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SKOLIAD no. 129

Lily Yen and Mogens Hansen

Please send your solutions to problems in this Skoliad by June 1, 2011. A
copy of CRUX with Mayhem will be sent to one pre-university reader who
sends in solutions before the deadline. The decision of the editors is final.

_—_—m NS —e————

Our contest for this month is the City Competition of the Croatian
Mathematical Society, 2010, secondary level, grade 1. Our thanks go to Zeljko
Hanjs, University of Zagreb, Croatia, for providing us with this contest and
for permission to publish it.

Compétition 2010 de la Société mathématique croate
Niveau secondaire, premi€re année

1. Soit n un entier positif et @ un nombre réel non nul. Simplifier la fraction

adntl _ g4

a2n+3 + an+4 + ad '

2. Trouver un entier positif qui, multiplié par 9 donne un entier compris entre
1100 et 1200, et lorsque multiplié par 13 donne un entier compris entre 1500
et 1600.

3. Dans le plan, on donne trois cercles de rayon 2, de sorte que le centre
de chacun d’eux se trouve a l'intersection des deux autres. Trouver l'aire de
I'intersection des trois disques limités par ces cercles.

4. On considére I'entier n. Soit m 'entier obtenu 3 partir de n en y biffant
le chiffre des unités. Si n — m = 2010, trouver n.

5. Un sac contient un grand nombre de balles rouges, blanches et bleues.
Chaque enfant d'un groupe donné sort du sac au hasard trois balles. Quel est
le nombre minimal d’enfants dans ce groupe permettant que deux d’entre
eux aient la méme combinaison de balles, c.-a-d. le méme nombre de balles
de chaque couleur?

6. Si a2 + 2b2 = 3¢2, montrer que

<a+b+b—c> a+ 2b+ 3¢
b+c b—a a-+tc

est un entier positif.
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7. Un triangle rectangle ABC, d’angle droit en B et dont les cotés de 1'angle
droit mesurent 15 et 20, est congruent a un triangle BDE avec I'angle droit
en D. Le point C est situé strictement a l'intérieur du segment BD, et les
points A et E sont situés du méme c6té de la droite BD.

(a) Trouver la distance entre les points A et E.

(b) Trouver l'aire de I'intersection des triangles ABC and BDE.

8. soit p et g deux nombres premiers impairs distincts. Montrer que 1'entier
(pq + 1)* — 1 posséde au moins quatre diviseurs premiers différents.

City Competition of the Croatian Mathematical
Society, 2010

Secondary level, Grade 1

1. Letnbea positive integer and a a non-zero real number. Reduce the

fraction

adntl _ g4

a2n+3 + an+4 + ab ’

2. Find a positive integer which when multiplied by 9 gives an integer be-
tween 1100 and 1200, and when multiplied by 13 gives an integer between
1500 and 1600.

3. Three circles, each with radius 2, are given in the plane such that the
centre of each lies on the intersection of the other two. Determine the area
of the intersection of the three disks bounded by those circles.

4 cConsider the integer n. Let m be the integer obtained from n by removing
its ones digit. If n — m = 2010, find n.

5 A bag contains a sufficient number of red, white, and blue balls. Each
child in a given group takes three balls at random from the bag. What is the
smallest number of children in the group that ensures that two of them have
taken the same combination of balls, that is, the same number of balls of
each colour?

0. If a2 + 2b2 = 3¢2, prove that

(a-l—b b—c) a -+ 2b+ 3¢
b+c b—a a-+tc

is a positive integer.

7. A right triangle, AABC, with legs of lengths 15 and 20 and the right
angle at vertex B is congruent to a triangle, ABDE, with the right angle at
vertex D. The point C lies strictly inside the segment BD, and the points A
and E are on the same side of the straight line BD.
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(a) Find the distance between points A and E.
(b) Find the area of the intersection of AABC and ABDE.

8. Let p and g be different odd prime numbers. Prove that the integer
(pg + 1)* — 1 has at least four different prime divisors.

—_— NS ———

Next we give the solutions to the City Competition of the Croatian
Mathematical Society, 2009, Secondary Level, Grade 1, given in Skoliad 123
at [2010 : 67-68].

1. Reduce the fraction
a*—2a® —2a%>+2a+1
(a+1)(a+2)

Solution by Matthew Ng, student, St. Francis Xavier Secondary School,
Mississauga, ON.

First, factor the numerator:
a* —2a® —2a®>+2a+1 = (a* —2a*+1) — 2a® + 2a
= (a®>-1)2 -2a(a® - 1) = (a® —1)(a® —2a — 1)
=(a+1)(a—1)(a® —2a—1).

Therefore,
a* —2a®> —2a*+2a+1  (a+1)(a—1)(a® —2a—1)
(@a+1)(a+2) N (a+1)(a+2)
(a —1)(a? — 2a —1)
- a-+ 2 ’

Also solved by NATALIA DESY, student, SMA Xaverius 1, Palembang, Indonesia.

Note that the denominator is already factored as (a 4+ 1)(a + 2). Therefore, the only
candidates for reducing are a+ 1 and a+ 2. If you make a = —2 in the numerator, you get 21,
so the expression cannot be reduced by a + 2. If you make a = —1 in the numerator, you
get 0, so reducing by a + 1 is possible. You can now obtain the answer by polynomial division.

2. If you write the digit 3 on the left side of a two-digit number, you ob-
tain, of course, a three-digit number. If twice the three-digit number equals
27 times the two-digit number, what is the original two-digit number?

Solution by Matthew Ng, student, St. Francis Xavier Secondary School,
Mississauga, ON.

Let = be the original two-digit number. When the digit 3 is inserted in
front of x, the resulting three-digit number is 300+ . The given relationship
between the two numbers is then that 2(300 + x) = 27x. Solving this
equation yields that = 24.
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Also solved by ELLEN CHEN, student, Burnaby North Secondary School, Burnaby, BC;
LENA CHOI, student, Ecole Dr. Charles Best Secondary School, Coquitlam, BC; NATALIA DESY,
student, SMA Xaverius 1, Palembang, Indonesia; and GESINE GEUPEL, student, Max Ernst
Gymnasium, Brithl, NRW, Germany.

3. Find the largest integer n such that 3 (n — 5) _ 2(dn+1) > 6n + 5.
3

Solution by Ellen Chen, student, Burnaby North Secondary School, Burnaby,
BC.

If3(n—3)—2(4n+1) > 6n+5,then3n —5—8n—2 > 6n+5, so
—5n —7 > 6n+5,50 —12 > 11n. Thus n < —12 = —1.09, so the largest
integer value for n is —2.

Also solved by MATTHEW NG, student, St. Francis Xavier Secondary School, Missis-
sauga, ON.

4 Find the number of divisors of 288.

Solution by Matthew Ng, student, St. Francis Xavier Secondary School,
Mississauga, ON.

The prime factorisation of 288 is 25 - 32. Therefore, any divisor of 288
has the form 2 - 3%, where a and b are integers such that 0 < a < 5 and
0 < b < 2. You have 6 choices for a and 3 choices for b, for a total of
6 - 3 = 18 choices. These are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48,
72, 96, 144, and 288.

Also solved by LENA CHOI, student, Ecole Dr. Charles Best Secondary School, Coquit-
lam, BC; NATALIA DESY, student, SMA Xaverius 1, Palembang, Indonesia; GESINE GEUPEL,
student, Max Ernst Gymnasium, Briihl, NRW, Germany; and ALISON TAM, student, Burnaby
South Secondary School, Burnaby, BC.

Our solver’s method for counting divisors is much easier than listing divisors systemati-
cally. If you were not familiar with it, read the solution again.

5. In the figure, ABCDEF is a regu- c
lar hexagon while EFGHT is a regular
pentagon. Determine the angle /GAF. B

Solution by Natalia Desy, student, SMA Xaverius 1, Palembang, Indonesia.

The angle sum of an n-gon is 180(n — 2), so the angle sum of a hexagon
is 720° and the angle sum of a pentagon is 540. Since the polygons in
the problem are regular, ZAFE = 120° and ZGFE = 108°. Therefore,
/ZAFG = 360° — 120° — 108° = 132°. Since FG = EF = AF, AAFG is
isosceles, so

180° — 132°
/GAF = = 24°

Also solved by ELLEN CHEN, student, Burnaby North Secondary School, Burnaby, BC;

and MATTHEW NG, student, St. Francis Xavier Secondary School, Mississauga, ON.
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6. Ina trapezoid ABCD, the angle at B is a right angle, and the diagonal
BD is perpendicular to the leg AD. The length of the leg BC is 5, and the
length of the diagonal BD is 13. Find the area of the trapezoid ABCD.

Solution by Matthew Ng, student, St. Francis Xavier Secondary School,
Mississauga, ON.

For diagonal BD to be perpendicular to AD, the A
parallel sides of the trapezoid must be AB and C D, as in
the figure. Thus, ZABC = /BCD = /ADB = 90°. It \
now follows from the Pythagorean Theorem that CD =

v132 — 52 = 12. Moreover, ZABD = /BDC, so

AABD is similar to ABDC. Therefore, AB _ @,
AB 13 169 BD bc 13
22 - 2 = -, 12

50 13 12’ so AB 12

The area of trapezoid ABC D is thus

AB +CD 169 4 12 1565
#.BC:%.5 ou

Also solved by NATALIA DESY, student, SMA Xaverius 1, Palem-
bang, Indonesia.

7. At Tihana's birthday party, the first guest arrived the first time the bell
rang. Each time the bell rang thereafter the number of guests arriving was
two more than the number that had arrived the previous time the bell rang.
If the bell rang n times, how many guests attended the party?

Solution by Matthew Ng, student, St. Francis Xavier Secondary School,
Mississauga, ON.

From the pattern in the table below it is easy to see that 2n — 1 guests
arrived when the bell rang the nt" time:

Time the bell rang 15t 2rd  grd  gth nth
Guests arriving 1 3 5 7 . 2n-—1

The total number of guests is then the sum of the numbers in the second
row in the table, 1 +3 +5 4 7+ --- 4+ (2n — 1). But this is an arithmetic

sum with first term 1, last term 2 — 1, and n terms. Therefore, the sum is
14+ (2n—1) 2n 2
— N =—-1n=n".

2 2

If you are not familiar with our solver’s formula for the sum of an arithmetic sequence,
you can use Gauss’ trick:

1 + 3 + -+ 4+ (2r—3) + (2n-—1)
2rn—1) + @2n-3) + --- + 3 + 1
so that

S
S

2n+2n+---+2n+2n = 28

n copies
Thus, 2n? = 2S and S = nZ2.
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8. Determine all positive integers n such that n? — 440 is the square of an
integer.

Solution by Matthew Ng, student, St. Francis Xavier Secondary School,
Mississauga, ON.

If n? — 440 = k2, where k is a positive integer, then
440 = n? —k? = (n+k)(n—k).

Therefore, n + k and n — k must both be (positive, integer) divisors of 440.
Since 440 = 23 . 5. 11, the only divisors are 1, 2, 4, 5, 8, 10, 11, 20, 22, 40,
44, 55, 88, 110, 220, and 440. [Ed.: To find the divisors, see the solution to
Problem 4 above.] To reduce the number of cases to check, note that n+k is
larger than n — k and that they have the same parity (that is, they are either
both even or both odd). That leaves just four cases:
Ifn4+k=220and n — k = 2, thenn = 111 and k = 109.
Ifn4+k=110and n — k = 4, thenn = 57 and k = 53.
Ifn4+k=44and n — k =10, thenn = 27 and k = 17.
Ifn+k=22andn —k=20,thenn =21and k = 1.
Thus, the only possible values for n are 21, 27, 57, and 111.

Also solved by NATALIA DESY, student, SMA Xaverius 1, Palembang, Indonesia.

—_— N~ S ————

This issue’s prize of one copy of CRUX with MAYHEM for the best
solutions goes to Matthew Ng, student, St. Francis Xavier Secondary School,
Mississauga, ON.

We hope that our readers will enjoy the featured contest and that they
will share their joy by submitting one or more solutions for publication.

—— || NS

NOTICE TO CRUX READERS

The CMS is in the process of appointing a new Editor-in-Chief for 2011
as well as finding a number of section editors. The situation is causing severe
production problems with the journal and has caused delays in 2010 and is
expected to cause delays in the delivery of issues in 2011.

The CMS apologizes for this disruption and delay in service.

Johan Rudnick,
Managing Editor and CMS Executive Director.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Ian VanderBurgh (University of Waterloo). The
other staff member is Monika Khbeis (Our Lady of Mt. Carmel Secondary
School, Mississauga, ON).

—_—— N r——— S ———

Mayhem Problems

Veuillez nous transmettre vos solutions aux problémes du présent numéro
avant le 1 avril 2011. Les solutions recues apreés cette date ne seront prises en compte
que s’il nous reste du temps avant la publication des solutions.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais.

La rédaction souhaite remercier Jean-Marc Terrier, de I’Université de
Montréal, d’avoir traduit les problémes.

—_—m———— N r— S ——, ——
M463. Proposé par I'Equipe de Mayhem.

Dans un carré ABCD de coté 24/2 on dessine un cercle de centre A et
de rayon 1. On dessine un second cercle de centre C de sorte qu'’il touche
juste le premier au point P sur AC. Déterminer I’aire totale des régions a
I'intérieur du carré mais a |’extérieur des deux cercles.

M4b64. Proposé par I'Equipe de Mayhem.

Soit |x] le plus entier n’excédant pas x. Par exemple, |3.1] =3 et
| —1.4] = —2. Trouver tous les nombres réels = tels que |[vz2 +1—1] = 2.

MA465. Proposé par Antonio Ledesma Lépez, Institut d’Education Sec-
ondaire No. 1, Requena-Valence, Espagne.

L’entier 20114022 est divisible par 2011. Trouver s'il existe un entier
positif divisible par 2011 et dont la somme des chiffres donne 2011.
M466. Proposé par Pedro Henrique O. Pantoja, étudiant, UFRN, Brésil.

Trouver toutes les paires (m, n) d'entiers positifs tels que 2™ — 2 = n!.
M467. Proposé par Neculai Stanciu, Ecole secondaire George Emil Palade,
Buzau, Roumanie.

Trouver tous les nombres réels = pour lesquels

(z — 2010)3 + (2 — 2010)3 4 (4020 — 3x)® = 0
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M468. Proposé par Gheorghe Ghita, Collége National “M. Eminescu”,
Buzau, Roumanie.

Trouver toutes les paires (p, g) de nombres premiers telles que

p+q, p+d* p+d° p+dt,
soient premiers.
M469. Proposé par Antonio Ledesma Lépez, Institut d’Education Sec-
ondaire No. 1, Requena-Valence, Espagne.

Montrer que pour tous les nombres réels =, on a

(zsinw_'_zcosm)z Z 22—\/5‘

M463. Proposed by the Mayhem Staff.
The square ABCD has side length 24/2. A circle with centre A and

radius 1 is drawn. A second circle with centre C is drawn so that it just
touches the first circle at point P on AC. Determine the total area of the
regions inside the square but outside the two circles.

M464. Proposed by the Mayhem Staff.

Let | x| be the greatest integer not exceeding . For example, [3.1| = 3
and |—1.4] = —2. Find all real numbers « for which [vz2 +1— 1] = 2.
M465. Proposed by Antonio Ledesma Loépez, Instituto de Educacién Se-
cundaria No. 1, Requena-Valencia, Spain.

The integer 20114022 is divisible by 2011. Determine if there exists a
positive integer that is divisible by 2011 and whose digits add to 2011.
M466. Proposed by Pedro Henrique O. Pantoja, student, UFRN, Brazil.

Determine all pairs (m, n) of positive integers such that 2™ — 2 = n!.
M467. Proposed by Neculai Stanciu, George Emil Palade Secondary School,
Buzau, Romania.

Determine all real numbers = for which

(z — 2010)3 + (2= — 2010)3 + (4020 — 3z)> = 0.
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M468. Proposed by Gheorghe Ghita, M. Eminescu National College, Buzau,
Romania.

Determine all pairs (p, g) of prime numbers for which each of p + ¢,
p+ q2, p+ g3 and p + ¢* is a prime number.

M469. Proposed by Antonio Ledesma Lopez, Instituto de Educacién Se-
cundaria No. 1, Requena-Valencia, Spain.

. 2
Prove that, for all real numbers =, we have (25“” + 2C°”) > 22-VZ,

%

Mayhem Solutions

We acknowledge a correct solution to problem M413 by Samuel Gomez
Moreno, Universidad de Jaén, Jaén, Spain, and a correct solution to problem
M419 by Paolo Perfetti, Dipartimento di Matematica, Universita degli studi
di Tor Vergata Roma, Rome, Italy. Our apologies for these oversights.

%

M426. Proposed by the Mayhem Staff.

Determine the number of positive integers less than or equal to 1000000
that are divisible by all of the integers 2, 3, 4, 5, 6, 7, 8, 9, and 10.

Solution by Winda Kirana, student, SMPN 8, Yogyakarta, Indonesia.

A positive integer is divisible by all of the integers from 2 to 10 if it is
divisible by the least common multiple (Icm) of these numbers.

We can write this list of integers in terms of their prime factorizations
as2,3,22 5 2x3,7, 2% 3% 2x5. Therefore, lcm(2, 3,4,5,6,7,8,9,10) =
23 x 32 x 5 X T = 2520.

Now the largest integer less than or equal to 1 000 000 that is divisible
by 2520 is 2520 x 396. This is because the quotient when 1 000 000 is divided
by 2520 is 396 and the remainder is 2080.

Thus, there are 396 positive integers less than or equal to 1 000 000
that are divisible by all of the integers from 2 to 10. (These 396 integers are
the multiples of 2520 from 2520 x 1 to 2520 x 396.)

Also solved by JACLYN CHANG, student, Western Canada High School, Calgary, AB;
NATALIA DESY, student, SMA Xaverius 1, Palembang, Indonesia; SAMUEL GOMEZ MORENO,
Universidad de Jaén, Jaén, Spain; GEOFFREY A. KANDALL, Hamden, CT, USA; DAVID
E. MANES, SUNY at Oneonta, Oneonta, NY, USA; RAFAEL MARTINEZ CALAFAT, I.E.S. La
Plana, Castellon, Spain; AfIFFAH NUUR MILA HUSNIANA, student, SMPN 8, Yogyakarta,
Indonesia; RICARD PEIRO, IES “Abastos”, Valencia, Spain, BRUNO SALGUEIRO FANEGO,
Viveiro, Spain; EVEREST SHI, student, Burnaby North Secondary School, Burnaby, BC; JOHN

WYNN, student, Auburn University, Montgomery, AL, USA; and INGESTI BILKIS ZULPATINA,
student, SMPN 8, Yogyakarta, Indonesia. One incorrect solution was submitted.
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M427. Proposed by the Mayhem Staff.

A semicircle has diameter AB. Equilateral triangle ABC is drawn on
the same side of AB as the semicircle. Determine the area of the region that
lies inside the triangle and outside the semicircle.

Solution by Neculai Stanciu, George Emil Palade Secondary School, Buzau,
Romania, modified by the editor.

Suppose that r is the radius of the semi-
circle. Let O be the centre of the semicircle C
and points M and N where the semicircle in-
tersects AC and BC, respectively. Join OM,

ON, and M N.

Note that OA = OM = ON = OB, M N
since each is a radius. Since AABC is equi-
lateral, ZABC = ZACB = /BAC = 60°.

Since OA = OM, then AOMA is
isosceles and ZAMO = /M AO = 60°. This
tells us in fact that AOM A is equilateral, be- A o B
cause its third angle also equals 60°. Simi-
larly, AON B is equilateral.

Now /ZMON = 180° — ZMOA — ZNOB = 180° — 60° — 60° =
60°. Since OM = ON, then in fact AOMN is also equilateral since the
remaining two angles are equal and add to 120°.

Note that Z/CM N = 180° — ZAMO — ZOMN = 180° —60° — 60° =
60°. Similarly, ZCN M = 60°, so ACMN is also equilateral.

Since each of AOMA, AONB, AOMN, and ACMN is equilateral,
and each shares a side with one of the others, then these four equilateral
triangles all have the same side length and so are all congruent.

The area inside A ABC hut outside the semicircle is equal to the area
of rhombus M ONC minus the area of sector MON..

Now rhombus MONC is made up of the two congruent equilateral
triangles MON and CM N. Eachis an equilateral triangle with side length r

V3

(the radius of the semicircle), and so each has area ~2r2. (We could calculate

this by constructing an altitude in one of these triangles.) Therefore, the area

of rhombus MONC is 2 - ?rz = ?r?
Sector MON has angle 60°, and so has area 60" arz=lop2
360° 6
Therefore, the area of the region is ?rz — %mﬂ.

Also solved by NATALIA DESY, student, SMA Xaverius 1, Palembang, Indonesia;
GEOFFREY A. KANDALL, Hamden, CT, USA; WINDA KIRANA, student, SMPN 8, Yogyakarta,
Indonesia; HUGO LUYO SANCHEZ, Pontificia Universidad Catélica del Peru, Lima, Peru;
RAFAEL MARTINEZ CALAFAT, I.E.S. La Plana, Castellon, Spain; RICARD PEIRO, IES “Abas-
tos”, Valencia, Spain; BRUNO SALGUEIRO FANEGO, Viveiro, Spain;, EVEREST SHI, student,
Burnaby North Secondary School, Burnaby, BC; and KONSTANTINE ZELATOR, University of
Pittsburgh, Pittsburgh, PA, USA. One incorrect solution was submitted.
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M428. Proposed by Neculai Stanciu, George Emil Palade Secondary School,
Buzau, Romania.

Determine all integers x for which
A4—z)* 4+ 3—x)**+20 = 4° 4+ 3%.

Solution by John Wynn, student, Auburn University, Montgomery, AL, USA,
modified by the editor.

We will examine three cases to show that there is only one integer x
that satisfies the equation.

Case 1: x > 3. We note first in this case that if x = 3 or if x = 4, the left side
will include a term of the form 0°. We could sensibly adopt the convention
that this is undefined, that it equals 0, or that it equals 1. Using any of these
conventions, we first show that neither £ = 3 nor x = 4 is a solution.

Substituting = 3, we see that the left side equals 1* + 0° + 20, which
is either undefined or equal to 21 or 22. When = = 3, the right side equals
43 + 33 which equals 91. Therefore, the equation is not satisfied, no matter
which convention we adopt.

Substituting * = 4, we see that the left side equals 0° 4 (—1)~1 + 20,
which is either undefined or equal to 19 or 20. When = = 4, the right side
equals 4* 4+ 34, which equals 337. Therefore, the equation is not satisfied,
no matter which convention we adopt.

When x > 5, we have that 4 + 3® > 45 4 35 = 1267.

Also note that when z > 5, wehave 4 —x < —1and 3 —z < —2

and so |4 — x| > 1 and |3 — x| > 2. Therefore, [4 — z|*=% > 1 and

_ x—3 2 __ _ 4—x __ 1 1
|3 — x| > 2 _41. Thus, (4 azi _(4_m)w_4§|4_$|m_4§1and
(3 — z)3~* = B = z)o3 < 13— a3 < 1. Therefore, when = > 5, the

right side is at least 1267 and the left side is at most 22, so no such value of
x satisfies the equation.

Case 2: x < 1. When = < 1, we have 4® + 3% < 4! + 31 = 7. Also, when
x <1,wehavethat4—z >3and3—x > 2,s0 (4 — )4~ ® > 3% = 27 and
(3 — x)3~® > 22 = 4. Therefore, the left side is at least 27 + 4 + 20 = 51
and the right side is at most 7. Thus, there are no solutions in this case.

Case 3: £ = 2. Here, the left side equals 22 + 1 + 20 = 25 and the right
side equals 42 4 32 = 25, so = 2 is a solution.

In summary, we see that = 2 is the the only integer solution.

Also solved by HUGO LUYO SANCHEZ, Pontificia Universidad Catélica del Peru, Lima,
Peru; DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA; RICARD PEIRO, IES “Abastos”,
Valencia, Spain; BRUNO SALGUEIRO FANEGO, Viveiro, Spain; EVEREST SHI, student, Burn-
aby North Secondary School, Burnaby, BC; EDWARD T.H. WANG, Wilfrid Laurier University,
Waterloo, ON; and KONSTANTINE ZELATOR, University of Pittshburgh, Pittsburgh, PA, USA.
Three incomplete solutions were submitted.
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M429. Proposed by Samuel Gémez Moreno, Universidad de Jaén, Jaén,
Spain.

Determine all triples (a, b, c) of positive integers with a(*?) = (ab)c.

Solution by Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA,
USA.

The equation a®) = (a®)° is equivalent to the equation a®*) = a’c.
We examine a number of different cases.

Case 1: a = 1. Then the equation is true regardless of the values of b and c.
Therefore, (1, b, ¢) is a solution for all positive integers b and c.

Case 2: a > 1. In this case, a(®*) = abc is equivalent to b¢ = be, which
is equivalent to b1 = ¢ since b > 0. We consider subcases where ¢ = 1,
c=2,and ¢ > 2.

Subcase 2(a): @ > 1 and c = 1. If ¢ = 1, then we have b° = 1, which is true
for all positive integers b. Therefore, (a,b,1) is a solution for all positive
integers a > 1 and all positive integers b.

Subcase 2(b): @ > 1and ¢ = 2. If ¢ = 2, then the equation b¢~! = ¢ becomes
b = 2. Therefore, (a, 2, 2) is a solution for all positive integers a > 1.

