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Integers

The integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } form one of the most basic
objects one can consider in mathematics.

Yet, many basic questions about Z remain unanswered, or have very complicated
answers.

Fermat’s Last Theorem. For n ≥ 3 find all integer solutions to the equation
xn + yn = zn. Answer: All solutions also satisfy xyz = 0.
Given an integer a, decide whether a is prime or not. If not, what are its prime
factors?

Is 121232123432123454321234565432123456765432123456787654321 prime? If not,
what are its prime factors?
The elementary school procedures for answering these questions are not practical for
large numbers, but both questions (prime or not and what are the factors) are
answered together.
Modern mathematical techniques make it rather “easy” for a computer to determine
whether an integer is prime or not.
It is still quite hard to find the factors of a very large number (although it is not
proven that it must be hard), and modern computer security algorithms are based on
the assumption that is difficult to factor large numbers.



Integers

The integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } form one of the most basic
objects one can consider in mathematics.

Yet, many basic questions about Z remain unanswered, or have very complicated
answers.

Fermat’s Last Theorem. For n ≥ 3 find all integer solutions to the equation
xn + yn = zn. Answer: All solutions also satisfy xyz = 0.
Given an integer a, decide whether a is prime or not. If not, what are its prime
factors?
If p is a prime number, on average how many numbers do you have to go foward
before reaching the next prime?

For example, 509 is prime. How many numbers forward should we expect to have to
go to be sure we will find another prime?

Are there infinitely many primes p such that p and p + 2 are both prime?

Such primes are called “twin primes.” Here are some examples: 3 and 5, 5 and 7,
11 and 13, 17 and 19, 521 and 523.

Which integers can be written as the sum of two primes?
Goldbach Conjecture: All even integers > 2 can be written as a sum of two primes.



Rings

An aspect of mathematics that can be surprising to new students is that
sometimes considering a more general situation can make a problem easier, and
even when it does not, it can provide additional insight into the problem.

The integers Z are an example of what we call a commutative ring. A ring is a
set R with two operations, addition (+) and multiplication (·).

Part of the definition of a ring is that the set R with the operation (+) forms an
Abelian group, which in particular means that for any r in R, the element −r is also
in R.
One requires the addition operation (+) to be commutative, but the multiplication
may not be. For example, the set of n × n matrices form a ring, but the
multiplication is not commutative.
One calls a ring “commutative” when the multiplication is also commutative.

Another example of a ring is the set of one-variable polynomials with complex
coefficients, which we denote as C[t].



Similarities Between Integers and Polynomials

It turns out the polynomial ring C[t] shares many properties with the ring of
integers Z.

For example, the Euclidean division algorithm applies to both Z and C[t].

6 3 5 9 1 7

5 1 3 7 4

1 2 5

1 1 9

6 9

6 8

1

2t3 −7t2 +14t −1 t −5

2t3 −10t2 2t2 +3t +29

3t2 +14t

3t2 −15t

29t −1

29t −145

144

In Z we know to stop because 1 < 17. In C[t] we know to stop because 144 has
degree 0, which is smaller than the degree of t − 5.
The fact that we have a way to measure “size” in both Z and C[t] is an important
similarity.



A Consequence of the Division Algorithm

A subset I of a commutative ring R is called an ideal if
a, b ∈ I ⇒ a + b ∈ I
a ∈ I and r ∈ R ⇒ ra ∈ I .

Examples
The “even” numbers I = {. . . ,−4,−2, 0, 2, 4, . . . } is an ideal in Z.
The set of polynomials I = {f (t) ∈ C[t] : f (0) = 0} is an ideal in C[t].

An ideal is said to be principal if
∃a ∈ I such that ∀b ∈ I ,∃r ∈ R such that b = ra.
Such an a is called a generator of the ideal I .
The ideal of even numbers in Z is generated by 2.
The ideal of polynomials in C[t] vanishing at the origin is generated by the
polynomial t.

A commutative ring R (without zero divisors) is called a principal ideal domain
if every ideal in R is principal.
Z and C[t] are principal ideal domains.

Let I be an ideal in Z or C[t] and let a be a smallest element in I \ {0}
Let b be an element of I . Divide b by a to get b = qa + r , with r “smaller than” a.
Since a is smallest, r = 0. Hence, b = qa, and so a generates I .



The Stothers/Mason Theorem for Polynomials

Definition

Given a polynomial P(t) = (t − a1)m1 · · · (t − an)mn factored as a product of powers of
distinct irreducible factors, define the square free part S(P) (also often called the
“radical” of P) by

S(P)(t) = (t − a1) · · · (t − an).

