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PROBLEMS

11474. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Valentin Vornicu, Aops-MathLinks forum, San Diego, CA. (Correction) Show
that when x , y, and z are greater than 1,

�(x)x2+2yz�(y)y2+2zx�(z)z2+2xy ≥ (�(x)�(y)�(z))xy+yz+zx .

11483. Proposed by Éric Pité, Paris, France. (Correction) The word “nonnegative”
should read “positive.”

11495. Proposed by Marc Chamberland, Grinnell College, Grinnell, IA. Let a, b, and
c be rational numbers such that exactly one of a2b + b2c + c2a, ab2 + bc2 + ca2, and
a3 + b3 + c3 + 6abc is zero. Show that a + b + c = 0.

11496. Proposed by Benjamin Bogoşel, student, West University of Timisoara, Timi-
soara, Romania, and Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia. For a matrix X with real entries, let s(X) be the sum of its entries. Prove that if A
and B are n × n real matrices, then

n
(
s(AAT ) + s(B BT ) − s(ABT )s(AT B)

) ≥
s(AAT )(s(B))2 + s(B BT )(s(A))2 − s(A)s(B)

(
s(ABT ) + s(AT B)

)
.

11497. Proposed by Mihály Bencze, Brasov, Romania. Given n real numbers x1, . . . , xn

and a positive integer m, let xn+1 = x1, and put

A =
n∑

k=1

(
x2

k − xk xk+1 + x2
k+1

)m
, B = 3

n∑
k=1

x2m
k .

Show that A ≤ 3m B and A ≤ (3m B/n)n .
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11498. Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan. Let
ABC D be a convex quadrilateral. A line through the intersection O of the diagonals
AC and B D intersects the interior of edge BC at L and the interior of AD at N .
Another line through O likewise meets AB at K and C D at M . This dissects ABC D
into eight triangles AK O , K BO , BL O , and so on. Prove that the arithmetic mean
of the reciprocals of the areas of these triangles is greater than or equal to the sum of
the arithmetic and quadratic means of the reciprocals of the areas of triangles ABO ,
BC O , C DO , and D AO . (The quadratic mean is also known as the root mean square;
it is the square root of the mean of the squares of the given numbers.)

11499. Proposed by Omran Kouba, Higher Institute for Applied Science and Technol-
ogy, Damascus, Syria. Let Hn be the nth harmonic number, given by Hn = ∑n

k=1 1/k.
Let

Sk =
∞∑

n=1

(−1)n−1 (log k − (Hkn − Hn)) .

Prove that for k ≥ 2,

Sk = k − 1

2k
log 2 + 1

2
log k − π

2k2

�k/2�∑
l=1

(k + 1 − 2l) cot

(
(2l − 1)π

2k

)
.

11500. Proposed by Bhavana Deshpande, Poona College, Camp Pune, Maharashtra,
India, and M. N. Deshpande, Institute of Science, Nagpur, India. We have n balls,
labeled 1 through n, and n urns, also labeled 1 through n. Ball 1 is put into a randomly
chosen urn. Thereafter, as j increments from 2 to n, ball j is put into urn j if that urn is
empty, otherwise, it is put into a randomly chosen empty urn. Let the random variable
X be the number of balls that end up in the urn bearing their own number. Show that
the expected value of X is n − Hn−1.

11501. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let

g(z) = 1 − 3

1 − 1
1−az + 1

1−i z + 1
1+i z

.

Show that the coefficients in the Taylor series expansion of g are all nonnegative if and
only if a ≥ √

3.

SOLUTIONS

An Unusual GCD/LCM Relationship

11346 [2008, 167]. Proposed by Christopher Hillar, Texas A&M University, College
Station, TX, and Lionel Levine, University of California, Berkeley, CA. Let n be an
integer greater than 1, and let S = {2, . . . , n}. For each nonempty subset A of S, let
π(A) = ∏

j∈A j . Prove that when k is a positive integer and k < n,

n∏
i=k

lcm({1, . . . , �n/ i�}) = gcd({π(A) : |A| = n − k}).

(In particular, setting k = 1 yields
∏n

i=1 lcm({1, . . . , �n/ i�}) = n!.)
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Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove that both sides equal

∏
p pep(n,k), where ep(n, k) = ∑n

i=k

⌊
logp(n/ i)

⌋
and the

product runs over all primes (only finitely many primes contribute). Let vp(n) denote
the maximum r such that pr divides n.

For the left side, letting l(x) = lcm({1, . . . , �x�}), we have vp(l(x)) = ⌊
logp x

⌋
,

since pr divides l(x) if and only if x ≥ pr . Hence
∏n

i=k l(n/ i) = ∏
p pep(n,k).