Subcase 2(c): a > 1 and ¢ > 2. If ¢ > 2, then b cannot equal 1, so b > 2.
Using the fact that 2¢=* > ¢ for ¢ > 3 (proved at the end of this solution),
we see that b¢~1 > 2°~1 > ¢, so b1 = ¢ has no solutions in this case.

In conclusion, the solutions are all triples (a, b, ¢) of positive integers
with (i) a =1, or(ii)a >1andc=1, or (iii)a > 1and b = c = 2.

To finish, we must show that 2¢=! > ¢ for all positive integers ¢ > 3.
We prove this by mathematical induction on c.

If ¢ = 3, the inequality becomes 4 = 22 > 3, which is true.

Suppose that 2¢=! > ¢ for ¢ = k for some positive integer k > 3.

Consider ¢ = k + 1. Since 2~ > k by the induction hypothesis, then
2k = 2.2k-1 > 2k, Since k > 3,then2k > k+ 1,502 > k+1, or
2(k+1)=1 5 L 4+ 1, as required. This completes the proof by induction.

Also solved by RAFAEL MARTINEZ CALAFAT, L.E.S. La Plana, Castellon, Spain; RICARD

PEIRO, IES “Abastos”, Valencia, Spain; and BRUNO SALGUEIRO FANEGO, Viveiro, Spain.
Seven incorrect solutions were submitted.

M430. Proposed by Edward T.H. Wang, Wilfrid Laurier University,
Waterloo, ON.

Let p,, be the nt™ prime number. Prove that p,, > 3n for all n > 12.

Solution by Bruno Salgueiro Fanego, Viveiro, Spain.

We prove the result by induction on n. First, we note that if n = 12,
then p,, = p12 = 37 and 3n = 36, so p,, > 3n when n = 12.
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Next, we assume that p;, > 3k for some positive integer k > 12. We
will prove that pg1 > 3(k 4+ 1).

Note that the first prime larger than pg is pg+1 SO Pry1 > pr + 1.
Since py is an odd prime (the only even prime is 2), then py + 1 is even and
so cannot be prime. Thus, pg+1 > pr + 2.

Also, note that since p, > 3k and py is an integer, then p,, > 3k + 1.

Altogether, we obtain pg+1 > pr+2 > 3k+1+2 = 3k+3 = 3(k+1).
But 3(k + 1) cannot be a prime number since it is divisible by 3 and it is at
least 39, and pg41 is a prime number, so px+1 > 3(k 4+ 1), as required.

Therefore, by induction, p,, > 3n for all positive integers n > 12.

Also solved by SAMUEL GOMEZ MORENO, Universidad de Jaén, Jaén, Spain; JOSE
HERNANDEZ SANTIAGO, student, Universidad Tecnologica de la Mixteca, Oaxaca, Mexico;
GEOFFREY A. KANDALL, Hamden, CTI, USA; DAVID E. MANES, SUNY at Oneonta, Oneonta,

NY, USA; and RAFAEL MARTINEZ CALAFAT, L.E.S. La Plana, Castellon, Spain. One incomplete
solution was submitted.

M431. Proposed by Shailesh Shirali, Rishi Valley School, India.

In acute triangle ABC, the foot of the perpendicular from A to BC
is D, and the foot of the perpendicular from D to AC is E. Point F is

located on line segment D E such that D—g zz: ¢ . Prove that AF and BE

are perpendicular.

Solution by the proposer, modified by the editor.

Let L be the point where lines
AF and BE intersect each other, and
let K be the foot of the perpendicular
from B to AC. Draw BK and DL. 4

Now ABKC is similar to
ADEC since each is right-angled K
and the triangles share the angle at

C. Therefore, BC _ K—C, and so E
we have PC+DB _ ECH+EK L
ps  P°px  pEC Ex F
! +DC— :Elc+ BC' °" DC T FC
or = B D ¢
DB
Since AD BC are perpendicu-
DB DC
lar, cot B = D and cot C = D
cot C DC EC cotC DF
Therefore, cotB — DB’ and we then have ER —ootB — FE

Note that /ZDAE = ZCBK = 90° — ZACB. Thus AAED and
ABKC are similar since each has a right angle and a second equal angle.
Therefore, in these similar triangles, points F' and E divide the corresponding

sides ED and KC in the same ratio. Also, from the similarity of these two
ED KC

triangles, we have =— A= KB



494

We will show that this implies that /EAF = /K BE. This will mean
that /DAF = Z/CBE since /CBK = /DAE. This in turn will tell us that
/DAL = /ZDBL. From this, we can conclude that points A, B, D, and L
form a cyclic quadrilateral. Hence, ZALB = ZADB = 90°, and so AF and
BE are perpendicular, as required.

It remains to show that /ZEAF = /K BE. Note that both angles are
FE _ FE 1 1 _ EK

acute. Also, ED _FEXDF - T IE = P = %o Therefore,
FE ED . EK ED EK
tan(LEAF) = — = KC _

EA EA  EA KC

KC EK EK
= . = = tan(£LKBE).
KB KC KB

Since acute angles with equal tangents are equal, then /ZEFAF = /KBE, as
required, thus completing the proof.

Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera, Mallorca, Spain; GEOFFREY
A. KANDALL, Hamden, CT, USA; and BRUNO SALGUEIRO FANEGO, Viveiro, Spain.

—_— N
Problem of the Month
Ian VanderBurgh

This month, we investigate numbers expressed in bases other than 10.

Problem (1986 Canadian Invitational Mathematics Challenge) Find a base 7
three-digit number which has its digits reversed when expressed in base 9.

Let's review (or learn!) about numbers in different bases. Since the
problem talks about three-digit numbers, we’ll focus on three-digit numbers.
All of what we look at can be extended to numbers with more digits.

When we write the three-digit integer two hundred seventy-three as
273, we normally mean that this is the base 10 representation of this integer.
Writing 273 is a way of representing the integer equal to 2 X 10247 x 10+ 3.
We could write this as (273);0 to emphasize that we are thinking of a base
10 number.

Let's look at base 7. Any digit in base 7 must be less than 7, so the
possible digits are 0, 1, 2, 3,4, 5, and 6. The notation (326)7 is an example of
a three-digit integer in base 7. (The subscript of 7 indicates the base.) This
is the base 7 representation of the integer equal to 3 x 72 4 2 x 7 + 6, which
equals one hundred sixty-seven. In other words, (326)7 = (167)10.

Let's look at a general base b, where b is an integer with b > 1. In
base b, the possible digits are from 0 to b — 1, inclusive. An example of a
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three-digit integer would be (pgr)s, which is the base b representation of the
integer equal to p X b2 + g X b+ r.

We now know enough about numbers in different bases to work out a
solution to the problem.

Solution We want to find a three-digit base 7 number (pgr)~ so that when it
is converted to base 9, its representation is (rgp)o. In other words, we want
to find a base 7 number (pqr)~ so that (pgr)r = (rgp)se.

Now,
(par)r = PXT7>+qxT+r = 49p+7g+7, and
(rgp)e = 7x94+qx9+p = 8lr+9q+p.

Therefore, we want 49p + 7q + » = 81r + 9q + p, or 48p = 80r + 2q, or
24p = 40r + q.

We have thus transformed the initial problem into the problem of find-
ing positive integers p, q, and r with 24p = 40r + g and with the added con-
dition that each of p, ¢, and r is no more than 6, since each must be a valid
digit in base 7. Fiddling a bit, you might find the solution (p, ¢, r) = (5,0, 3).

In other words, (503)7 = (305)9, so (503)7 is a base 7 three-digit
number with the required property. ]

We should probably check our answer by converting both numbers to
base 10. (It’s always a good idea to check your answer whenever possible.)
Converting each to base 10, we obtain (503)7 =5 X 72 +0 x 7 + 3 = 248
and (305)9 = 3 x 92 4+ 0 X 9 + 5 = 248, so our answer does indeed work.

While the question didn’t ask us to do so, let’s see if we can determine
whether or not there are more solutions.

Let's go back to the last equation 24p = 40r + g and rewrite it as
q = 24p — 40r. We notice that right side can be factored as 8(3p — 57),
which is a multiple of 8. Since ¢ = 24p — 407, then q must also be a multiple
of 8. Since q is a digit, then g must equal 0 or 8.

But wait! Not only is g a digit, but it is actually a digit in base 7 (as
well as in base 9) so it can be no larger than 6. This tells us that g must be 0.

Since ¢ = 0, the equation 24p = 40r + q becomes 24p = 40r or
3p = 5r. The right side is a multiple of 5, so the left side must also be a
multiple of 5. For 3p to be a multiple of 5, the integer p must be a multiple
of 5. Since p is between 0 and 6 inclusive, then p can equal 0 or 5. If p = 0,
then 3p = 57 gives r = 0; if p = 5, then r = 3.

Therefore, the possible solutions are (p,q,r) = (0,0,0) or (5,0, 3).
The first triple is a solution to the equation ¢ = 24p — 407, but is not a
solution to the problem, since (000)7 is not a three-digit number in base 7
as its leading digit is 0.

Numbers in different bases are fun things to play with, but can appear
at first glance not to be terribly useful. This is far from the case — just ask
someone interested in computers about binary and hexadecimal representa-
tions of integers and they will tell you how useful this theory actually is.
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THE OLYMPIAD CORNER
No. 290

R.E. Woodrow

In this last Corner of volume 36, we begin reducing the backlog of read-
ers’ solutions to make way for a renewed column, with new features, and a
new editorial team for 2011. I shall continue to support the Corner and the
team as we seek to introduce new features. Henceforth no new problem sets
will be given. We turn to the balance of solutions from our readers and to the
11th Mathematical Olympiad of Bosnia and Herzegovina at [2009 : 438-439].

2. Triangle ABC is given. Determine the set of the centres of all rectangles
inscribed in the triangle ABC so that one side of the rectangle lies on the
side AB of the triangle ABC.

Solved by Michel Bataille, Rouen, France; Konstantine Zelator, University
of Pittsburgh, Pittsburgh, PA, USA; and Titu Zvonaru, Comanesti, Romania.
We give the solution of Bataille.
Llet a = BC, b = CA,
¢ = AB and o« = ZBAC, 8 = C
/CBA, v = /ACB. We suppose
that « and 3 are not obtuse (oth-
erwise the required set is empty).
Let K be the foot of the al-
titude from C, and let U, M be U
the midpoints of CK, AB, respec- Q N R
tively. We show that the required /

\

locus is the segment UM exclud- T
ing its endpoints. A

We remark that an inscribed A P K M S B
rectangle PQRS with P, S on the
side AB is entirely determined by the choice of Q on the side AC (with
Q # A C) LetQ = tC+ (1 —t)A, wheret € (0,1). Then we have
R =tC+ (1—-t)Band S = tK + (1 — t)B. Moreover, since cK =
(acos B)A+ (bcos a)B, we have ¢S = (tacos B)A+ (tbcosa+c(1—t))B.

The centre of PQRS is the midpoint T of QS, hence,

2¢cT =c(Q+S) =(c(1 —t)+tacosB)A + (¢(1 —t) + tbcosa) B + ctC
=t((acosB)A + (bcosa)B + cC) + (1 — t)c(A + B)
=t(cK + cC) +2(1 —t)eM = 2ctU + 2(1 — t)eM ,
sothatT =tU 4+ (1 — t)M.

It follows that T traces the line segment U M (except for the two end-
points U and M) as t varies in (0, 1).
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. For any two positive integers a an prove that the infinite arithmetic
4 r t itive int dd that the infinite arithmeti
progression

a, a+d,a+2d, ..., a+nd, ...

contains an infinite geometric progression of the form
b, bq, bg?, ..., bq"™, ...,
where b and g are also positive integers.

Solved by Mohammed Aassila, Strasbourg, France; Konstantine Zelator,
University of Pittsburgh, Pittsburgh, PA, USA; and Titu Zvonaru, Comanesti,
Romania. We give the solution of Zvonaru.

We take b = a and ¢ = d + 1, so that the geometric progression is
a,a(d+1),a(d+1)3 ... ,a(d+1)", ... .

[t remains to prove that a(d 4+ 1)™ is of the form a 4+ md; indeed,

a{1+<:>d+<z>d2+---+(z>dn}
— a-l—d[a(?;)+ad<z>+-"+adn_1<2)} = a+dm.

5. The acute triangle ABC is inscribed in a circle with centre O. Let P be a
point on the arc AB , where C & AB . The perpendicular from the point P
to the line BO cuts the side AB at point S and the side BC at point T'. The
perpendicular from the point P to the line AO cuts the side AB at point Q
and the side AC at point R. Prove that:

a(d+1)"

(a) The triangle PQS is isosceles.
(b) PQ? = QR - ST.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Michel
Bataille, Rouen, France; Geoffrey A. Kandall, Hamden, CT, USA; and Titu
Zvonaru, Comanesti, Romania. We give the solution of Bataille.

(a) In this question, P does not need to be on the circumcircle of AABC.
Actually, we prove the following:

Let OAB be an isosceles triangle with OA = OB and let perpen-
diculars to OA and OB meet at P and intersect AB at Q and S,
respectively (see the figure on the next page). Then PQ = PS.

Let O’, P’ be the orthogonal projections of O, P onto AB and let Rpo-
and R pps denote the reflections in OO’ and PP’, respectively. Since PP’ is
parallel to OO’, the mapping Rpps 0 Roo- is the translation 7 with vector
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20'P’ and Rpp/(PQ) = T (Roo'(PQ)). Since PQ is perpendicular to OA,
the line Roo/ (PQ) is perpendicular to OB = Rpo(OA).

Hence, Rpp/(PQ), which is parallel to Roo/ (PQ), is perpendicular to OB
as well and so Rpp/(PQ) = PS. Thus the altitude PP’ in AQPS also
bisects the angle ZQPS and AQPS is isosceles.

(b) As before, let P’
be the orthogonal projec-
tion of P onto AB. We
have Z/BAO = /ZQPP’
(acute angle with perpendic-
ular sides); since AQPS and
ANOAB are isosceles, it fol-
lows that

/PQS = % (m — 2/QPP")

- % (m — 2/BAO)

— %4AOB —C.

Thus, ZAQR = C, and so AARQ ~ AABC. Similarly, ATBS ~ ANABC
and therefore ATBS ~ AARQ. We deduce that g—é = z—g.

Now, ZAPB = n—C and ZQPS = n—2C,so ZAPQ+/BPS = C.
Also, ZAPQ + /PAQ = w — ZAQP = /PQS = C, hence Z/BPS =

ZPAQ. As aresult, AAQP ~ APSB, and we deduce that QP _ BS

QA ~ PS°
We now have g—g = g—g . g—i = g—g . 13;—5 = 1‘5;—1;,, and the result

follows, since PS = PQ.
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6. Let ai, as, ..., a, be real constants and for each real number = let

f(z) = cos(ay + ) + cos(az + 7) + cos(a32—+— z) +-F 7(:05(6%_? z)
2 2 2n
If f(x1) = f(x2) = 0, prove that x; — x2 = mn, where m is an integer.

Solved by Mohammed Aassila, Strasbourg, France; and Michel Bataille, Rouen,
France. We give the solution of Aassila.

For each k let 2z, = 2'~*(cosay +isinay), and let z = cos ¢ +isinx.
We have z,z = 217 *(cos(ax + x) + sin(ax + x)), and so

f(®) =Re(z1z+ 222+ -+ 2p2) =Re(z(z1 + 22+ -+ 2,)). Q)

Note that z; + z3 + - - - + 2z, # 0, since otherwise |z1| = |z + - + 2| <
|z2| ++++ + |zn| would imply that 1 < 27! 272 ... 4 21-7 =1 21—
a contradiction. Hence, 0 # 21 + -+ + 2, = ¢ = r(cos ¢ + isin ). By (1)
we have

f(x) = NRe(cz) = rcos(z + ), (r #0).
If f(x1) = f(z2) = 0, then cos(x1 + ¢) = cos(xz2 + ¢) = 0, and hence
2 + ¢ — (x1 + ) = 2 — 1 = mm, where m is an integer.

%

Next we turn to solutions of the Vietnamese Mathematical Olympiad
20062007 given at [2009 : 439-440].

1. Solve the system of equations

1 12 . 2
y+3z vz

12 6
1 + = —.
Y+ 3z VY

Solved by Arkady Alt, San Jose, CA, USA; Michel Bataille, Rouen, France;
Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON; and Konstan-
tine Zelator, University of Pittsburgh, Pittsburgh, PA, USA. We give Wang’s
write-up.

We assume the problem asks for real solutions and we show that the
only solution is (z,y) = (4 + 2v/3,12 4+ 6/3).

Adding and subtracting the given equations we obtain

1 3

ﬁ+7§ = 1, @
- 2 @
Ve /Y y+ 3z
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From (1) and (2) we obtain (respectively)

VTV = Vay, 3)
12, /xzy
3Wr -y = : (4)
Y+ 3x
e . . 12zy
Multiplying (3) and (4) yields 9z — y = v+ 32 hence
9z —y)(Bz +y) = 12zy;
27x% —6xy —y? = 0;
9z +vy)3z—y) = O.
Since 9z +y > 0, we have y = 3z. Substituting this into the first given

. . 2 2
equation then yields 1 — s = 7 orr—2/x—2=0.

Solving we obtain v/ = 14++/3. Since y/z > 0, we have v/ = 1++/3
from which = 4 + 2v/3 and y = 12 + 6+/3 follow.

3. Triangle ABC has two fixed vertices, B and C, while the third vertex A is
allowed to vary. Let H and G be the orthocentre and the centroid of ABC,
respectively. Find the locus of A such that the midpoint K of the segment
HG lies on the line BC.

Solved by Michel Bataille, Rouen, France; and Titu Zvonaru, Comanesti, Ro-
mania. We give Zvonaru’s solution.

Let O be the midpoint of BC. We choose a system of coordinates
in which the points are B(—b,0), C(b,0), A(m,n). Then G has coordi-

—-b+b+m 04+0+n\ m n . .
natesG( 3 , 3 >_G<?,§>. The slope of the line AB is

— ™ _ and the altitude from C is y = — + b(a: — b). Since the altitude
m-+b n
from A is ¢ = m, the orthocentre is then H <m, _m+ b(m - b)). The

point K lies on the line BC if and only if the y-coordinate is 0, that is

b 2
_m (m—b)+§:0 = b2—m2+%:0
m2 ’I’L2
TR
2 2
hence the locus of A is the hyperbola ”Z—z — % = 1, without the points

B(—b,0) and C(b,0).
5. Letbhea positive real number. Find all functions f : R — R such that
flx+y) = f(x)- gbv+Hfw—-1 | B (3by+f(y)—1 _ by)

for all real numbers = and y.
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Solution by Michel Bataille, Rouen, France.

We show that the only solutions are the functions f; : ¢ — —bt and
fo:t— 1— bt

It is easily checked that f;, f» are indeed solutions. Conversely, let f
be any function satisfying

flx +y) = f(x) 32T @—1 4 p=(30"+HFW)—1 _ py) (1)
for all z, y and let g be defined by
gt) =f(t) +b* (t€R).
From (1), g is a solution to the functional equation
3g(z +y) = g(x)39®). @)

In particular, we have g(z)(3 — 39(®) = 0 for all . If g(x) = 0 for all x,
then f = f,. Otherwise, g(0) = 1 and therefore 3g(y) = 39® for all y. It
follows that g(y) > 0 and g(y) In3 —In(g(y)) = In 3 for all y. A quick study
of the function ¢ defined by ¢(t) = tIn3 — Int shows that the equation
¢(t) = In3 has two positive solutions, namely 1 and some real number o
with o € (0, 35). Note that a # 1. Thus, g(y) = a or g(y) = 1 for all y.
Now, we observe that (2) and 3g(y) = 39 imply g(z + y) = g(x) - g(v).
If we had g(xz9) = « for some xo, then we would have g(2z¢) = a2, a
contradiction since a? ¢ {«, 1}. We conclude that we must have g(z) = 1
for all z, and so f = f5.

7. Let a > 2 be a real number and
fo(x) = a0 L™ 2™t o 241

for each positive integer n. Prove that for each n the equation f,(z) = a
has exactly one real root x,, € (0, o), and that the sequence {z,}32 ; hasa
finite limit as n approaches infinity.

Solution by Michel Bataille, Rouen, France.

The function f,, is continuous and strictly increasing on [0, co) with
frn(0) = 1 and lim,_, o fn(x) = oo, hence is a bijection from [0, co) onto
[1,00). Since a € (1,00), the equation f, (x) = a has exactly one real root
in (0, 00), namely z,, = f,, *(a).

To prove that the sequence {x,}$2 ; has a finite limit as n approaches
infinity, we show that {x,, }22 ; is increasing and bounded above.

To this aim, we observe that for positive x, the inequality z > =z, is
equivalent to f,(x) > a. Since we obviously have f,(a) > a, we obtain
that a > x,, for each positive integer n, hence {x,}>° , is bounded above.
Next, we consider f,,(zn+1). We have

10 —1
fa(@ngr) = a®zp i +al  +al i+ g + 1
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. 11 1
with alOwZL + :EZL +azp  + T + 1= fag1(Tatr) = a.

It follows that 41 fn(zn41) = a — 1, so that
*Tn-l-l(fn(wn-}-l) - a) = a—1-— ATp41 -

We will prove that z,, 11 <1 — %, from which we deduce first f,,(xn+1) > a
and then x,, 1 > @, so that {z,}2° ; is indeed increasing.

Now, xp41 < 1—% will follow from f,,4+1 <1 — %) > a and ultimately,
we are reduced to proving the latter. We calculate

Jrt1 (1 — 1) = a'® (1 — l>n+11 +

a

n+11 n+2
= a10(1—1> +a—a(1—l>
a a

SO frt1 (1 - %) — a has the same sign as (1 — b)® — b°, where b = % < %

But the function v (u) = (1 — u)? — u® decreases from 1 to 0 when u varies
from 0 to %, hence (1 — 5)? — b > 0 and f,,4+1 <1 — %) > a follows.

—_— N~ S O ————

Next we turn to solutions from readers to problems of the December
2009 number of the Corner. We first look at the Austrian Mathematical
Olympiad 2007, National Competition Final Round, Part 1 at [2009 : 497].

1. We are given a 2007 x 2007 grid. An odd integer is written in each of
its cells. Let Z; be the sum of the numbers in the ith row and S; the sum
of the numbers in the 5 column for 1 < 4, j < 2007. Furthermore, let

2007 2007
A= ]I Z;and B = [] S;. Show that A + B cannot be equal to zero.
=1 j=1

Solution by Matti Lehtinen, National Defence College, Helsinki, Finland,
modified by the editor.

Look at the grid modulo 4. Assume a; of the entries in row 7 are 1, and
b; are —1 modulo 4. Also, let ¢; of the entries in column j be 1 and d; be
—1 modulo 4.

Then Z; = a; — b; = a; — (2007 — a;) = 1 + 2a;. Note that we have
(1 +22)(1 + 2y) = 1+ 2(x + y) for integers « and y, so it follows that
A= H21 = H(1+2ai) = 1—|—2Zai.

By similar calculations, B=1+2) ¢;.

However, > a; = >_ ¢;, since each counts the total number of entries
in the grid that are 1 modulo 4. Then, A+ B=2+4) a;=2,s0 A+ B
cannot be equal to zero.
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2. Determine the largest possible value of C(n) for all positive integers n,

such that

2
n

(n+1)Y ai—| > a; | > C(n),

j=1 j=1
holds for all n-tuples (a;, as, ..., a,) of pairwise distinct integers.

Solution by Matti Lehtinen, National Defence College, Helsinki, Finland.

It helps to recall an elementary fact from probability or statistics. Set
n

_ 1 n n _ _ . n .
a=— 2. a;. Then ) (a; —a)? = 2 (a2 —2a;a+a?) = 2 a? —na?. In
j=1 j=1 j=1 j=1
n n
our notation, the expression to be minimized isn - (a; —@)*+ >~ a3. The
j=1 j=1
first sum is invariant to changing the origin and is clearly minimized when the
distinct integers are consecutive. It is trivial that the latter sum, for distinct

integers, is minimized for even n = 2m when {a1, a2, ..., a2, } is either
{-m+1, —-m+2,..., m—1 m}or{—m, —m+1,..., m—2, m—1}and
for odd n = 2m+1 when the setis {—m, —m+1, ..., m—1, m}. Recalling

the formula for the sum of squares of consecutive integers, we can now do
the computations with the original expression of the problem. They vyield
C(2m) = :(4m*+2m®—m?+m) and C(2m+1) = Zm(m+1)%(2m+1),
or C(n) = 35n(n+ 2)(n? —n+ 1) and C(n) = 112n(n — 1)(n + 1) for
even and odd n, respectively.

3. Let M(n) = {-1, —2, ..., —n}. For each nonempty subset of M (n)
we form the product of the elements. What is the sum of all such products?

Solved by Michel Bataille, Rouen, France; Matti Lehtinen, National Defence
College, Helsinki, Finland; Stan Wagon, Macalester College, St. Paul, MN,
USA; and Titu Zvonaru, Comanesti, Romania. We give Wagon’s solution.

For each set not containing —1, its product adds to the product of the
set with —1 adjoined to yield 0. This leaves only the set {—1} to make a
nonzero contribution, so the sum is —1.

4 1etn > 4bean integer. The n-gon AgA; ... A,_1A, (With A,, = Ap),
is inscribed in a circle, is convex, and is such that the lengths of the sides are
A;_1A; = ifor1 < i < n. Let ¢; be the angle between the line A;A4;
and the tangent to the circumcircle of the n-gon at A;. (Note that the angle

n—1
between any two lines is at most 90°.) Determine the value of ® = > ¢;.
=0

Solution by Matti Lehtinen, National Defence College, Helsinki, Finland.

