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Preface

Functions are used to describe natural processes and forms. By means of finite or

infinite operations, we may build many types of ‘derived’ functions such as the sum

of two functions, the composition of two functions, the derivative function of a given

function, the power series functions, etc.

Yet a large number of natural processes and forms are not explicitly given by

nature. Instead, they are ‘implicitly defined’ by the laws of nature. Therefore

we have functional equations (or more generally relations) involving our unknown

functions and their derived functions.

When we are given one such functional equation as a mathematical model, it

is important to try to find some or all solutions, since they may be used for pre-

diction, estimation and control, or for suggestion of alternate formulation of the

original physical model. In this book, we are interested in finding solutions that are

‘polynomials of infinite order’, or more precisely, power series functions.

There are many reasons for trying to find such solutions. First of all, it is

sometimes ‘obvious’ from experimental observations that we are facing with natural

processes and forms that can be described by ‘smooth’ functions such as power series

functions. Second, power series functions are basically ‘generated by’ sequences of

numbers, therefore, they can easily be manipulated, either directly, or indirectly

through manipulations of sequences. Indeed, finding power series solutions are not

more complicated than solving recurrence relations or difference equations. Solving

the latter equations may also be difficult, but in most cases, we can ‘calculate’ them

by means of modern digital devices equipped with numerical or symbolic packages!

Third, once formal power series solutions are found, we are left with the convergence

or stability problem. This is a more complicated problem which is not completely

solved. Fortunately, there are now several standard techniques which have been

proven useful.

In this book, basic tools that can be used to handle power series functions and

analytic functions will be given. They are then applied to functional equations in

which derived functions such as the derivatives, iterates and compositions of the un-

known functions are involved. Although there are numerous functional equations in

the literature, our main objective is to show by introductory examples how analytic

v
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solutions can be derived in relatively easy manners.

To accomplish our objective, we keep in mind that this book should be suitable

for the senior and first graduate students as well as anyone who is interested in a

quick introduction to the frontier of related research. Only basic second year ad-

vanced engineering mathematics such as the theory of a complex variable and the

theory of ordinary differential equations are required, and a large body of seem-

ingly unrelated knowledge in the literature is presented in an integrated and unified

manner.

A synopsis of the contents of the various chapters follows.

• The book begins with an elementary example in Calculus for motivation.

Basic definitions, symbols and results are then introduced which will be

used throughout the book.

• In Chapter 2, various types of sequences are introduced. Common opera-

tions among sequences are then presented. In particular, scalar, term by

term, convolution and composition products and their properties are dis-

cussed in detail. Algebraic derivation is also introduced.

• Power series functions are treated as generating functions of sequences and

their relations are fully discussed. Stability properties are discussed and

Cauchy’s majorant method is introduced. The Siegel’s lemma is an impor-

tant tool in deriving majornats.

• In Chapter 4, the basic implicit function theorem for analytic functions is

proved by Newton’s binomial expansion theorem. Schröder and Poincaré

type implicit functions together with several others are discussed. Applica-

tion of the implicit theorems for finding power series solutions of polynomial

or rational type functional equations are illustrated.

• In Chapter 5 analytic solutions for several classic ordinary differential equa-

tions or systems are derived. The Cauchy-Kowalewski existence theorem

for partial differential equations is treated as an application. Then several

selected functional differential equations are discussed and their analytic

solutions found.

• In Chapter 6 analytic solutions for functional equations involving iter-

ates of the unknown functions (or more general composition with other

known functions) are treated. These equations are distinguished by whether

derivatives of the unknown functions are involved. The last section is con-

cerned with the existence of power solutions.

Some of the material in this book is based on classical theory of analytic func-

tions, and some on theory of functional equations. However, a large number of

material is based on recent research works that have been carried out by us and a

number of friends and graduate students during the last ten years.

Our thanks go to J. G. Si, X. P. Wang, T. T. Lu and J. J. Lin for their hard

works and comments. We would also like to remark that without the indirect help
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of many other people, this book would never have appeared.