For the right side, let (b1, . . . , bn−1) be the result of putting (vp(2), . . . , vp(n)) in
nonincreasing order. The number of terms with vp(k) ≥ r equals the number of mul-
tiples of pr in S, namely �n/pr�. Thus bk ≥ r if and only if k ≤ n/pr , and hence
bk = ⌊

logp(n/k)
⌋
. The smallest value of vp(π(A)) such that |A| = n − k will be

achieved when A consists of exactly the elements of S corresponding to bk, . . . , bn−1.
Hence

vp(gcd({π(A) : |A| = n − k})) =
n−1∑
i=k

bi = ep(n, k),

using the fact that the term for i = n in the summation for ep(n, k) always equals 0.
Applying this formula over all primes shows that the right side also equals

∏
p pep(n,k).

Also solved by D. R. Bridges, J. H. Lindsey II, O. P. Lossers (Netherlands), M. A. Prasad (India), T. Rucker,
K. Schilling, A. Stadler (Switzerland), M. Tetiva (Romania), S. Vandervelde, B. Ward (Canada), GCHQ Prob-
lem Solving Group (U. K.), NSA Problems Group, and the proposers.

Some Triangle Inequalities

11363 [2008, 461]. Proposed by Oleh Faynshteyn, Leipzig, Germany. Let ma , mb,
and mc be the lengths of the medians of a triangle T . Similarly, let Ia , Ib, Ic, ha , hb,
and hc be the lengths of the bisectors and altitudes of T , and let R, r , and S be the
circumradius, inradius, and area of T . Show that

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
≥ 3(2R − r),

and
ma Ib

hc
+ mb Ic

ha
+ mc Ia

hb
≥ 35/4

√
S.

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. We write a, b, c for
the lengths of the three sides, and s = (a + b + c)/2 for the semiperimeter. We will
write

∑
or

∏
for a three or six term sum or product, respectively, over permutations

of the triangle, with three terms if the sum is formally independent of the direction
of the cycle, and six if not. Thus,

∑
ab denotes ab + bc + ca while

∑
a2b = a2b +

b2c + c2a + ab2 + bc2 + ca2. We use several results from (or easily deduced from)
Geometric Inequalities by Bottema et. al. (Nordhoff, Groningen, 1969), including:

Ia = 2S

(b + c) sin(A/2)
, abc = 4Rrs,

r

4R
=

∏
sin

A

2
,

∑
a2 = 2(s2 − 4Rr − r 2),

∑
a2b = 2s(s2 − 2Rr + r 2),∑

a2b2c = 4Rrs(s2 + 4Rr + r 2),∑
a3b2 = 2s(s4 + r 4 + 6Rr 3 + 8R2r 2 + 2r 2s2 − 10Rrs2),∑
a4b = 2s(s4 − 3r 4 − 14Rr 3 − 8R2r 2 − 2r 2s2 − 6Rrs2).
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The first inequality must be reversed. In fact, we will show that

16

9
(2R − r) <

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
≤ 3(2R − r).

We begin with

∑ Ia Ib

Ic
=

∑ 2S
(b+c) sin(A/2)

2S
(c+a) sin(B/2)

2S
(a+b) sin(C/2)

= 2S∏
(a + b)

∏
sin(A/2)

∑
(a + b)2 sin2 C

2
.

Now

2
∑

(a + b)2 sin2 C

2
=

∑
(a + b)2(1 − cos C)

= 2
∑

a2 + 2
∑

ab −
∑

a2 cos C − 2
∑

ab cos C.

But 2
∑

ab cos C = ∑
(a2 + b2 − c2) = ∑

a2, so

2
∑

a2 + 2
∑

ab − 2
∑

ab cos C = (
∑

a)2 = 4s2

and∑
a2 cos C = 1

abc

∑
a3bc cos C = 1

2abc

∑
a2c(a2 + b2 − c2)

= 1

2abc

(∑
a4c + 2

∑
a2b2c −

∑
a2c3

)

= 1

4Rr

[
s4 − 3r 4 − 14Rr 3 − 8R2r 2 − 2r 2s2 − 6Rrs2 + 4Rr(s2 +
4Rr + r 2) − (s4+r 4+6Rr 3+8R2r 2+2r 2s2−10Rrs2)

]
= 2Rs2 − 4Rr 2 − r 3 − rs2

R
.

Therefore

2
∑

(a + b)2 sin2 C

2
= 2Rs2 + 4Rr 2 + r 3 + rs2

R
.