Let O be the centre of the circumscribed circle of polygon AgA; ... A,.
If O is inside the polygon, ¢; = %AAZ-OAHL by the well-known property
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of the angle between a chord and tangent. So in this case the sum of the
¢;i's equals half the sum of the central angles, that is, 180°. To show that
O is indeed inside the polygon, assume the contrary. Then all points Aj,
A,, ..., A,_» lie on the shorter arc A,,_1 A,,, and the length of the polygon
AgA;...A,_; is less than the length of the arc, which in turn is less than
3m-An_1A, = ;nw. Butthe length of the broken line is 1+2+---4+n—1 =
%(n — 1)n. Sincen > 5,n —1 > 4 > «, and we have a contradiction.

—_—— N r——— S ———

Next we turn to the file for the Austrian Mathematical Olympiad 2007
National Competition Final Round, Part 2 given at [2009 : 498].

2. Determine all sextuples (x1,x2, 3, x4, L5, xe) of nonnegative integers
satisfying the following system of equations:

r122(1 — x3) = 2475, xax5(1l — xg) = x122,
wzwg(l — $4) = ITsZxg , $5ZB6(1 — ZB]_) = 23,
.’1331134(1 — 1135) = X1, a:ﬁacl(l — :1:2) = I3, .

Solved by Konstantine Zelator, University of Pittshurgh, Pittsburgh, PA, USA;
and Titu Zvonaru, Comanesti, Romania. We give a solution that combines
ideas from both submissions.

First note that by the cyclic symmetry, when a solution (a, b, ¢, d, e, f)
is obtained the six cyclic permutations are also solutions. Adding the six
equations yields

T1X2X3 + T2L3L4 + TIL4L5 + T4T5Le + TsLeLy + Tex1Z2 = 0,
or equivalently
x122(x3 + x6) + x3x4(T2 + 5) + T5T6(T1 +24) = 0. 1)

Each z; is nonnegative, so at least one factor in each summand must be zero.
Next note that if 3 + ¢ = 0, then x3 = 0 and x¢ = 0, satisfying (1).
From the original equations we obtain x;x>, = x4xs. If this product is zero
we obtain solutions (0, a, 0, 0, b, 0), (0, a, 0, b,0,0), and their cyclic variants.
So suppose z1x2 = zaxs 7 0, and setd = ged(x1,x4). Then z, = dr,
x4 = ds with r and s coprime. Thus, rxs = sxs with » and s coprime, so s
divides x5 and we have x5 = ra and 2 = sa. We then obtain sextuples of
the form (dr, sa, 0, ds, ra, 0) with (r, s) coprime, and we note that the cyclic
shifts of these arise similarly from the cases 3 + x5 = 0 and =; + 4 = 0.
So we suppose now that x3 + g # 0, 1 + x5 # 0, and =, + x4 # 0.
BY (1) we have T1xTo = 3Ty = Tsxe = 0.
Suppose first xz; = 0. Then x4 # 0, so x3 = 0 and so xzg # 0 giving
x5 = 0. It is easy to check that all sextuples of the form (0, a,0,b, 0, c)
satisfy the equations.
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Similarly, taking o = 0 yields x5 # 0, x¢ = 0, 3 # 0, and x4 = 0.
This gives solutions of the form (a, 0, b, 0, ¢, 0), a cyclic shift of the previous
solution.

Thus, the solutions are the sextuples (0, a,0,b,0, ¢), (0,a,0,0,b,0),
(0,a,0,b,0,0), and (dr, sa,0,ds,ra,0) with » and s coprime, and all cyclic
shifts of these four basic types.

6. We are given a triangle ABC with circumcentre U. A point P is chosen
on the extension of U A beyond A. Let g denote the line symmetric to PB
with respect to BA and h the line symmetric to PC with respect to AC. Let
the lines g and h intersect at the point Q.

Solutions by Michel Bataille, Rouen, France.

First solution: Let B’ be the
second point of intersection of
the line PB and the circum-
circle T' of AABC and let B”
be its reflection in the line AP
(see the figure). Note that B”

isonT. P,
Since UB = UB’, we

have ZUBB’ = /BB'U,

hence ZUB"P = /UB’P =

180° — /BB'U = 180° —

/UBB’ = 180° — ZUBP. It
follows that B” is on the circle
(BUP).

Now, consider the inver-
sion in the circle I" and let P’
be the inverse of P. The in-
verse of the circle (BUP) is
the line BB, so that P’ is on
this line, which is the symmetric of BP in BA (A being the midpoint of the
arc B’B” of T', BA bisects ZPBB’’). Similarly, P’ is on the symmetric of
CPin CA, and so P’ = Q. Thus, as P varies on U A beyond A, Q traverses
the line segment U A, the extremities U, A being excluded.

Second solution: We shall use complex numbers. Without loss of generality,
we suppose that the affixes of U and A are 0 and 1, and that the circumcircle
I' of AABC is the unit circle. For a point M # U, A, we denote by m
the affix of M. The symmetric M’ of M in BA has an affix of the form
m’ = am + 3 for some complex numbers o, 3 independent of m. Writing
M’ = Bwhen M = B and M’ = A when M = A, we obtain « = —b
and 8 = 1 + b (using b = %). Thus, the affix of the symmetric P; of P is

pr=-bp+1+b=—-bp+1+0b.
Similarly, the affix of the symmetric P, of Pin CAisps = —cp+1+c.
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Now, the lines BP; and C P, have respective equations

z(1 —pb) —z(1 —pb) =b—b, z(1—pe) —z(1 —pc) =c—c,
so that the affix of their point of intersection Q is given by the relation
q[(1 —pb)(1 — pc) — (1 — pe)(1 — pb)] = (b—b)(1 —pc) — (c—T)(1 —pb) .

An easy calculation yields ¢ = 1, hence q is a real number in (0,1) when p

varies in (1, 00), meaning that the required locus of @ is the line segment
U A, the extremities U, A being excluded.

—_—_— N~ S @ ———

Next we move to solutions to some problems of the XXI Olimpiadi Ital-
iane della Matematica given at [2009 : 499].

2. Polynomials with integer coefficients, p(x) and gq(x), are similar if they
have the same degree and the same coefficients (possibly in different order).

(a) If p(x) and g(x) are similar, prove that p(2007) — ¢(2007) is even.

(b) Is there an integer k£ > 2 such that p(2007) — ¢(2007) is divisible by &
whenever p(z) and g(x) are similar?

Solution by Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA,
USA.

(a) Let n > 0 be the degree of p(z) and g(x). Then,

p(z) = anz™ + apn_12" ' + -+ a1z + ao,

q(x) = bpz"™ + bp_12™ '+ + bz + by, 1)
where the coefficients ag, a1, ..., @n_1, an; bo, b1, ..., bp_1, by, are inte-
gers. Since p(x) and g(«) are similar, the sequence by, b1, ..., by_1, b is a
permutation of the sequence aq, a4, ..., an_1, a,. Hence,

ap+aiy+---+a,=bg+by+---+b,,
and thus,
ap+a;+---4+a,=bg+by+---+ b, (mod 2) . (2)

Let r be any odd integer. Then » = 1 (mod 2), and so 7* = 1 (mod 2) for
any nonegative integer k. Thus,

p(r) = ap™™ + an_1" "+ +ag

=an, + ap_1+ -+ ao (mod 2) .
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Likewise, g(r) = b, + bp—1 + - - - + bo (mod 2). Therefore, by (2), we have

P(r) — a(r) = (an + an_1 + -+ +a0) — (bn + bn + -+ + bo)
=0 (mod 2) ,

so that p(r) — q(r) is even.
The case » = 2007 is obviously a particular one.

(b) Let r be a positive integer, » > 3. We will prove that p(r) — g(r) is
divisible by » — 1 > 2.

Keep the notation for p, q as in (1). As before, bg, b1, ..., b, is a
permutation of ag, ay, ..., a,, so for each z with 0 < ¢ < n, there is a
unique j with 0 < j < n such that a; = b;.

If 2 > j, then

a;r"* —bjr! = a;r* —a;r? =a;r? - (v - 1)

If also 4 = j, then »*~9 — 1 = 1 — 1 = 0, which is divisible by » — 1.

Otherwise ¢ > j, andthen 7= —1 = (r —1) - (rC=D =14 ... 4 r 4 1),
so that »*=9 — 1 is again divisible by the integer r — 1 > 2.

Likewise, when i < j, the same argument shows that a;r® — b;r7 is
divisible by » — 1.

It is now clear that we can write the difference p(r) — g(r) as a sum of
(n + 1) differences, each divisible by » — 1.

This proves that p(r) — g(r) is divisible by » — 1.

In particular, p(2007) — ¢(2007) is divisible by 2007 — 1 = 2006.

3. Triangle ABC has centroid G, D # A is a point on the line AG such that
AG = GD, and E # B is a point on the line GB such that GB = GE. The
midpoint of AB is M. Prove that the quadrilateral BMC D can be inscribed
in a circle if and only if BA = BE.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Michel
Bataille, Rouen, France; Oliver Geupel, Briih, NRW, Germany; Geoffrey
A. Kandall, Hamden, CT, USA; Konstantine Zelator, University of Pittsburgh,
Pittsburgh, PA, USA; and Titu Zvonaru, Comanesti, Romania. We give the
solution of Amengual Covas.

Because each median is trisected by the centroid, D and E are the sym-
metrics of G with respect to the midpoints of sides BC and C A, respectively.

Hence, segments BC and G'D bisect each other, and also segments
C A and GE hisect each other, so that quadrilaterals BGCD and CGAE
are parallelograms.

Thus, AE || GC and GC || BD, implying that AE || BD. Conse-
quently,

/BEA = /EBD = /DCM . 1)
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Therefore,

BMCD is cyclic < ZMBD + /DCM = 180°

< (LABE + /EBD) + /DCM = 180°

< /ABE +2/BEA=180° [by (1)]

<~— /ABFE +2/BFEA=/ABE + /BEA+ /EAB
< /BEA = /EAB

< BE = BA,

as desired.
6. For each integer n > 2, find

(a) the greatest real number ¢,, such that

1 1 1

i T T

for any positive real n-tuple (a1, az,...,ay,) with a1az---a, = 1;

(b) the greatest real number d,, such that
! + ! +--- 4+ _ > dn
1+ 2a, 1+ 2as 1+ 2a,, —
for any positive real n-tuple (a1, az,...,a,) with ajaz---a, = 1.
Solution by Titu Zvonaru, Comanesti, Romania.

(b) Lett be a positive real number, seta; = a3 = --- = a,—1 = ¢, and

set a,, = t%l The inequality becomes

n—1+ tn—1 S
Cy, -
t+1 141"

The left side goes to 1 in the limit as ¢ — oo, hence ¢,, < 1. We will show
that in fact ¢,, = 1 is the answer.

Without loss of generality we suppose that a; < a; < --- < a,,. Then
aijaz < 1, and therefore

1 n 1 n n 1 S 1 n 1
1+ aq 1+ as 1+ ap, 1+ aq 1+ as
> 1 n 1 . 1 n a; —1
~ 14 a; 1_|_i_1+a1 14a;
ax

(b) If n = 2, then we have

1 + VoS e 1t +-% >4
1+ 2a; @ 14 2a3 — 2 1+2a; a1 +2- 7%
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1 al 2
a+2a; a1+2~— 3’

Taking a; = 1yields ds < ; It remains to prove that
which is equivalent to

3a; + 6 + 3a1 + 6a® —2a; —4a? — 4 —8a; >0,
2(a; —1)2 >0,

and we are done.

If n > 3, then as above we seta; = a3 = -+ = a,,_1 = « and
an = ——5. The inequality becomes
n—1 xzn—1

>d,,
1+2w+m"—1+2_

and letting z — oo we find that d,, < 1.
It suffices to prove that

1 1 1
+ ot >1
1+ 2aq 1+ 2a4 1+ 2a,, =

We assume (without loss of generality) that a; < as < .-+ < a,; then
ajazaz < 1, and therefore there exists a positive number k such that £ < 1
and a;asas = k3. Now, set

knp kpm kmn
— Q2= as =
p2

’

n2

and applying the Cauchy-Schwarz Inequality, we obtain

1 n 1 n 1
1—|—2a1 1+2(12 1+2CL3

m2 n2 p?

= + +

m2 + 2knp n2+ 2kpm  p2 + 2kmn

m?2 N n2 p?

“m24+2np n2+2pm  p?2+2mn

(m +n+p)?

— m?2 + 2mp + n2 + 2pm + p? + 2mn

Therefore,

2 .
d, =1 3 ifn=2
1, ifn>3.

—_—— N r——— S ——

Next we turn to solutions from our readers to problems of the 56t Czech
and Slovak Mathematical Olympiad Final Round, given at [2009 : 500].
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2. Ina cyclic quadrangle ABCD let L and M be the incentres of triangles
BCA and BCD, respectively. Let R be the intersection of the perpendicu-
lars from the points L and M onto the lines AC and BD, respectively. Show
that the triangle LM R is isosceles.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; and Michel
Bataille, Rouen, France. We give Bataille’s version.

We assume that ABCD is con-
vex so that A and D are on the same
side of BC. Let I' be the circumcir-
cle of AABC and let U be the mid-
point of its arc BC not containing A.
Note that AL and DM intersect at U.
Lastly, let A = /ZBAC, B = ZCBA,
C =/ACB.

Since ZUBC and ZUAC sub-
tend the same arc of I', we have

LUBC = ZUAC =
A+ B

NS

, and so

ZUBL =

Since we also have /ZBUL =
/BUA = /ZBCA = (C, it follows

that ZBLU = 180° — C — A;B =
AJZFB — JUBL so that ABUL is

isosceles. As well, AMUC is isosceles, hence UB = UC = UL = UM
and ZULM = LAUML.
In addition, we have

A
/DMR = 90° — /BDU = 90° — /BAU = 90° — 5 = ZALR.

Thus,

/RLM = 180° — ZALR — ZULM
=180° - /DMR —- /ZUML = /RML,

and the result follows.

3. Denote by IN the set of all positive integers and consider all functions
f : N — NN such that for any z, y € N,

F(zf() = vf(@).
Find the least possible value of f(2007).
Solved by Michel Bataille, Rouen, France; and Edward T. H. Wang and Kaim-

ing Zhao, Wilfrid Laurier University, Waterloo, ON. We give the argument of
Wang and Zhao.
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We prove that £(2007) > 18.

First we show that f o f = 14, the identity function.

Setting * = y = 1 in the given equation, we have f(f(1)) = f(1).
Hence, f(1) = f(1-£(1)) = f(1-F(£(1))) = £(1)- f(1), yielding f(1) = 1.

Setting « = 1 in the given equation then yields f(f(y)) = yf(1) = y
for all y € IN. Thus, f o f = 74, as claimed. In particular, f is both 1-1 and
onto, and f(x) = y implies that f(y) = « since f is its own inverse.

Next we show that f is completely multiplicative, that is, f(ab) =
f(a)f(b) for all a, b € IN. Since f is onto, 3d € N such that f(d) = b. Then
d = f(b) and f(ab) = f(af(d)) = df(a) = f(b)f(a).

Now we show that f(p) is a prime if p is a prime. Suppose f(p) = mn,
where 1 < m < n. Then p = f(f(p)) = f(mn) = f(m)f(n), so either
f(m) = 1or f(n) = 1. Since fis 1-1 and f(1) = 1, we have m = 1 or
n = 1, a contradiction.

Note that £(2007) = f(32-223) = f(3)? - £(223) and f(3), f(223)
are primes, since 3 and 223 are primes. We cannot have f(3) = 2 and
f(223) = 3, for then f(2) = 3, contradicting the fact that f is 1-1. Thus, if
f(3) = 2, then £(2007) > 22 .5 = 20.

If £(3) > 3, then f(223) > 2 and f(2007) > 32 .2 = 18. The value
f(2007) = 18 can be achieved by taking f(2) = 223, f(3) = 3, f(223) = 2,
having f match up all the remaining primes in pairs, then extending f over
the natural numbers. Our proof is complete.

5. Triangle ABC is acute with |AC| # |BC|. The points D and E lie on the
interiors of the sides BC and AC (respectively) such that ABDE is a cyclic
quadrangle, and the diagonals AD and BE intersect at P. If the lines CP
and AB are perpendicular, show that P is the orthocentre of triangle ABC.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Geoffrey
A. Kandall, Hamden, CT, USA; and Titu Zvonaru, Comanesti, Romania. We
give the write-up by Kandall.

Let the angles of AABC

be a, B, v (a # B); a = BC,
b= AC,r = CE, s = EA,
t=BD,u= DC.

Since ABDE is cyclic,

/CDE = 180° — /EDB = «,
/CED = 180° — /DEA = 3,
/EDA=/EBA =20,

/DEB = /DAB = ¢, A b cos o acos 3 B
LAED = /ZADB = w.
By the Sine Law, r_sne 2, so rb = au; also S — |f43| = ,t :
u sin B b sin 0 sin w sin ¢
hence, s = |AB.|sm0’ ‘= |A.B.|SIII(,O-
sin w sin w
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By Ceva’s theorem, g beosa 1t 1, that is, t _ aucosf

or
acosfB u s rbcosa’

sing _ cosp

0 cosa Thus, sin ¢ cos @ = sin 0 cos 3. Consequently, sin(y + a) +
sin(p — a) = sin(@ + B3) + sin(@ — 8). Buta+0 = 3+ ¢ = 180° — w, so
¢ —a =0 — 3. Thus, sin(p + o) = sin(6 + 3).

foe+a=60+p3, then(p+a)—(p—a)=(0+03)— (60 —73), hence
a = (3; contradiction. Therefore, we must have (¢ + a) + (60 + 3) = 180°,
that is (e + 0) + (B + ¢) = 180°. It follows that a + 0 = 3 + ¢ = 90°,
hence AD and BE are altitudes of AABC and P is the orthocentre.

0. Find all ordered triples (x,y, ) of mutually distinct real numbers which
satisfy the set equation

rT—Y Y—=z z—m}
y—z’z—ac’ac—y '

fev2) = {

Solution by Titu Zvonaru, Comanesti, Romania.

—Y.Y72 . 27% _ 1 we have zyz = 1. Thus, there are

a b c
nonzero real numbers a, b, ¢ such that x = Y=o F= o and ab # c?,
C a

bc # a?, ca # b2.
The set equation then becomes

a b c) _ fa(ac—b?) blab—c?) c(be— a?)
(oot f

b'ca b(ab — ¢2)’ ¢(bc — a2?)’ a(ac — b2)

. T
Since
Yy—2z z— xT—Y

which resolves into one of six systems of three equations. The first of these
is

I{E:a(ac—b2)

t b blab—c?)’ ( b—c)(a+b+c)=0,
{Q_b(abi—cz)y = (c—a)(a+b+c)=0, ¢))
o Ty a-bateio=o
kaza(ac—b2)’

If b = cand ¢ = a, then ac = b?, so it follows that a + b 4+ ¢ = 0 and
we obtain the solution (—a — 3, a, 8), with a8 # 0.
The next system is

|{ a _ a(ac — b?)

: zl: b(gb—cj)’ ( (b—c)a+b+c)=0,

{ 2= Lﬂ ) — ab(ac — b?) = c2(bc — a?), (2)
; i B Zggg B cz; ab(ab — c?) = c2(bc — a?) .

\a clbc—a?)"

Subtracting the last two equations, we obtain

ablac—b* —ab+c?)=0<= (b—c)(a+b+c)=0.
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It remains to solve the system

{ (b—c)la+b+c)=0

ab(ab — c?) = c%(bc — a?)

If c = —a — b, then we have ab(ab — ¢?) = c?(bc — a?), which is
equivalent to ab(ab — a? — b% — 2ab) = (a + b)2(—ab — b? — a?). However,
a? + b2 + ab > 0, and it follows that the last equation has no solution.

If b = c, then ab(ab— c?) = c?(bc—a?), or ab(ab—b?) = b?(b? —a?),
or (a — b)(2a + b) = 0; and since a # b, we obtain the solution (a, b, c) =
(=5, a,a), with a # 0.

Similarly, the system (3) below has solution (a,b,c) = (o, —5, ),
a # 0, and the system (4) below has solution (a, b, c) = (o, a, —5), a # 0.

a  c(bc—a?) b b(ab—c?) c a(ac—1b%) 3)
b_a(ac—bz)’ c_c(bc—a2)7 a b(ab — c2) '’
a _bab—c*) b _alac—b?) ¢ _ c(bc—a?) )
b_c(bc—aZ)' c b(ab—cz)’ a_a(ac—bz)'
We will show that the next system has no solution

( a _ b(ab — c?)

E b c(bc— a?) ( ac(bc — a?) = b%(ab — c?)

2
{ 9 — C(bci—cg) — Cz(bc — az) = ab(ac — bz) (5)
¢ a(ac—b?) be(ab — c?) = a?(ac — b?)
i ¢ _ a(ac—b?) -
U a ™ bab—c?)

Adding the first two equations, we have a(a + ¢)(bc — a?) = b(ab? —
bc? +a’c—ab?), or (a+c)(bc—a?) = b(a? —bc), which impliesa+b+c =0
(because bc # a?). With ¢ = —a — b, the third equation is equivalent to

—b(a+b)(ab—a® —b* —2ab) = a*(—a? —ab—b*) < a*+ab+b* =0,

and we do not obtain a solution.
Similarly, the system

a  c(bc—a?) b a(ac—b?) c _ blab—c?)
b a(ac — b2)’ c b(ab —c2)’ a a(ac — b2)’ ©)

After transforming back to x, y, and z, we have that the set {z, y, =z}

a+8 « B . —Jy_1 _
canbe{— o '3 —m}w1thaﬁ¢0,or{w,y,z}_{ 7, 1, —2}.

—_— e r———— ——

To complete the files for 2009, we give some solutions from our read-
ers to the selected problems of the 2007 Taiwanese Mathematical Olympiad
[2009 : 501].
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1. Prove the following statements:
(@) If0 < a,b<1,then
1 1 2
+ < ;
va? +1 VvVb2+1 = /14 ab

(b) If ab > 3, then
1 1 2
+ > .
Vvaz+1 Vb24+1 = J/1+ab

Solution by Titu Zvonaru, Comanesti, Romania.

(a) The inequality is true for a, b > 0 with ab < 1. By squaring we obtain

1 n 1 2
1+ a2

4
1+ b2 * \/(1+a2)(1+b2) = 1+ab’
By the Cauchy-Schwarz Inequality, (1 + a2?)(1 + b%) > (1 + ab)?, thus
1 " 1 " 2 < 4
14+a®> 1+0b2 14ab~ 14ab
©2+2a2—|—2b2—l—2a2b2—1—ab—b2—ab?’—l—ab—az—a3b20
& a? 4+ b? — 2ab — ab(a®? + b*> — 2ab) > 0
< (a—b)%(1 —ab) >0,
and the last inequality is true.

Equality holds if and only if (a —b)2(1 —ab) = 0 and (1+a?)(1+b%) =
(1 + ab)?, thatis a = b.

(b) If @ = b, the equality occurs. Suppose a # b. After squaring, we have
1 1 2 2

2

1+ a2 + 1+ b2 N 1+ab+ \/(1—|—a2)(1—|—b2) N 1+ ab 20
(a — b)2(ab — 1) 2'1+ab—\/(1+a2)(1+b2)>0
(1 +a?)(1 + ) V(L +a?)(1+b?)
(@ —b)%2(ab—1) 0. (1 +ab)?2 — (1 + a?)(1 + b?)

>0
V(@ +a2)(1 + b?) 1+ab+ /(1 +a2)(1+b2)
(a — b)2(ab —1) 5. —(a —b)? >0
V(1 +a?)(1+b?) 1+ ab+ /(1 +a2)(1+ b2)

& (ab—1)(ab+ 1) + (ab—1)\/(1 + a2)(1 + b?)
—2,/(1+a2)(1+b2) >0

& (ab—1)(ab+ 1) + (ab — 3)\/(1 + a2)(1 + b2) > 0,
and the last inequality is true.
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2. Find all positive integers a, b, ¢, and d such that

2¢ = 3b5¢ 4 7%,

Solution by Konstantine Zelator, University of Pittsburgh, Pittsburgh, PA,
USA, modified by the editor.

We will prove that there is a unique solution to the equation
2% =3b.5° 4 74 1)

namelya=6,b=1,c=1,and d = 2.
We will make use of the following lemma.

Lemma 1. The only solution in positive integers = and y, to the diophantine
equation.
2T —1="7Y 2

iszt=3andy = 1.

Proof: Modulo 3 the equation becomes (—1)*+2 =1 (mod 3), from which
we see that x must be odd.

Clearly z = 1 is not a solution and (z,y) = (3,1) is a solution with
xz = 3, so henceforth we assume that z is odd, £ > 5, and y a positive
integer.

Modulo 7 the equation becomes 2* = 1 (mod 7), from which we see
that « is divisible by 3, since modulo 7 the powers 2°, 21, 22, 23 24 25 ...
repeat in a cycle of three: 0,1,4,0,1,4, ....

Thus, z = 6k + 3, for some positive integer k.

Equation (2) now becomes 26k+3 — 1 = 7Y, or (22k*+1)3 — 1 = 7Y, and
the lefthand side can be factored as a difference of cubes

(22k+1 _ 1) . [(22k+1)2 + 22k+1 + 1] =Y. (3)

Since k > 1, both factors on the lefthand side of (3) are positive integers
greater than 1. Therefore, since 7 is a prime; equation (3) implies that

22k+1l _ 1 — gt

(22k+1)2 + 22k+1 +1 = 7tz , (4)

where tq, t5 are positive integers such that ¢; + t; = y.