We tried our best to eliminate any errors. If there are any that have escaped our

attention, your comments will be much appreciated. We have also tried our best

to rewrite all the material that we draw from various sources and cite them in our

notes sections. We beg your pardon if there are still similarities left unattended or

if there are any original sources which we have missed.

Sui Sun Cheng and Wenrong Li
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Chapter 1

Prologue

1.1 An Example

As an elementary but motivating example, let y(t) be the cash at hand of a corpo-

ration at time t ≥ 0. Suppose the corporation invests its cash into a project which

guarantees a positive interest rate r so that

dy

dt
= ry, t ≥ 0. (1.1)

What is the cash at hand of the corporation at any time t > 0 given that y(0) = 1?

One way to solve this problem in elementary analysis is to assume that y = y(t)

is a “power series function” of the form

y(t) = a0 + a1t+ a2t
2 + a3t

3 + · · · ,
then we have

a0 = y(0) = 1.

By formally operating the power series y(t) term by term, we further have

y′(t) = a1 + 2a2t+ 3a3t
2 + · · · ,

and

ry(t) = ra0 + ra1t+ ra2t
2 + · · · .

In view of (1.1), we see that

a1 + 2a2t+ 3a3t
2 + · · · ≡ ra0 + ra1t+ ra2t

2 + · · · .
By comparing coefficients on both sides, we may proceed formally and write

a1 = r, 2a2 = ra1, 3a3 = ra2, ...,

This yields

a1 = r, a2 =
r2

2
, a3 =

r3

3 · 2 , ..., an =
rn

n!
, ...,

so that

y(t) = 1 + rt+
r2

2!
t2 +

r3

3!
t3 + · · · , (1.2)

1
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which is a “formal power series function”.

In order that the formal solution (1.2) is a true solution, we need either to

show that y(t) is meaningful on [0,∞) and that the operations employed above are

legitimate, or, we may show that y(t) is equal to some previously known function

and show that this function satisfies (1.1) and y(0) = 1 directly. If these can be

done, then a power series solution exists and is given by (1.2).

Such solutions often reveal important quantitative as well as qualitative infor-

mation which can help us understand the complex behavior of the physical systems

represented by these equations.

In this book, we intend to provide some elementary properties of power series

functions and its applications to finding solutions of equations involving unknown

functions and/or their associated functions such as their iterates and derivatives.

1.2 Basic Definitions

Basic concepts from real and complex analysis and the theory of linear algebra will

be assumed in this book. For the sake of completeness, we will, however, briefly

go through some of these concepts and their related information. We will also

introduce here some common notations and conventions which will be used in this

book.

First of all, sums and products of a set of numbers are common. However, empty

sums or products may be encountered. In such cases, we will adopt the convention

that an empty sum is taken to be zero, while an empty product will be taken as

one.

The union of two sets A and B will be denoted by A ∪ B or A + B, their

intersection byA∩B orA·B, their difference byA\B, and their Cartesian product by

A×B. The notations A2, A3, ..., stand for the Cartesian products A×A, A×A×A, ...,
respectively. It is also natural to set A1 = A. The number of elements in a set Ω

will be denoted by |Ω| .
The set of real numbers will be denoted by R, the set of all complex numbers

by C, the set of integers by Z, the set of positive integers by Z+, and the set of

nonnegative integers by N. We will also use F to denote either R or C.

It is often convenient to extend the real number system by the addition of

two elements, ∞ (which may also be written as +∞) and −∞. This enlarged set

[−∞,∞] is called the set of extended real numbers. In addition to the usual oper-

ations involving the real numbers, we will also require −∞ < x < ∞, x + ∞ = ∞,

x−∞ = −∞ and x/∞ = 0 for x ∈ R; x ·∞ = ∞ and x ·−∞ = −∞ for x > 0; and

∞+∞ = ∞, −∞−∞ = −∞, ∞ · (±∞) = ±∞, −∞ · (±∞) = ∓∞, 0 · ∞ = 0.

