduces tof (2uv+u) = f (2uv)+ f (u). Plugging
in u = y andx = 2uv, we obtainf (x)+ f (y) = f (x+y) for all nonzero realsx andy. Sincef (0) = 0,
it trivially holds that f (x+y) = f (x)+ f (y) when one ofx andy is 0.△
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Problem 7. Does there exist a function f: R → R such that f( f (x)) = x2−2 for every real number
x?

Solution. After some attempts we can see that none of the first three methods leads to a progress.
Notice that the functiong of the right-hand side has exactly 2 fixed points and that the functiong◦g
has exactly 4 fixed points. Now we will prove that there is no function f such thatf ◦ f = g. Assume
the contrary. Leta,b be the fixed points ofg, anda,b,c,d the fixed points ofg◦g. Assume that
g(c) = y. Thenc= g(g(c)) = g(y), henceg(g(y)) = g(c) = y andy has to be on of the fixed points of
g◦g. If y= a then froma= g(a) = g(y) = c we get a contradiction. Similarlyy 6= b, and sincey 6= c
we gety = d. Thusg(c) = d andg(d) = c. Furthermore we haveg( f (x)) = f ( f ( f (x))) = f (g(x)).
Let x0 ∈ {a,b}. We immediately havef (x0) = f (g(x0)) = g( f (x0)), hencef (x0) ∈ {a,b}. Similarly
if x1 ∈ {a,b,c,d} we get f (x1) ∈ {a,b,c,d}, and now we will prove that this is not possible. Take
first f (c) = a. Then f (a) = f ( f (c)) = g(c) = d which is clearly impossible. Similarlyf (c) 6= b and
f (c) 6= c (for otherwiseg(c)= c) hencef (c) = d. However we then havef (d) = f ( f (c)) = g(c) = d,
which is a contradiction, again. This proves that the required f doesn’t exist.△
Problem 8. Find all functions f: R+ →R+ such that f(x) f (y f(x)) = f (x+y) for every two positive
real numbers x,y.

Solution. Obviously f (x) ≡ 1 is one solution to the problem. The idea is to findy such thaty f(x) =

x+ y and use this to determinef (x). For everyx such that
x

f (x)−1
≥ 0 we can find suchy and

from the given condition we getf (x) = 1. However this is a contradiction since we got thatf (x) > 1
implies f (x) = 1. One of the consequences is thatf (x) ≤ 1. Assume thatf (x) < 1 for somex.
From the given equation we conclude thatf is non-increasing (becausef (y f(x)) ≤ 1). Let us prove
that f is decreasing. In order to do that it is enough to prove thatf (x) < 1, for eachx. Assume that

f (x) = 1 for everyx∈ (0,a) (a> 0). Substitutingx= y=
2a
3

in the given equation we get the obvious

contradiction. This means that the function is decreasing and hence it is injective. Again everything
will revolve around the idea of getting rid off (y f(x)). Notice thatx+y> y f(x), therefore

f (x) f (y f(x)) = f (x+y) = f (y f(x)+x+y−y f(x)) = f (y f(x)) f
(

f
(

y f(x)
)

(x+y−y f(x))
)

,

i.e. f (x) = f
(

f
(

y f(x)
)

(x+ y− y f(x))
)

. The injectivity of f implies thatx = f
(

y f(x)
)

(x+ y−
y f(x)). If we plug f (x) = a we get

f (y) =
1

1+ αz
,

whereα =
1− f (a)

a f(a)
, and according to our assumptionα > 0.

It is easy to verify thatf (x) =
1

1+ αx
, for α ∈ R+, and f (x) ≡ 1 satisfy the equation.△

Problem 9. (IMO 2000, shortlist) Find all pairs of functions f: R → R and g: R → R such that for
every two real numbers x,y the following relation holds:

f (x+g(y)) = x f(y)−y f(x)+g(x).

Solution. Let us first solve the problem under the assumption thatg(α) = 0 for someα.
Settingy= α in the given equation yieldsg(x) = (α +1) f (x)−x f(α). Then the given equation

becomesf (x+g(y)) = (α +1−y) f (x)+( f (y)− f (α))x, so settingy= α +1 we getf (x+n) = mx,
wheren = g(α +1) andm= f (α +1)− f (α). Hencef is a linear function, and consequentlyg is
also linear. If we now substitutef (x) = ax+b andg(x) = cx+d in the given equation and compare
the coefficients, we easily find that

f (x) =
cx−c2

1+c
and g(x) = cx−c2, c∈ R\ {−1}.
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Now we prove the existence ofα such thatg(α) = 0. If f (0) = 0 then puttingy = 0 in the given
equation we obtainf (x+g(0)) = g(x), so we can takeα = −g(0).

Now assume thatf (0) = b 6= 0. By replacingx by g(x) in the given equation we obtainf (g(x)+
g(y)) = g(x) f (y)− y f(g(x)) + g(g(x)) and, analogously,f (g(x) + g(y)) = g(y) f (x)− x f(g(y)) +
g(g(y)). The given functional equation forx = 0 gives f (g(y)) = a−by, wherea = g(0). In partic-
ular,g is injective andf is surjective, so there existsc∈ R such thatf (c) = 0. Now the above two
relations yield

g(x) f (y)−ay+g(g(x)) = g(y) f (x)−ax+g(g(y)). (1)

Pluggingy = c in (1) we getg(g(x)) = g(c) f (x)− ax+ g(g(c))+ ac= k f(x)−ax+ d. Now (1)
becomesg(x) f (y) + k f(x) = g(y) f (x) + k f(y). For y = 0 we haveg(x)b+ k f(x) = a f(x) + kb,
whence

g(x) =
a−k

b
f (x)+k.