Furthermore,
∏

(a + b) = ∑
a2b + 2abc = 2s(s2 + 2Rr + r 2) and

∏
sin(A/2) =

r/(4R). Hence

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
= 2(2Rs2 + 4Rr 2 + r 3 + rs2)

s2 + 2Rr + r 2
. (∗)

Now by Geometric Inequalities (5.9), 4R2 + 4Rr + 3r 2 ≥ s2 ≥ r(16R − 5r). For our
lower bound: 2Rs2 + 36Rr 2 + 17rs2 + 17r 3 ≥ 32R2r + 26Rr 2 + 17rs2 + 17r 3 >

32R2r , so 9(2Rs2 + 4Rr 2 + rs2 + r 3) > 8(2Rs2 + 4R2r − rs2 − r 3) = 8(s2 +
2Rr + r 2)(2R − r). Hence

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
>

16

9
(2R − r).
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For our upper bound: R ≥ 2r , so 0 ≤ (R − 2r)(24R + 10r)r = 24R2r − 38Rr 2 −
10r 3, and hence 44R2r − 10Rr 2 ≥ 20R2r + 28Rr 2 + 20r 3. Therefore 2Rs2 + 12R2r
≥ 44R2r − 10Rr 2 ≥ 20R2r + 28Rr 2 + 20r 3 ≥ 8Rr 2 + 5rs2 + 5r 3, and 3(2R −
r)(s2 + 2Rr + r 2) = 6Rs2 + 12R2r − 3rs2 − 3r 3 ≥ 4Rs2 + 8Rr 2 + 2r 3 + 2rs2.
This inequality, in combination with (∗), gives

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
≤ 3(2R − r).

Now consider the second inequality. By elementary calculus, a function of the form
f (x) = x2 + 2λ/x achieves its minimum at x = λ1/3, so f (x) ≥ 3λ2/3.

Letting λ = ∏
ma Ib/hc, we have(∑ ma Ib

hc

)2

=
∑ m2

a I 2
b

h2
c

+2
∑ ma Ib

hc

mb Ic

ha
=

∑(
m2

a I 2
b

h2
c

+ 2λ
hc

ma Ib

)
≥ 9λ2/3.

Denote the exradii of T by ra , rb, and rc. By Geometric Inequalities (8.21) and (6.27),
we have mambmc ≥ rarbrc = S2/r = Ss. By (8.7) we have

Ia Ib Ic = 8a2b2c2∏
(a + b)

∏
cos

A

2
= 8a2b2c2∏

(a + b)

∏ √
s(s − a)

bc

= 8a2b2c2∏
(a + b)

Ss

abc
= 8abcSs∏

(a + b)
= 32RsS2∏

(a + b)
,

hahbhc =
∏ 2S

a
= 8S3

abc
= 2S3

Rrs
.

Now

λ = Ss
32RsS2∏
(a + b)

Rrs

2S3
= 16R2rs3∏

(a + b)
and

(∑ ma Ib

hc

)2

≥ 9

(
16R2rs3∏

(a + b)

)2/3

.

By (5.5) and (5.1), s2 ≥ 3r(4R + r) ≥ 3r(9r) = 27r 3, so s ≥ 3
√

3r . By (5.8) s2 ≤
4R2 + 4Rr + 3r 2, and thus s2 + 2Rr + r 2 ≤ 4R2 + 6Rr + 4r 2 ≤ 4R2 + 3R2 + R2 =
8R2. Hence

∏
(a + b) = ∑

a2b + 2abc = 2s(s2 − 2Rr + r 2) + 8Rrs = 2s(s2 +
2Rr + r 2) ≤ 2s(8R2) = 16R2s. This leads to 3

√
3(

∏
(a + b))2 ≤ s(16R2s)2 =

256R4s3. Now 315/2S3 = 315/2r 2s3, and

315/2r 3s3 ≤ 729
256R4r 2s6(∏

(a + b)
)2 ⇒ 35/2S ≤ 9

(
16R2rs3∏
(a + b)

)2/3

≤
(∑ ma Ib

hc

)2

,

so that finally 35/4
√

S ≤ ∑
ma Ib/hc.

Also solved by V. V. Garcı́a (Spain) and R. Stong.

A Multiple of a Prime

11364 [208, 461]. Proposed by Pál Péter Dályay, Szeged, Hungary. Let p be a prime
greater than 3, and let t be the integer nearest p/6.
(a) Show that if p = 6t + 1, then

(p − 1)!
2t−1∑
j=0

(−1) j

(
1

3 j + 1
+ 1

3 j + 2

)
≡ 0 (mod p).
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(b) Show that if p = 6t − 1, then

(p − 1)!
(

2t−1∑
j=0

(−1) j

3 j + 1
+

2t−2∑
j=0

(−1) j

3 j + 2

)
≡ 0 (mod p).

