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1 Basic Methods For Solving Functional Equations

e Substituting the values for variables. The most commondittetmpt is with some constants
(eg. 0 or 1), after that (if possible) some expressions whillmake some part of the equation
to become constant. For examplefifx+y) appears in the equations and if we have found
f(0) then we plug/ = —x. Substitutions become less obvious as the difficulty of toblems
increase.

e Mathematical induction. This method relies on using theiedl(1) to find all f(n) for n

integer. After that we findf (%) and f(r) for rationalr. This method is used in problems
where the function is defined dd and is very useful, especially with easier problems.

e Investigating for injectivity or surjectivity of functianinvolved in the equaiton. In many of
the problems these facts are not difficult to establish batogaof great importance.

e Finding the fixed points or zeroes of functions. The numbgroblems using this method is
considerably smaller than the number of problems using safrtiee previous three methods.
This method is mostly encountered in more difficult problems

e Using the Cauchy’s equation and equation of its type.

e Investigating the monotonicity and continuity of a functioContinuity is usually given as
additional condition and as the monotonicity it usuallyvesr for reducing the problem to
Cauchy’s equation. If this is not the case, the problem iserother side of difficulty line.

e Assuming that the function at some point is greater or smdilen the value of the function
for which we want to prove that is the solution. Most oftersitiised as continuation of the
method of mathematical induction and in the problems in Whie range is bounded from
either side.

e Making recurrent relations. This method is usually useth Wit equations in which the range
is bounded and in the case when we are able to find a relasipdvestwveenf (f(n)), f(n),
andn.
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e Analyzing the set of values for which the function is equathte assumed solution. The goal
is to prove that the described set is precisely the domaineofunction.

e Substituting the function. This method is often used to éifiyjphe given equation and is
seldom of crucial importance.

e Expressing functions as sums of odd and even. Namely eadhidarcan be represented
as a sum of one even and one odd function and this can be vedy areating "linear”
functional equations involving many functions.

e Treating numbers in a system with basis different than 10cdDfse, this can be used only if
the domain isN.

e For the end let us emphasize that it is very important to gthessolution at the beginning.
This can help a lot in finding the appropriate substitutioAlso, at the end of the solution,
DON'T FORGET to verify that your solution satisfies the givandition.

2 Cauchy Equation and Equations of the Cauchy type

The equationf (x+Yy) = f(x) + f(y) is called the Cauchy equation. If its domainQs it is well-
known that the solution is given bf(x) = xf(1). That fact is easy to prove using mathematical
induction. The next problem is simply the extention of thendin fromQ to R. With a relatively
easy counter-example we can show that the solution to thelyaguation in this case doesn’t have
to be f(x) = xf(1). However there are many additional assumptions that faheegeneral solution
to be of the described form. Namely if a functibrsatisfies any of the conditions:

e monotonicity on some interval of the real line;
e continuity;

e boundedness on some interval;

e positivity on the rayx > 0O;

then the general solution to the Cauchy equafiofR — Shas to bef (x) = xf(1).
The following equations can be easily reduced to the Caughgtéon.

e All continuous functionsf : R — (0,+) satisfying f(x+Yy) = f(x)f(y) are of the form
f(x) = a*. Namely the functiomy(x) = log f (x) is continuous and satisfies the Cauchy equa-
tion.

e All continuous functionsf : (0,4) — R satisfying f(xy) = f(x) + f(y) are of the form
f(x) = log, x. Now the functiorg(x) = f(a*) is continuous and satisfies the Cauchy equation.

e All continuous functionsf : (0, +e) — (0,+w) satisfying f (xy) = f(x)f(y) are f(x) = X,

wheret = log, b andf(a) = b. Indeed the functiog(x) = log f (&) is continuous and satisfies
the Cauchy equation.

3 Problemswith Solutions

The following examples should illustrate the previouslylioed methods.

Problem 1. Find all functions f: Q — Q such that f1) =2 and f(xy) = f(x)f(y) — f(x+y) + 1.
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Solution. This is a classical example of a problem that can be solvedjusathematical induction.
Notice that if we setx = 1 andy = n in the original equation we gett(n+1) = f(n) + 1, and
since f(1) = 2 we havef(n) = n+ 1 for every natural number. Similarly forx=0 andy =n
we getf(O)n= f(n)—1=n, i.e. f(0). Now our goal is to findf(z) for eachz € Z. Substituting
x= —1andy = 1 in the original equation gives uUg—1) = 0, and settingc= —1 andy = n gives
f(—n)=—f(n—1)4+ 1= —n+ 1. Hencef(z) = z+ 1 for eachz € Z. Now we have to determine

1 . 1
f (ﬁ) Pluggingx = nandy = - we get

1 1
f(l):(n+1)f<ﬁ)—f(n+ﬁ)+1. @)
1 1 1
Furthermore fox = 1 andy = m+ - we getf (m+ 1+ ﬁ) =f <m+ ﬁ) + 1, hence by the mathe-
L . 1 1
matical inductionf (m+ —) =m+ f (—) Iz (1) we now have
n n
1 1

1 .
for every natural numbear. Furthermore fox = mandy = - we getf (?) = ?4‘ 1,ie. f(r)

r+1, for every positive rational number Settingx = —1 andy =r we getf(—r)=—f(r—1)+1=
—r+1 as well hencd (x) = x+ 1, for eactx € Q.

Verification: Sincexy+ 1= (x+1)(y+1) — (x+y+1)+1,forallx,y € Q, f is the solution to our
equation.A

Problem 2. (Belarus 1997) Find all functions gR — R such that for arbitrary real numbers x and
y:
g(x+Yy) +9(x)g(y) = g(xy) +9(x) +9(y).

Solution. Notice thatg(x) = 0 andg(x) = 2 are obviously solutions to the given equation. Using
mathematical induction it is not difficult to prove thaggfs not equal to one of these two functions
theng(x) = x for all x € Q. It is also easy to prove thafr +x) =r + g(x) andg(rx) = rg(x),
wherer is rational andx real number. Particularly from the second equationrfer —1 we get
g(—x) = —g(x), hence setting = —x in the initial equation giveg(x)? = g(x?). This means that
g(x) > 0 for x > 0. Now we use the standard method of extendinfRtoAssume thag(x) < x.
Choose € Q such thag(x) <r < x. Then

r>gx)=g(x—r)+r=>r,

which is clearly a contradiction. Similarly from(x) > x we get another contradiction. Thus we
must haveg(x) = x for everyx € R. It is easy to verify that all three functions satisfy theegiv
functional equation/\

Problem 3. The function f R — R satisfies % f(x) = f(f(x)) for every xc R. Find all solutions
of the equation (f(x)) = 0.