Note thatg(0) = a 6= k = g(c), sinceg is injective. From the surjectivity off it follows that g is
surjective as well, so it takes the value 0.△

Problem 10. (IMO 1992, shortlist) Find all functions f: R+ → R+ which satisfy

f ( f (x))+a f(x) = b(a+b)x.

Solution. This is a typical example of a problem that is solved using recurrent equations. Let us
definexn inductively asxn = f (xn−1), wherex0 ≥ 0 is a fixed real number. It follows from the given
equation inf thatxn+2 = −axn+1+b(a+b)xn. The general solution to this equation is of the form

xn = λ1bn + λ2(−a−b)n,

whereλ1,λ2 ∈ R satisfyx0 = λ1 +λ2 andx1 = λ1b−λ2(a+b). In order to havexn ≥ 0 for all n we
must haveλ2 = 0. Hencex0 = λ1 and f (x0) = x1 = λ1b = bx0. Sincex0 was arbitrary, we conclude
that f (x) = bx is the only possible solution of the functional equation. Itis easily verified that this is
indeed a solution.△

Problem 11. (Vietnam 2003) Let F be the set of all functions f: R+ → R+ which satisfy the in-
equality f(3x)≥ f ( f (2x))+x, for every positive real number x. Find the largest real numberα such
that for all functions f∈ F: f (x) ≥ α ·x.

Solution. We clearly have that
x
2
∈ F , henceα ≤ 1

2
. Furthermore for every functionf ∈ F we

have f (x) ≥ x
3

. The idea is the following: Denote
1
3

= α1 and form a sequence{αn} for which

f (x) ≥ αnx and which will (hopefully) tend to
1
2

. This would imply thatα ≥ 1
2

, and henceα =
1
2

.

Let us constract a recurrent relation forαk. Assume thatf (x) ≥ αkx, for everyx ∈ R+. From the
given inequality we have

f (3x) ≥ f ( f (2x))+x≥ αk f (2x)+x≥ αk ·αk ·2x+x= αk+1 ·3x.

This means thatαn+1 =
2α2

n +1
3

. Let us prove that limn→+∞ αn =
1
2

. This is a standard problem. It

is easy to prove that the sequenceαk is increasing and bounded above by
1
2

. Hence it converges and

its limit α satisfiesα =
2α2 +1

3
, i.e. α =

1
2

(sinceα < 1). △

Problem 12. Find all functions f,g,h : R → R that satisfy

f (x+y)+g(x−y) = 2h(x)+2h(y).
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Solution. Our first goal is to expressf andg usingh and get the equation involvingh only. First
takingy = x and substitutingg(0) = a we get f (2x) = 4h(x)−a. Furthermore by puttingy = 0 we

getg(x) = 2h(x)+2b−4h
(x

2

)

+a, whereh(0) = b. Now the original equation can be written as

2

[

h
(x+y

2

)

+h
(x−y

2

)

]

+h(x−y)+b= h(x)+h(y). (2)

Let H(x) = h(x)−b. These ”longer” linear expressions can be easily handled ifwe express functions
in form of the sum of an even and odd function, i.e.H(x) = He(x)+Ho(x). Substituting this into (2)
and writing the same expressions for(−x,y) and(x,−y) we can add them together and get:

2

[

He

(x−y
2

)

+He

(x+y
2

)

]

+He(x−y) = He(x)+He(y). (3)

If we set−y in this expression and add to (3) we get (usingHe(y) = He(−y))

He(x+y)−He(x−y) = 2He(x)+2He(y).

The last equation is not very difficult. Mathematical induction yieldsHe(r) = αr2, for every rational
numberr. From the continuity we getHe(x) = αx2. Similar method gives the simple relation forHo

Ho(x+y)+Ho(x−y) = 2Ho(x).

This is a Cauchy equation henceHo(x) = βx. Thush(x) = αx2 + βx+b and substituting forf and
g we get:

f (x) = αx2 +2βx+4b−a, g(x) = αx2 +a.

It is easy to verify that these functions satisfy the given conditions.

Problem 13. Find all functions f: Q → Q for which

f (xy) = f (x) f (y)− f (x+y)+1.

Solve the same problem for the case f: R → R.

Solution. It is not hard to see that forx = y = 0 we get( f (0)−1)2 = 0, i.e. f (0) = 1. Furthermore,
settingx= 1 andy=−1 givesf (−1) = f (1) f (−1), hencef (−1) = 0 or f (1) = 1. We will separate
this into two cases:

1◦ Let f (−1) = 0. In this innocent-looking problems that are resistent to usual ideas it is some-
times successful to increase the number of variables, i.e. to setyz instead ofy:

f (xyz) = f (x) f (yz)− f (x+yz)+1 = f (x)( f (y) f (z)− f (y+z)+1)− f (x+yz)+1.

Although it seems that the situation is worse and running outof control, that is not the case.
Namely the expression on the left-hand side is symmetric, while the one on the right-hand side
is not. Writing the same expression forx and equating gives

f (x) f (y+z)− f (x)+ f (x+yz) = f (z) f (x+y)− f (z)+ f (xy+z). (4)

Settingz= −1 (we couldn’t do that at the beginning, sincez= 1 was fixed) we getf (x) f (z−
1)− f (x)+ f (x−y) = f (xy−1), and settingx = 1 in this equality gives

f (y−1)(1− f (1)) = f (1−y)− f (1). (5)

Settingy = 2 gives f (1)(2− f (1)) = 0, i.e. f (1) = 0 or f (1) = 2. This means that we have
two cases here as well:
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1.1◦ If f (1) = 0, then from (5) pluggingy+1 instead ofy we get f (y) = f (−y). Setting−y
instead ofy in the initial equality givesf (xy) = f (x) f (y)− f (x−y)+1, hencef (x+y) =
f (x− y), for every two rational numbersx andy. Specially forx = y we get f (2x) =
f (0) = 1, for all x∈ Q. However this is a contradiction withf (1) = 0. In this case we
don’t have a solution.