Substituting for 22+ = 7*1 4 1 in the second equation in (4) yields,
(78 +1)2 + 78 +1+1 =17, or 7% + 3.7 + 3 = 72, an impossibility
as this last equation implies (in view of t; > 1, to > 1) that 7 divides 3. m

Back to equation (1). Since a, b, ¢, d are positive integers, the righthand
side of (1) must be at least 3 - 5 + 7 = 22. Thus, by inspection, we see that
there are no solutions with a < 5. For a = 6, we have the solution a = 6,
b=1,c=1,d=2.
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Now suppose that @ > 7. First observe that a must be even. Indeed,
modulo 3 the equation (1) becomes (—1)* = 1 (mod 3), and the claim is
established. Thus,

a=0 (mod2) and a>8. (5)

The next claim is that b and ¢ have the same parity, that is, either both
b and c are odd, or both b and ¢ are even. To show this, we assume that b
and c are of opposite parity and arrive at a contradiction.

Since a > 8, 2% = 0 (mod 8), and equation (1) modulo 8 becomes

0=3%.5°+7% (mod 8) . (6)

If b is odd and c even, then 3° = 3 (mod 8), while 5° = 1 (mod 8). By
(6) we obtain 0 = 3 -1 4 7¢ (mod 8), or 7¢ = —3 = 5 (mod 8), which is
impossible since 7¢ = 7 or 1 (mod 8), for d odd or even, respectively.

If b is even and c odd, then 3° = 1 (mod 8), while 5¢ = 5 (mod 8);
and by (6) we obtain 0 = 1-5 + 7¢ (mod 8), or 7¢ = —5 = 3 (mod 8),
again an impossibility.

We have proved that both b and ¢ are odd, or both b and c are even.

If b and c are odd, then 3* . 5¢ = 3.5 = 15 = 7 (mod 8), and so by
(1) we have 79 = —7 = 1 (mod 8) and d is even.

Otherwise, if b and ¢ are even, then modulo 8 the equation (1) yields
79 = —1 =7 (mod 8), and then d is odd.

These two cases are dealt with below.

Case A. b=c=1 (mod 2) and d = 0 (mod 2).

Recall from (5) that a is also even. Put a = 2m, d = 2I, where m, [
are positive integers with m > 4 (since by (5), a > 8). From (1) we obtain
22m _ 72l — 3b. 5¢. or equivalently

™ -1 .2m+17)=3".5° (7)

By inspection, the two odd factors on the lefthand side of equation (7) are
relatively prime; since any common prime divisor would have to divide their
sum 2 - 2™ = 2™t 5o such a prime would have to equal 2, not possible
since these two factors are odd. Now, since the two factors are relatively
prime positive integers; and 3 and 5 are primes and 2™ — 7! is the smaller
of the two factors; then, according to equation (7), there are precisely two
possibilities:

Possibility 1: 2™ — 7' =1 and 2™ 4+ 7' = 3%. 5% or
Possibility 2: 2™ — 7' = 3% and 2™ + 7! = 5°.

Possibility 1 is ruled out at once by Lemma 1, since m > 4.
Possibility 2 is ruled out modulo 8. Indeed, since m > 4; 2™ = 0
(mod 8). And since b is odd, 3° = 3 (mod 8). Thus, by the first equation,

0—-7" =3 (mod 8) <= 7' =-3=5 (mod 8) ,
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which is a contradiction since 7* = 7 or 1 (mod 8), as [ is odd or even, re-
spectively. The second equation in Possibility 2 yields a similar contradiction
since c is odd.

Finally, we consider

Case B.b =c =0 (mod 2) and d =1 (mod 2).
We put a = 2a, b = 283, ¢ = 24 where «, 3, v are positive integers
with a > 4 (since a > 8 by (5)). From equation (1) we get

22 _ 328 . 527 — 74 — (2% — 3P57) (2> 4 3P57) = 7. (8)

Again, by inspection, we see that the two odd positive integers on the left-
hand side of (8) are relatively prime; and since 7 is a prime and 2* — 3#57 is
the smaller of the two factors; (8) implies

2 —3°P57 = 1,
2% 4+ 3057 = 74, (9)
By adding the equations in (9) we obtain
2o+l _1 =74, (10)

which is impossible by Lemma 1, since « + 1 > 5.
Therefore, the equation (1) has the unique solution in positive integers
a=6,b=1,c=1,d=2.

Lt Let ABCD be a convex quadrilateral. Prove or disprove that there exists
a point E in the plane of ABCD such that AABE is similar to ACDE.

Solved by Michel Bataille, Rouen, France; and Titu Zvonaru, Comanesti, Ro-
mania. We give Bataille’s generalization.

We generalize as follows: if A, B, C, D are points in the Euclidean
plane such that A # B, C # D and AB #* C—f), then there exists a point E
such that AABE and ACDE are similar.

The result is obvious if AB and CD are parallel, since then the point
of intersection of AC and BD is a suitable point E.

In the general case when AB and CD are not parallel, we obtain the
result with the help of complex numbers. We denote the complex affix of

any point M by m and let w = £= ‘;. Note that w # 1. Let E be the

point whose affix is e = & where @« = ¢ — aw. Then, ¢ = aw + « and
d=c—aw+ bw = bw + a. Also, e = ew + «a, and therefore

d—e bw+ta—ew—a b—e

c—e aw+ o —ew — « a—e
Thus,

DEFE BFE
“—_="" and /ZCED = /AEB,
CE AE

so that AABE is similar to ACDE.
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5. Find all functions f : R — R, such that for all real numbers = and y,

F@)f(uf(@) —1) = 2°f(y) — f(=z) .

Solution by Michel Bataille, Rouen, France.

The zero function 0 :  — 0 and the identity function idg :  — « are
obviously solutions. We show that there are no other solutions.

For convenience, denote the given equation by (E), and let f be any
solution. Taking x = y = 0 in (E) yields f(0) - (f(—1) + 1) = 0, so that
f(0) = 0if f(—1) # —1. In this case, we also have f(x) - f(—1) = —f(x)
(by taking y = 0 in (E)), hence f(z) = 0 for all . Thus f = 0.

Now we suppose that f(—1) = —1. Takingy = 0,z = 1 in (E) yields
f(0) = 0. Also, takingy = —1in (E) shows that f(x) = 0impliesz = 0. In
particular, f(1) is a nonzero real number which satisfies f(1)f(f(1) — 1) =
f(1) — f(1) = 0 (taking x = y = 1 in (E)). Thus, f(f(1) — 1) = 0 and
f(1) = 1. Takingx = 1 and x = —1 in (E), we obtain

fly—1)=f(y)—1 and —f(—y—1)=f(y)+1.

It is easy to deduce that f is an odd function, and since f(yf(z) — 1) =
f(yf(x)) — 1, it then follows from (FE) that

f(@)f(yf(z)) = 2*f(y) (E')

for all real numbers = and y.

With y = =, (E’) gives f(zf(x)) = x2 (for = # 0, but this is also valid
for x = 0). Replacing = by = f(z) in (E’) yields f(yz?) = (f(x))?f(y) from
which we deduce f(z2) = (f(x))? and so f(yz?) = f(y)f(x?). Since f is
odd, an easy consequence is

f(uv) = f(u)f(v)

for all real numbers v and v. Also, for v # 0,
futv) = f(v(=+1) =f@f (- +1) =r@) (£(3) +1)
= FO)F (5) + £0) = F(u) + £(v)

hence f(u + v) = f(u) + f(v) for all u, v.

Thus, f satisfies the conditions f(1) = 1, f(u+v) = f(u)+f(v), f(uv) =
f(uw) f(v) for all real numbers u, v. As is well-known, this implies that
f = idg.

—_—_—— N r——— S ———

We finish with a single solution to a problem of the Youth Mathematical
Olympiad of the Asociacion Venezolana de Competencias Matematicas, 2006,
given at [2009 : 380].
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4. joseph, Dario, and Henry prepared some labels. On each label they wrote
one of the numbers 2, 3, 4, 5, 6, 7, or 8. David joined them and stuck one
label on the forehead of each friend. Joseph, Dario, and Henry could not see
the numbers on their own foreheads, they only saw the numbers of the other
two. David said, “You do not have distinct numbers on your foreheads, and
the product of the three numbers is a perfect square.” Each friend then tried
to deduce what number he had on his forehead. Could anyone discover it?

Solution by Titu Zvonaru, Comanesti, Romania.

Since the three numbers are not distinct, then their product is a2?b,
where a, b € {2, 3, 4, 5, 6, 7, 8}. The product a?b is a perfect square if and
only if b is a perfect square, that is b = 4.

If one friend sees the label “a, a”, then the label 4 is on his forehead.

If one friend sees the label “a, 4", then the label a is on his forehead.

It follows that each of the three friends can discover what label is on
his own forehead.

—_—— N r—— S ———

Since we are introducing changes in editorship of the Corner next is-
sue it is appropriate to wrap up this number (and this volume of CRUX with
MAYHEM) with thanks to all those who have contributed problems and so-
lutions in 2010:

Mohammed Aassila David E. Manes
Arkady Alt John Grant McLoughlin
Miguel Amengual Covas Henry Ricardo
George Apostolopoulos Leda Sanchez
Matthew Babbitt Bill Sands

Michel Bataille D.]. Smeenk

Chip Curtis Alex Song

José Luis Diaz-Barrero Jan Verster

J. Chris Fisher Stan Wagon

Oliver Geupel Edward T.H. Wang
Joe Howard Dexter Wei
Geoffrey A. Kandall Kaiming Zhao
Matti Lehtinen Konstantine Zelator
Hugo Luyo Titu Zvonaru

Also, 1 cannot stress how vital the support of Joanne Canape has been
to bringing together the numbers of the Corner over these many years.

N N —
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BOOK REVIEWS

Amar Sodhi

The Calculus Collection, A Resource for AP and Beyond

Edited by Caren L. Diefenderfer and Roger B. Nelsen

Published by The Mathematical Association of America, 2010

ISBN: 978-0-88385-761-8, hardcover, 507 +xx pages, US$74.95

Reviewed by Amar Sodhi, Sir Wilfred Grenfell College, Corner Brook, NL

Rushing to the dentist’s office you hurriedly grab the latest College
Mathematics Journal. After all, you want some light reading while wait-
ing for your appointment. While absorbed by an article on the advantages
of implicit differentiation you are summoned for dental cleaning. Naturally,
calculus is in both the hygienist’s and your thoughts as you are having your
teeth scraped, and later that afternoon you rush to the library as a germ of an
idea takes hold. Sure enough, during the last twenty years, the three main
journals of the Mathematics Association of America (MAA) contain enough
stimulating papers in calculus to fill a book.

The Calculus Collection is a worthy enough title for a volume contain-
ing select articles on limits, the derivative, integrals, polynomial approxima-
tions, and series, which have been written to inform or amuse anyone with
an interest in calculus. Such a volume may provide a battery of ideas to allow
an instructor to invigorate a “text-book” calculus course or to demonstrate
to the keen student that there is some beauty to behold in an area of mathe-
matics which is invariably taught for its usefulness in science, social science,
and engineering. Yes, the MAA has done a service in publishing this book
which features a smorgasbord of refereed papers dating from 1991, arranged
neatly by topic and judiciously edited by Diefenderfer and Nelsen.

The reason that Diefenderfer and Nelsen only go back to 1991 is quite
simple; their book can be viewed as a sequel to A Century of Calculus which
contains papers which appeared in MAA journals between 1884 and 1991.
However, the motivation the editors use to justify publishing The Calculus
Collection is to provide resource material for advanced placement (AP) cal-
culus. The subtitle of the book, A Resource for AP and Beyond, confirms that
the book is targeted solely for high school teachers or students who are in-
volved in an AP calculus course. This is unfortunate since this resource book
neither contains a wealth of challenge problems (complete with solutions)
nor abounds with articles specially written with the AP programme in mind.
Rather, it is a collection of papers (91 from The College Mathematics Jour-
nal, 17 from Mathematics Magazine, 12 from the American Mathematical
Monthly and three from the two other MAA periodicals, FOCUS and Hori-
zons) which were presumably written to share ideas with the professional
mathematical community in general. However, suggestions on how each ar-
ticle can be used in an introductory calculus course is given in an appendix.
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Also, in the preface, the editors make it clear that this book is an instructor’s
(as opposed to a student’s) resource manual.

Anybody who enjoys the calculus based articles that can be found in
the College Mathematics Journal will find a lot to like in this book, and this
certainly includes students and instructors of AP calculus. However, from a
marketing stance, this “rose” would smell sweeter if it had another subtitle.
Might I suggest “The Bedside Calculus Companion”?

—_—— S ———

An Episodic History of Mathematics: Mathematical Culture Through
Problem Solving

by Steven G. Krantz

Mathematical Association of America, 2010

ISBN: 978-0-88385-766-3, hardcover, 381 +xii pages, US$67.95
Reviewed by Ed Barbeau, University of Toronto, Toronto, ON

The title of this book is unfortunate, as it does not reflect what is be-
tween the covers. To be sure, there is history here as well as many problems
and explorations. However, these are not woven into the mathematical ma-
terial; rather the volume is an exposition of mathematical topics presented
in a modern style with the history and problems playing an ancillary role.

Each chapter includes one or more essays on an historical figure or
school, followed by accounts of related areas of mathematics. These are
punctuated by invitations to the reader to explore an example or extension.
At the conclusion of the chapter is a set of exercises, some designated as
projects; these come without hints, solutions or commentaries.

There is good coverage of many seminal areas of mathematics: limits,
conics, the development of algebra and solution of equations, Cartesian co-
ordinates, differential and integral calculus, complex numbers and the funda-
mental theorem of algebra, number theory, the Fermat conjecture, the real
continuum, the pigeonhole theorem, Ramsey theory, the hyperbolic disc,
cardinality, the beginnings of topology, modern abstract algebra, methods of
proof, and cryptology.

The historical essays contain a great deal of interesting lore and detail,
although the historical judgments are not always completely reliable. For
example, Euclid’s proof of the infinitude of primes is presented as a proof
by contradiction, whereas he really proved that no matter what finite set of
primes we have, we can always find one more. Perhaps to the modern reader
this is essentially the same, but to the historian, the shading is important.
For a more authentic engaging of history, one might turn to the venerable
text by Howard Eves, Introduction to the History of Mathematics (6" edi-
tion, 1990, Saunders) or Otto Toeplitz, The Calculus: a Genetic Approach
(1963, 2007). The level of the mathematical presentation is too sophisticated
for most secondary students; this book is best recommended for those pre-
college students who are advanced or particularly keen and persistent, and
for college students in their first two years, where some of the chapters will
supplement material in their regular courses.
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Methods for Euclidean Geometry

by Owen Byer, Felix Lazebnik, and Deirdre L. Smeltzer
Mathematical Association of America, 2010

ISBN: 9-780-88385-763-2, hardcover, 461 + xvi pages, US$69.95
Reviewed by ]. Chris Fisher, University of Regina, Regina, SK

This excellent book is quite different from other geometry texts. Its
goal is to review and deepen a reader’s understanding of Euclidean plane
geometry by emphasizing techniques developed after Euclid. The authors
focus on the relationship between geometry and mainstream mathematics,
reminding us that in previous centuries all mathematicians did geometry. To
achieve their goal they feature an ample collection of problems that range
from routine to challenging; nearly half the book’s 461 pages are devoted
to problem statements, hints, and solutions. Although CRUX with Mayhem
was not a source, many of the problems would be attractive to readers of
this journal. Some problems appear more than once throughout the book so
that the reader can try a variety of methods and compare the merits of each
approach. An appendix provides a complete solution to most of the prob-
lems, but each chapter concludes with fifteen or so supplemental problems
that are not accompanied by solutions.

The first two chapters provide a perfunctory history of geometry (six
pages) and discussion of axioms (13 pages). That is followed by four chap-
ters (about 100 pages) that review plane geometry using methods that would
be familiar to Euclid. The topics covered are triangles, quadrilaterals, other
polygons, circles, length, area, and loci. These chapters review those the-
orems that students should have seen in high school and complement that
material with other basic theorems (such as the theorems of Ceva, Menelaus,
and Ptolemy) that they will need when solving problems. The authors pro-
vide the simple proofs of many of these results; more importantly, they
carefully state the results and, where appropriate, their converses. Exam-
ples: they list six necessary and sufficient properties for a quadrilateral to be
a parallelogram, and eight properties establishing that a triangle is isosce-
les. It is crucial that readers be provided with an explicit list of results that
they can use to back claims they make in their own proofs. In every chap-
ter the authors provide a few examples of how the basic theorems can be
used in problem solving. Although the topics go somewhat beyond what
is taught in typical high schools, the authors stop short of introducing 19th
century triangle geometry (such as the nine-point circle, which the authors
refer to as “baroque problems,” a description that made this reviewer choke
slightly). Nevertheless, there are fresh and interesting items in most chap-
ters; in the locus chapter, for example, the authors describe how Newton
corrected Galileo’s claim that the trajectory of a projectile is a parabola. (The
trajectory is elliptical unless the earth happens to be flat.) In the area chap-
ter there is a proof that any two plane polygons having the same area are
equidecomposable, that is, they can be partitioned by straight lines into an
equal finite number of pieces such that corresponding pieces are congruent.
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Chapters 7 through 13 form the core of the text. Each of these chap-
ters introduces a postEuclidean technique for solving geometry problems:
trigonometry, coordinates (considered central to the authors’ approach; there
is a separate chapter that uses coordinates to study conics), complex num-
bers, vectors, affine transformations, and inversions. These topics clearly
support the authors’ desire that the reader learn mathematics, with geom-
etry providing the content. A 14™ chapter discusses the use of computer
software to supplement the use of coordinates for solving geometry prob-
lems. The authors had originally intended for a CD to accompany the text;
instead, the reader can download a Maple worksheet that demonstrates how
to use Maple to solve some of the problems from earlier chapters; without
access to Maple, however, the computer-aided solutions can only be read,
not implemented.

The book is published by the Mathematical Association of America as
part of its Classroom Resource Materials series, “intended to provide sup-
plemental classroom material for students—laboratory exercises ... [and]
textbooks with unusual approaches for presenting mathematical ideas.” The
authors have used their book for university courses taken by second (and
third) year math majors, as well as for courses aimed principally at educa-
tion majors who plan to teach in high schools. A typical course briefly covered
Chapters 3 to 7 (geometry and trigonometry review), then concentrated on
material from Chapters 8 (coordinates), 9 (conics), 10 (complex numbers),
and 12 (affine transformations). The text has also been used for more de-
manding courses that include Chapter 13 (inversions). That looks like too
much material to fit into any course I would teach; one could make a variety
of courses out of any pair of the chapters 7 through 13 after a brief review
of the highlights of high-school geometry. Beyond their geometry courses,
the authors have used individual chapters to supplement courses they taught
in calculus, linear algebra, and abstract algebra. They further suggest that
their book could serve as the basis of a capstone course in mathematics, or
as a resource for a problem-solving group, or perhaps as a text for the bright
high-school student who wants to learn the material on his own. Unfortu-
nately, the book has one glaring fault: its price. With a list price of US$70,
the book costs double what I would ask a student to pay for a course that
might use perhaps a hundred of its pages. The Math Association of Amer-
ica seems to have gone from a policy of publishing inexpensive, accessible
books for students, to using their publishing wing to support other worthy
association activities. Whether or not such a policy might be wise, I hesi-
tate to recommend this book as a textbook—there are other available texts
that might not be as carefully written nor contain such a rich assortment of
material, but they are adequate and cost much less.

%
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A Solution to Gibson’s and Rodgers’
Problem in 3 Dimensions

Nguyen Minh Ha

1 Introduction

Peter M. Gibson and Michael H. Rodgers [1] posed problem 844 in CRUX
Mathematicorum on iterated triangles inscribed in a circle and a higher di-
mensional analogue. The first part of their problem is as follows:

(a) A triangle AqBoCy with centroid Gy is inscribed in a circle T'
with centre O. The lines AgGqo, BoGo, CoGo meet I' again in Ay,
B,, C4, respectively, and G; is the centroid of triangle A, B,C;.
A triangle A;B2C2 with centroid G5 is obtained in the same way
from A;B;C, and the procedure is repeated indefinitely, produc-
ing triangles with centroids G3, Gy4, .... If g, = OG,,, prove that
the sequence {go, g1, g2, - .. } is decreasing and converges to 0.

This part was solved by R.B. Killgrove and Dan Sokolowsky [3].

The second part of problem 844 was to determine if a similar result
holds for a tetrahedron inscribed in a sphere, or, more generally, for an n-
simplex inscribed in an n-sphere. This latter problem is hitherto unsolved.
Here we give a positive answer and a proof in the 3-dimensional case.

2 Notation and Preliminary Results

Throughout we will assume that all tetrahedra are nondegenerate or we shall
prove that the tetrahedra which arise are nondegenerate.

For convenience we adopt certain notations. Let S4, Sg, Sc, Sp be the
areas of the faces opposite the vertices A, B, C, D of tetrahedron ABCD, let
(XY Z) be the plane through the three points X, Y, Z, and let V(W XY Z)
be the volume of tetrahedron W XY Z. For certain special sums, the follow-
ing notation will be used:

27 A 27 A 27T B 2 T A 2 7R
Y S4LA = S3LA+SRLB+ SZLC + SRLD,
ZAB2 = AB?+ AC? + AD? + BC? + BD? + CD?.

A dot “.” will denote either multiplication of two numbers or the dot
product of two vectors, depending on the context.

Copyright © 2011 Canadian Mathematical Society
Crux Mathematicorum with Mathematical Mayhem, Volume 36, Issue 8
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We now make some definitions. Let ABC D bhe a tetrahedron. A plane
through the edge AB and the midpoint of the edge CD is called the median
plane through the edge AB of the tetrahedron. A bisecting plane of the
dihedral angle at the edge AB of the tetrahedron is called the bisector plane
through the edge AB of the tetrahedron. The plane that is the reflection of
the median plane through edge AB in the bisector plane through the edge
AB is called the symmedian plane through the edge AB of the tetrahedron.

Each tetrahedron has six edges and thus has six median planes, six bi-
sector planes, and six symmedian planes.

It is known that the six median planes intersect in a common point
which is the centroid of the tetrahedron, and the six bisector planes intersect
in a common point which is the centre of the inscribed sphere. The six sym-
median planes also intersect in a common point and we shall call this point
the Lemoine point of the tetrahedron (we will prove this later).

Our main theorem has two parts, the second part being the positive
answer to the problem posed by Peter M. Gibson and Michael H. Rodgers in
three dimensions.

Theorem Let AgByCyDg be a tetrahedron with volume V4 and centroid G
inscribed in a sphere I" with centre O. The lines AqgGg, BoGo, CoGo, DoGo
intersect T again in A, By, Cy, Dy, respectively, and V; and G, are the
volume and the centroid of tetrahedron A, B,C;D,, respectively. A tetra-
hedron A,B,C2D, with volume V5 and centroid G5 is obtained in a similar
way from A; B;C; D4, and the procedure is repeated indefinitely, producing
tetrahedra with volumes V3, V4, ... and centroids G3, G4, . ... Then,

(1) The sequence {V,,} is nondecreasing, and

(2) The sequence {OG,, } is nonincreasing and converges to zero.
In order to prove Theorem 1 we need several lemmas.

Lemma 1 If M is inside tetrahedron ABCD, then Y V(M BCD)MA = 0.

Proof: Choose points A’, B’, C’, D’ on the rays M A, MB, MC, M D, re-
spectively, so that M is the centroid of tetrahedron A’ B’C’D’. Note that the
volume of each tetrahedron M B’C’'D’, MC'D'A’, MD'A’B’, MA’B’C’ is
one-fourth the volume of tetrahedron A’B’C’D’. We have

Y V(MBCD)MA

_ 1 ’ 1 ! 7 V(MBCD) —
= 4V(ABCD)Z—V(MB,C,D,)MA

S P MB-MC-MD
= JVABODY) s ier i MA

1 bt MA-MB-MC-MD MA —
- 4V(ABCD)MA'-MB’-MC’-MD’ MAMA
MA.-MB-MC -MD ZMA,

MA’-MB’'-MC'’- MD'

.
= 0. [ ]

- %V(A’B’C'D’)
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Lemma 2 Tetrahedron ABCD is inscribed in sphere (O). Let M be a point
in the interior of the tetrahedron. Let the lines M A, M B, MC, M D meet
(O) again at A’, B, C’, D’. Then

V(ABCD) _ MA-MB-MC-MD

V(A’B'C'D') ~ MA’'-MB’-MC'-MD'"

Proof: By Lemma 1, we have > V(M BCD)MA = g Thus,

MA — MA\ 0
> V(MBCD)TMA' = - V(MBCD) (— MA,) MA
— —
= —) V(MBCD)MA = 0.
. MA MB MC
Since the numbers V(MBCD)W, V(MCDA) VB V(MDAB)MC,,

and V(M ABC) ]\J\/;Ig, are positive, M is inside the tetrahedron A’B’C’B’,
and hence V(A’B’C'D’) = . V(MB'C’'D’).