Solution. The domain of this function i, so there isn’t much hope that this can be solved using
mathematical induction. Notice th&tf(x)) — f(x) = x and if f(x) = f(y) then clearlyx=y. This
means that the function is injective. Sin€éf(0)) = f(0) + 0 = f(0), because of injectivity we
must havef (0) = 0, implying f(f(0)) = 0. If there were anothersuch thatf (f(x)) = 0= f(f(0)),
injectivity would imply f(x) = f(0) andx=0. A

Problem 4. Find all injective functions f N — R that satisfy:

(@) f(f(m)+ f(n))=f(f(m))+f(n), (b) f(1)=2, f(2)=4.
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Solution. Settingm = 1 andn first, andm = n, n = 1 afterwards we get
f(f(D)+f(n) =f(f(1)+f(n), f(f(n)+f(1)="F(f(n)+f().

Let us emphasize that this is one standard idea if the express one side is symmetric with
respect to the variables while the expression on the otlder isinot. Now we havé (f(n)) =
f(n)—f(1)+ f(f(1)) = f(n)—2+ f(2) = f(n)+2. From here we conclude th&¢n) = mimplies
f(m) = m+ 2 and now the induction gives(m+ 2k) = m+ 2k + 2, for everyk > 0. Specially
if f(1) =2 thenf(2n) =2n+ 2 for all positive integers. The injectivity of f gives that at odd
numbers (except 1) the function has to take odd valuesplbet the smallest natural number such
that for somek f(k) = 2p+ 1. We havef(2p+2s+ 1) = 2p+ 2s+ 3 for s> 0. Therefore the
numbers 35,...,2p— 1 are mapped into,B,...,2p+ 1. If f(t) = 1 for somet, then form=n=t
4=1(2)=f(f(t)+f(t)) = f(f(t))+ f(t) =3, which is a contradiction. If for somtesuch that
f(t) = 3 thenf(3+ 2k) = 5+ 2k, which is a contradiction to the existence of suclt follows that
the numbers 3,...,2p— 1 are mapped into,3,...,2p+ 1. Hencef (3+ 2k) = 54 2k. Thus the
solution isf(1) =2 andf(n) =n+2,forn> 2.

It is easy to verify that the function satisfies the given dbods. A

Problem 5. (BMO 1997, 2000) Solve the functional equation
fxf(x) + f(y) =y+ (X% xyeR.

Solution. In probelms of this type it is usually easy to prove that thections are injective or
surjective, if the functions are injective/surjective this case fox = 0 we getf (f(y)) = y+ f(0)2.
Since the function on the right-hand side is surjective #maes must hold for the function on the
left-hand side. This implies the surjectivity éf Injectivity is also easy to establish. Now there
existst such thatf (t) = 0 and substitutiox = 0 andy =t yields f (0) =t + f(0)2. Forx =t we get
f(f(y)) =y. Therefora = f(f(t)) = f(0) =t + f(0)?, i.e. f(0) = 0. Replacing with f(x) gives

F(FOOx+f(y) =X+,

hencef (x)? = x? for every real numbex. Consider now the two cases:

First case 1) = 1. Pluggingx = 1 givesf(1+ f(y)) = 1+y, and after taking squarés +y)? =
f(1+f(y)? = (14 f(y))? = 1+ 2f(y) + f(y)> = 1+ 2f(y) +y>. Clearly in this case we have
f(y) =y for every realy.

Second case (1) = —1. Pluggingx = —1 givesf(—1+ f(y)) = 1+, and after taking squares
(1+y)? = f(=1+1f(y)? = (—1+f(y))? = 1—2f(y) + f(y)? = 1— 2f (y) +y>. Now we conclude
f(y) = —yfor every real numbey.

Itis easy to verify thaff (x) = x and f (x) = —x are indeed the solutiong\

Problem 6. (IMO 1979, shortlist) Given a function:fR — R, if for every two real numbers x and
y the equality {xy+x+y) = f(xy) + f(x)+ f(y) holds, prove that fx+y) = f(x) + f(y) for every
two real numbers x and y.

Solution. This is a clasical example of the equation that solution seldaon a careful choice of
values that are plugged in a functional equation. Plugging= y = 0 we getf(0) = 0. Plugging
iny=—1 we getf(x) = —f(—x). Plugging iny = 1 we getf(2x+ 1) = 2f(x) + f(1) and hence
f(2(u+v+uv)+1)=2f (u+v+uv)+ f(1) = 2f (uv)+2f (u)+2f (v) + f (1) for all realu andv. On
the other hand, plugging = uandy = 2v+1 we getf (2(u+v+uv)+1) = f (u+(2v+ 1)+ u(2v+
1)) = f(u)+2f(v) + f(1) + f(2uv+u). Hence it follows that 2(uv) + 2f (u) + 2f(v) + f(1) =
f(u)+2f(v)+ f(1)+ f(2uv+u),i.e.,

f(2uv+u) = 2f(uv) + f(u). (1)
Plugging inv=—1/2 we get 0= 2f (—u/2)+ f (u) = —2f (u/2) + f (u). Hence,f (u) = 2f (u/2) and
consequentlyf (2x) = 2f (x) for all reals. Now (1) reduces tb(2uv+ u) = f(2uv) + f(u). Plugging

in u=yandx = 2uv, we obtainf (x) + f(y) = f(x+y) for all nonzero realg andy. Sincef(0) =0,
it trivially holds thatf (x+y) = f(x) + f(y) when one ok andyis 0. A
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Problem 7. Does there exist a function:fR — R such that { f(x)) = x? — 2 for every real number
X?

Solution. After some attempts we can see that none of the first threeotielbads to a progress.
Notice that the functiog of the right-hand side has exactly 2 fixed points and thatuihetiongo g
has exactly 4 fixed points. Now we will prove that there is noction f such thatf o f =g. Assume
the contrary. Lef,b be the fixed points of, anda,b,c,d the fixed points ofjog. Assume that
g(c)=y. Thenc=g(g(c)) =g(y), henceg(g(y)) = g(c) =y andy has to be on of the fixed points of
gog. If y=athen froma= g(a) = g(y) = c we get a contradiction. Similarly# b, and sincey # ¢
we gety = d. Thusg(c) = d andg(d) = c. Furthermore we havg(f(x)) = f(f(f(x))) = f(g(x)).
LetXp € {a,b}. We immediately havé(xo) = f(g(Xo)) = g(f(x0)), hencef (xo) € {a,b}. Similarly

if X3 € {a,b,c,d} we getf(x;) € {a,b,c,d}, and now we will prove that this is not possible. Take
first f(c) =a. Thenf(a) = f(f(c)) = g(c) = d which is clearly impossible. Similarl§(c) # b and
f(c) # c (for otherwiseg(c) = c) hencef (c) = d. However we then havi(d) = f(f(c)) =g(c) =d,
which is a contradiction, again. This proves that the regiirdoesn’t existA

Problem 8. Find all functions f: R* — R* such that {x)f(yf(x)) = f(x+y) for every two positive

real numbers yy.