1.2◦ If f (1) = 2, settingy+ 1 instead ofy in (5) gives 1− f (y) = f (−y)− 1. It is clear
that we should do the substitutiong(x) = 1− f (x) because the previous equality gives
g(−x) = −g(x), i.e. g is odd. Furthermore substitutingg into the original equality gives

g(xy) = g(x)+g(y)−g(x)g(y)−g(x+y). (6)

Setting−y instead ofy we get−g(xy) = g(x)−g(y)+ g(x)g(y)−g(x− y), and adding
with (6) yieldsg(x+y)+g(x−y) = 2g(x). Forx= y we haveg(2x) = 2g(x) therefore we
getg(x+y)+g(x−y) = g(2x). This is a the Cauchy equation and since the domain isQ

we getg(x) = rx for some rational numberr. Plugging this back to (6) we obtainr =−1,
and easy verification shows thatf (x) = 1+x satisfies the conditions of the problem.

2◦ Let f (1) = 1. Settingz= 1 in (4) we get

f (xy+1)− f (x) f (y+1)+ f (x) = 1,

hence fory = −1 we getf (1−x) = 1, for every rationalx. This means thatf (x) ≡ 1 and this
function satisfies the given equation.

Now let us solve the problem wheref : R → R. Notice that we haven’t used that the range isQ,
hence we conclude that for all rational numbersq f(q) = q+ 1, or f (q) ≡ 1. If f (q) = 1 for all
rational numbersq, it can be easily shown thatf (x) ≡ 1. Assume thatf (q) 6≡ 1. From the above
we have thatg(x)+ g(y) = g(x+ y), hence it is enough to prove monotonicity. Substitutex = y in
(6) and useg(2x) = 2g(x) to getg(x2) = −g(x)2. Therefore for every positiver the valueg(r) is
non-positive. Hence ify > x, i.e. y = x+ r2 we haveg(y) = g(x)+g(r2) ≤ g(x), and the function is
decreasing. This means thatf (x) = 1+αx and after some calculation we getf (x) = 1+x. It is easy
to verify that so obtained functions satisfy the given functional equation.△
Problem 14. (IMO 2003, shortlist) LetR+ denote the set of positive real numbers. Find all functions
f : R+ → R+ that satisfy the following conditions:

(i) f (xyz)+ f (x)+ f (y)+ f (z) = f (
√

xy) f (
√

yz) f (
√

zx)

(ii) f (x) < f (y) for all 1≤ x < y.

Solution. First notice that the solution of this functional equation is not one of the common solutions

that we are used to work with. Namely one of the solutions isf (x) = x+
1
x

which tells us that this

equality is unlikely to be shown reducing to the Cauchy equation. First, settingx = y = z= 1 we get
f (1) = 2 (sincef (1) > 0). One of the properties of the solution suggested above isf (x) = f (1/x),
and proving this equality will be our next step. Puttingx = ts, y = t

s, z= s
t in (i) gives

f (t) f (s) = f (ts)+ f (t/s). (7)

In particular, fors= 1 the last equality yieldsf (t) = f (1/t); hencef (t) ≥ f (1) = 2 for eacht. It
follows that there existsg(t) ≥ 1 such thatf (t) = g(t)+ 1

g(t) . Now it follows by induction from (7)

thatg(tn) = g(t)n for every integern, and thereforeg(tq) = g(t)q for every rationalq. Consequently,
if t > 1 is fixed, we havef (tq) = aq+a−q, wherea= g(t). But since the set ofaq (q∈ Q) is dense in
R+ and f is monotone on(0,1] and[1,∞), it follows that f (tr) = ar +a−r for every realr. Therefore,
if k is such thattk = a, we have

f (x) = xk +x−k for everyx∈ R. △
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Problem 15. Find all functions f: [1,∞) → [1,∞) that satisfy:

(i) f (x) ≤ 2(1+x) for every x∈ [1,∞);

(ii) x f (x+1) = f (x)2−1 for every x∈ [1,∞).

Solution. It is not hard to see thatf (x) = x+ 1 is a solution. Let us prove that this is the only
solution. Using the given conditions we get

f (x)2 = x f(x+1)+1≤ x(2(x+1))+1< 2(1+x)2,

i.e. f (x) ≤
√

2(1+x). With this we have found the upper bound forf (x). Since our goal is to prove
f (x) = x+1 we will use the same method for lowering the upper bound. Similarly we get

f (x)2 = x f(x+1)+1≤ x(
√

2(x+1))+1< 21/4(1+x)2.

Now it is clear that we should use induction to prove

f (x) < 21/2k
(1+x),

for everyk. However this is shown in the same way as the previous two inequalities. Since 21/2k → 1
ask → +∞, hence for fixedx we can’t havef (x) > x+ 1. This impliesf (x) ≤ x+ 1 for every real
numberx ≥ 1. It remains to show thatf (x) ≥ x+ 1, for x ≥ 1. We will use the similar argument.

From the fact that the range is[1,+∞) we get
f (x)2−1

x
= f (x+1) ≥ 1, i.e. f (x) ≥

√
x+1 > x1/2.

We further havef (x)2 = 1+x f(x+1) > 1+x
√

x+2 > x3/2 and similarly by induction

f (x) > x1−1/2k
.