Example

If P(t) = t2(t − 1)3(t + 1), then S(P)(t) = t(t − 1)(t + 1).

Theorem (Stothers/Mason)

Let f (t), g(t), and h(t) be relatively prime polynomials in C[t] such that f + g = h.
Then, either all of f , g , and h are constant, or

max{deg f , deg g , deg h} ≤ deg S(fgh)− 1.



The Stothers/Mason Theorem for Polynomials

Theorem (Stothers/Mason)

Let f (t), g(t), and h(t) be relatively prime polynomials in C[t] such that f + g = h.
Then, either all of f , g , and h are constant, or

max{deg f , deg g , deg h} ≤ deg S(fgh)− 1.

Examples

t + (1− t) = 1

max{deg t, deg(1− t), deg 1} = 1
S = t(1− t) so deg S = 2.

t3 + (1− t)3 = 3t2 − 3t + 1

max{deg t3, deg(1− t)3, deg(3t2 − 3t + 1)} = 3
S = t(1− t)(3t2 − 3t + 1) so deg S = 4.



The Stothers/Mason Theorem for Polynomials

Theorem (Stothers/Mason)

Let f (t), g(t), and h(t) be relatively prime polynomials in C[t] such that f + g = h.
Then, either all of f , g , and h are constant, or

max{deg f , deg g , deg h} ≤ deg S(fgh)− 1.

Corollary

It is impossible to find distinct complex numbers a, b, and c , and non-zero complex
numbers A, B, and C such that

A(t − a)k + B(t − b)m = C (t − c)n,

unless max{k,m, n} ≤ 2.



Fermat’s Theorem for Polynomials

Corollary (Fermat for Polynomails)

If f , g and h are relatively prime polynomails in C[t] and n ≥ 3 such that

f n + gn = hn,

then f , g , and h are all constant.

Proof.

S(f ngnhn) = S(fgh) so deg S ≤ 3 max{deg f , deg g , deg h}.
max{deg f n, deg gn, deg hn} = n max{deg f , deg g , deg h}.
By Stothers/Mason,

n max{deg f , deg g , deg h} = max{deg f n, deg gn, deg hn}
≤ deg S − 1 ≤ 3 max{deg f , deg g , deg h} − 1,

so n < 3.



Fermat’s Theorem for Polynomials

Corollary (Fermat for Polynomails)

If f , g and h are relatively prime polynomails in C[t] and n ≥ 3 such that

f n + gn = hn,

then f , g , and h are all constant.

Remark

n ≥ 3 above is best possible. Notice that

(t2 − 1)2 + (2t)2 = (t2 + 1)2.

Do you see a connection here to Pythagorean triples? (You should!)



Proof of Sothers/Mason

Proof.

Let

W =

∣∣∣∣ f g
f ′ g ′

∣∣∣∣ =

∣∣∣∣ g h
g ′ h′

∣∣∣∣ = −
∣∣∣∣ f h

f ′ h′

∣∣∣∣ .
Without loss of generality, assume deg f ≥ deg g ≥ deg h.

Observe deg W ≤ deg g + deg h − 1.

Observe also that if (t − a) divides fgh with multiplicity m, then (t − a)m−1

divides W .

Let G be the GCD of W and fgh.

deg S(fgh) ≥ deg(fgh)− deg G ≥ deg(fgh)− deg W ≥ deg f + 1



ABC -Conjecture for Integers

Definition

Given an integer a = ±pm1
1 · · · pmn

n factored as a product of powers of distinct primes,
define the square free part S(a) (also often called the “radical” of a) by

S(a) = p1 · · · pn

Example

If a = 360 = 23 · 32 · 5, then S(a) = 2 · 3 · 5 = 30.

Question

If a, b and c are relatively prime integers such that a + b = c , then must

max{|a|, |b|, |c |} ≤ CS(abc)

for some constant C ?



Why not S(abc)− 1? and why the constant C?

When we measure the “size” of an integer a, we use |a|.
When we measure the “size” of a polynomial f , we use deg f .
Note that for a, b ∈ Z, we have |ab| = |a||b|.
Whereas for f , g ∈ C[t], we have deg(fg) = deg f + deg g .
Thus, we should think of deg f as like log |a|, since log |ab| = log |a|+ log |b|.
If we translate

max{deg f , deg g , deg h} ≤ deg S − 1,

we get
max{log |a|, log |b|, log |c |} ≤ log |S | − 1.