Solution. Obviously f (x) = 1 is one solution to the problem. The idea is to fyiglich thay f(x) =

. . X )

X+ Yy and use this to determini(x). For everyx such thatm > 0 we can find sucly and

from the given condition we gét(x) = 1. However this is a contradiction since we got that) > 1

implies f(x) = 1. One of the consequences is th#k) < 1. Assume thaff(x) < 1 for somex.

From the given equation we conclude tlids non-increasing (becausé¢yf(x)) < 1). Let us prove

that f is decreasing. In order to do that it is enough to prove fliat < 1, for eachx. Assume that
_— 2a. : . .

f(x) =1foreveryx e (0,a) (a> 0). Substitutingc=y = ; in the given equation we get the obvious

contradiction. This means that the function is decreasimbreence it is injective. Again everything
will revolve around the idea of getting rid dfy f(x)). Notice thatx+y > yf(x), therefore

FOOF(YF()) = F(x+y) = F(yFO) +x+y =y T(0) = FYFO) T (F(yF00) ey —yT(0) )

ie. f(x)= f(f(yf x) X+y—yf(x ) The injectivity of f implies thatx = f(yf(x))(x+y—
yf(x)). If we plug f (x) = awe get

1
f =
) l+az
1-f(a) . .
wherea = T(a)’ and according to our assumptiar> 0.
. . 1 . .
It is easy to verify thaf (x) = ————, for a € R™, andf(x) = 1 satisfy the equatiom

1+ ax

Problem 9. (IMO 2000, shortlist) Find all pairs of functions:fR — R and g: R — R such that for
every two real numbers x the following relation holds:

f(x+9(y)) = xf(y) —yf(x) +9(x).

Solution. Let us first solve the problem under the assumptionghad = 0 for somea.

Settingy = o in the given equation yieldg(x) = (a + 1) f (x) — xf(a). Then the given equation
becomed (x+g(y)) = (a+1-y)f(x)+ (f(y) — f(a))x, so setting/ = o + 1 we getf (x+n) = mx
wheren=g(a + 1) andm= f(a +1) — f(a). Hencef is a linear function, and consequengys
also linear. If we now substitute(x) = ax+ b andg(x) = cx+d in the given equation and compare
the coefficients, we easily find that

cxX— 2
1+c

f(x) = and g(x) =cx—c?, ceR\{-1}.
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Now we prove the existence of such thaig(a) = 0. If f(0) = 0 then puttingy = 0 in the given
equation we obtairi (x+ g(0)) = g(x), so we can taker = —g(0).

Now assume that(0) = b = 0. By replacing« by g(x) in the given equation we obtaii{g(x) +
g(y)) = 9(x) f(y) —yf(9(x)) +9(9(x)) and, analogouslyf (g(x) +g(y)) = g(y) f(x) — xf(g(y)) +
9(g(y)). The given functional equation for= 0 givesf(g(y)) = a— by, wherea = g(0). In partic-
ular, g is injective andf is surjective, so there existsc R such thatf(c) = 0. Now the above two

relations yield
(%)) =g(y)f (x) —ax+g(g(y))- 1)

)=
c)f(x) —ax+g(g(c)) + ac= kf(x) —ax+d. Now (1)
(y). Fory =0 we haveg(x)b+kf(x) = af(x) + kb,

g(x)_abkf(x)—i—k.

Note thatg(0) = a # k = g(c), sinceg is injective. From the surjectivity of it follows thatg is
surjective as well, so it takes the value®.

g(x) f(y) —

+9(g
Pluggingy = cin (1) we getg(g(x )) a(
becomegy(x) f (y) +kf(x) = g(y) f(x) +kf
whence

Problem 10. (IMO 1992, shortlist) Find all functions fR*™ — R™ which satisfy
f(f(x))+af(x) =b(a+b)x.

Solution. This is a typical example of a problem that is solved usingimemt equations. Let us
definex, inductively as, = f(xn—1), wherexp > 0 is a fixed real number. It follows from the given
equation inf thatxn» = —aX,+1+ b(a+ b)xn,. The general solution to this equation is of the form

Xn = /\1bn +/\2(—a— b)n,

whereAq, A, € R satisfyxg = A1 + Az andxg = A1b— Ay(a+b). In order to haves, > 0 for all n we
must havel, = 0. Hencexp = A1 and f(Xg) = x1 = A1b = bxy. Sincexp was arbitrary, we conclude
that f (x) = bxis the only possible solution of the functional equations kasily verified that this is
indeed a solution/

Problem 11. (Vietnam 2003) Let F be the set of all functionsR™ — R™ which satisfy the in-
equality f(3x) > f(f(2x))+Xx, for every positive real number x. Find the largest real temo such
that for all functions fe F: f(x) > o - x.

=

. X .
Solution. We clearly have thaE € F, hencea < -. Furthermore for every functiof € F we

=N

have f (x) > )—; The idea is the following: Denotg = o and form a sequencfa,} for which

: . 1 . . 1 1
f(x) > anx and which will (hopefully) tend t02—. This would imply thato > > and hencer = ~

Let us constract a recurrent relation fmy. Assume thaff (x) > ayx, for everyx € R*. From the
given inequality we have

f(3x) > f(f(2X)) +x> axf(2X) + x> ai - Ok - 2X+ X = A1 - 3X.

202+1

. . 1_ . .
This means thadr, 1 = . Let us prove that lim. 1 O = > This is a standard problem. It

is easy to prove that the sequemnggs increasing and bounded above%).yHence it converges and
. - 2041 1,
its limit a satisfiesa = TJF Le.a = > (sincea < 1). A

Problem 12. Find all functions £g,h: R — R that satisfy

f(x+Yy) +9(x—y) = 2h(x) + 2h(y).
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Solution. Our first goal is to exprest andg usingh and get the equation involvingonly. First
takingy = x and substitutingy(0) = a we getf(2x) = 4h(x) — a. Furthermore by putting = 0 we

getg(x) = 2h(x) +2b—4h <)—2() +a, whereh(0) = b. Now the original equation can be written as

Xty X—y _
2{h(7>+h<7)]+h(x—y)+b_h(x)+h(y). @)
LetH(x) = h(x) —b. These "longer” linear expressions can be easily handied gxpress functions
in form of the sum of an even and odd function, FHyx) = He(X) + Ho(X). Substituting this into (2)
and writing the same expressions ferx,y) and(x, —y) we can add them together and get:

2|He(*5Y) + e 5) |+ Helx—y) = Hetx + ). ©

If we set—y in this expression and add to (3) we get (udihgy) = He(—Y))
He(X+Y) — He(X —Y) = 2He(X) + 2He(y).