Passing to the limit we further havef (x) ≥ x. Now again from the given equality we getf (x)2 =

1+x f(x+1) ≥ (x+1/2)2, i.el f (x) ≥ x+1/2. Using the induction we getf (x) ≥ x+1− 1
2k , and

passing to the limit we get the required inequalityf (x) ≥ x+1. △

Problem 16. (IMO 1999, probelm 6) Find all functions f: R → R such that

f (x− f (y)) = f ( f (y))+x f(y)+ f (x)−1.

Solution. Let A = { f (x) |x∈ R}, i.e. A = f (R). We will determine the value of the function onA.
Let x = f (y) ∈ A, for somey. From the given equality we havef (0) = f (x)+x2 + f (x)−1, i.e.

f (x) =
c+1

2
− x2

2
,

where f (0) = c. Now it is clear that we have to analyze setA further. Settingx = y = 0 in the
original equation we getf (−c) = f (c) + c− 1, hencec 6= 0. Furthermore, pluggingy = 0 in the
original equation we getf (x−c)− f (x) = cx+ f (c)−1. Since the range of the function (onx) on
the right-hand side is entireR, we get{ f (x−c)− f (x) |x∈ R}= R, i.e. A−A= R. Hence for every
real numberx there are real numbersy1,y2 ∈ A such thatx = y1−y2. Now we have

f (x) = f (y1−y2) = f (y1− f (z)) = f ( f (z))+y1 f (z)+ f (y1)−1

= f (y1)+ f (y2)+y1y2−1 = c− x2

2
.

From the original equation we easily getc = 1. It is easy to show that the functionf (x) = 1− x2

2
satisfies the given equation.△
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Problem 17. Given an integer n, let f: R →R be a continuous function satisfying f(0) = 0, f(1) =
1, and f(n)(x) = x, for every x∈ [0,1]. Prove that f(x) = x for each x∈ [0,1].

Solution. First from f (x) = f (y) we havef (n)(x) = f (n)(y), hencef is injective. The idea for what
follows is clear once we look at the graphical representation. Namely from the picture it can be
easily deduced that the function has to be strictly increasing. Let us prove that formally. Assume the
contrary, that for some two real numbersx1 < x2 we havef (x1) ≥ f (x2). The continuity on[0,x1]
implies that there is somec such thatf (c) = f (x2), which contradicts the injectivity off . Now if
x< f (x), we getf (x) < f ( f (x)) etc.x< f (n)(x) = x. Similarly we get a contradiction if we assume
thatx > f (x). Hence for eachx∈ [0,1] we must havef (x) = x. △
Problem 18. Find all functions f: (0,+∞) → (0,+∞) that satisfy f( f (x)+y) = x f(1+xy) for all
x,y∈ (0,+∞).

Solution. Clearly f (x) =
1
x

is one solution to the functional equation. Let us prove thatthe function

is non-increasing. Assume the contrary that for some 0< x < y we have 0< f (x) < f (y). We will

consider the expression of the formz=
y f(y)−x f(x)

y−x
since it is positive and bigger thenf (y). We

first plug (x,z− f (y)) instead of(x,y) in the original equation, then we plugz− f (x) instead ofy,
we getx = y, which is a contradiction. Hence the function is non-decreasing.

Let us prove thatf (1) = 1. Let f (1) 6= 1. Substitutingx= 1 we getf ( f (1)+y) = f (1+y), hence
f (u+ | f (1)−1|) = f (u) for u > 1. Therefore the function is periodic on the interval(1,+∞), and
since it is monotone it is constant. However we then concludethat the left-hand side of the original
equation constant and the right-hand side is not. Thus we must have f (1) = 1. Let us prove that

f (x) =
1
x

for x> 1. Indeed fory= 1− 1
x

the given equality givesf
(

f (x)− 1
x

)

= x f(x). If f (x) >
1
x

we havef
(

f (x)− 1
x

+ 1
)

≤ f (1) = 1 andx f(x) > 1. If f (x) <
1
x

we havef
(

f (x)− 1
x

+ 1
)

≥

f (1) = 1, andx f(x) < 1. Hencef (x) =
1
x

. If x < 1, pluggingy =
1
x

we get

f
(

f (x)+
1
x

)

= x f(2) =
x
2
,

and since
1
x
≥ 1, we getf (x)+

1
x

=
2
x

, i.e. f (x) =
1
x

in this case, too. This means thatf (x) =
1
x

for

all positive real numbersx. △
Problem 19. (Bulgaria 1998) Prove that there is no function f: R+ → R+ such that f(x)2 ≥ f (x+
y)( f (x)+y) for every two positive real numbers x and y.

Solution. The common idea for the problems of this type is to prove thatf (y) < 0 for somey > 0
which will lead us to the obvious contradiction. We can also see that it is sufficient to prove that
f (x)− f (x+ 1) ≥ c > 0, for everyx because the simple addition givesf (x)− f (x+ m) ≥ mc. For
sufficiently largem this impliesf (x+m) < 0. Hence our goal is findingc such thatf (x)− f (x+1)≥
c, for everyx. Assume that such function exists. From the given inequality we get f (x)− f (x+y) ≥
f (x+y)y

f (x)
and the function is obviously decreasing. Also from the given equality we can conclude

that

f (x)− f (x+y)≥ f (x)y
f (x)+y

.

Let n be a natural number such thatf (x+ 1)n ≥ 1 (such number clearly exists). Notice that for
0≤ k≤ n−1 the following inequality holds

f
(

x+
k
n

)

− f
(

x+
k+1

n

)

≥
f
(

x+ k
n

)

1
n

f
(

x+ k
n

)

+ 1
n

≥ 1
2n

,
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and adding similar realitions for all describedk yields f (x)− f (x+1) ≥ 1
2

which is a contradiction.