Exponentiating tells us

max{|a|, |b|, |c |} ≤ e log |S|−1 =
|S |
e
.

But nothing told us we should use “natural” logarithm. We have
logγ |ab| = logγ |a| logγ |b| for any base γ, so we pose the question replacing e−1

by some constant C .



Exercise

2n+1
∣∣∣ (32n − 1)

Solution.

Proof by induction.

When n = 0, clearly 2 divides 3− 1.

32n+1 − 1 = 32·2n − 1

=
(
32n)2 − 1

= (32n − 1)︸ ︷︷ ︸
divisible by 2n+1

(32n
+ 1)︸ ︷︷ ︸

even



ABC -Conjecture for Integers

Question

If a, b and c are relatively prime integers such that a + b = c, then must

max{|a|, |b|, |c |} ≤ CS(abc)

for some constant C ?

The answer is NO! (these examples due to Jastrzebowski and Spielman)

1︸︷︷︸
a

+ (32n − 1)︸ ︷︷ ︸
b

= 32n︸︷︷︸
c

max{|a|, |b|, |c |} = 32n

Since 32n − 1 = 2n+1u for some integer u, S(abc) ≤ 1 · 3 · 2u

There is no constant C such that 32n ≤ C · 3 · 2u = C · 6 · 32n − 1

2n+1



ABC -Conjecture for Integers

Although I have been trying to convince you that considering an analogy between
numbers and polynomial functions can be a worthwhile and productive activity, we
have just seen that the integers Z is, in a sense, a more subtle ring than C[t]. Still, one
can suspect things aren’t too far off, and there is a well-known conjecture that is more
or less analogous to the Stothers/Mason theorem.

Conjecture (Masser and Oesterlé’s ABC -Conjecture)

Give ε > 0, there exists a constant C (ε), depending only on ε, such that for any triple
of relatively prime integers a + b = c , we have

max{|a|, |b|, |c|} ≤ C (ε)S(abc)1+ε.



Fermat’s Last Theorem

In the polynomial case, we saw that the Stothers/Mason theorem implies the
polynomial version of Fermat’s last theorem. The ABC -Conjecture does not seem to
quite imply Fermat’s Last Theorem for Integers, but it almost does.

Proposition (Asymptotic Fermat)

If the ABC-Conjecture is true, then there exists a natural number n0 such that for all
n ≥ n0, the only integer solutions to the equation xn + yn = zn are such that xyz = 0.

Proof.

It is sufficient to prove there is no relatively prime solution.

Suppose x , y , and z are relatively prime with xn + yn = zn.

Apply the ABC -Conjecture with a = xn, b = yn, and c = zn.

max{|x |n, |y |n, |z |n} ≤ C (ε)|xyz |1+ε

Hence, |xyz |n = |x |n · |y |n · |z |n ≤ C (ε)3|xyz |3(1+ε).

This is impossible as soon as n is big enough that 2n−3(1+ε) ≥ C (ε).



Absolute Values

We saw that an important part of creating an analogy between integers and
polynomials was that we had a way to measure the “size” of both integers and
polynomials.

We measured the size of an integer by its absolute value, but it turns out there is
more than one type of absolute value on Z.

Definition

An absolute value on Z is a function, which we write | | from Z to R such that

AV 1. |a| ≥ 0∀a ∈ Z and |a| = 0 ⇔ a = 0.

AV 2. |ab| = |a||b|.
AV 3. |a + b| ≤ |a|+ |b|



p-Adic Absolute Values

Let p be a prime number.

Let a be a non-zero integer.

Write a = pnu, where p and u are relatively prime.

Define |a|p = p−n ≤ 1.

Now, suppose a = pnu and b = pmv with p and uv relatively prime.

Clearly, |ab|p = p−(n+m) = |a|p|b|p.
What about |a + b|p?

Suppose n ≥ m. Then, a + b = pnu + pmv = pm(pn−mu + v).

Then,

|a + b|p = |pm(pn−mu + v)|p = |pm|p|pn−mu + v |p
≤ |pm|p · 1 = p−m ≤ p−m + p−n = |a|p + |b|p.

Notice that I = {a ∈ Z : |a|p < 1} is precisely the ideal of multiples of p, i.e., the
ideal generated by p.



Absolute Values on Z

Theorem (Ostrowski)

If | |′ is an absolute value on Z, then either

(i) | |′ = | |0, where | |0 is defined by |a|0 =

{
0 if a = 0
1 if a 6= 0.

(ii) | |′ = | |λ for some 0 < λ ≤ 1, where here | | denotes the “usual” absolute value
on Z.