The last equation is not very difficult. Mathematical indantyieldsHe(r) = ar?, for every rational
number. From the continuity we gétle(X) = ax?. Similar method gives the simple relation tdg

Ho(X+Y) 4+ Ho(X—Y) = 2Ho(X).

This is a Cauchy equation henelg(x) = Bx. Thush(x) = ax? 4 Bx+ b and substituting foff and
gwe get:
f(x) = ax’*+2Bx+4b—a, g(x)=ax’+a

It is easy to verify that these functions satisfy the givenditons.

Problem 13. Find all functions f: Q — Q for which
f(xy) = f(x)f(y)— f(x+y)+1.
Solve the same problem for the casel®f — R.

Solution. Itis not hard to see that for=y = 0 we get(f(0) — 1)2 =0, i.e. f(0) = 1. Furthermore,
settingx=1 andy = —1 givesf(—1) = f(1)f(—1), hencef (—1) =0 or f (1) = 1. We will separate
this into two cases:

1° Let f(—1) = 0. In this innocent-looking problems that are resistentsoal ideas it is some-
times successful to increase the number of variablespigetyzinstead ofy:

fixyd =f(X)f(y2 —f(x+y2+1=f(X)(f(y)f(2) — f(y+2+1)— f(x+y2 + 1.

Although it seems that the situation is worse and runningobabntrol, that is not the case.
Namely the expression on the left-hand side is symmetridewine one on the right-hand side
is not. Writing the same expression foand equating gives

fX)f(y+2)— f(X)+ f(x+y2 =f(2f(x+y)— (2 + f(xy+ 2). 4

Settingz = —1 (we couldn’t do that at the beginning, sirce: 1 was fixed) we gef (x) f (z—
1)— f(x)+ f(x—y) = f(xy— 1), and setting« = 1 in this equality gives

fFly=1(- (1) =f1-y) - f(D). (5)

Settingy = 2 givesf(1)(2— f(1)) =0, i.e. f(1) = 0 or f(1) = 2. This means that we have
two cases here as well:
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1.1° If (1) =0, then from (5) plugging + 1 instead ofy we getf(y) = f(—y). Setting—y
instead ofy in the initial equality gived (xy) = f(x) f(y) — f (x—y)+ 1, hencef (x+y) =
f(x—y), for every two rational numbersandy. Specially forx =y we getf(2x) =
f(0) =1, for allx € Q. However this is a contradiction with(1) = 0. In this case we
don’t have a solution.

1.2° If f(1) = 2, settingy + 1 instead ofy in (5) gives 1- f(y) = f(—y) — 1. Itis clear
that we should do the substitutigix) = 1 — f(x) because the previous equality gives
g(—x) = —g(x), i.e. g is odd. Furthermore substitutigginto the original equality gives

g(xy) = 9(x) +9(y) —9g(x)g(y) — g(X+Y). (6)

Setting—y instead ofy we get—g(xy) = g(x) — g(y) +g(x)g(y) — g(x—y), and adding
with (6) yieldsg(x+Yy) +g(x—y) = 2g9(x). Forx =y we haveg(2x) = 2g(x) therefore we
getg(x+Yy)+g(x—Yy) =9g(2x). This is a the Cauchy equation and since the doma is
we getg(x) = rx for some rational number Plugging this back to (6) we obtain= —1,
and easy verification shows thitx) = 1+ x satisfies the conditions of the problem.

2° Let f(1) =1. Settingz=1in (4) we get
fixy+1) - f(x)f(y+1)+f(x)=1,

hence fory = —1 we getf (1 —x) = 1, for every rationak. This means that(x) = 1 and this
function satisfies the given equation.

Now let us solve the problem wheffe; R — R. Notice that we haven't used that the rang&)is
hence we conclude that for all rational numbgré(gq) = q+1, or f(q) = 1. If f(g) =1 for all
rational numbers, it can be easily shown thdt(x) = 1. Assume thaf (q) # 1. From the above
we have thay(x) + g(y) = g(x+Y), hence it is enough to prove monotonicity. Substitutey in
(6) and useg(2x) = 2g(x) to getg(x?) = —g(x)?. Therefore for every positive the valueg(r) is
non-positive. Hence i > x, i.e.y = x+r? we haveg(y) = g(x) +9(r?) < g(x), and the function is
decreasing. This means thigx) = 1+ ax and after some calculation we gix) = 1+x. It is easy
to verify that so obtained functions satisfy the given fumeal equation /A

Problem 14. (IMO 2003, shortlist) LeR* denote the set of positive real numbers. Find all functions
f :R™ — R that satisfy the following conditions:

M) fxy2+f(x)+f(y)+ (2= (/x9N F(YDT(VZY
(i) f(x) < f(y)forallL<x<y.
Solution. First notice that the solution of this functional equatismot one of the common solutions

. : . 1 .
that we are used to work with. Namely one of the solution§(ig = x+ X which tells us that this

equality is unlikely to be shown reducing to the Cauchy eiguat-irst, settingk =y =z= 1 we get
f(1) = 2 (sincef (1) > 0). One of the properties of the solution suggested abo¥éxis= f(1/x),
and proving this equality will be our next step. Puttig ts,y = ES z=2in (i) gives

f(t)f(s) = f(ts)+ f(t/s). (7)
In particular, fors= 1 the last equality yield$(t) = f(1/t); hencef(t) > f(1) = 2 for eacht. It

follows that there existg(t) > 1 such thaff (t) = g(t) + ﬁ. Now it follows by induction from (7)

thatg(t") = g(t)" for every integen, and thereforg(t9) = g(t)9 for every rational. Consequently,
if t > 1is fixed, we havé (t9) = a%+a 9, wherea= g(t). But since the set & (g € Q) is dense in
R* andf is monotone orf0, 1] and[1,»), it follows that f (t") = a" +a " for every reat. Therefore,
if k is such thatk = a, we have

f(x) =x¥+xK foreveryxeR. A
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Problem 15. Find all functions f: [1,00) — [1,) that satisfy:
(i) f(x) <2(14x)forevery xe [1,);
(i) xf(x+1)= f(x)2—1for every xc [1,).