In the sequel, the equation

1

u
= v
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will be met where v ∈ [0,∞]. The solution u will be taken as ∞ if v = 0 and as 0 if

v = ∞.

The imaginary number
√
−1 in C will be denoted by i. The symbols 0! and 00

will be taken as 1. Given a complex number z and an integer n, the n-th power of

z is defined by z0 = 1, zn+1 = znz if n ≥ 0 and z−n = (z−1)n if z 6= 0 and n > 0.

Recall also that for any complex number z = x + iy where x, y ∈ R, its real

part is R(z) = x, its imaginary part is I(z) = y, its conjugate is z∗ = x − iy and

its modulus or absolute value is |z| =
(
x2 + y2

)1/2
. We have |z + w| ≤ |z| + |w| ,

|zw| = |z| |w| and (zw)∗ = z∗w∗ for any z, w ∈ C.

Given a nonzero z = x + iy ∈ C, if we let θ be the angle measured from the

positive x-axis to the line segment joining the origin and the point (x, y), then we

see that

z = |z| (cos θ + i sin θ).

We define an argument of the nonzero z to be any angle t ∈ R (which may or may

not lie inside [0, 2π)) for which

z = |z| (cos t+ i sin t),

and we write arg z = t. A concrete choice of arg z is made by defining arg0 z to be

that number t0, called the principal argument, in the range (−π, π] such that

z = |z| (cos t0 + i sin t0) .

We may then write

arg0(zw) = arg0 z + arg0 w (mod 2π).

It is also easy to show that for any z 6= 0, given any positive integer n, there

are exactly n distinct complex numbers z0, z1, ..., zn−1 such that zni = z for each

i = 0, 1, ..., n − 1. The numbers z0, z1, ..., zn−1 are called the n-th roots of z. The

geometric picture of the n-th roots is very simple: they lie on the circle centered

at the origin of radius |z|1/n and are equally spaced on this circle with one of the

roots having polar angle 1
n arg0 z.

Given a real or complex number α, and any real or complex valued functions f

and g, we define −f, αf, f · g, and f + g by (−f)(z) = −f(z), (αf)(z) = αf(z),

(f · g)(z) = f(z)g(z) and (f + g)(z) = f(z) + g(z) as usual, while |f | is defined by

|f | (z) = |f(z)| . If no confusion is caused, the product f · g is also denoted by fg.

The zeroth power of a function, denoted by f 0, is defined by f0(z) = 1, while

the n-th power, denoted by fn, is defined by fn(z) = (f(z))n.

The composition of f and g is denoted by f ◦ g. The iterates of f are formally

defined by f [0](z) = z, f [1](z) = f(z), f [2](z) = f(f(z)), ..., and f [n] is called the

n-th iterate of f. Note that f [n] may not be defined if the range of f [n−1] does not

lie inside the domain of f.

The n-th derivative of a function is defined by

f ′(z) = f (1)(z) = lim
w→0

f(z + w) − f(z)

w
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and f (k)(z) = (f (k−1))′(z) for k ≥ 2. As is customary, we will also define f (0)(z) =

f(z).

Example 1.1. Recall that the identity function f : F → F defined by f(t) = t for

each t ∈ F is a polynomial function, so is any constant function g : F → F defined

by g(t) = c ∈ F. Any finite addition or multiplication of polynomial functions is

also a polynomial function. For instance,

p(t) = c0 + c1t+ c2t
2 + · · · + cmt

m, c0, ..., cm ∈ F,

is a polynomial. In case a polynomial is obtained by finite addition or multiplication

of the identity function and nonnegative (positive) constant functions, it is called a

polynomial with nonnegative (positive) coefficients.

