Hanoi Mathematical Society Hanoi Open Mathematical Olympiad 2010

Senior Section

Sunday, 28 March 2010
08h45-11h45

Important:

Answer all 10 questions.
Enter your answers on the answer sheet provided.
For the multiple choice questions, enter only the letters (A, B, C, D or $E)$ corresponding to the correct answers in the answer sheet.

No calculators are allowed.

Q1. The number of integers $n \in[2000,2010]$ such that $2^{2 n}+2^{n}+5$ is divisible by 7 , is
(A): 0; (B): 1;
(C):2; (D):3;
(E) None of the above.

Q2. The last 5 digits of the number $\mathbf{5}^{\mathbf{2 0 1 0}}$ are
(A): 65625; (B):45625; (C): 25625; (D): 15625; (E) None of the above.

Q3. How many real numbers $a \in(1,9)$ such that the corresponding number $\boldsymbol{a}-\frac{\mathbf{1}}{\boldsymbol{a}}$ is an integer.
(A): 0
(B): 1;
(C): 8;
(D): 9
(E) None of the above.

Q4. Each box in a 2×2 table can be colored black or white. How many different colorings of the table are there?

Q5. Determine all positive integer \boldsymbol{a} such that the equation

$$
2 x^{2}-210 x+a=0
$$

has two prime roots, i.e. both roots are prime numbers.

Q6. Let $\boldsymbol{a}, \boldsymbol{b}$ be the roots of the equation $\boldsymbol{x}^{2}-\boldsymbol{p} \boldsymbol{x}+\boldsymbol{q}=\mathbf{0}$ and let $\boldsymbol{c}, \boldsymbol{d}$ be the roots of the equation $\boldsymbol{x}^{2}-\boldsymbol{r} \boldsymbol{x}+\boldsymbol{s}=\mathbf{0}$, where $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \boldsymbol{s}$ are some positive real numbers. Suppose that

$$
M=\frac{2(a b c+b c d+c d a+d a b)}{p^{2}+q^{2}+r^{2}+s^{2}}
$$

is an integer. Determine $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$.

Q7. Let \boldsymbol{P} be the common point of 3 internal bisectors of a given $\boldsymbol{A B C}$. The line passing through \boldsymbol{P} and perpendicular to $\boldsymbol{C P}$ intersects $\boldsymbol{A C}$ and $\boldsymbol{B C}$ at \boldsymbol{M} and \boldsymbol{N}, respectively. If $\boldsymbol{A P}=3 \mathrm{~cm}, \boldsymbol{B P}=4 \mathrm{~cm}$, compute the value of $\frac{\boldsymbol{A M}}{\boldsymbol{B N}}$?

Q8. If n and $n^{3}+2 n^{2}+2 n+4$ are both perfect squares, find n ?

Q9. Let x, y be the positive integers such that $3 x^{2}+x=4 y^{2}+y$. Prove that $\boldsymbol{x}-\boldsymbol{y}$ is a perfect integer.

Q10. Find the maximum value of

$$
M=\frac{x}{2 x+y}+\frac{y}{2 y+z}+\frac{z}{2 z+x}, x, y, z>0 .
$$