Solution. It is not hard to see that(x) = x+ 1 is a solution. Let us prove that this is the only
solution. Using the given conditions we get

F(0? = xF(x+1) + 1 < X(2(x+ 1)) + 1 < 2(1+ %)%,

i.e. f(x) < v/2(1+x). With this we have found the upper bound fiqx). Since our goal is to prove
f(x) = x+ 1 we will use the same method for lowering the upper boundil&ilpwe get

f(x)2 = xf(x+1) + 1 < x(V2(x+1)) + 1 < 2Y4(1+x)2.
Now it is clear that we should use induction to prove
f(x) < 2Y%(1+x),

for everyk. However this is shown in the same way as the previous twaigléges. Since 21
ask — +oo, hence for fixedk we can’t havef (x) > x+ 1. This impliesf(x) < x+ 1 for every real
numberx > 1. It remains to show that(x) > x+ 1, for x> 1. We will use the similar argument.

f(x)2-1 .
From the fact that the range|is, +) we get% = f(x+1)>1,i.e f(x) > Vx+1>xY/2
We further havef (x)2 = 1+ xf(x+1) > 1+ xy/Xx+ 2 > x¥/2 and similarly by induction

f(x) > x2/2°,

Passing to the limit we further haviéx) > x. Now again from the given equality we gétx)? =

. . . . 1
1+xf(x+1) > (x+1/2)?, i.el f(x) > x+1/2. Using the induction we geft(x) > x+1— R and
passing to the limit we get the required inequafitx) > x+1. A

Problem 16. (IMO 1999, probelm 6) Find all functions:fR — R such that

f(x=1(y)) = f(f(y)) +xf(y)+ f(x) - 1.

Solution. Let A= {f(x)|x € R}, i.e. A= f(R). We will determine the value of the function én
Letx= f(y) € A, for somey. From the given equality we hav&0) = f (x) +x%+ f(x) — 1, i.e.

c+1 X2
="3"7

where f(0) = c. Now it is clear that we have to analyze gefurther. Settingx =y =0 in the
original equation we gef(—c) = f(c) +c—1, hencec # 0. Furthermore, plugging = 0 in the
original equation we get(x—c) — f(x) = cx+ f(c) — 1. Since the range of the function (&non
the right-hand side is entif®, we get{ f (x—c) — f(x) [ xe R} =R, i.e. A— A=RR. Hence for every
real numbex there are real numbeys, y, € A such thak = y; — y>. Now we have

f) = fyi—y2) =fni—F(2) =

= f(y)+f(y2)+yy2—1l=c—

f(2)+yif(2+fy1) -1
X2
E.

2
. . . . . X
From the original equation we easily get 1. It is easy to show that the functidiix) = 1— >

satisfies the given equatiois
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Problem 17. Given an integer n, let fR — R be a continuous function satisfyingdj =0, f(1) =
1, and f"(x) = x, for every xe [0, 1]. Prove that {x) = x for each xc [0, 1].

Solution. First from f(x) = f(y) we havef (™ (x) = f("(y), hencef is injective. The idea for what
follows is clear once we look at the graphical represematidamely from the picture it can be
easily deduced that the function has to be strictly increpdiet us prove that formally. Assume the
contrary, that for some two real numbegs< x; we havef (x;) > f(xz). The continuity on0,x;]
implies that there is somesuch thatf(c) = f(xy), which contradicts the injectivity of. Now if

x < f(x), we getf (x) < f(f(x)) etc.x < f(n)(x) =x. Similarly we get a contradiction if we assume
thatx > f(x). Hence for each € [0, 1] we must havef (X) = x. A

Problem 18. Find all functions f: (0,+) — (0, +c0) that satisfy {f(x)+y) =xf(1+ xy) for all
X,y € (0, +00).

. 1. . , . .
Solution. Clearly f (x) = 5 sone solution to the functional equation. Let us prove thafunction

is non-increasing. Assume the contrary that for soreex0< y we have 0< f(x) < f(y). We will

yfly) —xf(x)

consider the expression of the fors= since it is positive and bigger theily). We

—X
first plug (x,z— f(y)) instead of(x,y) in the original equation, then we pluy- f(x) instead ofy,
we getx =y, which is a contradiction. Hence the function is non-desirea

Letus provethaf (1) = 1. Letf(1) # 1. Substitutingc= 1 we getf (f(1)+y) = f(1+Y), hence
f(u+|f(1) —1|) = f(u) for u> 1. Therefore the function is periodic on the interyal+), and
since it is monotone it is constant. However we then concthdethe left-hand side of the original
equation constant and the right-hand side is not. Thus we have f(1) = 1. Let us prove that

f(x) = )—1( forx> 1. Indeed foy=1— )—1( the given equality givei’;(f(x)— )—1() =xf(x). If f(x) > )—1(
we havef(f(x) —%—Fl) < f(1) = 1 andxf(x) > 1. If f(x) < )—1( we havef(f(x) —%—Fl) >

f(1) =1, andxf(x) < 1. Hencef (x) = % If x < 1, pluggingy = % we get

f(um+%)=xua:g,

1 1 2. 1. .. . 1
and since_ > 1, we getf (x) + <=3 e f(x) = < n this case, too. This means thdi) = ™ for
all positive real numbers A

Problem 19. (Bulgaria 1998) Prove that there is no function R* — R* such that fx)? > f(x+
y)(f(x) +y) for every two positive real numbers x and y.

Solution. The common idea for the problems of this type is to prove fifg} < O for somey > 0
which will lead us to the obvious contradiction. We can alse that it is sufficient to prove that
f(x) — f(x+1) > ¢ > 0, for everyx because the simple addition givé&) — f(x+ m) > mc For
sufficiently largemthis impliesf (x+m) < 0. Hence our goal is findingsuch thaff (x) — f (x+1) >
¢, for everyx. Assume that such function exists. From the given inequaié getf (x) — f(x+y) >
f(x+y)y

f(x)
that

and the function is obviously decreasing. Also from the gieguality we can conclude

fF(x)y
f)+y
Let n be a natural number such théfx+ 1)n > 1 (such number clearly exists). Notice that for
0 < k < n-1the following inequality holds

f@+§)—f@+

f(x) — f(x+y) >

k+1 1
ﬁ) = o
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and adding similar realitions for all describlegtields f (x) — f(x+1) > > which is a contradiction.
A

Problem 20. Let f: N — N be a function satisfying
f(1)=2, f(2)=1, f(@Bn)=3f(n), f(Bn+1)=3f(n)+2, f(Bn+2)=3f(n)+1
Find the number of integers 2006for which f(n) = 2n.

Solution. This is a typical problem in which the numbers should be aergid in some base different
than 10. For this situation the base 3 is doing the job. Letlsutatef (n) for n < 8 in an attempt
to guess the solution. Clearly the given equation can halyeame solution.

f((1)3) = (2)3, F((2)3) = (L3, F((10)3) =6=(20)3, f((11)3) = 8= (22)s,

f((12)3) =7=(21)3, f((20)3) =3=(10)3, f((21)3) =5=(12)3, F((22)3) = 4= (11)s.