△
Problem 20. Let f : N → N be a function satisfying

f (1) = 2, f (2) = 1, f (3n) = 3 f (n), f (3n+1) = 3 f (n)+2, f (3n+2) = 3 f (n)+1.

Find the number of integers n≤ 2006for which f(n) = 2n.

Solution. This is a typical problem in which the numbers should be considered in some base different
than 10. For this situation the base 3 is doing the job. Let us calculatef (n) for n≤ 8 in an attempt
to guess the solution. Clearly the given equation can have only one solution.

f ((1)3) = (2)3, f ((2)3) = (1)3, f ((10)3) = 6 = (20)3, f ((11)3) = 8 = (22)3,

f ((12)3) = 7 = (21)3, f ((20)3) = 3 = (10)3, f ((21)3) = 5 = (12)3, f ((22)3) = 4 = (11)3.

Now we see thatf (n) is obtained fromn by changing each digit 2 by 1, and conversely. This can
be now easily shown by induction. It is clear thatf (n) = 2n if and only if in the system with base
3 n doesn’t contain any digit 1 (because this would implyf (n) < 2n). Now it is easy to count the
number of suchn’s. The answer is 127.△

Problem 21. (BMO 2003, shortlist) Find all possible values for f
(2004

2003

)

if f : Q → [0,+∞) is the

function satisfying the conditions:

(i) f (xy) = f (x) f (y) for all x,y∈ Q;

(ii) f (x) ≤ 1⇒ f (x+1) ≤ 1 for all x ∈ Q;

(iii) f
(2003

2002

)

= 2.

Solution. Notice that from (i) and (ii) we conclude thatf (x) > 0, for every rationalx. Now (i) implies
that forx = y = 1 we get f (1) = 0 and similarly forx = y = −1 we get f (−1) = 1. By induction

f (x) ≤ 1 for every integerx. For f (x) ≤ f (y) from f
(y

x

)

f (y) = f (x) we have thatf
(y

x

)

≤ 1, and

according to (ii)f
(y

x
+1

)

≤ 1. This implies

f (x+y) = f
(y

x
+1

)

f (x) ≤ f (x),

hencef (x+y) ≤ max{ f (x), f (y)}, for everyx,y∈ Q. Now you might wonder how did we get this
idea. There is one often neglected fact that for every two relatively prime numbersu andv, there are
integersa andb such thatau+ bv= 1. What is all of this good for? We got thatf (1) = 1, and we
know that f (x) ≤ 1 for all x∈ Z and since 1 is the maximum of the function onZ and since we have
the previous inequality our goal is to show that the value of the function is 1 for a bigger class of
integers. We will do this for prime numbers. If for every prime p we havef (p) = 1 thenf (x) = 1 for
every integer implyingf (x) ≡ 1 which contradicts (iii). Assume therefore thatf (p) 6= 1 for some
p∈ P. There area andb such thatap+bq= 1 implying f (1) = f (ap+bq)≤ max{ f (ap), f (bq)}.
Now we must havef (bq) = 1 implying that f (q) = 1 for every other prime numberq. From (iii) we
have

f
(2003

2002

)

=
f (2003)

f (2) f (7) f (11) f (13)
= 2,

hence only one of the numbersf (2), f (7), f (11), f (13) is equal to 1/2. Thus f (3) = f (167) =
f (2003) giving:

f
(2004

2003

)

=
f (2)2 f (3) f (167)

f (2003)
= f (2)2.
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If f (2) = 1/2 then f
(2003

2002

)

=
1
4

, otherwise it is 1.

It remains to construct one function for each of the given values. For the first value it is the
multiplicative function taking the value 1/2 at the point 2, and 1 for all other prime numbers; in the
second case it is a the multiplicative function that takes the value 1/2 at, for example, 7 and takes 1
at all other prime numbers. For these functions we only need to verify the condition (ii), but that is
also very easy to verify.△
Problem 22. Let I = [0,1], G = I × I and k∈ N. Find all f : G→ I such that for all x,y,z∈ I the
following statements hold:

(i) f ( f (x,y),z) = f (x, f (y,z));

(ii) f (x,1) = x, f(x,y) = f (y,x);

(ii) f (zx,zy) = zk f (x,y) for every x,y,z∈ I, where k is a fixed real number.

Solution. The function of several variables appears in this problem. In most cases we use the
same methods as in the case of a single-variable functions. From the condition (ii) we getf (1,0) =
f (0,1) = 0, and from (iii) we getf (0,x) = f (x,0) = xk f (1,0) = 0. This means thatf is entirely
defined on the edge of the regionG. Assume therefore that 0< x≤ y < 1. Notice that the condition
(ii) gives the value for one class of pairs fromG and that each pair inG can be reduced to one of the
members of the class. This implies

f (x,y) = f (y,x) = yk f
(

1,
x
y

)

= yk−1x.

This can be written asf (x,y) = min(x,y)(max(u,v))k−1 for all 0 < x,y < 1. Let us find all possible

values fork. Let 0< x≤ 1
2
≤ y < 1. From the condition (i), and the already obtained results we get

f
(

f
(

x,
1
2

)

,y
)

= f
(

x
(1

2

)k−1
,y

)

= f
(

x, f
(1

2

))

= f
(

x,
1
2

yk−1
)

.

Let us now considerx ≤ 2k−1y in order to simplify the expression to the formf
(

x,
1
2

yk−1
)

=

x
(y

2

)k−1
, and if we takex for which 2x ≤ yk−1 we getk− 1 = (k− 1)2, i.e. k = 1 or k = 2.