(iii) | |′ = | |λp for some λ > 0.

Remark

Coming up with a proof by yourself or together with your classmates of Ostrowski’s
Theorem is a challenging, but not extraordinarily difficult, exercise. Try it with your
friends during the remainder of the summer school, and don’t try to look it up in a
book or on the internet first!



Remark

The absolute value | |0 is called the trivial absolute value.

The usual absolute value | |λ is called Archimedean because for any |a| > 0 and
M > 0, there exists a natural number n such that |na| > M.
A story (which may not be true): Archimedes: No matter how big your bath tub
and no matter how small your spoon, you can eventually fill your bathtub by
adding water a spoonful at a time.

The p-adic absolute values | |p satisfy the property that |a + b|p ≤ max{|a|p, |b|p},
so adding can never make things bigger. In particluar |na|p ≤ |a|p for all natural
numbers n. These absolute values are called non-Archimedean.



Product Formula

Proposition (Product Formula)

If a is an integer then, |a| ·
∏

primes p

|a|p = 1.

Example

|12| = 12, |12|2 = 1/4, |12|3 = 1/3, and |12|p = 1 if p > 3.

Proof.

Let a be an integer.

Factor a into a product of prime powers: a = ±pm1
1 · · · pmn

n .

|a|pj = p−mj

|a|p = 1 if p 6∈ {p1, . . . , pn}.



Complex Analysis

I began this lecture by explaining a connection between integers and polynomial
functions. Polynomial functions are not the only kinds of functions that can help us
understand the integers.

Definition

If z is a complex variable and f (z) is a complex function defined for all z in the
complex plane C such that

f ′(z) = lim
h→0

f (z + h)− f (z)

h

exists for all z ∈ C, then we call f entire. Note that here h is also a complex variable.

The set of all entire functions forms a ring. Recently, many things have been learned
about number theory by studying entire functions as well as polynomials.



Jensen Formula

Proposition (Mean Value Property)

If f (z) is an entire function and does not have any zeros for |z | ≤ r , then∫ 2π

0
log |f (re iθ)|dθ

2π
= log |f (0)|.

This formula is no longer true if f has zeros. But, one can add some correction factors
to account for the zeros.

Theorem (Jensen Formula)

Let f (z) be an entire function such that f (0) 6= 0. Then,∫ 2π

0
log |f (re iθ)|dθ

2π
= log |f (0)| +

∑
z s.t. f (z)=0 and |z|<r

log

(
r

|z |

)mz

,

where mz is the multiplicity of the zero.



Comparing the Jensen Formula and the Product Formula

If we take the logarithm of the product formula, we get for a in Z,

log |1| = log |a| +
∑

p prime

log |a|p.

Compare with the Jensen formula that says for an entire function

log |f (0)| =

∫ 2π

0

log |f (re iθ)|dθ
2π
−
∑
|z|<r

log

(
r

|z |

)mz

.

For fixed r and θ define |f |r ,θ = |f (re iθ)|.
|f |r ,θ is almost an Archimedean absolute value, except that we might have |f |r ,θ = 0
even if f 6= 0.

For |z | < r , define |f |r ,z = log

(
|z |
r

)mz

.

| |r ,z is a non-Archimedean absolute value just like | |p.

Jensen Formula: log |f (0)| =

∫ 2π

0

log |f |r ,θ
dθ

2π
+
∑
|z|<r

|f |r ,z .



Institute of Mathematics in Hanoi

The field of mathematics that studies commutative rings, i.e., generalizations of Z
and C[t], is called commutative algebra. The Institute here in Hanoi has many
active researchers in this area.

Mathematicians study analysis, similar to complex analyis, but related to the p-adic
absolute values I discussed today. The Institute here also has several experts in p-adic
analysis.

Osgood noticed a connection between number theory and a branch of complex analysis

called Nevanlinna Theory or Value Distribution Theory. Value Distribution Theory has a

long history here in Hanoi because Le Van Thiem was one of the pioneers of this field of

mathematics. Vojta, independent of Osgood, also discovered the connection between

Value Distribution Theory and Number Theory and created an extensive “dictionary”

relating the two fields; in particular he interpreted the Jensen Formula as the analog of

the Product Formula in number theory as I described before. Important progress in both

Value Distribution Theory and Number Theory has resulted from Vojta’s connections

between the fields. Again, some researchers here in Hanoi are quite familiar with these

connections and work in related areas.



Thank You!

Notes for this lecture will be posted at:
http://wcherry.math.unt.edu/pubs/hanoi2010.pdf