Now we see thaf(n) is obtained fronm by changing each digit 2 by 1, and conversely. This can
be now easily shown by induction. It is clear tHgh) = 2n if and only if in the system with base

3 ndoesn’t contain any digit 1 (because this would imp{y) < 2n). Now it is easy to count the
number of such’s. The answer is 127

Problem 21. (BMO 2003, shortlist) Find all possible values fo( 88;‘) if f :Q — [0,4+)isthe
function satisfying the conditions:

(i) f(xy)=f(x)f(y) forall x,yeQ;
(i) f(x)<1l= f(x+1) <1lforallxeQ;

200

(i) f (200 =2.

Solution. Notice that from (i) and (ii) we conclude th&fx) > 0, for every rationak. Now (i) implies
that forx =y = 1 we getf (1) = 0 and similarly forx =y = —1 we getf(—1) = 1. By induction
f(x) <1 for every integek. For f(x) < f(y) from f(%) f(y) = f(x) we have thaf <§) <1, and

y

according to (ii)f ()-( n 1) < 1. This implies

f(x+y) = f()—{—kl)f(x) < f(x),

hencef (x+y) < max{ f(x), f(y)}, for everyx,y € Q. Now you might wonder how did we get this
idea. There is one often neglected fact that for every twatikedly prime numbera andv, there are
integersa andb such thau+ bv= 1. What is all of this good for? We got th&fl) = 1, and we
know thatf (x) <1 for all x € Z and since 1 is the maximum of the function@mnd since we have
the previous inequality our goal is to show that the valueheffunction is 1 for a bigger class of
integers. We will do this for prime numbers. If for every pamwe havef (p) = 1 thenf(x) =1 for
every integer implyingf (x) = 1 which contradicts (iii). Assume therefore thigtp) # 1 for some
p € P. There ar@ andb such thaap+ bg= 1 implying f (1) = f(ap+bqg) < max{ f(ap), f(bg)}.
Now we must havd (bq) = 1 implying thatf (q) = 1 for every other prime number From (iii) we
have

f<2oo f(2003 _,

2002 f(2)f(7)F(11)f(13)

f(1
hence only one of the numbef$2), f(7), f(11), f(13) is equal to ¥2. Thusf(3) = f(167) =
(2003 giving:

2004\  f(2)2f(3)f(167)
(So08) = fooy 2"
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1 S
If f(2) =1/2 thenf (288 =7 otherwise it is 1.
It remains to construct one function for each of the giverugal For the first value it is the

multiplicative function taking the value/2 at the point 2, and 1 for all other prime numbers; in the
second case it is a the multiplicative function that takesvidue 12 at, for example, 7 and takes 1
at all other prime numbers. For these functions we only neeetify the condition (ii), but that is
also very easy to verifyA

Problem 22. Let|1=10,1], G=1 x 1 and ke N. Find all f : G — | such that for all xy,z € | the
following statements hold:

i) f(f(xy),2) = f(x f(y,2);
(i) f(x1)=x, f(xy) = fy,x);
(i) f(zxzy) =Zf(xy) for every xy,z€ |, where k is a fixed real number.

Solution. The function of several variables appears in this problemmbst cases we use the
same methods as in the case of a single-variable functisom the condition (ii) we gef(1,0) =
f(0,1) = 0, and from (iii) we getf (0,x) = f(x,0) = x*f(1,0) = 0. This means that is entirely
defined on the edge of the regi@ Assume therefore thatf x <y < 1. Notice that the condition
(ii) gives the value for one class of pairs fraBand that each pair i can be reduced to one of the
members of the class. This implies

f(xy) = f(y.x) ykf( ) y<x.

This can be written a$(x,y) = min(x,y)(maxu,v))1 for all 0 < x,y < 1. Let us find all possible
values fork. Let 0< x < > <y< 1. From the condition (i), and the already obtained resuiget

(1(e3)9) = 1(3) " 9) = 1(x1(3)) = 130 )
Let us now considek < 2K~y in order to simplify the expression to the form(x, %yk‘l) =

k—1
X(%) , and if we takex for which 2x < y*1 we getk — 1 = (k— 1)2, ie. k=1ork=2.

Fork = 1 the solution isf (x,y) = min(x,y), and fork = 2 the solution isf (x,y) = xy. Itis easy to
verify that both solutions satisfy the given conditiods.

Problem 23. (APMO 1989) Find all strictly increasing functions: R — R such that
f(x)+9(x) = 2x,

where g is the inverse of f.

Solution. Clearly every function of the formt+ d is the solution of the given equation. Another
useful idea appears in this problem. Namely denot&bthe the set of all numbepsfor which

f(x) = x+d. Our goal is to prove the®y = R. Assume thaf; is non-empty. Let us prove that
for x € S we havex+d € S as well. Sincef (x) = x+d, according to the definition of the inverse
function we haveg(x+d) = x, and the given equation implidgx+d) =x+2d, i.e.x+d € &. Let

us prove that the se®y are empty, wherd’ < d. From the above we have that each of those sets is
infinite, i.e. if x belongs to some of them, then each kd belongs to it as well. Let us use this to
get the contradiction. More precisely we want to prove thatd §; andx <y < x+ (d —d’), then

y € Sy. Assume the contrary. From the monotonicity we hawed’ = f(y) > f(x) = x+d, which

is a contradiction to our assumption. By further inductiompvove that every satisfying

x+k(d—d) <y<x+(k+1)(d—d),



Marko Radovanovi¢: Functional Equations 13

can’t be a member d&;. However this is a contradiction with the previously esti#d properties
of the setsyy andSy. Similarly if d’ > d switching the roles ofl andd’ gives a contradiction.
Simple verification shows that eadkix) = x+ d satisfies the given functional equatiah.

Problem 24. Find all functions h N — N that satisfy
h(h(n)) +h(n+1)=n+2.

Solution. Notice that we have both(h(n)) andh(n+ 1), hence it is not possible to form a recurrent
equation. We have to use another approach to this problemud.8rst calculaté(1) andh(2).
Settingn = 1 givesh(h(1)) + h(2) = 3, thereforen(h(1)) < 2 andh(2) < 2. Let us consider the two
cases:

1° h(2) = 1. Thenh(h(1)) = 2. Pluggingn = 2 in the given equality gives 4 h(h(2)) +h(3) =
h(1) +h(3). Leth(1) = k. Itis clear thatk # 1 andk # 2, and thak < 3. This means that
k =3, henceh(3) = 1. However from 2= h(h(1)) = h(3) = 1 we get a contradiction. This
means that there are no solutions in this case.