Solution by Robin Chapman, University of Exeter, Exeter, U. K. The desired congru-
ence in both cases is

(p − 1)!
p−1∑
k=1

χ(k)

k
≡ 0 (mod p), (1)

where

χ(k) =

⎧⎪⎨
⎪⎩

0 if k ≡ 0, 3 (mod 6),

1 if k ≡ 1, 2 (mod 6),

−1 if k ≡ 4, 5 (mod 6).

Note that χ(k) = (ζ k − ζ−k)/
√−3, where ζ = eπ i/3 = 1

2(1 + √−3). Letting

F(z) = ∑p−1
k=1 zk/k, we have

p−1∑
k=1

χ(k)

k
= F(ζ ) − F(ζ−1)√−3

. (2)

For the value on the right, note that F ′(z) = ∑p−1
k=1 zk−1 = 1−z p−1

1−z , so F ′(1 − z) =∑p−2
k=0 (−1)k+1

(p−1
k+1

)
zk . Note also that

(p−1
j

) ≡ (−1) j (mod p). Hence F ′(1 − z) =
pG(z) + F ′(z) (mod p), where G is a polynomial having integer coefficients and
degree at most p − 2. We conclude that

d

dz
(F(z) − F(1 − z)) = −pG(z). (3)

Let G(z) = ∑p−1
k=1 bk zk−1 with each bk ∈ Z. Integrating (3) from 0 to z gives

F(z) − F(1 − z) + F(1) = −p
p−1∑
k=1

bk

k
zk .

Setting z = ζ and using 1 − ζ = ζ−1 yields

F(ζ ) − F(ζ−1) = −F(1) − p
p−1∑
k=1

bk

k
zk .

Since p is odd, F(1) = ∑(p−1)/2
k=1 ( 1

k + 1
p−k ) = ∑(p−1)/2

k=1
p

k(p−k)
. It follows that

(p − 1)! F(1) is a multiple of p. We conclude that in the context of algebraic inte-
gers, (p − 1)! (F(ζ ) − F(ζ−1)) ≡ 0 (mod p). Multiplying by

√−3 yields a rational
integer, and dividing by −3 (justified by p > 3) and invoking (2) yields the desired
congruence (1).

Editorial comment. Stong showed also that (p − 1)! F(ζ ) ≡ (p − 1)! F(ζ−1) ≡ 0
(mod p), which leads to (p − 1)! ∑p−1

k=1
χ(k+s)

k ≡ 0 (mod p) for every integer s.

Also solved by J. H. Lindsey II, M. A. Prasad (India), A. Stadler (Switzerland), R. Tauraso (Italy), M. Tetiva
(Romania), A. Wyn-Jones, GCHQ Problem Solving Group (U. K.), and the proposer.
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Relating Two Integer Sequences

11365 [2008, 462]. Proposed by Aviezri S. Fraenkel, Weizmann Institute of Science,
Rehovot, Israel. Let t be a positive integer. Let γ = √

t2 + 4, α = 1
2 (2 + γ − t), and

β = 1
2(2 + γ + t). Show that for all positive integers n,

�nβ� = �(�nα� + n(t − 1))α� + 1 = �(�nα� + n(t − 1) + 1)α� − 1.

Solution I by Donald R. Bridges, Woodstock, MD. Letting ε = (γ − t)/2, we have
α = 1 + ε and β = 1 + t + ε. Note that t2 < γ 2 < (t + 2)2, so γ and ε are irrational
and 0 < ε < 1.

We write the expressions in terms of ε. For the first, �nβ� = n + nt + �nε�. For the
second,

�nα� + n(t − 1) = nt + �nε� ,

(�nα� + n(t − 1))α = nt + �nε� + ntε + �nε� ε.

Squaring both sides of
√

t2 + 4 = t + 2ε yields tε + ε2 = 1, so ntε + nε2 = n. Also,
ntε + �nε� ε > ntε + (nε − 1)ε, so the floor of the last displayed expression is nt +
�nε� + n − 1, since 0 < ε < 1. This proves the first equality.

To compute the rightmost expression in the problem statement, begin with

(�nα� + n(t − 1) + 1)α = nt + �nε� + 1 + ntε + �nε + 1� ε.

Since ntε + �nε + 1� ε ≤ ntε + nε2 + ε < n + 1, we obtain the desired equality

�(�nα� + n(t − 1) + 1)α� = �nβ� + 1.