Note that MA- MA’ = MB-MB’ = MC - MC’' = MD - -MD' =
R? — OM?, where R is the radius of (O). Thus,

V(A'B'C'D’)
V(MB'C'D’)
=2 V(MBCD)
MB’-MC’'- MD'
2 MB-MC-MD
MA’'.-MB’'-MC'- MD’ 1
= . Y V(MBCD)MA?
MA-MB-MC-MD MA-MA’
MA’'.-MB’' - MC'- MD’ 1

= 2
= A MB MO MD B o 2 Y (MBCD)MA®. (1)

V(M BCD)

V(MBCD)

However, we also have
V(ABCD)R?
= Y V(MBCD)0A? = ¥ V(MBCD) ‘0T4 + mf
= (Y. v(MBcD))oM? +20M - (3. V(MBCD)MA)
+ Y V(MBCD)MA?
= V(ABCD)OM? 4 20M - 0 + Y V(MBCD)MA?
= V(ABCD)OM? + > V(MBCD)MA?. (2)

It follows that > V(M BCD)M A2 = V(ABCD)(R? — OM?).
The lemma now follows from the above identities (1) and (2). |
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Lemma 3 The opposing edges (three pairs altogether) of a tetrahedron are of
equal length if and only if its centroid coincides with the centre of its circum-
scribed sphere.

Proof: Let tetrahedron ABC D have centroid G and let O be the centre of
its circumscribed sphere.

Let (a), (a’) be two parallel
planes that contain AB, C D, respec-
tively; let (8), (8’) be two parallel
planes that contain AC, DB, respec-
tively; and let (), (v’) be two paral-
lel planes that contain AD, BC, re-
spectively. The pairs of planes (a),
(@); (8), (8); and (v), () de-
fine a parallelepiped, which we denote
by ATBZ.YCXD (see the figure at
right).

It is evident that CD = TZ, DB = YT, BC = ZY and G is the
common midpoint of the diagonals of the parallelepiped ATBZ.YCXD.
Hence, the following conditions are equivalent.

(a) AB=CD, AC = DB, AD = BC.

(b) AB=TZ, AC=YT, AD = ZY.

(c) ATBZ, AYCT, AZDY are rectangles.

(d) ATBZ.YCXD is a rectangular parallelepiped.

() AX = BY =CZ = DT.

() GA=GB =GC =GD.

(g) G coincides with O. [

A tetrahedron is said to be quasiregular if it satisfies one of the two
equivalent conditions stated in Lemma 3.

Lemma 4 Six symmedian planes of tetrahedron ABC D intersect at one com-
mon point L defined by
2T —
Y S5LA = 0.

We note that this point is uniquely defined by the above equality and
is referred to as the Lemoine point (as aforementioned).

More generally, for each quadruple of positive real numbers («, 3,4, §)
there exists a unique point P in the interior of the tetrahedron such that
> aPA = 6), and conversely for each point P in the interior of the tetrahe-
dron ABC D there is a unique quadruple of positive real numbers (a, 3,~, §)

suchthata+ﬁ+~y+5:landZaP—A:F.
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Proof of Lemma 4: Let the median plane, the bisector plane, and the sym-
median plane through the edge AB of the tetrahedron meet the edge CD at
M, N, and P, respectively.

Let (7) be a plane perpendicular to the line AB. Let A’ be the orthog-
onal projection of A, B onto the plane (), and let C’, D', M’, N’, P’ be the
orthogonal projections of C, D, M, N, P onto the plane (=), respectively.

It is evident that in triangle A’C’D’ the segments A’M’, A’N’, A’ P’
are, respectively, the median, the bisector, and the symmedian from the
vertex A’. By the symmedian property [2], we have

P C’ A'C! 2
P'D <A'D’)

From this, and the fact that CC’, DD’, PP’ are parallel, we have

PC _ (A'C'\?
PD \A'D')
Suppose that E, F are respectively the orthogonal projections of C, D
on AB. Itis easily seen that A’C’ = EC, A’D’ = FD.
Thus,

pc (eC\* (%4B.EC)" @2
PD (FD) - ( N
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This implies that SéP_C)’ + S,Z’DP_f) = 0. On the other hand, since
> Sjm = 3), we have

—_— = —

S2LA+ S3LB + S% (LP + PC) + 8% (LP+PD) = 0 .
This means that
S2LA + S3LB + (S2 + S%)LP + (S2PC + S3PD) = 0 .
Consequently,
S2LA + S3LB + (S% + S2)ILP =0 ,

so that L lies in (ABP), the symmedian plane through the edge AB of the
tetrahedron ABCD.
Therefore, L lies in all six symmedian planes of tetrahedron ABCD. m

Lemma 5 If M is in the interior of tetrahedron ABCD and H, K, I, J are
the orthogonal projections of M onto the planes (BCD), (CDA), (DAB),
(ABC), respectively, then

S4 —  —s
Z—MH: 0.
MH

Proof: Let S(UV W) denote the area of triangle UVW . Let the inscribed
sphere of tetrahedron ABC D touch the planes (BCD), (CDA), (DAB),
(ABC) at X,Y, Z, T, respectively. Let P, r be the centre and radius of the
inscribed sphere, respectively.

From the planar analogue of Lemma 1 (see also [4]),

— —_— P —
S(XCD)XB + S(XDB)XC + S(XBC)XD =0 ,
so it follows that
P — P —_—
S(XCD)(XP + PB)+ S(XDB)(XP + PC)
+ S(XBC)(XP+PD) = 0.
—_— — — —_—
Hence, S4PX = S(XCD)PB + S(XDB)PC + S(XBC)PD, and also
— —_— — —
SgPY =S(YDA)PC + S(YAC)PD + S(YCD)PA ,
— — — —
ScPZ = S(ZAB)PD + S(ZBD)PA + S(ZDA)PB,
— — —_— —_—
SpPT = S(TBC)PA + S(TCA)PB+ S(TAB)PC .
Moreover, we note that

S(ZAB) = S(TAB), S(XCD)= S(YCD), S(YAC)=S(TAC),
S(ZBD) = S(XDB), S(ZDA)= S(YDA), S(TBC)= S(XBC);
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so, by using Lemma 1, we have
Sa — 1 PX — 1 —
L MH=- Ss——MH=-Y S,PX
> H -2 Sang ~2_Sa
1 — — S
==Y (S(XCD)PB + S(XDB)PC + S(XBC)PD)
r
1
=~ (s(vCD) + S(ZDB) + S(TBC))PA
,
1 —
=—> (S(XCD) + S(XDB) + S(XBC)) PA
r
— 1Y 8.PA=->Y15,.PX-PA
T or 4 T2 374
3
= Y V(PBCD)PA=T0. .
r

The planar analogue of the next lemma can be found in [4].

O
Lemma 6 Suppose that any three of @, b, ¢, d are not coplanar, that z, y,
—
z, t, ', y’, ', t’ are nonzero, and that the equationsz@ +y b +2¢ +td =
— ’— I—) — I_) —_—
Oandz’a +y'b +2"¢c +t'd = 0 hold. Then
; y/ P t/ :

Proof. By isolating "d we have

a +

_|_

+ |8

%
t

S\
ol
[

|
al
I
|
IS
_|_
|
S
_+_
|
[¢)

t ot

which implies that % == 5 = .

Lemma 7 Let M be any point in the interior of tetrahedron ABCD. Let
H, K, I, J be the orthogonal projections of the point M onto the planes
(BCD), (CDA), (DAB), (ABC). Then M is the centroid of tetrahedron
HK1J if and only if M is the Lemoine point of the tetrahedron ABCD.

Proof: We shall show the equivalence of the following statements.
(a) The point M is the centroid of tetrahedron HK1.J.
(b) The equation MH + MK + M1 + MJ = 0 holds.

Sa_ S8 _ Sc _ Sp pg4s

(¢) The equation S AR S M T
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2 2 2 2

(d) The equation - Sa = 3 S5 = 3 Sc = 5 Sp
holds.

5a S% 5% 5%

(e) The equation
holds.

V(MBCD) _ V(MCDA) _ V(MDAB) _ V(MABC)

(f) The equation ) S3MA = 0 holds.
(g) The point M is the Lemoine point of the tetrahedron ABCD.

Parts (a) and (b) are equivalent by properties of the centroid. Lemma 5
and Lemma 6 imply the equivalence of (b) and (c). Clearly, (c), (d), and (e)
are equivalent. Lemma 1 and Lemma 6 imply that (e) and (f) are equivalent,
while Lemma 4 implies that (f) and (g) are equivalent. |

Lemma 8 Let ABCD be a tetrahedron and X, Y, Z, T points on the planes
(BCD), (CDA), (DAB), (ABC), respectively. The sum Y XY? is mini-
mized if and only if X, Y, Z, T are the orthogonal projections of the Lemoine
point of ABC D onto the planes (BCD), (CDA), (DAB), (ABC).

Proof: Let M be the centroid of tetrahedron XY ZT and H, K, I, J the
orthogonal projections of M onto the planes (BCD), (CDA), (DAB),
(ABC). We have

3 XY? :Z‘W—WF =3y Mx?-2Y MX MY
=4y MX? - \me =4) MX? >4 MH?
4 4
=T >_mH?) (> 5%) > T2 (ZSAMH)Z

4 2 36
=S5z (> -sv(mBCD))" > S5

Therefore, >> XY?2 > 522 V2Z(ABCD), with equality if and only if
A

the following three conditions are satisfied:

V2(ABCD).

2
A

(a) The points X, Y, Z, T are the orthogonal projections of M onto the
planes (BCD), (CDA), (DAB), (ABC).

. MH MK MI MJ
(b) The equation Sa T Sp T S. T S» holds.

(¢) The point M is in the interior of the tetrahedron ABCD.

By Lemma 5 and Lemma 7, these conditions are satisfied if and only if
X,Y, Z, T are the orthogonal projections of the Lemoine point of tetrahe-
dron ABCD onto the planes (BCD), (CDA), (DAB), (ABC). |
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3 Proof of Theorem 1

Let R be the radius of the circumsphere, T, of tetrahedron AqgBoCoDy.
Proof of part (1): Note that

GoAO . GgAl - GOBO . G(]Bl = G()Co . G()C]_
= GoDo - GoD, = R?* — OG2,

Y GoAZ = (Y. 0A2) — 40G2 = 4 (R? — 0G3) 3)

Using (3), Lemma 2, and the AM-GM Inequality, we have

Vo  GoAo-GoBo-GoCo - GoDo < (1 GoAo )4

71 "~ GoA; -GoB; - GoC; -GoDy — 4 Z GoA,
4

_(t L) _ 1 Y
B (4 Z GoAp - GoAx B (4(R2 _ OG%))4 (Z Y O)

1

= {aw —oap)t (=04~ 1063))
1 9 2\ 4
= aE— 0ch)’ (4(R*-0GY)) =1.

Thus, Vo < V;.
We remark that by (3) and Lemma 3, the following are equivalent.

(a) The volumes of successive tetrahedra are equal, that is, Vo = V7.

GoAo _ GoBo _ GoCo _ GoDo holds

Th ion = = =
(b) € equat 0 GOA1 G()Bl GoCl GOD1

. GoAZ GoB2 GoC?
¢) The equation = =
( ) q 2 GOAO . GOAl GOBO . GOBI GOCO . G()Cl
. GoDg
= GDo. GaDs holds.

(d) The equation GgAg = GoBg = GoCy = GoD, holds.
(e) The centroid G coincides with O.
(f) The tetrahedron Ay¢ByCoDy is quasiregular.

Repeating this procedure, we have V5 < V; <V, < ---,and {V, }isa
nondecreasing sequence.

Proof of part (2): Let (), (3), (), and (4) be the planes through the points
Ag, By, Cy, Dg respectively and perpendicular to AgGqo, BoGo, CoGo, and
DyGy in that order.

Let A = (B) N () N (9), By = (v) N(8) N (), Cg = (6) N () N (B),
and D} = (a) N (B) N (7).
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Since Gy is the centroid of tetrahedron A¢ByCoDg, by Lemma 7 G is
the Lemoine point of the tetrahedron Ay B{C{Dy.

Let A}, By, C;, D} be the reflections of A;, By, C;, D, in O. Then
A’, B, C1, D] are on the planes (), (8), (7), (d), respectively.

By Lemma 8, ) (A Bj)? > Y (A¢Bo)?. Since > (A, B})? = > (A1 B1)?,

we obtain
> (A1B1)? > (AoBo)*.

Furthermore, we have
S (40Bo)* =Y ‘OAO —0By| = 12R* -2 04, -0B,

— 16R? — ‘ZO_AQ

‘2
2 2
| = 16R* - |10Gs| = 16(R?* - 0G2),
and Y (A1B1)? = 16(R? — OG?) is deduced similarly.

Therefore, OGy > OG;, and by Lemma 7 equality holds if and only if
Al, B}, C1, D] respectively coincide with Ao, By, Co, Dy. In other words,
Gy coincides with O. By Lemma 3 this occurs if and only if AgBoCoDy is a
quasiregular tetrahedron.

We now know that {OG, } is a nonincreasing sequence bounded below
by 0, so the following limit exists:

lim OG,, . (4)

n—oo

Let T be the closed ball with boundary I". Since T is closed and bounded,
by the Bolzano-Weierstrass Theorem there is an increasing sequence of pos-
itive integers {ng} such that each of the sequences {A,,}, {Bn.}, {Cn.},
{an}’ {Gﬂk}’ {Ank"l‘l}’ {Bnk+1}7 {an+1}’ {an+1}7 {G"k+1} is con-
vergent in I'. Let the respective limits of these sequences be A§, Bg, Cy,
D, G§, Ay, By, Cy, Dy, G5; thatis, A,,, — A{, By, — B}, and so forth.

It is evident that

OG{ = lim OG,, , OGT = klim OG,, 11 . (5)

k— oo

Since lim OG,, exists, it follows from (5) that

OG: = O0G:. (6)

Let V;,, be the volume of A,,B,,C,,D,,. The sequence {V,,} is nonde-
creasing by part (1), and is bounded above by the volume of I' and bounded
below by Vi, > 0. Therefore, lim V,, exists and is positive, and it follows

n—oo
that lim Vnk = lim V'ﬂk"r‘l > 0.
N — 00 N — 00
If either tetrahedron A B3 Cy D or A} By Cy D7 were degenerate, then
we would have lim V,, =0or lim V,, 4, =0, a contradiction.
ngE— 00 nE— 00

Thus, A§B3Cy D5 and Ay By Cy D7y are nondegenerate tetrahedra.
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On the other hand, T is closed and bounded, so I" contains Ay, By, Cg,
D¢, Ay, By, Cy, Dy. Since Gy, and G, 1 are the respective centroids of
the tetrahedra A,,, B, Cr, Dy, and A,,, 1B, +1Cn;+1Dn, +1 for all ng, we
have that G§ and G7 are the respective centroids of tetrahedra AB5CsD}
and A}BfCyD;. Since Ap,+1, Bny+1, Cny+1, Dn,4+1 are the respective
intersections of the lines A, G,,, Bn,Gn,, Cn,Gn,, Dn,Gn, With T, it
then follows that A}, B}, C;, D; are the respective intersections of the
lines AZG3, BiGy, CiGY, DGy with T

By the above remarks, the tetrahedra A3 B;CyD§ and A} By Cy Dy are
related to one another in the same way that the tetrahedra A¢ByCyDy and
A{BC1D; are related to one another.

By the same reasoning as in the first part of the proof, OG§ > OGT,
with equality only when A§BSCg Dy is a quasiregular tetrahedron. How-
ever, we showed in (6) that equality does indeed hold. This implies that G
coincides with the circumcentre O of the sphere. Then OG§ = 0, so that

lim OG, = lim OG,, = OG; = 0. n

n—oo n— 00
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Inequalities Involving Reciprocals of
Triangle Areas

Yakub N. Aliyev

In this paper we begin with the study of a new inequality about the
reciprocals of triangle areas in an arbitrary quadrilateral. Using a familiar
fact as a lemma we prove this inequality and find the conditions of equality.
We also prove a similar inequality for triangles and generalize it to arbitrary
polygons. We also describe a situation in which the lemma does not work.
At the end of the paper we propose a problem for further investigation.

Problem 1. Let ABCD be a convex quadrilateral and K, L, M, and N be ar-
bitrary points on corresponding sides AB, BC, CD, and DA (see Figure 1).
Let KM and LN intersect at the point O. Denote the areas of triangles
ANK, BKL, CLM, and DMN by S;, S5, S3, and S4; and denote the
areas of triangles ONK, OKL, OLM, and OMN hy T,, T, T3, and Ty,
respectively. Prove that

1+1+1+1>1+1+1 1
Sl Sz Sg S4 - T1 Tz T3 T4'

We need the following lemma, which is a generalization of a fact given
in [1]. In what follows square brackets around a figure denote the area of
the figure.

Lemma 1. Let ABCD be a given convex quadrilateral, and let a line through
the intersection point O of diagonals AC and BD intersect the sides AD

. 1
and BC at the points K and L. Then the sum [AOK]
if and only if KL || AB.

1 . ..
+ [BOI] is minimal

Proof. Suppose KL is not parallel to AB, and let the line through O and
parallel to AB intersect AD and BC at the points K; and L,, respectively
(see Figure 2). We must prove that

1 [N 1
[AOK] + [BOL] — [AOK;] + [BOL,]

Copyright © 2011 Canadian Mathematical Society
Crux Mathematicorum with Mathematical Mayhem, Volume 36, Issue 8
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A K B A
T, | Tz =
N L
O
T4 T3
D
M
L L ©
C B
Figure 1 Figure 2

Without loss of generality we suppose that K is closer to A than K.
Then we can write the last inequality as

1 1 > 1 1
[BOL] [BOL.] ~ [AOK,] [AOK]’
[OLL,]  _  [OKK,]
[BOL|[BOL,] =~ [AOK][AOK;]'

OL - OL1 sin ALOLl > OK - OK1 sin 4K0K1

2[BOL|[BOL,] — 2[AOK][AOK;]
. OL: _ OK: | oL OK
Since K7L, || AB, then [BOL.] — [AOK:] hence [BOI] = [AOK]’
which holds since L is closer to line AB than K. Lemma 1 is proved. ]
Solution of Problem 1. Take A’, B’ on
the rays N A, LB so that A’ B’ passes A
through K and so that A’B’ || LN N\ A7 K B" B’
(see Figure 3). By Lemma 1, A
11 1 1 B
Tt 2 + - (M
S, ' S, ~ [A/NK] ' [B'KI]
Take D’, C’ on the rays ND, LC
so that D’C’ passes through M and N L
D'C’' || LN. By Lemma 1, o
il>_
S; ' S, — [C'LM] ' [D’MN]’
C
Now, we apply Lemma 1 to the D’
quadrilateral A’B’C’D’. Take A”, D" M O ol

D" on the rays KA’, M D’ so that
A" D" passes through N and so that D Fi 3
A’ D" ” KM. igure
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Similarly, take the points B”” and C” on the corresponding rays K B’
and M C’ such that B”C” passes through L and B”C” || KM . By Lemmal,

1 11 1 ;

[A’NK] + [D’MN] = [A”NK] + [D"MN]' )
1 1 1 1

[B’K L] + [C’'LM] = [B”"KL] + [C”"LM] " )

The quadrilaterals A NOK, B"KOL, C"LOM, and D”MON are
parallelograms, so Ty = [A”NK], T, = [B”KL], T; = [C”LM], and
T, = [D”"MN]. By (1)-(4), we obtain the inequality in Problem 1, with
equality if and only if AD || BC || KM and AB || CD || LN. |

Problem 2. (Janous’ inequality [5]) Let K, L, M be points on the sides
BC, CA, AB of triangle ABC (see Figure 4). Denote the areas of triangles
KLM, ALM, BKM, CKL by Sy, S1, Sz, S3, respectively. Prove that

1+1+1>3
Sl 52 S3_SO-

Figure 4 Figure 5

Solution. The proof in this case is similar, so we only indicate the main steps.
Take the points B’ and C’ on the corresponding rays M B and LC so
that B’C’ passes through K and also so that B’C’ || M L (see Figure 5).
Similarly, take A’, C’” on the rays M A, KC’ so that A’C” passes
through L and A’C” || MK, and finally take A”, B’ on the rays LA’,
K B’ so that A” B” passes through M and A”B” || KL. As in the proof of
Lemma 1, we compare successive pairs of reciprocal areas to obtain

1 1 1 1 1 1
S_lJrS_;»JrS_sZS_lJr[B'MK]Jr[wac]2
1 + 1 + 1 > 1 + 1 + 1 3

[A'ML] T [B'MK] " [C"LK] = [A"ML] " [B"MK] " [C"LK] ~ So

The last equality follows from the fact that KL, LM, M K are midlines
of triangle A”B"”C”,so [A”"ML] = [B"MK] = [C"LK] = Sp. |
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The following general problem can be solved in a similar manner, and is left
to the reader.

Problem 3. Let AgA;...A,_; be an arbitrary convex polygon and B; be an
arbitrary point on the side A;A;4q fori = 0,1, ..., n — 1 (all indices are
taken modulo n). Let the diagonals B;_»B; and B;_1B;; intersect at C;
fort=0,1,..., n— 1. Prove that

n—1 n—1
Z[AiBiBi—l]_l > Z[CiBiBi—l]_l-
=0 1=0

After these successful applications of Lemma 1 we must note that blind
use of Lemma 1 may lead in some cases to contradictory results. Consider
the following problem.

Problem 4. Let M be an arbitrary
point inside triangle ABC (see Fig-
ure 6). Let A; and A,, B; and Bs,
C: and C3 be arbitrary points on the
corresponding sides BC, CA and AB
such that the lines A, B,, B;C>, C1 A,
intersect at M. Denote the areas of
triangles M141142y MBle, Mclcz,
and ABC by S, S2, S3, and S, re-
spectively. Find all possible values of
the parameter A for which the follow-
ing inequality holds: B A, A,y C

Figure 6

Remark 1. By Lemma 1, if the quadrilateral AC; M B, and the triangle ABC
are fixed, then the sum Si + Si is minimal if B;C> || B2C;. Similarly, the
2 3
sum 1 + 1 is minimal if A3C; || A1C>, and the sum 1 + 1 is minimal
S1 Ss S1 S2
lf A1B2 || A2B1.

Remark 2. It was proved in [2], Problem 1, (see also [3]) that it is possible
to construct the lines A; B3, B1C5, C1 A2 so that they meet at M and so
that A1B2 || AzBl, B1C’2 || Bzcl, ClA2 || CzAl.

Remark 3. It was proved in [3] (it follows also from the results of [2]) that
if Ale ” A2B1, 3102 ” BzCl, ClA2 || CzAl, then

1 1 1 27
> —.

Can we deduce from these remarks that the last inequality is always
true? It is surprising to find that the answer to Problem 4 is not A < 27
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as we expected, but A < 18. Indeed, it was proved in [7] (see also [4],
pages 184, 200) that the inequality in Problem 4 holds true when A = 18
and equality occurs when A, B,, B;C5, C1 A, are the medians of triangle
ABC. Therefore, additional constructions in Problem 1 and Problem 2 are
necessary parts of the solutions. In conclusion we propose a new problem
for independent study.

Problem 5. Let ABC D be a convex quadrilateral whose diagonals AC and
BD intersect at the point O. Construct the line EF passing through O,
where the points E and F' are on the corresponding sides AD and BC, such

that the sum
1 1 1 1

a0E] T [BoF] " [cor] T [DOE]

is minimized. Is it possible that the constructed line EF passes through the
intersection point of the lines AB and CD?
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A Generalization of Mayhem Problem M 396
Involving Pythagorean Triangles

Konstantine Zelator

The motivation behind this work is Mayhem problem M396 in the May
2009 issue of CRUX with MAYHEM [1]. Let us restate the problem.

M396. The rectangle ABCD has side lengths AB = 8 and BC = 6.
Circles with centres O; and O, are inscribed in triangles ABD and BCD.
Determine the distance between O and Os.

As we shall see, the distance A D
0,0, is 2+/5. The points O; and O,
are the incentres of the congruent right
triangles ABD and BCD, which are 0,
in fact Pythagorean triangles with a
common hypotenuse BD of length 10.
Note that the quadrilateral BO; DO,
is, in fact, a parallelogram with the di-
agonals 0102 and BD intersecting at
their common midpoint. Now, picture
the general case in which the rectangle
ABCD is formed by glueing together
two congruent Pythagorean triangles
ABD and BCD. It turns out that the
distance between the two incentres is
always an irrational number (a quad- B 6 C
ratic irrational). Also, of the four side
lengths Oy D =BO5 and BO; = DO,,
two (equal) ones are always irrational. The other two (equal) ones can be, in
fact, integers. We give precise conditions as to when this occurs; otherwise,
they are also irrational.

In the general case, we will denote the incentres by I; and I, instead of
O, and O,. Also, for reasons of convenience, relabel the rectangle ABC D
as BCAD, as in Figure 2 on the next page. In Figure 2, BI; Al is a par-
allelogram and p stands for the inradii of the two congruent right triangles
BCA and ADB.

As usual we set BC = a, CA = b, AB = ¢, and we also introduce
Yy = BTy, = BT3, x = AT3 = ATy, and z = CT; =CT, = pP; where Ty, Ts,
and T3 are the three points of tangency of the incircle of triangle BC A with
the sides CA, CB, and BA, respectively.

Figure 1

Copyright © 2011 Canadian Mathematical Society
Crux Mathematicorum with Mathematical Mayhem, Volume 36, Issue 8
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Our main result is

Theorem With the above notation,
(a) The side length ¢ = AI;, = BI, is always an irrational number.