2° h(2) = 2. Thenh(h(1)) = 1. From the equation far = 2 we geth(3) = 2. Settingn = 3,4,5
we geth(4) = 3,h(5) = 4,h(6) = 4, and by induction we easily prove thlan) > 2, for
n> 2. This means thdt(1) = 1. Clearly there is at most one function satisfying the given
equality. Hence it is enough to guess some function and phaté indeed solves the equation
(induction or something similar sounds fine). The soluten i

h(n) = [na | +1,
-1 5 . . -
wherea = i (this constant can be easily foumd + a = 1). Proof that this is a
solution uses some properties of the integer part (althdugimot completely trivial).A
Problem 25. (IMO 2004, shortlist) Find all functions fR — R satisfying the equality
(0 +y? +2f (xy)) = f(x+y)2

Solution. Let us make the substitutian= x+y, t = xy. Givenzt € R, x,y are real if and only if
4t < 7. Defineg(x) = 2(f(x) —x). Now the given functional equation transforms into

f(Z+g(t)) = (f(2)® forall t,ze R with 2 > 4t. (8)

Let us set = g(0) = 2f(0). Substituting = 0 into (8) gives us

f(Z+c)=(f(2)? forall zeR. 9)

If ¢ < 0, then taking such that? + ¢ = 0, we obtain from (9) thaf (z)? = ¢/2, which is impossible;
hencec > 0. We also observe that

x>c implies f(x)>0. (20)

If gis a constant function, we easily find tltat 0 and thereford (x) = x, which is indeed a solution.

Supposg is nonconstant, and latb € R be such thag(a) — g(b) =d > 0. For some sufficiently
largeK and eachu,v > K with v2 — u? = d the equalitys® + g(a) = v> 4 g(b) by (8) and (10) implies
f(u) = f(v). This further leads tag(u) — g(v) = 2(v—u) = I Therefore every value from

some suitably chosen segmedt24] can be expressed géu) — g(v), with u andv bounded from
above by somé/.

]Q



14 Olympiad Training Materials, www.imomath.com

Consider any,y with y > x > 2¢/M andd < y? —x? < 2. By the above considerations, there
existu,v < M such thag(u) — g(v) = y> — %2, i.e.,x> 4+ g(u) = y>+g(v). Sincex? > 4u andy? > 4v,
(8) leads tof (x)? = f(y)?. Moreover, if we assume w.l.0.g. thav¥> c?, we conclude from (10)
that f (x) = f(y). Since this holds for any,y > 2\/M with y? — x? € [, 23], it follows that f (x) is
eventually constant, safy(x) = k for x> N = 2y/M. Settingx > N in (9) we obtairk? = k, sok = 0
ork=1.

By (9) we havef (—z) = +f(z), and thugf(z)| <1 for allz< —N. Henceg(u) = 2f (u) —2u>
—2—2ufor u< —N, which implies thag is unbounded. Hence for eagtthere existd such that
Z+9(t) > N, and consequentlf(z)? = f(Z +g(t)) = k= k?. Thereforef (z) = +k for eachz.

If k=0, thenf(x) =0, which is clearly a solution. Assunke= 1. Thenc = 2f(0) = 2 (because
¢ > 0), which together with (10) implie§(x) = 1 for all x > 2. Suppose that(t) = —1 for some
t <2. Thent —g(t) = 3t42 > 4t. If alsot —g(t) > 0, then for some € R we havez? =t —g(t) > 4t,
which by (8) leads tdf (2)2 = f(Z2 +g(t)) = f(t) = —1, which is impossible. Hende- g(t) < O,
giving ust < —2/3. On the other hand, X is any subset of—, —2/3), the functionf defined by
f(x) = —1forx € X andf(x) = 1 satisfies the requirements of the problem.

To sum up, the solutions aféx) = x, f(x) = 0 and all functions of the form

1 XX,
f(x):{ -1 xzx

whereX C (—,—2/3). A

4 Problemsfor Independent Study

Most of the ideas for solving the problems below are alreadptioned in the introduction or in the
section with solved problems. The difficulty of the problevasy as well as the range of ideas used
to solve them. Before solving the problems we highly encgerngou to first solve (or look at the
solutions) the problems from the previous section. Sombeptoblems are quite difficult.

1. Find all functionsf : Q — Q that satisfyf (x+y) = f(x) + f(y) + xy.

2. Find all functionsf : Z — Z for which we havef (0) = 1 andf(f(n)) = f(f(n+2)+2) =n,
for every natural numbenr.

3. Find all functionsf : N — N for which f(n) is a square of an integer for alle N, and that
satisfy f (m+n) = f(m) + f(n) +2mnfor all m,n € N.

4. Find all functionsf : R — R that satisfyf ((x —y)?) = f(x)? — 2xf(y) +y2.
5. Letn € N. Find all monotone function§ : R — R such that
fx+f(y)) = f(x)+y".
6. (LfJ(S,)A 2002) Find all functiong : R — R which satisfy the equalityf (x> — y?) = xf(x) —
y1y).

7. (Mathematical High Schol, Belgrade 2004) Find all fuaosf : N — N such thatf (f(m) +
f(n)) = m-+ nfor every two natural numbersandn.

8. Find all continuous functions: R — R such thatf (xy) = xf(y) +yf(x).
9. (IMO 1983, problem 1) Find all functionfs: R — R such that

(i) f(xf(y)) =yf(x), forallx,yeR;
(i) f(x) — 0asx— +oo.
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10. Letf : N — N be strictly increasing function that satisfiééf (n)) = 3n for every natural
numbem. Determinef (2006).

11. (IMO 1989, shortlist) Let 6< a < 1 be a real number anfl continuous function o010, 1]
which satisfiesf (0) =0, f(1) =1, and

f(ﬂ

5) = -yt +af(y).

for every two real numbersy € [0, 1] such thai <'y. Determinef (%)

12. (IMO 1996, shortlist) Lef : R — R be the function such thaf (x)| <1 and
13 1 1
f<x+4—2> +f(x) = f(x+é) + f<x+7).
Prove thatf is periodic.
13. (BMO 2003, problem 3) Find all functiorfs: Q — R that satisfy:
(i) f(x+y)—yf(x)—xf(y) = f(x)f(y) —x—y-+xyfor everyx,y € Q;
(i) f(x)=2f(x+1)+2+x,foreveryxe Q;
(i) f(1)+1>0.
14. (IMO 1990, problem 4) Determine the functibn Q™ — Q™ such that

f(xf(y)) = %, forallx,ye Q*.

15. (IMO 2002, shortlist) Find all functions: R — R such that
f(f(x)+y) =2x+ f(f(y) —X).