Solution II by the proposer. First, observe that α and β are irrational numbers satisfy-
ing 1 < α < β and α + β = αβ, and that as a result, β > 2. It is well known that under
these conditions, A ∪ B = N, where A = {�nα� : n ≥ 1} and B = {�nβ� : n ≥ 1}.

Since β > 2, the set B does not contain consecutive integers. Hence each term of
B lies between two consecutive terms of A. That is, for each positive integer n there
exists m such that �mα�, �nβ�, and �(m + 1)α� are consecutive integers. Given n, the
problem is to determine m.

Among the integers from 1 to �nβ�, exactly n lie in B, so �nβ� − n lie in A. There-
fore, m = �nβ� − n. Thus

�(�nβ� − n) α� , �nβ�, �((�nβ� − n) + 1) α�
are consecutive integers. It remains only to show that �nβ� − n = �nα� + n(t − 1).
This reduces to

⌊
1
2 n(γ + t)

⌋ = ⌊
1
2 n(γ − t)

⌋ + nt , which is true.

Editorial comment. The claim that A ∪ B = N in Solution II is well known; the pro-
poser cited A. S. Fraenkel, How to beat your Wythoff games opponent on three fronts,
Amer. Math. Monthly 89 (1982) 353–361. The result is so astonishing and yet easily
proved that we include a short proof for the reader’s pleasure.

First note that a + b = ab is equivalent to 1
a + 1

b = 1. Also, a, b > 1. For any
k ∈ N, the number of terms less than k in A ∪ B is �k/a� + �k/b�, since a and b are
irrational. We compute⌊

k

a

⌋
+

⌊
k

b

⌋
=

⌊
k

a

⌋
+

⌊
k

(
1 − 1

a

)⌋
= k +

⌊
k

a

⌋
+

⌊−k

a

⌋
= k − 1.

Similarly, A ∪ B contains k terms less than k + 1. Hence there is exactly one term less
than k + 1 but not less than k; it equals k.
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Also solved by R. Chapman (U. K.), P. Corn, C. Curtis, J. H. Lindsey II, O. P. Lossers (Netherlands),
M. A. Prasad (India), A. Stadler (Switzerland), R. Stong, GCHQ Problem Solving Group (U. K.), and the
proposer.

An Exponential Inequality

11369 [2008, 567]. Proposed by Donald Knuth, Stanford University, Stanford, CA.
Prove that for all real t , and all α ≥ 2,

eαt + e−αt − 2 ≤ (
et + e−t

)α − 2α.

Solution by Knut Dale, Telemark University College, Bø, Norway. For t ∈ R and
α ≥ 0, let f (t, α) = ((et + e−t)α − 2α) − (eαt + e−αt − 2). Since f (0, α) = 0 and
f (−t, α) = f (t, α), we need only consider t > 0. Write

f (t, α) = α

∫ t

0

{
(ex + e−x)α sinh x

cosh x
− (eαx − e−αx)

}
dx

= α

∫ t

0
(ex + e−x)α

{
g(x, 1) − g(x, α)

}
dx,

where g(x, α) = (eαx − e−αx)/(ex + e−x)α. Let x > 0 and observe that g(x, α) ≥ 0,
g(x, 2) = g(x, 1) > 0, and g(x, 0) = g(x, ∞) = 0. Note that

∂g(x, α)

∂α
> 0 ⇐⇒ ln(ex + e−x) + x

ln(ex + e−x) − x
> e2αx . (∗)

Likewise, equivalence holds if we replace “>” with “=” or with “<” throughout (∗).
Since e2αx is an increasing function of α,

ln(ex + e−x) + x

ln(ex + e−x) − x
= e2αx

has a unique solution α in the interval (1, 2). Thus, as a function of α, g(x, α) increases
from 0 to a maximum in (1, 2) and then decreases towards 0. Hence f (t, α) > 0 for
α ∈ (0, 1) ∪ (2, ∞), f (t, α) < 0 for α ∈ (1, 2), and f (t, α) = 0 for α ∈ {0, 1, 2}.
Editorial comment. Grahame Bennett (Indiana University) provided an instructive so-
lution including a general context for this inequality. That solution is now incorporated
into a paper, appearing in the current issue of this MONTHLY (see p. 334).

Also solved by F. Alayont, K. Andersen (Canada), R. Bagby, G. Bennett, D. & J. Borwein (Canada), P. Bour-
don, P. Bracken, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), K. Endo, G. C. Greubel, J. Grivaux
(France), J. A. Grzesik, S. J. Herschkorn, M. Hildebrand, F. Holland (Ireland), A. Incognito & T. Mengesha,
V. K. Jenner (Switzerland), O. Kouba (Syria), K.-W Lau (China), W. R. Livingston, O. P. Lossers (Nether-
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