(b) The side length ¢ = AI, = BI, is an integer precisely when either
m = k3 — k2 and n = 2kqk2; or m = 2k1k2 and n = k3 — k3; where
k1 and k5 are relatively prime positive integers of opposite parity and
with k1 > k2; and such that m > n.

(c) The length of the diagonal I, I is always an irrational number.

A triple (a,b,c) of positive in-
tegers a, b, and ¢, with ¢ being B - D
the hypotenuse length, is said to be % ¢
a Pythagorean triple precisely when .
a? + b?> = c¢2. The parametric for- P\P
mulas we will use are well known, p
and they generate the entire family of
Pythagorean triples (or triangles cor- Y
responding to these triples).

The interested reader can find
a wealth of historical information Ts
in L.E. Dickson’'s monumental book,
History of the Theory of Numbers, P L ()
Vol. 11 [2], as well as in W. Sier- 1> L]
pinski’'s book, Elementary Theory of .
Numbers [4]. For a more textbook . 0
type approach, see Rosen [3]; and for ‘ ul 6
a derivation of formulas (1), refer to c S x A
Sierpinski [4] or Rosen [3]. Figure 2

Lemma 1 Let a, b, ¢ be positive integers. A triple (a, b, c) is Pythagorean,
with ¢ being the hypotenuse length, if and only if (a and b may be switched),

a=d(m?*—-n?), b=d(2mn), c=d(m?+n?), 1)

for some positive integers m, n, d such that m > n, ged(m,n) = 1, and
m+n =1 (mod 2). If d = 1 the Pythagorean triple is called primitive. =

In Figure 3, a triangle ABC' is shown with
side lengths AB = ¢, BC = a, CA = b and
with incentre I. Also, Ty, T, and T5 are the three
points of tangency of the incircle of ABC with the
sides AC, CB, and BA, respectively; and p is the
radius of the incircle. We put x = AT, = ATs,
Yy = BT2 = BTg, and z = CT2 = CTl

Figure 3 c
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Clearly, we have x+vy = ¢, y+2 = a, z+x = b; from which we obtain

a+b+ec
2

r=8—a,y=8—b, 2z=3s—c, where s = is the semiperimeter.

Applying these formulas and (1) to the Pythagorean triangle BC A in
Figure 2, we obtain by straightforward calculations that

z=p=dn(m—n), y=dm(m—n), z=dn(m+n). (2)
We will also need the well-known Parallelogram Law:

Lemma 2 Let ABCD be a parallelogram with diagonal lengths d; = BD,
d, = AC and side lengths £y = AB = DC, £ = BC = AD. Then

2002 +£2) =d? + d2.

Now we can compute the side lengths, as well as the two diagonal
lengths, of the parallelogram BI; Al in Figure 2, in terms of the integers
m, n, and d in formulas (1). These are the side lengths BI; = £; = AI, and
AI, = £; = BI,, and the diagonal lengths AB = ¢ = d(m? +n?) and I, I,.

To compute £; = BI; = AI,, examine the right triangle I, BT,. We
have (I1B)? = (BT:)? + (I1T2)?, or €2 = y? + p?, so by (2) we obtain
£2 = d*(m — n)? [n® + m?], and therefore

£y = BI; = AI, =d(m — n)y/n? + m2. (3)
To compute £, = AI, = BI,, examine the right triangle AI;T;. We

have £3 = x? + p?, so by (2) we obtain £3 = d?n? [(m + n)? 4+ (m — n)?],
or £2 = 2d?n?(m? + n?). Therefore,

s = dn\/2(m?2 + n?). (4)

To compute the diagonal length I I», we apply Lemma 2 to the paral-
lelogram BI; AI,. We have 2(€2 + ¢2) = 2 + (I112)?, and by formulas (1),
(3), and (4) we obtain
2 [dz(m,2 +n?)(m — n)? + 2d*n?(m? + n2)] =d? (m2 + n2)2 + (I I2)%.
Solving for (I, 12)? yields

(I, I,)? = d? [2(77"1,2 +n?)(m —n)? +4n?(m? + n?) — (m® + n2)2] ,

and after some algebra we arrive at (I112)? = d? - [(m — n)* + 4n?], or

LI = d\/(m —n)t + 4nt. (5)

Note that in the case of Mayhem problem M396, we haved = 2m = 2,
n=1a=6,b=8,and ¢ = 10 in (1). Thus, by (5) we see that I, I, (or
0; 0 in the notation of that problem) is 2+/5.
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Since in (1) one of the integers m, n is even and the other odd, the
integer 2(m? + n?) is twice an odd integer and thus, it cannot be a perfect or
integer square. Therefore, (4) shows that £5 is always an irrational number,
establishing part (a) of our main theorem.

On the other hand, we see from (3) that £; is an irrational number when
m?24n? is not a square; and when m2+n? is a square, only then will the side
length £; be an integer. Since m and n are relatively prime (and of different
parity), it follows that m? + n? is a square if and only if the numbers m and
n are the leg lengths of a primitive Pythagorean triple. Now part (b) of our
main theorem follows from Lemma 1.

Finally, part (c) of our main theorem follows from equation (5) and
Lemma 3 below, which we prove for the sake of completeness. We remark
that Lemma 3 is also given as Exercise 6 in Section 13.2 of Rosen’s book [3].

Lemma 3 The diophantine equation
xt + 4yt = 22 (6)
has no solution in positive integers x, y, z.

Proof: The proof rests on the fact that the system of equations

22 —y? = 22

7,
2 2 _ 2
¢+ vy = w*“,

has no solution in positive integers x, vy, z, w. This result has been attributed
to P. Fermat, and a proof can be found in Sierpinski’'s book [4] (pp. 38-42),
which uses the method of infinite descent introduced by Fermat.

Now suppose to the contrary that x, y, z are positive integers satisfying,
(6). Let & be the greatest common divisor of  and y. Then z = §z; and
y = dy1, where x; and y; are relatively prime positive integers. We thus
obtain §%(x$ + 4y}) = z2. Since §* | 22, it follows that 6% must be a divisor
of z. Let z = 622, for some positive integer z;. Accordingly, we obtain

x] +4y) = 22. @)

Since x; and y; are relatively prime, one is odd and the other even; or
both are odd. The latter case is eliminated by an argument modulo 8 shows.
Recall that the square of an odd integer is congruent to 1 modulo 8. If z;
and y; were both odd, then z; would also be odd by (7). But then,

] +4y} =1+4-1=5 (mod 8), while 2 =1 (mod 8) .

Therefore, x; is odd and y; is even, or vice-versa. However, the case where
y; is odd and x; is even can be reduced to the case where z; is odd and vy,
is even. Indeed, if x; is even and y; odd, then x; = 2z, for some positive
integer x2, and so by (7) we have 4(4z3 + y}) = z%. Obviously, 2 | 21, so
z1 = 2z». Therefore, 4x3 4+ y{ = 22, which is an equation like (7) with y,
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odd (and x- even, by the modulo 8 argument above). It is now clear that we
only have to treat the case where x; is odd and y; is even in (7).
We write (7) in the form

(2})? + (2y7)*

and observe that z? and 2y? are relatively prime integers, since z; is odd
and relatively prime to y;. Thus, (z2, 2y2, z;) is a primitive Pythagorean
triple, and by (1) we must have

27, (8)

2 =r? - 3%, 2y? = 2rs, 2z =712 4 82 9

for coprime positive integers r, s with » > sand » + s = 1 (mod 2). Then
(r—s)(r+s)==z? and y?=rs. (10)

Note that since r and s are relatively prime and of opposite parity, the
odd integers r — s and r 4+ s must also be relatively prime. Consequently,
it follows from the equations in (10) that each of the four positive integers
r — s, r+ s, r, sis a perfect square. In particular,

2 2 _ .2
Ty — S8 =uy,

ry + s% = ug ,
for positive integers ry, s1, w1, us; contradicting the fact (which we stated at
the outset) that such a system has no solution in positive integers. ]
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The CRUX Open: Unsolved Problems in
CRUX through Vol. 36

J. Chris Fisher

133 [1976:67, 144-150, 221]. The “Collatz 3z + 1 problem.”
See also problem 1370 [1988:203; 1989:281-3; 1990:317; 1993:304].

154 [1976:110, 159, 197, 225-6; 1977:20-22, 108-9, 191-3].

250(b) [1977:132; 1978:39; 1979:17-18].

266 [1977:190; 1978:75-76].

283 [1977:250; 1978:115, 195-6].

339 [1978:102, 292].

342 [1978:133, 297; 1980:319-22].

355(c)(d) [1978:160; 1979:78-80, 168-171].

410 [1979:17, 296-9].

434(b) [1979:108; 1980:59].

443(b) [1979:132; 1980:88-90].

473 [1979:229; 1980:197].

478 [1979:229; 1980:219-220; 1985:189-190; 1987:151-152].

490 [1979:266; 1980:266-268 (article), 288-290; 1981:168-70, 295-7].
494(b) [1979:292; 1980:296-297].

527(b) [1980:78; 1981:88-89].

533(b) [1980:113; 1981:118-9].

592(c) [1980:318; 1981:310].

609 [1981:49; 1982:27-28].

648(b) [1981:178; 1982:180-2].

714 [1982:48; 1983:58].

757 [1982:174; 1983:218].

804 [1983:22; 1984:120].

844(b) [1983:143; 1984:264-6; 2010:524-534 (article)]. In this issue the
problem is solved for dimension 3, but is open for dimension 4 and higher.
857(C) [1983:179; 1984:304-306; 1985:20-21, 84-85].

860 [1983:180; 1984:308].

880 [1983:242; 1985:26].

906 [1984:19; 1985:92].

909 [1984:20; 1985:94-95].

928 [1984:89; 1985:159].

942 [1984:155; 1985:228-229]. The problem may have been completely
solved in 1984, but the editor was unable to confirm the rumour.
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072 [1984:261; 1985:326-7; 1993:304].

976 [1984:262; 1986:145-148; 1987:16-17].

994 [1984:318; 1986:109].

1010 [1985:17; 1986:113-5, 243-7].

1014 [1985:50; 1986:125-6, 182-4].

1062(b) [1985:219; 1987:17-19].

1066 [1985:221; 1987:24-27]. One case is left open.
1077 [1985:249; 1987:93].

1086(b) [1985:289; 1987:100-102].

1110 [1986:13; 1987:170; 1988:13-17].

11 29(C) [1986:52; 1987:219-222]. The part related to (b) is still open.
1180 [1986:206; 1988:24-25].

1225 [1987:86; 1988:206-7].

1338 [1988:110; 1989:179-182].

1357 [1988:175; 1989:243; 1992:238-240].

1363 [1988:202; 1989:250]. Erdos offered a $25 prize, so a solution could
have been published elsewhere.

1464(c) [1989:207; 1990:282-4].
1495(b) [1989:298; 1991:54-56].
1580 [1990:240; 1991:308; 1992:76-80].
1581 [1990:266; 1991:308-9].
1587 [1990:268; 1991:314-5].
1580 [1990:240; 1991:308].
1615(b) [1991:44; 1992:82-83].
1666(b) [1991:207; 1992:191-2].
1737(b) [1992:110; 1993:90-91].
1754 [1992:175; 1993:151-2; 1994:196-9; 1995:236-8].
1872 [1993:234; 1994:201].
1965 [1994:194; 1995:207].
2014(b) [1995:52; 1996:45-47].
2025(b) [1995:90; 1996:125-126].
2049 [1995:158; 1996:183-4].
2173 [1996:275; 1997:169, 440-2].
2210 [1997:47; 1998:128].
2247(b) [1997:244; 1998:366-71].
2285 [1997:432; 1998:522-5].
2286(b) [1997:432].

2294(b) [1997:502; 1998:530-2].
2386(b) [1998:426; 1999:516].
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2399 [1998:506; 1999:531].

2405(b) [1999:48, 238; 2000:53].

2474 [1099:368; 2000:443]. 2476 [1999:429; 2000:445].
2520(2) [2000:115; 2001:218-9].

2535(2) [2000:179; 2001:279]. Part (2) is related to a well-known open
problem.

2558 [2000:304; 2001:466]. 25671 [2000:305; 2001:408].
2593 [2000:498; 2001:556]. 2597 [2000:499; 2001:559].
2616 [2001:137; 2002:252]. 2623 [2001:138; 2002:252].

2669 [2001:404; 2002:252]. Klamkin offered a $50 prize, but no valid so-
lution was submitted.
2673(c)(d) [2001:405; 2002:468-471].

2686 [2001:461; 2002:543-4].

2724 [2002:174; 2003:180-1; 2004:44-46].

2725(2) [2002:175; 2003:181-2].

2735 [2002:179; 2003:190]. 2832 [2003:176; 2004:184].

2838 [2003:238; 2004:192]. 2847 [2003:242; 2004:255].

2904 [2004:39, 42; 2005:52]. The known proof is not elementary; an ele-
mentary proof is sought.

2949 [2004:231, 234; 2005:255]. 2950 [2004:231, 234; 2005:256].
2967(C) [2004:368, 371; 2005:407-8].

2968(b) [2004:368, 371; 2005:409-10].

2977(b) [2004:429, 432; 2005:468-70].

3105(b) [2006:45, 48; 2007:52-4].

3132(d) [2006:172, 174; 2007:185-6].

3145 [2006:239, 241; 2007:248].

3169 [2006:395, 397; 2007:375-6].

3195(b) [2006:515, 518; 2007:496-9].

3225(b) [2007:112, 115, 297; 2008:124-127].

3231 [2007:170, 173; 2008:183].

3268(b) [2007:367, 369; 2008:374-5].

3277 [2007:428, 430; 2008:436].

3325(b) [2008:104, 106; 2009:127-128].

3326(b) [2008:170, 173; 2009:177-8].

3327(b) [2008:170, 173; 2009:179].

3474 [2009:397, 399; 2010:416]. 3492 [2009:515, 518; 2010:503].

M118 [2003:427; 2004:470].
Totten—M7(c) [2009:271-272, 274; 2010:141].
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PROBLEMS

Toutes solutions aux problémes dans ce numéro doivent nous parvenir au plus
tard le 1er avril 2010. Une étoile (x) aprés le numéro indique que le probléme a été
soumis sans solution.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais. Dans la section des
solutions, le probléme sera publié dans la langue de la principale solution présentée.

La rédaction souhaite remercier Jean-Marc Terrier, de [I’Université de
Montréal, d’avoir traduit les problémes.

—_—_— S ———

3574. Ccorrection. Proposé par Michel Bataille, Rouen, France.

Soit x, y et z trois nombres réels tels que x + y + z = 0. Montrer que

Z coshx < Z coshz(m;y> < 142 H coshx .

cyclique cyclique cyclique

3588. Proposé par Dragoljub MiloSevi¢, Gornji Milanovac, Serbie.

Soit ABC un triangle rectangle d’hypoténuse ¢ = AB. Soit w, et wy
les longueurs respectives des bhissectrices issues de A et B. Montrer que

we +wp < 2¢\/2 — V2.

3589. Proposé par Viaclav Konecny, Big Rapids, MI, E-U.

Trouver tous les entiers n > 6 pour lesquels il existe un n-gone convexe
avec un point intérieur P tel que PA; = A;A;, pour chaque ¢, les indices
étant pris modulo n.

3590. Proposé par G.W. Indika Amarasinghe, Université de Kelaniya, Ke-
laniya, Sri Lanka.

Soit ABPC un quadrilatére tel que BC coupe en deux le segment AP
et que AP soit la bissectrice de I'angle BAC. Soit a = BC, b = AC,
c= AB, p= BP et q = PC. Montrer que

2 2
L + T _ b+ec.
c b
35901. Proposé par Michel Bataille, Rouen, France.

Soit € une ellipse de centre O. En exactement quatre points P de &, la
tangente a £ forme un angle de 45° avec OP. Quelle est I'’excentricité de £ ?
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3592*. Proposé par Faruk Zejnulahi et Sefket Arslanagié, Université de
Sarajevo, Sarajevo, Bosnie et Herzégovine.

Soit a, b et ¢ des nombres réels non négatifs tels que a + b + ¢ = 3.
Démontrer si oui ou non les inégalités ci-dessous sont valides.

19 1 1 1 27
=< + + < =
20 — 1+a-+0b2 1+b+4c2 14+c+a?2 — 20

3593. Proposé par Daryl Tingley, Université du Nouveau-Brunswick, Fre-
dericton, NB.

Montrer que pour tous les entiers non négatifs n, le chiffre distinct de
zéro le plus a droite dans I'écriture de (4 - 5™)! est 4. De plus, montrer que
sin > k > 0, alors la chaine de k + 1 chiffres consécutifs, avec ce chiffre 4 a
droite, est indépendant de n.

3594. Proposé par Michel Bataille, Rouen, France.

Soit =, y et z trois inconnues et A = (y — 2)(y + z)(z + 2),
B=(:z—-2)(z+y)(y+=z), C = (zx—1y)(x+ 2z)(z+ y). Trouver tous
les polynémes P, Q, R € C[z, y, z] tels que

2P 4+ y?Q + 2°R _ x2A +y?B + 22C
zP + yQ + zR o A+ yB + zC

3595. Proposé par Bill Sands, Université de Calgary, Calgary, AB.

Soit a, b et n entiers positifs tels que a < betn < a + b, et tels que
exactement % des entiers a2, a® + 1, a® + 2, ..., b? sont des carrés. (1)

Répondre aux deux questions suivantes :
(a) Montrer qu’aussi, exactement % des entiers consécutifs
(n—a)? (n—a)2+1,(n—a)?+2,...,b%sont des carrés.
(b) D’une part exactement % des entiers 1, 2, ..., n? sont des carrés, et
d’autre part exactement % des entiers (n — 1)2 = n? —2n + 1, n? —

2n+2,...,n?% sont des carrés. Ainsi, pour tout entier n > 3, les valeurs
a=1,b=mneta=mn—1,b = n satisfont toujours (1). Pour quels
entiers n > 3 ces valeurs sont-elles les seules solutions de (1)?

3596. Proposé par Paolo Perfetti, Département de Mathématiques, Uni-
versité de Rome, “Tor Vergata”, Rome, Italie.

Soit x, y et z trois nombres réels positifs. Montrer que

3 z(y + z) < ¥ (w+y)(w+y+2Z)_

(x 4+ 2y + 22)2 (3x 4 3y + 42)2

cyclique cyclique
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3597. Proposé par Johan Gunardi, étudiant, SMPK 4 BPK PENABUR,
Jakarta, Indonésie.

Cent étudiants passent un examen consistant en 50 questions "vrai” ou
"faux”. Montrer qu'il existe trois étudiants dont les réponses coincident pour
au moins 13 questions.

3598. Proposé par Zhang Yun, High School attached to Xi’ An Jiao Tong
University, Xi’ An City, Shan Xi, Chine.

Le quadrilatéere ABC D posséde a la fois un cercle circonscrit et un
cercle inscrit, celui-ci de centre I.
Posera = AB, b= BC,c=CD etd = DA. Montrer que
IB? IC? ID? IA2

= 2.
ab+bc+cd+da

3599 * Proposé€ par Cristinel Mortici, Valahia Université de Targoviste,
Roumanie.

Soit m et n deux entiers positifs tels que 2™ — 3™ > n. Montrer que
2™ — 3" >m.
3600. Proposé€ par Ovidiu Furdui, Campia Turzii, Cluj, Roumanie.
Soit k£ > 1 un entier. Montrer que

— _1]6—1 -1
Z —, (n1+ng+ -0+ np)! -1 ez J!

T1,MN2,..,Nk

3574. Correction. Proposed by Michel Bataille, Rouen, France.
Let x, y, and z be real numbers such that x 4+ y + 2 = 0. Prove that

Zcoshw < Zcosh2<w;y> < 1+2Hcosha:.

cyclic cyclic cyclic

3588. Proposed by Dragoljub Milosevié¢, Gornji Milanovac, Serbia.

Let ABC be a right-angled triangle with hypotenuse ¢ = AB. Let w,
and w; be the lengths of the angle bisectors from A and B, respectively.

Prove that
we +wp < 2c\/2—\/§.

3589. Proposed by Vaclav Konecny, Big Rapids, MI, USA.

Find all integers n > 6 for which there exists a convex n-gon with an
interior point P such that PA; = A; A, for each ¢, where indices are taken
modulo n.
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3590. Proposed by G.W. Indika Amarasinghe, University of Kelaniya,
Kelaniya, Sri Lanka.

Let ABPC be a quadrilateral such that BC bisects the segment AP
and AP bisects /ZBAC. Leta = BC,b = AC,c = AB, p = BP, and
q = PC. Prove that

2 2
L + T _ b+ec.
c b

3501. Proposed by Michel Bataille, Rouen, France.

Let £ be an ellipse with centre O. At exactly four points P of £, the
tangent to £ makes a 45° angle with OP. What is the eccentricity of £ ?

3592*. Proposed by Faruk Zejnulahi and Sefket Arslanagi¢, University of
Sarajevo, Sarajevo, Bosnia and Herzegovina.

Let a, b, and ¢ be nonnegative real numbers such that a + b + ¢ = 3.
Prove or disprove that

19 1 1 1 27
= < + + < =
20 — 14 a4+ b2 1+b+ c2 1+c+a2 — 20

3593. Proposed by Daryl Tingley, University of New Brunswick, Frederic-
ton, NB.

Show that for all nonnegative integers n the rightmost nonzero digit of
(4 -5™)! is 4. Furthermore, show that if n > k > 0, then the string of & + 1
consecutive digits with this digit 4 at the right is independent of n.

3594. Proposed by Michel Bataille, Rouen, France.

Let z, y, z be three indeterminates and A = (y — 2)(y + =) (z + 2),
B=(z—2)(z4+y)(y+=z), C = (x—y)(z+ z)(z+y). Find all polynomials
P, Q, R € C[x, y, z] such that

2P 4+ y?Q + 2°R _ x?A +y?B + 22C
zP + yQ + zR o A+ yB + zC

3595. Proposed by Bill Sands, University of Calgary, Calgary, AB.

Let a, b, n be positive integers satisfying a < b and n < a + b, and so
that

exactly % of the integers a2, a® + 1, a? + 2, ..., b? are squares. (1)

Do the following :

(a) Prove that also exactly % of the consecutive integers
(n—a)? (n—a)?+1, (n—a)?2+2,...,0b%are squares.
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(b) Exactly % of the integers 1, 2, ..., n? are squares, and also exactly % of
the integers (n —1)2 =n? —2n+1,n%? —2n+2, ..., n? are squares.
Thus, for every integer n > 3, the valuesa =1, b=nanda =n — 1,
b = mn always satisfy (1). For which integers n > 3 are these the only
solutions of (1)?

3596. Proposed by Paolo Perfetti, Dipartimento di Matematica, Universita
degli studi di Tor Vergata Roma, Rome, Italy.

Let x, y and z be positive real numbers. Prove that

z(y + 2) (z +y)(z+y+22)
Z(w—l—2y—|—2z)2 = Z 3z + 3y +42)2

cyclic cyclic

3597. proposed by Johan Gunardi, student, SMPK 4 BPK PENABUR,
Jakarta, Indonesia.

One hundred students take an exam consisting of 50 true or false ques-
tions. Prove that there exist three students whose answers coincide for at
least 13 questions.

3598. Proposed by Zhang Yun, High School attached to Xi’ An Jiao Tong
University, Xi " An City, Shan Xi, China.
The quadrilateral ABC D has both a circumscribed circle and an ins-

cribed circle, the latter with centre I. Puta = AB, b = BC, ¢ = CD, and
d = DA. Prove that

IB? IC? ID? 1IA?

= 2.
ab+bc+cd+da

3599 * Proposed by Cristinel Mortici, Valahia University of Targoviste,
Romania.

Let m and n be positive integers such that 2™ — 3™ > n. Prove that
2m —3" > m.
3600. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.
Let £ > 1 be a nonnegative integer. Prove that

i 1
Z (n1+n2+---+ng)!

MN1,M2,..,Np=1

k—1 j
— (_1)k:—1 ez (_::) _1

J

NN —



553

SOLUTIONS

Aucun probléme n’est immuable. L’éditeur est toujours heureux d’en-
visager la publication de nouvelles solutions ou de nouvelles perspectives
portant sur des problémes antérieurs.

We have received a late batch of correct solutions to problems 3478,
3479, 3480, 3481, 3482, 3483, and 3486 from Walther Janous, Ursulinengym-
nasium, Innsbruck, Austria.

—_— O er—— @ —
3488. [2009 : 515, 517] Proposed by Pham Huu Duc, Ballajura, Australia.
Let a, b, and ¢ be positive real numbers. Prove that
a b c al4+b14c?
et |
2a2? + be 2b2 + ca 2c?2 + ab at+b+ec

Solution by Paolo Perfetti, Dipartimento di Matematica, Universita degli
studi di Tor Vergata Roma, Rome, Italy.

Lett = (t1,t2,...,t,) and s = (s1,82,...,8,) be arbitrary n-tuples
of nonnegative real numbers. We will write ¢ > s if

D t1>--2>t,and sy > -+ > sp,

k k
(i) > t; > > s;forallk =1, 2,..., n, with equality when k = n.
=1 i1=1
Let R4+ denote the set of positive real numbers, let P be the set of all
permutations of {1, 2, ..., n}, and define [t] : R} — R by

[t](x) = Z mf;(l)m?(z) .. scf’;zn) forall x = (z1,22,...,2n) .
occP
Muirhead’s inequality states that if ¢ > s, then [t] > [s]. Here, as
usual, [t] > [s] means that [t](z) > [s](z) for all z € R?. Now, by squaring
and simplifying, the given inequality is equivalent to A > B, where

A = 12[8,5,1] + 23[7, 4, 3] + 16[6, 6, 2] + 12[8, 4, 2] + 4[7, 6, 1]
+4[9,3,2] + 8[7,7,0],
B = 12[7,5,2] + 22[6,5,3] + 26[6,4,4] + 2[8,3,3] + 2[5,5,4] .