For k = 1 the solution isf (x,y) = min(x,y), and fork = 2 the solution isf (x,y) = xy. It is easy to
verify that both solutions satisfy the given conditions.△

Problem 23. (APMO 1989) Find all strictly increasing functions f: R → R such that

f (x)+g(x) = 2x,

where g is the inverse of f .

Solution. Clearly every function of the formx+ d is the solution of the given equation. Another
useful idea appears in this problem. Namely denote bySd the the set of all numbersx for which
f (x) = x+ d. Our goal is to prove thatSd = R. Assume thatSd is non-empty. Let us prove that
for x∈ Sd we havex+d ∈ Sd as well. Sincef (x) = x+d, according to the definition of the inverse
function we haveg(x+d) = x, and the given equation impliesf (x+d) = x+2d, i.e. x+d∈ Sd. Let
us prove that the setsSd′ are empty, whered′ < d. From the above we have that each of those sets is
infinite, i.e. if x belongs to some of them, then eachx+ kd belongs to it as well. Let us use this to
get the contradiction. More precisely we want to prove that if x∈ Sd andx≤ y≤ x+(d−d′), then
y 6∈ Sd′ . Assume the contrary. From the monotonicity we havey+d′ = f (y) ≥ f (x) = x+d, which
is a contradiction to our assumption. By further induction we prove that everyy satisfying

x+k(d−d′) ≤ y < x+(k+1)(d−d′),
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can’t be a member ofSd′ . However this is a contradiction with the previously established properties
of the setsSd andSd′ . Similarly if d′ > d switching the roles ofd andd′ gives a contradiction.

Simple verification shows that eachf (x) = x+d satisfies the given functional equation.△

Problem 24. Find all functions h: N → N that satisfy

h(h(n))+h(n+1)= n+2.

Solution. Notice that we have bothh(h(n)) andh(n+1), hence it is not possible to form a recurrent
equation. We have to use another approach to this problem. Let us first calculateh(1) andh(2).
Settingn = 1 givesh(h(1))+h(2) = 3, thereforeh(h(1))≤ 2 andh(2) ≤ 2. Let us consider the two
cases:

1◦ h(2) = 1. Thenh(h(1)) = 2. Pluggingn = 2 in the given equality gives 4= h(h(2))+h(3) =
h(1)+ h(3). Let h(1) = k. It is clear thatk 6= 1 andk 6= 2, and thatk ≤ 3. This means that
k = 3, henceh(3) = 1. However from 2= h(h(1)) = h(3) = 1 we get a contradiction. This
means that there are no solutions in this case.

2◦ h(2) = 2. Thenh(h(1)) = 1. From the equation forn = 2 we geth(3) = 2. Settingn = 3,4,5
we geth(4) = 3,h(5) = 4,h(6) = 4, and by induction we easily prove thath(n) ≥ 2, for
n ≥ 2. This means thath(1) = 1. Clearly there is at most one function satisfying the given
equality. Hence it is enough to guess some function and provethat it indeed solves the equation
(induction or something similar sounds fine). The solution is

h(n) = ⌊nα⌋+1,

whereα =
−1+

√
5

2
(this constant can be easily foundα2 + α = 1). Proof that this is a

solution uses some properties of the integer part (althoughit is not completely trivial).△

Problem 25. (IMO 2004, shortlist) Find all functions f: R → R satisfying the equality

f (x2 +y2 +2 f (xy)) = f (x+y)2.

Solution. Let us make the substitutionz= x+ y, t = xy. Givenz,t ∈ R, x,y are real if and only if
4t ≤ z2. Defineg(x) = 2( f (x)−x). Now the given functional equation transforms into

f
(

z2 +g(t)
)

= ( f (z))2 for all t,z∈ R with z2 ≥ 4t. (8)

Let us setc = g(0) = 2 f (0). Substitutingt = 0 into (8) gives us

f (z2 +c) = ( f (z))2 for all z∈ R. (9)

If c< 0, then takingzsuch thatz2+c= 0, we obtain from (9) thatf (z)2 = c/2, which is impossible;
hencec≥ 0. We also observe that

x > c implies f (x) ≥ 0. (10)

If g is a constant function, we easily find thatc= 0 and thereforef (x) = x, which is indeed a solution.
Supposeg is nonconstant, and leta,b∈R be such thatg(a)−g(b)= d > 0. For some sufficiently

largeK and eachu,v≥ K with v2−u2 = d the equalityu2+g(a) = v2+g(b) by (8) and (10) implies
f (u) = f (v). This further leads tog(u)−g(v) = 2(v−u) = d

u+
√

u2+d
. Therefore every value from

some suitably chosen segment[δ ,2δ ] can be expressed asg(u)−g(v), with u andv bounded from
above by someM.
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Consider anyx,y with y > x≥ 2
√

M andδ < y2−x2 < 2δ . By the above considerations, there
existu,v≤ M such thatg(u)−g(v) = y2−x2, i.e.,x2+g(u) = y2+g(v). Sincex2 ≥ 4u andy2 ≥ 4v,
(8) leads tof (x)2 = f (y)2. Moreover, if we assume w.l.o.g. that 4M ≥ c2, we conclude from (10)
that f (x) = f (y). Since this holds for anyx,y≥ 2

√
M with y2−x2 ∈ [δ ,2δ ], it follows that f (x) is

eventually constant, sayf (x) = k for x≥ N = 2
√

M. Settingx > N in (9) we obtaink2 = k, sok = 0
or k = 1.

By (9) we havef (−z) = ± f (z), and thus| f (z)| ≤ 1 for all z≤−N. Henceg(u) = 2 f (u)−2u≥
−2−2u for u≤ −N, which implies thatg is unbounded. Hence for eachz there existst such that
z2 +g(t) > N, and consequentlyf (z)2 = f (z2 +g(t)) = k = k2. Thereforef (z) = ±k for eachz.