16. (Iran 1997) Leff : R — R be an increasing function such that for all positive real barsx
andy:
f(x+y)+ F(F() + F(y)) = F(f(x+ f(y) + Fly+ F(x))).
Prove thatf (f(x)) = x.

17. (IMO 1992, problem 2) Find all functiorfs: R — R, such thatf (x? + f(y)) = y+ f(x)? for
all x,y € R.

18. (IMO 1994, problem 5) Le§ be the set of all real numbers strictly greater than -1. Fihd a
functionsf : S— Sthat satisfy the following two conditions:

(i) f(x+fy)+xf(y) =y+f(x)+yf(x)forallx,yes
fx)

(i) ~ is strictly increasing on each of the intervalg < x < 0 and 0< x.

19. (IMO 1994, shortlist) Find all function: R™ — R such that
f(x)f(y) =y f(x/2) +xPf(y/2), forallx,y e R".
20. (IMO 2002, problem 5) Find all functiorfs: R — R such that

() +F@)(F(y) + f(1)) = f(xy—2zt) + f(xt+y2).
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Olympiad Training Materials, www.imomath.com

(Vietham 2005) Find all values for a real parametefor which there exists exactly one
functionf : R — R satisfying

fOC+y+f(y) = fX)*+a-y.
(IMO 1998, problem 3) Find the least possible valuef{d998 wheref : N — Nis a function
that satisfies
f(n?f(m)) = mf(n)2.
Does there exist a functidn: N — N such that
f(f(n—-1))=f(n+1)— f(n)
for each natural number?

(IMO 1987, problem 4) Does there exist a functfarNg — Ng such thaff (f(n)) = n+1987?

Assume that the functioh: N — N satisfiesf (n+1) > f(f(n)), for everyn € N. Prove that
f(n) = nfor everyn.

Find all functions : Ng — Np, that satisfy:

(i) 2f(m?+n?) = f(m)? + f(n)?, for every two natural numbers andn;
(i) If m>nthenf(m?) > f(r?).

Find all functiond : Ng — Ny that satisfy:
0 f(2)=2;

(i) f(mn) = f(m)f(n) for every two relatively prime natural numbersandn;
(i) f(m) < f(n) whenevem < n.

Find all functionsf : N — [1, ) that satisfy conditions (i) and (ii9) of the previous prahle
and the condition (ii) is modified to require the equality éwery two natural numbers and
n.

Given a natural numbéy find all functionsf : Ng — Ng for which
f(f(n))+ f(n) =2n+ 3k,
for everyn € Np.

(Vijetnam 2005) Find all function§ : R — R that satisfyf(f(x—y)) = f(x)f(y) — f(x) +
F(y) —xy.

(China 1996) The functioh: R — R satisfy f (x3+y?) = x+y)< (x)%— f(x) f(y)+ f(y)z),
for all real numbers andy. Prove thatf (1996k) = 1996f (x) for everyx € R.

Find all functiond : R — R that satisfy:

(i) f(x+y)= f(x)+ f(y) for every two real numbenrsandy;

(ii) f( ) )forX7£0

(IMO 1989, shortllst) A functiorf : Q — R satisfy the following conditions:
(i) f(0)=0,f(a)>0zaa #0;
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34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

(i) f(aB)=f(a)f(B)if(a+B)<f(a)+f(B) foralla,Beq;
(iii) f(m) <1989 zame Z.

Prove thatf (o + B) = maxX{f(a), f(B)} wheneverf (a) # f(B).

Find all functions : R — R such that for every two real numbets- y the equality

x+y\  f(x)+f(y)
(y) = oot

X=y
is satisfied.
Find all functiond : Q* — QT satisfying:

(i) f(x+1)=f(x)+1forallxeQT;
(i) f(x3) =f(x)3forallxc Q™.

Find all continuous functions: R — R that satisfy the equality
f(x+y)+ f(xy) = f(x)+ f(y)+ f(xy+1).
Find all continuous functions g,h,k : R — R that satisfy the equality
f(x+y) +g(x—y) = 2h(x) + 2Kk(y).
(IMO 1996, shortlist) Find all functions: Ng — Ng such that
f(m+ f(n)) = f(f(m))+ f(n).
(IMO 1995, shortlist) Does there exist a functibnR — R satisfying the conditions:

(i) There exists a positive real numbdrsuch that-M < f(x) <M for all x € R;
(i) f(1)=1,
1 1712
) = — ?
(iii) If x;éomenf(x+ x2> F(x) + [f(x)} .
(Belarus) Find all continuous functiofis R — R that satisfy
f(f(x) = f(x)+2x

Prove that if the functiofi : R™ — R satisfy the equality

f(52) +f(%) — F()+ F(Y),

the it satisfy the equality &, /Xy) = f(x) + f(y) as well.
Find all continuous functionfs: (0,00) — (0,) that satisfy

FO)f(y) = f(xy) + f(x/y).

Prove that there is no functidn: R — R that satisfy the inequality(y) > (y — x) f(x)?, for
every two real numbersandy.
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44. (IMC 2001) Prove that there doesn’t exist a functfariR — R for which f(0) > 0 and
F(x+y) > F(x) +yF(F(x).

45. (Romania 1998) Find all functiomss R — R for which there exists a strictly monotone func-

tion f : R — R such that
f(x+y) = f(xuly) + f(y), vxyeR.

46. (Iran 1999) Find all function§: R — R for which
FE)+y) = F(¢ —y) +4f ()y.

47. (IMO 1988, problem 3) A functioffi : N — N satisfies:

() f(1)=1,1(3)=3;

(i) f(2n) = f(n);
(iiiy f(4n+1)=2f(2n+1)— f(n) andf(4n+3) = 3f(2n+1) — 2f(n),

for every natural number € N. Find all natural numbens < 1998 such thaf (n) = n.
48. (IMO 2000, shortlist) Given a functiof : Ng — Ny, assume that fon > 0 the following
relations hold:
(i) F(4n)=F(2n)+F(n);
(i) F(4n+2)=F(4n)+1;
(i) F(2n+1)=F(2n)+1.
Prove that for every natural numbm®y the number of positive integenssuch that 06< n < 2™
andF (4n) = F(3n) is equal toF (2™1).
49. Letf: Q x Q — Q' be a function satisfying

f(zxy) = f(zx)f(zyy), f(x,1-x)=1,

fxy2) = f(x2)f(y,2),
for all rational numbers,y,z. Prove thaff (x,x) =1, f(x,—x) = 1, andf (x,y)f(y,x) =1

50. Find all functiond : N x N — R that satisfy

fxx) =%, fxy) =fyx), X+y)fxy =yfxx+y).