But this last inequality holds by these applications of Muirhead’s inequality:

[87 5, 1] > [7’ 5, 2] ,

[7,4,3] > [6,5,3] and [7,4,3] > [6,4,4],
[8,4,2] > [8,3,3] and [8,4,2] > [6,4,4],
[6,6,2] > [6,4,4] and [6,6,2] > [5,5,4],
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[7,6,1] > [5,5,4],
[9,3,2] > [5,5,4],
[7,7,0] > [5,5,4].

Also solved by OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer.
One incomplete solution was submitted.

B WSS L W

3489. [2009 : 515, 517] Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

Let n be a nonnegative integer. Prove that

EVA(E) < (= (),

A composite of similar solutions by George Apostolopoulos, Messolonghi,
Greece; and Albert Stadler, Herrliberg, Switzerland.

2n

n

1
2n—1

By using the elementary facts that (2,:) = (237_11@) foro < k < 2n and
k(%M = 2n(% ! for 1 < k < 2n, and also the Cauchy-Schwarz Inequality,
we have that

) -

IA

N | =

N | =

N = N

from which the claimed inequality follows immediately.
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Also solved by ARKADY ALT, San Jose, CA, USA; DIONNE CAMPBELL, ELSIE CAMP-
BELL, and CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX, USA; MICHEL
BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern State University, Joplin, MO,
USA; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; PAOLO PERFETTI, Dipartimento di Matematica, Universita degli studi di
Tor Vergata Roma, Rome, Italy; and the proposer.

B e SN D W

3490. [2009 : 515, 518] Proposed by Michael Rozenberg, Tel-Aviv, Israel.

Let a, b, and ¢ be nonnegative real numbers such thata + b + ¢ = 1.
Prove that

(@) v9 — 32ab + /9 — 32ac + v/9 — 32bc > T;
(b) /1 =3ab+ /1 — 3ac + +/1 — 3bc > /6.

Solution to part (a) by Oliver Geupel, Briihl, NRW, Germany; solution to
part (b) by George Apostolopoulos, Messolonghi, Greece, modified by the
editor.

(a) For nonnegative integers £, m, and n, let [¢,m,n] = ). a‘b™c".
symm.
The following inequality is a consequence of Muirhead's Theorem,

27H (9((1 + b4+ c)2 - 32ab) - (11(a + b+ c)2 + 16(ab + bc + ca))3

cyclic
= 9176 [6,0, 0] + 34320 [5,1, 0] — 36336 [4, 2,0] + 50184 [4,1,1]
— 543523, 3,0] + 100320 [3,2,1] — 103312 [2, 2, 2]
>0.

We put a + b + ¢ = 1 in the above, and we observe that by the AM-GM
1/3
Inequality 3" /(9 — 32ab)(9 — 32bc) > 3( I (9 — 32ab)) . 1t follows

cyclic cyclic

that 3> /(9 — 32ab)(9 — 32bc) > 11 + 16(ab + be + ca), and we deduce

cyclic

2

> V9—32ab | > 49,

cyclic
from which the inequality in (a) follows.

(b) Let x = 3a, y = 3b, and z = 3c. Then z, y, and z are nonnegative
real numbers such that x + y + z = 3, and we are to show that

Z\/3—:cy > 3v2. 1

cyclic
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Note first that 3 \/%: % > (B+2)= %(94—3):3\/5.

cyclic cyclic
Also,
3+2)? <3_ (az+y)2> _ Bt . B-2)7
8 4 8 4
1 2 2 3 2
= 3 (9462422 —244+18 — 12z + 22%) = sF-D7 Q@
Hence,

B+2? _ ,_ (@+y)?

8 = 4 ' 3

and (1) is equivalent to

(e o - )

cyclic
>Z<\/(3+z)2 \/3_@>. (4)

cyclic

Let H and K denote the left and right side of (4), respectively. Then

_ 1 Z (x —y)?
4 cyclic m + /3 — %
(x —y)? Z
Z (z (5)
cychc \/_ 3+ \/_ 8\/_ cyclic
On the other hand, using (2) and (3), we have
(3+z) -3 + ($+y) 3 (Z _ 1)2
e \/(3+z)2 + \/3 (mtly)2 8 L \/(3+z)2 + \/3 (ac+y)2

(z—1)2 3

(z —1)2 2
= = —— = =) (z=1)%. (6)
8 YZ /3 (m+y) cy%c 2./3 — % cy%c

Finally,
Z(w—y)2:3<2w2>—<2w> =3<Zw2>—9
cyclic cyclic cyclic cyclic
:3(2932) —6<Zm> +9 = 3<Z(z—1)2> . @
cyclic cyclic cyclic

From (5), (6), and (7) we get H > K, establishing (4), and hence (1).
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Part (b) was also solved by CHIP CURTIS, Missouri Southern State University, Joplin,
MO, USA; OLIVER GEUPEL, Briihl, NRW, Germany; and the proposer. Two incomplete solu-
tions were submitted.

The case of equality was not requested, though Geupel claimed equality precisely when
a = b = c = 1/3, but the proposer noted that equality also occurs whena = b=1/2, c = 0.

NN —

3491. [2009 : 515, 518] Proposed by Dorin Marghidanu, Colegiul National
“A.l. Cuza”, Corabia, Romania.

Letaq, az, ..., any1 be positive real numbers where a,,+1 = a1. Prove
that " . "
a; 1
Z - a; .
; (a; + ait1)(af + a’z?—i—l) 4 ;
Solution by George Apostolopoulos, Messolonghi, Greece.
Let
n 4
a’
A = ¢ ,
i; (ai + aiy1)(af + af )
n CL‘-I
B = i+1 .
i:zl (ai + aiy1)(af + af )
Then

n
A— B = : i+l = a'—a-_,_l:O,
2:1 (a; + ait1)(af +a?, ;) ; v

and hence A = B.
We now show that for all positive real numbers a and b we have

(a +b)%(a® +b?)
2 )
Indeed, using the inequality (z + y)? < 2(x? + y?) twice we obtain

(a +b)%(a® +b?) < 2(a®+b%)? < 4(a* +b%).

a* + bt >

Hence,
= ai +aj,
i=1 (ai + aiy1)(af + azg+1)

13 1&
Z(ai+ai+1) = Ezai-
=1 =1

Equality holds if and only if a; = az = --- = a,,.

Also solved by ARKADY ALT, San Jose, CA, USA; CHIP CURTIS, Missouri Southern State
University, Joplin, MO, USA; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; PAOLO PERFETTI, Dipartimento di Matematica,
Universita degli studi di Tor Vergata Roma, Rome, Italy; and the proposer.

>

N
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3492*. [2009 : 515, 518] Proposed by Ovidiu Furdui, Campia Turzii,
Cluj, Romania.

Let P be a point in the interior of tetrahedron ABC D such that each
of /PAB, /PBC, Z/PCD, and ZPDA is equal to arccos \/g Prove that
ABCD is a regular tetrahedron and that P is its centroid.

The problem remains open. The only submission, from Peter Y. Woo,
Biola University, La Mirada, CA, USA, gave a counterexample where ABC D
is a degenerate tetrahedron. In particular, he provided an elegant proof that
if P is the centre of a parallelogram ABCD with sides AD = BC = 32
and AB = CD = /6, and diagonals AC = 2v/3 and AC = 6, then

2
/PAB = /PBC = /PCD = /PDA = arccos \/;

This certainly addresses the question that was asked, and it suggests that
there are infinitely many tetrahedra with an interior point P that satisfies
the given angle requirement, but it fails to provide an explicit nondegenerate
example.

3494 [2009 : 516, 518] Proposed by Michel Bataille, Rouen, France.

Let n > 1 be an integer and foreach k =1, 2, ..., nlet
o(n, k) = > AR T
1<i < <ip<n
Prove that
ki Inn " n4+1—k
Zﬁ-o‘(n,kz) ~ (n+1)! ~ Zli-a(n,k),
1l k=1 nmn
f(n)
where f(n) ~ g(n) means that o) lasn — oo.
Solution by the proposer.
Let
Po(z) = (z+1)(x+2)---(v+n)
= 2"4+o(n,)z" ' +..-+o(n,n—1x+o(n,n).
i a(n, k)
If U,, denotes g::l 1% then

U, = <A1Pn(w)dw> _nil.
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Po(z) _ 1 Loy 1
Pn(:c)_:c—|—1+:c—|—2+ —|—w+n,sothatf0rallme[0,1],

! B 1] 1)
n+1 = P,(x) — 2 n’

Clearly,

1 1
gty

Multiplying by P, (x) and integrating over [0, 1] leads to

1 1
H, . .-V U, +—| < P,(1)-P,(0) < H, U, ,
( +1 )< +n+1)_ () ()_ ( +n—|—1)

where H,, = 1 + % + oo+ % denotes the nt" harmonic number. Since we
also have P, (1) — P,(0) = (n + 1)! —n! = —~ . (n + 1)!, we obtain

n—+1
n .(n—i-l)!_ 1 < U, < n (n+ 1)! o1
n+1 H,, n+1 — “ n4+1 H,y—1 n+1
for all positive integers . Recalling that H,, ~ In(n), the Squeeze Theorem
o . Unln(n) _ .
for limits yields nler;o e 1, that is,
" 1
Z Ln) co(n,k) ~ (n+1)!.
—ntl-— k

LetV,, = i (n+1—k)o(n,k). From (1) and P, (1) = (n+1)!, we deduce
k=1
that
(Hp41 —1D(n+1)! < P/(1) < Hy(n+1)!.

Also, forn > 1,
Vo = Y (n—k)o(n,k)+ > o(n,k)
k=1 k=1

= Pr'l(l)—n—l—(n—l—l)!—l
= P+ n+1)!—-(n+1),
so that
Hppl—1 11 - v,
In(n) In(n) n!ln(n) — (n+1)!In(n)
H, 1 1
~ In(n) In(n) B n!ln(n)

Again, the Squeeze Theorem yields (n + 1)! ~ %1”;’9 -o(n, k), and
k=1
the proof is complete.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; and ALBERT
STADLER, Herrliberg, Switzerland.



560

3495. [2009 : 516, 518] Proposed by Cosmin Pohoats, Tudor Vianu Na-
tional College, Bucharest, Romania.

Let a, b, ¢ be positive real numbers with a + b + ¢ = 2. Prove that

1 a
§+Zb—|—c = Z

cyclic cyclic

(a2+b6) 1 a2
b+c S§+Zb2—|—02'

cyclic

A combination of solutions by George Apostolopoulos, Messolonghi, Greece
and Paolo Perfetti, Dipartimento di Matematica, Universita degli studi di
Tor Vergata Roma, Rome, Italy, modified by the editor.

For vectors a = (a1,az2,...,a,) and (b1, ba, ..., b,) with real entries,
the notation a < b means thata; +as +---+a, = by +bz+---+b,, and
ai+az+---+a; <by+by+---+bjholdsforeachj=1,2,..., n—1.

Since a + b + ¢ = 2, the inequality on the left is equivalent to

2
1+Z a a+b+csza + be
2 b+ec 2 b+ec

cyclic cyclic

or

Z (a* + a®bc) > Z (a* + a®bc) .

symmetric symmetric

Schur’s Inequality yields

Z (a* 4+ a®bc) > 2 Z (a®b) .

symmetric symmetric

Now using Muirhead'’s inequality for (2, 2,0) < (3, 1,0) we obtain

Y. @) > Y (a®?),

symmetric symmetric

which proves the inequality on the left.
Now the inequality on the right is equivalent to

a? + be 1 a? a+b+c
Z T e =
Z b+ec — 2+Zb2+62 2 !

cyclic cyclic

or

Z (2a9b + 4a8bc + 7a"b%c + a"b® + 2a4b4c2)

symmetric

> Z (2a6b4 + a®b® + 5a°b3c? + a*b3c® + 5a’bic + 2a6b3c) .

symmetric
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Using Muirhead’s inequality repeatedly we obtain:

(6,4,0) < (9,1,0) = >  2a°b> > 2a°p*

symmetric symmetric
(6,2,2) < (7,2,1) = Y  2a"b%c> Y 24>
symmetric symmetric
(6,3,1) < (8,1,1) = > 2abc> )  2a%’c
symmetric symmetric
(5,4,1) < (8,1,1) = Y 2a®bc> >  2a°bc
symmetric symmetric
(5,5,0) < (7,3,0) = Y  ad®> Y a®®
symmetric symmetric
(5,3,2) < (7,2,1) = >  a"b’c> Y abc?
symmetric symmetric
4,3,3) <(7,2,1) = Z a"b’*c > Z a*b*c?
symmetric symmetric
(5,4,1) < (7,2,1) = Z a’b?c > Z a’bc
symmetric symmetric

Also, by the AM-GM Inequality, we have

Z (2a®b*c? + 2a*b*c?) > Z 4a°b3c? .

symmetric symmetric

We add all these inequalities, and we are done.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; TITU ZVONARU, Comanesti, Romania; and the proposer. One
incomplete solution was submitted.

Zvonaru observed that this problem appeared in the book Old And New Inequalities,
Vol. 2, by Vo Quoc Ba Can and Cosmin Pohoata, Gil Publishing House, 2008.

——— | NS

3496. [2009 : 516, 519] Proposed by Elias C. Buissant des Amorie, Cas-
tricum, the Netherlands.

Prove the following equations:
(a) tan 72° = tan 66° 4+ tan 36° + tan 6°.
(b) X tan 84° = tan 78° + tan 72° + tan 60°;

4
[Ed.: The proposer gave six more relations of the form f(6)= ) tank;0=0
=1
for k; € Z and 6 = 2w /n with n|360, not included here for lack of space.]
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Composite of solutions by Kee-Wai Lau, Hong Kong, China and D.]. Smeenk,
Zaltbommel, the Netherlands.

With the help of appropriate trigonometric identities, both equations

can be reduced to properties of the golden section 7 = #3, which is the
positive root of the quadratic equation
2 =741. 1)

Because 7 is the ratio of a diagonal to a side of a regular pentagon, it satisfies

1
cos 36° = % and cos72° = or (2)
T

(a) The following equations are equivalent.

tan72° = tan66° 4+ tan36° 4+ tan6°,
tan 72° — tan 36° = tan66° 4+ tan6°,
sin(72° — 36°) sin(66° 4+ 6°)
cos72°c0s36°  cos66° cos6° '
25sin 36° cos 66° cos 6° = 2sin72° cos 72° cos 36° = sin 144° cos 36°,

2 sin 36° cos 66° cos 6° sin 36° cos 36° ,

2c0s66° cos6° = cos36°,
cos72° 4+ cos60° = cos36°,
cos72°—cos36°—|—% = 0,

and the last equality follows immediately from equations (1) and (2).

(b) The following equations are equivalent.

tan 84° = tan78° 4 tan 72° 4 tan 60°,
tan84° — tan60° = tan78° 4 tan72°,
sin(84° — 60°)  sin(78° 4 72°) 1
cos84° cos60° cosT8°cosT2°  2cosT8° cosT72°’
cos84° = 45sin24°cos72° cos78°,
sin6° = 2(sin96° — sin 48°) cos 78°,
sin6° = (sin174° 4 sin18°) — (sin 126° — sin 30°),
sin6° = sin6° 4 cos72° — cos 36° + % ,

and the last equality follows immediately from the equations (1) and (2) just
as in part (a).

Both parts were also solved by GEORGE APOSTOLOPOULOQOS, Messolonghi, Greece; ROY
BARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE, Rouen, France; DIONNE



563

CAMPBELL, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo State University, San An-
gelo, TX, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVER
GEUPEL, Briihl, NRW, Germany; JOHN G. HEUVER, Grande Prairie, AB; JOE HOWARD,
Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; ALBERT
STADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga, Latvia; JAN VERSTER, Kwantlen
University College, BC; and TITU ZVONARU, Comanesti, Romania. STAN WAGON, Macalester
College, St. Paul, MN, USA gave a computer verification.

Part (a) was also solved by ARKADY ALT, San Jose, CA, USA; PANOS E. TSAOUSSOGLOU,
Athens, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Wagon used Mathematica to confirm that there are seven 4-tuples (a, b, ¢, d) of distinct
integers between 0 and 90 (other than the pair featured in our problem) that satisfy the relation
tan a® = tan b® 4 tan c® + tan d°, namely

(60;42,36,6), (72;60,42,24), (78;66,60,36), (78;72,42,36)
(60; 50,20,10), (70;60,40,10), (80;70,60,50).
The first four are clearly related to the golden section as in our featured pair, while the final
three seem to be related to the regular enneagon (or nonagon, if you prefer) as discussed in
“Trigonometry and the Nonagon” by Andrew Jobbings (see www.arbelos.co.uk/papers. html).
It is amusing to note that the proposer thought that he had found one that fails to fit either of
the two patterns, but it turns out that tan 62° differs from tan 48° + tan 24° + tan 18° by

about 10~ 5. Wagon further produced a list of 49 such equations allowing repeated angles, and
determined that there were no such 3-term equations and no such 5-term equations.

——— | NS

3497 . [2009 : 516, 519] Proposed by Salem Maliki¢, student, Sarajevo
College, Sarajevo, Bosnia and Herzegovina.

Let P be a point in the interior of triangle ABC, and let » be the
inradius of ABC'. Prove that max{AP, BP, CP} > 2r.

I. Solution by Roy Barbara, Lebanese University, Fanar, Lebanon.

Recall that the convex hull of a triangle T is the union of its interior and
boundary. If C is a circle with radius r in the convex hull of a triangle Ty with
inradius rq, then » < r;. (Here is a proof of this simple fact: Consider the
three tangents to C that are parallel to the sides of T} and separate the centre
of C from the corresponding sides; they form a triangle that is similar to T}
for which C is the incircle. Since all points of C are inside or on T}, the ratio of
the sides of the new triangle to the sides of T;—which is also the ratio of the
inradii—could be at most 1; thatis, » < r;.) Let T = AABC be an arbitrary
triangle with incircle C' and inradius », and let P be a point in the convex
hull of T. Without loss of generality, we may assume that max{ AP, BP,
CP} = AP and show that AP > 2r. Extend (if necessary) the segments
PB to PB; and PC to PC, such that PB; = PC, = PA. Then P is
the circumcentre of triangle Ty = AAB;C;, and PA its circumradius; let 7,
denote its inradius. Note that because P is assumed to lie in the convex hull
of T', T must lie in the convex hull of Ty; consequently the incircle of T also
lies in that convex hull, so that (from our simple fact)

LT,

By Euler’s inequality, AP > 2r;, whence AP > 2r, as desired.
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I1. Solution by Michel Bataille, Rouen, France.

Generalization: The following result holds for any point P in the plane
of AABC. Let R, O, a, b, and ¢ be the circumradius, circumcentre, and
sides of AABC, and let M = max{AP, BP, CP}, then

(a) if AABC is acute, M > R > 2r, with M = 2r if and only if P = O
and the triangle is equilateral,

(b) if AABC is not acute, M > % > 2r, with M = 2r if and
only if P is the midpoint of the longest side.

Let A’, B’, and C’ be the midpoints of the sides opposite vertices A,
B, and C, respectively. For part (a) we fix points D, E, and F on the per-
pendicular bisectors of the sides so that the rays [OD), [OE), and [OF) are
opposite the rays [OA’), [OB’), and [OC"), respectively. The whole plane is
the union of the nonoverlapping angles ZEOF, /ZFOD, and ZDOE. With-
out loss of generality we can assume that P is in or on the sides of angle
ZEOF (bounded by the rays [OF) and [OF)) so that M = PA. Let E; on
AB and F, on AC be such that OF||AC and OF,||AB. Note that because
O is in the interior of AABC, E, and Fy belong to the rays [AB) and [AC),
while OE, L. OF and OF, L OF'. Since A is in the interior of ZEyOF,, the
angle ZPOA is obtuse, hence M = PA > OA = R, with equality exactly
when P = O. The inequality R > 2r is Euler’s inequality, with R = 2r
exactly when AABC is equilateral, so the proof of part (a) is complete.

For part (b) we first suppose that /BAC, say, is obtuse. Then O is
exterior to AABC with line BC separating O from A, and the plane is the
union of the three angles /ZEOF, /ZEOA’, and /ZFOA’. 1If P is in ZEOF
then M = PA > R > % (much as in part (a)). Otherwise, without loss of

generality, we can suppose that P is in ZEOA’, in which case M = PC >
A'C = g. To check that the minimum value of M, namely 2, occurs when

P = A’, note that A and A’ are on the same side of the perpendicular
bisector of the segment AC, so that A’A < A’C; that is, if P = A’, then
M = A'C = A'B = g. If /Z/BAC = 90°, this argument can easily be

adapted to show that M > % = R. To complete the proof we show that in

the present case we have g > 2r. Let h = AH be the altitude from A, and
let Ap be the point on the ray [H A) such that ZBAoC = 90°. We want to
show that ah > 4rh; thatis, that a+ b+ c > 4h (since a2—h = W =

area(AABC)). But

HB+ HC a

h< HAo=VHB-HC < =3

’

whence a > 2h; moreover, b, ¢ > h, so that a + b + ¢ > 4h, as desired.

Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,
Messolonghi, Greece (2 solutions); SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo,
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Bosnia and Herzegovina;, JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; VACLAV KONECNY, Big Rapids, MI, USA; KEE-WAI LAU,
Hong Kong, China; VICTOR PAMBUCCIAN, Arizona State University West, Phoenix, AZ, USA;
ALBERT STADLER, Herrliberg, Switzerland;, EDMUND SWYLAN, Riga, Latvia, GEORGE
TSINTSIFAS, Thessaloniki, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and
the proposer. There were two incomplete submissions.

Tsintsifas extended the result to n-dimensional Euclidean space: For a point P in the
interior of the simplex A1 Az ... Ap 1, max{A1 P, A2P, ..., A1 P} > nr.

Janous pointed out that the inequality follows from the more general assertion that
AP + BP + CP > 6r, which is item 12.14 of O. Bottema et al., Geometric Inequalities,
Wolters-Noordhoff Publ., Groningen, 1969.

—— | NS

3498. [2009 : 517, 519] Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

Let F,, be the nt" Fibonacci number, that is, F;, = 0, F; = 1, and
F, =F,_, + F,,_, forn > 2. For each positive integer n, prove that

n+3 Fn+Fn+2 > 1+2<\/ Fn + \/ Fn—|—1 ) )
V Fn+1 Fn+3 Fn + Fn+2

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO,
USA.

Let x = 1/M and y = /I FF+2  The laimed inequality is
Fn Fn+1

successively equivalent to

1 1
Tty > 1+2(—+—),
(Y Yy

(1—5) (x+y) > 1.

It thus suffices to show that the following two inequalities hold:

2 1
1—-— Z P (1)
Ty 3
r+y > 3. (2)
Set A = ;7:1 Then
\/Fn+3 Fn—|—2 + Fn
Ty = .
n+1
. (2Fnt1 + Fp) (Frg1 +2F,)
F, Fn+1

- \/(2A+1) (1+§).
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Hence, (1) is equivalent to each of

\/(2,\+1) (1+§>

2(A—1)2
A

v
w

v
<)

and the latter is clearly true.
By the AM—-GM Inequality,

Fnois(F,+ F,
ety > 2.4 nts(Fnt Frio)
FnFn—|—1

= 2-(‘/(2A+1)(1+§).

For (2), it thus suffices to show that

(2A+1) <1+ 2) > i
A 16’
which is equivalent to
3222 — A+ 32
_—_— > 0’
16\

which is clearly true.

Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,
Messolonghi, Greece; MICHEL BATAILLE, Rouen, France; BRIAN D. BEASLEY, Presbyterian
College, Clinton, SC, USA; CHARLES R. DIMINNIE, Angelo State University, San Angelo,
TX, USA; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer. Two incom-
plete solutions were submitted.

——— | NS

3499% . [2009 : 517, 519] Proposed by Bernardo Recaman, Instituto
Alberto Merani, Bogota, Colombia.

A building has n floors numbered 1 to n and a number of elevators all
of which stop at both floors 1 and =, and possibly other floors. For each n,
find the least number of elevators needed in this building if between any two
floors there is at least one elevator that connects them non-stop.

For example, if n = 6, nine elevators suffice: (1,6), (1,5,6), (1,4,6),
(17 3,4, 6)r (19 2,4,5, 6)r (1? 2,5, 6)7 (17 2, 6)7 (17 3,5, 6): and (19 2,3, 6)'

Solution by George Apostolopoulos, Messolonghi, Greece.

2
The answer is L%J .
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To see that at least this many elevators are needed, consider the set
P = {(w,y)€Z2:1§w,y§n,x§%, y>%}

Any elevator can connect at most one pair of floors in the set P, and the

2
cardinality of P is {%J , so at least this many elevators are needed.

2
To show that L%J elevators suffice, we give a construction in two cases.

Case 1: n = 2k. Here k2 elevators are needed. Let integers ¢ and j be
restricted sothat 1 <7 < kand k + 1 < j < 2k, and describe each elevator
by the tuple of floors it stops at. The elevators are then

( 1,i,7,2k), ifi+j=2k+1,
1,2k +1—73,4,5,2k), ifi+7>2k+1,
(1,4,5,2k +1 —j4,2k), ifi+j<2k+1.