If k = 0, thenf (x) ≡ 0, which is clearly a solution. Assumek = 1. Thenc= 2 f (0) = 2 (because
c ≥ 0), which together with (10) impliesf (x) = 1 for all x ≥ 2. Suppose thatf (t) = −1 for some
t < 2. Thent−g(t) = 3t +2> 4t. If alsot−g(t)≥ 0, then for somez∈R we havez2 = t−g(t) > 4t,
which by (8) leads tof (z)2 = f (z2 + g(t)) = f (t) = −1, which is impossible. Hencet −g(t) < 0,
giving ust < −2/3. On the other hand, ifX is any subset of(−∞,−2/3), the functionf defined by
f (x) = −1 for x∈ X and f (x) = 1 satisfies the requirements of the problem.

To sum up, the solutions aref (x) = x, f (x) = 0 and all functions of the form

f (x) =

{

1, x 6∈ X,
−1, x∈ X,

whereX ⊂ (−∞,−2/3). △

4 Problems for Independent Study

Most of the ideas for solving the problems below are already mentioned in the introduction or in the
section with solved problems. The difficulty of the problemsvary as well as the range of ideas used
to solve them. Before solving the problems we highly encourage you to first solve (or look at the
solutions) the problems from the previous section. Some of the problems are quite difficult.

1. Find all functionsf : Q → Q that satisfyf (x+y) = f (x)+ f (y)+xy.

2. Find all functionsf : Z → Z for which we havef (0) = 1 and f ( f (n)) = f ( f (n+2)+2) = n,
for every natural numbern.

3. Find all functionsf : N → N for which f (n) is a square of an integer for alln∈ N, and that
satisfy f (m+n) = f (m)+ f (n)+2mnfor all m,n∈ N.

4. Find all functionsf : R → R that satisfyf ((x−y)2) = f (x)2−2x f(y)+y2.

5. Letn∈ N. Find all monotone functionsf : R → R such that

f (x+ f (y)) = f (x)+yn.

6. (USA 2002) Find all functionsf : R → R which satisfy the equalityf (x2 − y2) = x f(x)−
y f(y).

7. (Mathematical High Schol, Belgrade 2004) Find all functions f : N → N such thatf ( f (m)+
f (n)) = m+n for every two natural numbersmandn.

8. Find all continuous functionsf : R → R such thatf (xy) = x f(y)+y f(x).

9. (IMO 1983, problem 1) Find all functionsf : R → R such that

(i) f (x f(y)) = y f(x), for all x,y∈ R;

(ii) f (x) → 0 asx→ +∞.
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10. Let f : N → N be strictly increasing function that satisfiesf ( f (n)) = 3n for every natural
numbern. Determinef (2006).

11. (IMO 1989, shortlist) Let 0< a < 1 be a real number andf continuous function on[0,1]
which satisfiesf (0) = 0, f (1) = 1, and

f
(x+y

2

)

= (1−a) f (x)+a f(y),

for every two real numbersx,y∈ [0,1] such thatx≤ y. Determinef
(1

7

)

.

12. (IMO 1996, shortlist) Letf : R → R be the function such that| f (x)| ≤ 1 and

f
(

x+
13
42

)

+ f (x) = f
(

x+
1
6

)

+ f
(

x+
1
7

)

.

Prove thatf is periodic.

13. (BMO 2003, problem 3) Find all functionsf : Q → R that satisfy:

(i) f (x+y)−y f(x)−x f(y) = f (x) f (y)−x−y+xy for everyx, y∈ Q;

(ii) f (x) = 2 f (x+1)+2+x, for everyx∈ Q;

(iii) f (1)+1 > 0.

14. (IMO 1990, problem 4) Determine the functionf : Q+ → Q+ such that

f (x f(y)) =
f (x)
y

, for all x,y∈ Q+.

15. (IMO 2002, shortlist) Find all functionsf : R → R such that

f ( f (x)+y) = 2x+ f ( f (y)−x).

16. (Iran 1997) Letf : R → R be an increasing function such that for all positive real numbersx
andy:

f (x+y)+ f ( f (x)+ f (y)) = f ( f (x+ f (y))+ f (y+ f (x))).

Prove thatf ( f (x)) = x.

17. (IMO 1992, problem 2) Find all functionsf : R → R, such thatf (x2 + f (y)) = y+ f (x)2 for
all x,y∈ R.

18. (IMO 1994, problem 5) LetS be the set of all real numbers strictly greater than -1. Find all
functions f : S→ S that satisfy the following two conditions:

(i) f (x+ f (y)+x f(y)) = y+ f (x)+y f(x) for all x, y∈ S;

(ii)
f (x)
x

is strictly increasing on each of the intervals−1 < x < 0 and 0< x.

19. (IMO 1994, shortlist) Find all functionsf : R+ → R such that

f (x) f (y) = yα f (x/2)+xβ f (y/2), for all x,y∈ R+.

20. (IMO 2002, problem 5) Find all functionsf : R → R such that

( f (x)+ f (z))( f (y)+ f (t)) = f (xy−zt)+ f (xt+yz).
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21. (Vietnam 2005) Find all values for a real parameterα for which there exists exactly one
function f : R → R satisfying

f (x2 +y+ f (y)) = f (x)2 + α ·y.

22. (IMO 1998, problem 3) Find the least possible value forf (1998) wheref : N→N is a function
that satisfies

f (n2 f (m)) = m f(n)2.

23. Does there exist a functionf : N → N such that

f ( f (n−1)) = f (n+1)− f (n)

for each natural numbern?

24. (IMO 1987, problem 4) Does there exist a functionf : N0 →N0 such thatf ( f (n)) = n+1987?