Case 2: n = 2k + 1. Here k2 + k elevators are needed. Let integers ¢ and j
be restricted sothat 1 < i< kand k£ + 1 < j < 2k + 1, and describe each
elevator by the tuple of floors it stops at. The elevators are then

( (1,i,4,2k +1), ifi+j=2k+2,
(1,2k+2—j,i,j,2k+1), 1f’L—|—]>2k—|—2,
(1,%,5,2k+2— 3,2k +1), ifi+j5<2k+2.

This completes the proof.

Also solved by OLIVER GEUPEL, Briihl, NRW, Germany; D.P. MEHENDALE (Dept. of
Electronics) and M.R. MODAK, (formerly of Dept. Mathematics), S. P. College, Pune, India;
MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Springfield, MO, USA; MORTEN
H. NIELSEN, University of Winnipeg, Winnipeg, MB; and PETER Y. WOO, Biola University, La
Mirada, CA, USA. Two incomplete solutions were submitted.

Nt —
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YEAR END FINALE

As a preliminary we refer readers to the notice on p. 486 of this issue regarding
the status of CRUX with MAYHEM.

My term as Editor-in-Chief of CRUX with MAYHEM officially ended last year,
but I have continued a little while longer so that we could bring you this last issue of
volume 36. The backlog of articles has now been cleared, and the journal is ready for
a new editor and a new team.

After careful consideration of my other duties and personal obligations (and
partly also due to the difficulties in finding a new editor), I have decided to step
down shortly after the completion of this volume.

I thank the Managing Editor, JOHAN RUDNICK, and the CMS Publications
Committee Chair, KEN DAVIDSON, for their service this past year. I wish them both
the best of luck and success in nurturing CRUX and having it grow in the future.

I thank the staff at the CMS head office in Ottawa for administering CRUX and
for their perseverance in the face of having to relocate their offices so many times. In
particular I thank DENIS AKOULOV, LAURA ALYEA, DENISE CHARRON, and STEVE
LA ROCQUE. Denis has taken over managing subscriptions from Laura, Denise deals
with matters related to publishing, and Steve has been speedily putting the issues up
on the web. Their work is much appreciated!

I thank JOANNE CANAPE at the University of Calgary, for providing decades
of help in preparing the Olympiad Corner, and LOUIS MASTORAKOS at Wilfrid Lau-
rier University, for help with preparing the CRUX solutions. A big thank you goes
to MATHIAS PIELAHN, the CRUX journal assistant, for efficiently processing large
chunks of the correspondence we have received over the last two years.

I thank TAMI EHRLICH and the folks at Thistle Printing for adding their magic
to the camera-ready PDFs that I send to them. The Pandora font sits bold and heavy,
set among acres of white and purple covers, like a pitch-black bull in a field of clover.

I thank past CRUX editor BRUCE SHAWYER for his kindness and help over the
years, and past CRUX editor BILL SANDS, who is a fountain of knowledge and one of
the sharpest proof readers 1 know. My colleague TERRY VISENTIN has also helped
proof the copy.

I thank JEAN-MARC TERRIER for providing French translations, and for his
uplifting emails. I also thank ROLLAND GAUDET for providing French translations,
and for his very fast turn-around time.

The end of 2010 has seen many board members completing their terms, and
some new faces coming on board.

DZUNG MINH HA of Ryerson University completed his term as Problems
Editor, and I thank him for his precision and strict moderation of the problems.
JONATAN ARONSSON of the University of Manitoba also completed a terms as Prob-
lems Editor, and I thank him for bringing his enthusiasm for problem solving to the
board. IAN VANDERBURGH stepped down as Mayhem Editor, and it was a pleasure
working with him these past three years. (In that regard, 1 thank SHAWN GODIN
for his help with moderating some Mayhem Problems.) ROBERT WOODROW has
completed his term as Olympiad Corner, and I thank him for an incredible 30 years of
support for CRUX and the Corner. My colleague JAMES CURRIE completed his term
as Articles Editor and I thank him for keeping that section organized and CRUX well
stocked with material these last three years.

I welcome CHRIS GRANDISON of Ryerson University and ROB CRAIGEN of
the University of Manitoba on board as Problems Editors in 2011.
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I thank LILY YEN and MOGENS LEMVIG HANSEN for continuing as Skoliad
Editors and for the marvellous job that they do. I thank JEFF HOOPER, for continuing
as Associate Editor, and for his sound advice over my term as Editor-in-Chief. I thank
EDWARD WANG for continuing as Problems Editor this past year despite having re-
tired, and for his wealth of experience and his good advice. NICOLAE STRUNGARU
has done a great job as Problems Editor since coming on board two years ago, and |
admire his skills at solving the problems!

I thank AMAR SODHI for keeping the book reviews section in good order and
for his light-hearted sense of humour, which often was the perfect antidote for the
stress of editing.

I thank CHRIS FISHER for his prodigious output of high quality contributions
to CRUX with MAYHEM which far exceed his duties as Problems Editor, and for his
constant support these past three years.

The Department of Mathematics and Statistics at the University of Winnipeg
made it possible to host CRUX with MAYHEM here in Winnipeg the last three years,
and in that regard I thank our Dean of Science, ROD HANLEY, for the continued
commitment of the University of Winnipeg.

I thank my wife CHARLENE for her support during this past year, for her very
substantial assistance in putting together this last issue, and her great proof reading!

I thank PETER ARPIN for his help with moderating problems during my term.

Most importantly, I sincerely thank all of the readers and wonderful people I
have corresponded with these last three years. The constellation of CRUX is strewn
with stars, and I am happy to have seen it on a clear night. My only regret is that I
have been late with the issues these past three years, and my only hope is that it was
worth the wait.

I wish all of you joy, tranquillity, and the realization of your hopes and aspira-
tions in the New Year.

Vaclav (Vazz) Linek

Crux Mathematicorum
with Mathematical Mayhem

Former Editors / Anciens Rédacteurs: Bruce L.R. Shawyer, James E. Totten, Vaclav Linek

Crux Mathematicorum

Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
Former Editors / Anciens Rédacteurs: G.W. Sands, R.E. Woodrow, Bruce L.R. Shawyer

Mathematical Mayhem

Founding Editors / Rédacteurs-fondateurs: Patrick Surry & Ravi Vakil
Former Editors / Anciens Rédacteurs: Philip Jong, Jeff Higham, ]J.P. Grossman,
Andre Chang, Naoki Sato, Cyrus Hsia, Shawn Godin, Jeff Hooper, lan VanderBurgh

Nt —




570

INDEX TO VOLUME 36, 2010

Contributor Profiles

March Arkady Alt ... 65
May John G. Heuver ............ ... . . .. 193
September VaclavKonecny ..................... il 257
Skoliad Lily Yen and Mogens Lemvig Hansen
February NoO. 122 1
March NO. 123 67
April NO. 124 .. e 129
May NO. 125 .o e 194
September NO. 126 ...t e 259
October NO. 127 353
November NoO. 128 ... ... e 417
December No. 129 .. 481
Mathematical Mayhem Ian VanderBurgh
February 7
March . 72
ADPTil 134
May e 203
SeptemMbEr .. 265
OCtOber o 361
November ... . 423
December ... 487
Mayhem Problems
February MA420-MA25 . e 7
March M426-MA431 .. 72
April MA432-MA37 134
May MA38-MAAL .. e 203
September MA445-MA450 ... ... 265
October MAST-MA56 ... e 361
November  MA4AS7-M4AB2 ... ... i 423
December MA463-M469 ... 487
Mayhem Solutions
February M388-M393 ... 9
March M394-MA00 ... 74
April Totten M1-Totten M10 ............. ... ... ....... 136
May M381, M401-M406 ......... ... ... ... 205
September MA407-M4A12 ... .. 267
October MAT13-MA19 .. e 363
November  M420-M4A25 ... ... i 425
December  M426-M431 ... ... .. 489
Problem of the Month Ian VanderBurgh
FebrUArY o e e 14
March 79
April 145
MaY 212
September ... 271

OCtOb T 369



571

NoOVemMber 430
December 494
Mayhem Articles
Square Triangles, Peter Hurthig ......................c..ccoiu... 432
The Olympiad Corner R.E. Woodrow
February NO. 283 18
March NO. 284 81
April NO. 285 . e 149
May NO. 286 oottt 214
September  NO. 287 ... i 274
October NO. 288 372
November  NO. 289 ... .. 435
December NO. 290 ... 496

Book Reviews Amar Sodhi

When Less is More: Visualizing Basic Inequalities,
by Claudi Alsina and Roger Nelsen

Reviewed by Bruce Shawyer .......................cccoiiiiiiion.. 39
1 Want to be a Mathematician, A Conversation with Paul Halmos,
produced and directed by George Csicsery

Reviewed by Brenda Davison ..............................c.o..... 40
The Mathematics of the Heavens and the Earth: The Early History
of Trigonometry, by Glen Van Brummelen

Reviewed by Menolly Lysne. ....................c..ccoeiviinennnn. 103
Homage to a Pied Puzzler and Mathematical Wizardry for a Gardner,
Edited by Ed Pegg, Jr.; Alan Schoen, and Tom Rodgers

Reviewed by David Ehrens. . ........................cccciieinnn.. 104
Lessons in Play: An Introduction to Combinatorial Game Theory,
by Michael H. Albert, Richard J. Nowakowski, and David Wolfe

Reviewed by Sarah K.M. Aldous . ................................ 105

Mythematics: Solving the Twelve Labors of Hercules,
by Michael Huber

Reviewed by Edward Barbeau . . .................................. 170
Origami Tessellations: Awe-Inspiring Geometric Designs,
by Eric Gjerde, and Ornamental Origami: Exploring 3D Geometric
Designs, by Meenakshi Mukerji

Reviewed by Georg Gunther. ...........................ccoviinn. 237
Mrs. Perkins’s Electric Quilt: And Other Intriguing Stories of
Mathematical Physics, by Paul J. Nahin

Reviewed by Nora Franzova......................cccueuuenennnn... 301
A Taste of Mathematics Volume VIII, Problems
for Mathematics Leagues IlI,
by Peter I. Booth, John Grant McLoughlin, and Bruce L.R. Shawyer

Reviewed by Nancy Clark......................................... 303
Explorations in Geometry, by Bruce Shawyer
Reviewed by ]. Chris Fisher....................................... 391

Who Gave You the Epsilon? & Other Tales of Mathematical History
Edited by Marlow Anderson, Victor Katz, and Robin Wilson
Reviewed by Jeff HOOPEr . .................c.ouiiiiiiiiiiannn.. 450



572

The Princeton Companion to Mathematics, Edited by Timothy Gowers
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Proposers and solvers appearing in the SOLUTIONS section in 2010:

Proposers

Anonymous Proposer 3525, 3566
Yakub N. Aliyev 3505, 3518

Arkady Alt 3556, 3570, 3571, 3585
G.W. Indika Amarasinghe 3590

Sefket Arslanagic 3584, 3592

Vahagn Aslanyan 3555, 3562

Ricardo Barroso Campos 3520

Michel Bataille 3514, 3529, 3532, 3545, 3546, 3553, 3574, 3575, 3591, 3594
Mihaly Bencze 3534, 3561

K.S. Bhanu 3531

Janos Bodnar 3516

Paul Bracken 3500

N. Javier Buitrago Aza 3552

Cao Minh Quang 3526, 3533

Shai Covo 3586

M.N. Deshpande 3531

Max Diaz 3565

José Luis Diaz-Barrero 3502, 3515, 3539, 3547, 3572
A.A. Dzhumadil'daeva 3573

Ovidiu Furdui 3512, 3530, 3550, 3551, 3578, 3580, 3600
Samuel Gomez Moreno 3536

Johan Gunardi 3558, 3597
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Walther Janous 3535
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Mikhail Kochetov 3563

Vaclav Koneény 3517, 3589

Panagiote Ligouras 3582

Jian Liu 3569

Thanos Magkos 3559

Dorin Marghidanu 3521, 3522
Marian Marinescu 3537
Dragoljub Milo3Sevi¢ 3588
Cristinel Mortici 3599

Nguyen Duy Khanh 3519

Victor Oxman 3538

Pedro Henrique O. Pantoja 3506
Paolo Perfetti 3557, 3583, 3596
Pham Huu Duc 3507, 3554

Pham Van Thuan 3511, 3548, 3560, 3564
Cosmin Pohoatd 3510, 3542
Pantelimon George Popescu 3539
Mariia Rozhkova 3504

Josep Rubié-Massegii 3515
Sergey Sadov 3563

Mehmet Sahin 3543, 3544, 3576, 3577
Bill Sands 3595

Hassan A. ShahAli 3501, 3513
Bruce Shawyer 3503

Slavko Simic 3523

D.). Smeenk 3540, 3541

Zhi-min Song 3581

Albert Stadler 3567, 3568

Daryl Tingley 3593

Peter Y. Woo 3579

Li Yin 3581

Katsuhiro Yokota 3528

Zhang Yun 3598

Faruk Zejnulahi 3592

Titu Zvonaru 3524

Featured Solvers — Individuals

Anonymous Solver 3449

Arkady Alt 3421, 3423, 3443, 3450, 3459, 3462, 3470

Miguel Amengual Covas 3478

George Apostolopoulos 3410, 3453, 3454, 3457, 3460, 3465, 3479, 3487,
3489, 3490(b), 3491, 3495, 3499

Alberto Arenas Gomez 3406

Sefket Arslanagic 3432, TOTTEN-07

Roy Barbara 3416, 3428, 3452, 3497

Edward J. Barbeau 3477

Michel Bataille 3403, 3406, 3408, 3410, 3414, 3418, 3429, 3446, TOTTEN-
05, 3473, 3481, 3482, 3494

Cao Minh Quang 3420, 3454

Chip Curtis 3409, 3411, TOTTEN-02, TOTTEN-09, 3473, 3498

Paul Deiermann 3430

Charles R. Diminnie 3431

Dung Nguyen Manh 3402, 3412, 3422, 3448, 3450

1. Chris Fisher TOTTEN-05

Ovidiu Furdui TOTTEN-03

Francisco Javier Garcia Capitan 3467

Oliver Geupel 3404, 3405, 3413, 3419(a), 3420, 3424, 3427, 3428, 3429,
3433, 3444, TOTTEN-04, TOTTEN-06, TOTTEN-10, TOTTEN-12, 3468,
3481, 3483, 3484, 3490(a)

John Hawkins 3440

Richard 1. Hess 3407, 3458

John G. Heuver TOTTEN-01, 3439, 3464
Joe Howard 3402, 3453, 3475

Peter Hurthig 3445

Salvatore Ingala 3477

Walther Janous TOTTEN-07

Vaclav Konecny 3434

Kee-Wai Lau 3410, 3455, 3469, 3496
Tom Leong 3458

Thanos Magkos 3448, 3450, 3462, 3466
Cristinel Mortici 3472

Paolo Perfetti 3486, 3488, 3495

Joel Schlosberg 3417, 3430, 3463, 3468, 3469
Harry Sedinger 3426

D.). Smeenk 3496

Albert Stadler 3410, 3425, 3435, 3438, 3442, TOTTEN-11, 3451, 3458, 3489
David Stone 3440

Edmund Swylan 3434, TOTTEN-08, 3471
Panos E. Tsaoussoglou 3450

Vo Quoc Ba Can 3419(a)

Peter Y. Woo 3401, 3410, 3456, 3476
Titu Zvonaru 3437

Featured Solvers — Groups

Missouri State University Problem Solving Group 3436, 3441
Hunedoara Problem Solving Group 3447
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Anonymous Solver 3433

Mohammed Aassila 3459

Zafar Ahmed 3459

Yakub N. Aliyev 3424
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TOTTEN-11, 3468, 3469, 3473(a), 3475, 3477, 3478, 3479, 3496

Edward J. Barbeau 3479

Catalin Barbu 3471

Ricardo Barroso Campos 3402, 3403, 3426, 3429, 3436, 3439, 3463
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Jesi Bayless 3452
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Francisco Bellot Rosado 3439
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Bao Changjin 3479

Chip Curtis 3402, 3406, 3407, 3408, 3410, 3412, 3415, 3416, 3418, 3420,
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3447, 3450, TOTTEN-08, TOTTEN-11(a), 3451, 3452, 3453, 3454, 3455,
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Paul Deiermann 3416

Calvin Deng 3479

Joseph DeVincentis 3468

José Luis Diaz-Barrero 3406, 3409, 3418, 3427, 3448, 3451, 3465, 3482,
3489, 3498

Charles R. Diminnie 3402, 3417, 3420, 3426, 3430, 3431, 3452, 3477, 3478,
3489, 3496, 3498

Marian Dincd 3467, 3471

Dung Nguyen Manh 3410, 3415, 3421, 3443, 3444, 3445, 3478, 3480
Keith Ekblaw 3469

Aaron Essner 3478

Mark Farrenburg 3478

Oleh Faynshteyn TOTTEN-11(a), 3475, 3478, 3481, 3485

Hidetoshi Fukugawa 3440

Ovidiu Furdui TOTTEN-02, TOTTEN-03, 3465, 3469, 3470

Francisco Javier Garcia Capitan 3401, 3410, 3418, TOTTEN-04

Oliver Geupel 3401, 3402, 3403, 3406, 3407, 3409, 3410, 3411, 3412,
3414, 3415, 3416, 3417, 3418, 3421, 3422, 3426, 3430, 3431, 3432, 3434,
3435, 3436, 3437, 3439, 3440, 3441, 3442, 3443, 3445, 3446, 3447, 3448,
3450, TOTTEN-01, TOTTEN-02, TOTTEN-03, TOTTEN-05, TOTTEN-08,
TOTTEN-09, TOTTEN-11(a), 3451, 3452, 3453, 3454, 3455, 3456, 3457,
3458, 3459, 3460, 3462, 3463, 3464, 3465, 3466, 3467, 3469, 3470, 3471,
3472, 3473, 3475, 3476, 3477, 3478, 3479, 3482, 3485, 3486, 3488, 3489,
3490(b), 3491, 3495, 3496, 3498, 3499

Douglass L. Grant 3452

Miquel Grau-Sanchez 3406, 3448

Luke E. Harmon 3478

John Hawkins 3426, 3428, 3436, 3438

José Hernandez Santiago 3426

Richard 1. Hess 3402, 3406, 3416, 3420, 3422, 3426, 3435, 3436, 3438,
3440, 3441, 3442, 3452, 3465, 3469, 3470, 3473, 3478

John G. Heuver 3402, 3403, 3414, 3436, 3443, 3452, 3463, 3475, 3496
Richard Hoshino TOTTEN-08, TOTTEN-09, 3454

Joe Howard 3406, 3410, 3425, 3443, 3444, 3445, 3450, TOTTEN-11(a),
3452, 3454, 3473(a), 3478, 3481, 3483, 3485, 3496, 3497

Peter Hurthig 3440, 3444

Salvatore Ingala 3454

Bianca-Teodora lordache 3480

Walther Janous 3402, 3404, 3406, 3407, 3410, 3411, 3412, 3417, 3420,
3422, 3426, 3427, 3430, 3432, 3433, 3435, 3436, 3437, 3440, 3442, 3443,
3444, 3445, 3446, 3447, 3448, 3450, TOTTEN-01, TOTTEN-04, TOTTEN-
08, TOTTEN-09, TOTTEN-10, TOTTEN-11(a), TOTTEN-12, 3451, 3452,
3453, 3454, 3455, 3457, 3458, 3460, 3461, 3462, 3463, 3464, 3465, 3467,
3469, 3470, 3471, 3472, 3473(a), 3478, 3479, 3480, 3481, 3482, 3483, 3486,
3488, 3489, 3491, 3495, 3496, 3497, 3498

Iyoung Michelle Jung 3442

Geoffrey A. Kandall 3475

Sung Soo Kim 3442

Gerhard Kirchner 3467

Vaclav Konegny 3401, 3402, 3429, 3436, 3440, 3441, 3475, 3476, 3497
Kee-Wai Lau 3402, 3406, 3407, 3408, 3411, 3412, 3422, 3426, 3432, 3436,
3443, 3444, 3445, 3447, 3450, 3453, 3454, 3465, 3466, 3472, 3473, 3478,
3481, 3497

Tuan Le 3466, 3467

Tom Leong TOTTEN-04, TOTTEN-06, TOTTEN-09, 3452, 3457, 3465
Kathleen E. Lewis 3407, 3440

Joshua Long 3452

Sotiris Louridas 3462

Cezar Lupu 3415

Phil McCartney 3478, 3485

Thanos Magkos 3410, 3426, 3436, 3443, 3444, 3445(a), TOTTEN-08,
TOTTEN-11(a), 3453, 3454, 3461, 3470, 3471

Salem Malikic 3412, 3420, 3421, 3422, 3432, 3436, 3443, 3446, 3450, 3497
David E. Manes 3406, 3407, 3412

Dorin Marghidanu 3491

D.P. Mehendale 3499

Georges Melki 3440

Dragoljub MiloSevié 3435, 3436, 3443, 3445, 3450, 3478, 3485

M.R. Modak 3402, 3406, 3407, 3408, 3414, 3415, 3416, 3420, 3464, 3475,
3476, 3477, 3478, 3479, 3483, 3499

Cristinel Mortici 3402, 3426, 3435, 3436, 3439, 3440, 3445, 3446, 3447,
3450, 3465, 3467, 3469, 3470, 3471, 3475, 3479, 3480

Troy Mulholland 3426

Morten H. Nielsen 3499

José H. Nieto 3402, 3406, 3407

Moubinool Omarjee 3469, 3470

Victor Pambuccian 3497

Pedro Henrique O. Pantoja 3452, 3467, 3469

Michael Parmenter 3426

Paolo Perfetti 3354, 3466, 3467, 3469, 3470, 3473, 3478, 3479, 3480, 3489,
3491

Pham Huu Duc 3437, 3486, 3488

Cosmin Pohoata 3495

Pantelimon George Popescu 3418, TOTTEN-01

John Postl 3452

Bernardo Recaman 3468

Daniel Reisz 3440

Juan-Bosco Romero Marquez 3402, TOTTEN-04, 3469, 3470, 3478
Xavier Ros 3465, 3472

Michael Rozenberg 3490(b)

Josep Rubié-Massegii 3482

Peter Saltzman 3468

Bill Sands TOTTEN-06

Joel Schlosherg 3402, 3406, 3407, 3416, 3420, 3426, 3431, 3433, 3435,
34306, 3439, 3440, 3446, 3447, 3448, TOTTEN-09, 3452, 3464, 3470, 3475,
3478, 3479

Jonathan Schneider 3479

Mosca Sebastiano 3439

Bob Serkey 3402, 3478

Bruce Shawyer 3434, 3458

Slavko Simic 3408

Tigran Sloyan 3401

D.). Smeenk 3403, 3411, 3414, 3439, TOTTEN-10, 3452

Digby Smith 3407, 3426

Albert Stadler 3401, 3402, 3405, 3406, 3407, 3408, 3411, 3412, 3413,
3415, 3416, 3417, 3418, 3420, 3422, 3423, 3426, 3428, 3430, 3431,
3433, 3434, 3436, 3437, 3440, 3441, 3443, 3444, 3445, 3440, 3447, 3448,
3449, TOTTEN-02, TOTTEN-03, TOTTEN-04, TOTTEN-06, TOTTEN-09,
TOTTEN-10, 3452, 3453, 3454, 3457, 3465, 3469, 3470, 3473(a), 3477,
3478, 3479, 3482, 3485, 3486, 3487, 3488, 3494, 3496, 3497, 3498

David R. Stone 3426, 3428, 3436, 3438

Ercole Suppa 3439

Edmund Swylan 3420, 3424, 3426, 3429, 3430, 3440, 3441, 3452, 3458,
3460, 3463, 3475, 3478, 3496, 3497

Vasile Teodorovici 3402, 3407, 3452

Tran Quang Hung 3460, 3461

Salvatore Tringali 3426

Panos E. Tsaoussoglou 3440, 3443, 3445, 3452, 3454, 3478, 3481, 3485,
3496(a)

George Tsintsifas 3497

Jan Verster 3496

Vo Quoc Ba Can 3413, 3437

Stan Wagon 3443, 3444, 3445(b), 3468, 3487, 3496

Haohao Wang 3452, 3478, 3479

Wei-Dong 3450

Luke Westbrook 3478

Jerzy Wojdylo 3452, 3478, 3479

Peter Y. Woo 3402, 3403, 3404, 3405, 3407, 3411, 3412, 3414, 3415,
3420, 3421, 3422, 3423, 3439, 3440, 3441, 3445, 3447, 3450, TOTTEN-
01, TOTTEN-05, TOTTEN-10, TOTTEN-12, 3452, 3453, 3455, 3459, 3460,
3461, 3463, 3464, 3467, 3460, 3470, 3471, 3475, 3478, 3480, 3481, 3483,
3496(a), 3497, 3499

Konstantine Zelator 3402, 3411, 3426, 3436, 3452, 3464, 3475

Titu Zvonaru 3402, 3410, 3411, 3414, 3415, 3420, 3422, 3426, 3435, 3436,
3440, 3443, 3444, 3445, 3450, TOTTEN-08, 3459, 3461, 3464, 3471, 3475,
3478, 3479, 3485, 3495, 3496

Other Solvers — Groups

Hunedoara Problem Solving Group 3439, 3440, 3441, 3443, 3444, 3445,
3450

Missouri State University Problem Solving Group 3426, 3428, 3431, 3440,
3442, 3499
Skidmore College Problem Solving Group 3458, 3478