25. Assume that the functionf : N → N satisfiesf (n+1) > f ( f (n)), for everyn∈ N. Prove that
f (n) = n for everyn.

26. Find all functionsf : N0 → N0, that satisfy:

(i) 2 f (m2 +n2) = f (m)2 + f (n)2, for every two natural numbersm andn;

(ii) If m≥ n then f (m2) ≥ f (n2).

27. Find all functionsf : N0 → N0 that satisfy:

(i) f (2) = 2;

(ii) f (mn) = f (m) f (n) for every two relatively prime natural numbersm andn;

(iii) f (m) < f (n) wheneverm< n.

28. Find all functionsf : N → [1,∞) that satisfy conditions (i) and (ii9) of the previous problem
and the condition (ii) is modified to require the equality forevery two natural numbersm and
n.

29. Given a natural numberk, find all functionsf : N0 → N0 for which

f ( f (n))+ f (n) = 2n+3k,

for everyn∈ N0.

30. (Vijetnam 2005) Find all functionsf : R → R that satisfyf ( f (x− y)) = f (x) f (y)− f (x)+
f (y)−xy.

31. (China 1996) The functionf : R→R satisfy f (x3+y3) = (x+y)
(

f (x)2− f (x) f (y)+ f (y)2
)

,

for all real numbersx andy. Prove thatf (1996x) = 1996f (x) for everyx∈ R.

32. Find all functionsf : R → R that satisfy:

(i) f (x+y) = f (x)+ f (y) for every two real numbersx andy;

(ii) f
(1

x

)

=
f (x)
x2 for x 6= 0.

33. (IMO 1989, shortlist) A functionf : Q → R satisfy the following conditions:

(i) f (0) = 0, f (α) > 0 zaα 6= 0;
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(ii) f (αβ ) = f (α) f (β ) i f (α + β ) ≤ f (α)+ f (β ), for all α,β ∈ Q;

(iii) f (m) ≤ 1989 zam∈ Z.

Prove thatf (α + β ) = max{ f (α), f (β )} wheneverf (α) 6= f (β ).

34. Find all functionsf : R → R such that for every two real numbersx 6= y the equality

f
(x+y

x−y

)

=
f (x)+ f (y)
f (x)− f (y)

is satisfied.

35. Find all functionsf : Q+ → Q+ satisfying:

(i) f (x+1) = f (x)+1 for all x∈ Q+;

(ii) f (x3) = f (x)3 for all x∈ Q+.

36. Find all continuous functionsf : R → R that satisfy the equality

f (x+y)+ f (xy) = f (x)+ f (y)+ f (xy+1).

37. Find all continuous functionsf ,g,h,k : R → R that satisfy the equality

f (x+y)+g(x−y) = 2h(x)+2k(y).

38. (IMO 1996, shortlist) Find all functionsf : N0 → N0 such that

f (m+ f (n)) = f ( f (m))+ f (n).

39. (IMO 1995, shortlist) Does there exist a functionf : R → R satisfying the conditions:

(i) There exists a positive real numberM such that−M ≤ f (x) ≤ M for all x∈ R;

(ii) f (1) = 1;

(iii) If x 6= 0 then f
(

x+
1
x2

)

= f (x)+

[

f
(1

x

)

]2

?

40. (Belarus) Find all continuous functionsf : R → R that satisfy

f ( f (x)) = f (x)+2x.

41. Prove that if the functionf : R+ → R satisfy the equality

f
(x+y

2

)

+ f
( 2xy

x+y

)

= f (x)+ f (y),

the it satisfy the equality 2f (
√

xy) = f (x)+ f (y) as well.

42. Find all continuous functionsf : (0,∞) → (0,∞) that satisfy

f (x) f (y) = f (xy)+ f (x/y).

43. Prove that there is no functionf : R → R that satisfy the inequalityf (y) > (y− x) f (x)2, for
every two real numbersx andy.
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44. (IMC 2001) Prove that there doesn’t exist a functionf : R → R for which f (0) > 0 and

f (x+y) ≥ f (x)+y f( f (x)).

45. (Romania 1998) Find all functionsu : R → R for which there exists a strictly monotone func-
tion f : R → R such that

f (x+y) = f (x)u(y)+ f (y), ∀x,y∈ R.

46. (Iran 1999) Find all functionsf : R → R for which

f ( f (x)+y) = f (x2−y)+4 f (x)y.

47. (IMO 1988, problem 3) A functionf : N → N satisfies:

(i) f (1) = 1, f (3) = 3;

(ii) f (2n) = f (n);

(iii) f (4n+1) = 2 f (2n+1)− f (n) and f (4n+3) = 3 f (2n+1)−2 f (n),

for every natural numbern∈ N. Find all natural numbersn≤ 1998 such thatf (n) = n.

48. (IMO 2000, shortlist) Given a functionF : N0 → N0, assume that forn ≥ 0 the following
relations hold:

(i) F(4n) = F(2n)+F(n);

(ii) F(4n+2) = F(4n)+1;

(iii) F(2n+1) = F(2n)+1.

Prove that for every natural numberm, the number of positive integersn such that 0≤ n < 2m

andF(4n) = F(3n) is equal toF(2m+1).

49. Let f : Q×Q→ Q+ be a function satisfying

f (xy,z) = f (x,z) f (y,z), f (z,xy) = f (z,x) f (z,y), f (x,1−x) = 1,

for all rational numbersx,y,z. Prove thatf (x,x) = 1, f (x,−x) = 1, andf (x,y) f (y,x) = 1.

50. Find all functionsf : N×N → R that satisfy

f (x,x) = x, f (x,y) = f (y,x), (x+y) f (x,y) = y f(x,x+y).