Example 1.2. The previous example defines polynomials with real or complex

independent variable. Polynomials with a function as the independent variable can

also be defined. More specifically, let f be a complex valued function. Given a

polynomial p(t), formally ‘replacing’ each ti by the i-th power f i of f will result in

a polynomial in f , which is denoted by p(f). For instance, given

p(t) = c0 + c1t+ c2t
2 + · · · + cmt

m, c0, ..., cm ∈ F,

we have

p(f) = c0f
0 + c1f

1 + c2f
2 + · · · + cmf

m, c0, ..., cm ∈ F.

Note that p(f) is a function such that

p(f)(z) = c0f
0(z) + c1f

1(z) + c2f
2(z) + · · · + cmf

m(z)

= c0 + c1f(z) + c2 (f(z))
2

+ · · · + cm (f(z))
m
.

Another way to generate polynomials in f is to formally replace each ti by the i-th

iterate f [i] of f , resulting in p[f ]. For instance, let p be the same polynomial above,

then

p[f ] = c0f
[0] + c1f

[1] + · · · + cmf
[m], c0, ..., cm ∈ F.

As an example, let M be an n by n complex matrix, and f(u) = Mu where u ∈ Cn,

then f [0]u = u, f [k](u) = Mku for k = 1, 2, ...,m. Hence

p[f ] = c0I + c1M + c2M
2 + · · · + cmM

m.

Example 1.3. Polynomials in several real or complex variables can also be de-

fined in similar manners. More specifically, for each i = 1, ..., κ, let the projection

function fi : Fκ → F be defined by fi(t1, t2, ..., tκ) = ti. Projection functions and

constant functions are polynomials. Any finite addition or multiplication of poly-

nomial functions is also a polynomial function. For instance,

p(t1, t2) = c00 + c10t1 + c01t2 + c20t
2
1 + c11t1t2 + c02t

2
2 + · · · + c0mt

m
2

is a polynomial in (t1, t2).
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Example 1.4. The quotient of two polynomials is a rational function and is defined

whenever its denominator is not zero. Any finite linear combination, products or

quotients of rational functions are also rational functions.

Example 1.5. The exponential function exp of a complex variable is defined by

exp(z) = ex(cos y + i sin y)

for each z = x+iy ∈ C. The value exp(z) is also written as ez. Note that ex = exp(x)

for x ∈ R and eiy = cos y + i sin y for y ∈ R. Furthermore, the function exp is 2πi-

periodic and maps the strip {z ∈ C| − π < I(z) ≤ π} one-to-one onto C\{0}.

Example 1.6. The logarithm function of a real variable is

ln(x) =

∫ x

1

1

t
dt, x > 0,

and the exponential function exp of a real variable is defined to be the inverse

function of log. Thus y = exp(x) if x = ln(y). If z is a nonzero complex number,

then there exist complex numbers w such that ew = z. We define log z to be any

number w such that ew = z. Therefore

log z = ln |z| + i arg z, z 6= 0.

Note that one such w is the complex number w = ln (|z|) + i arg0(z) and any other

such w must have the form

ln (|z|) + i arg0(z) + 2πni, n ∈ Z.

The complex number ln (|z|) + i arg0(z) will be called the principal logarithm of z

and denoted by log0(z). Thus the function log0 defined on {z ∈ C| − π < I(z) ≤ π}
is the inverse of exp.

Example 1.7. If z, w ∈ C and z 6= 0, we define

zw = ew log0(z).

Note that if n ∈ Z, then z0 = e0 = 1 and zn+1 = e(n+1) log0(z) = en log(z)elog0(z) =

znz so that our definition here is compatible with the definition of the n-th power

of z. Also, since

(z1/n)n =
(
e

1
n

log0(z)
)n

= elog0(z) = z, z 6= 0, n ∈ Z+,

z1/n is an n-th root of z.

Example 1.8. Some elementary functions are defined in terms of the exponential

function:

sin z =
1

2i

{
eiz − e−iz

}
, cos z =

1

2

{
eiz + e−iz

}
,

sinh z =
1

2

{
ez − e−z

}
, cosh z =

1

2

{
ez + e−z

}
.

Note that when z is real, these functions coincide with the usual definitions of cosine,

sine, hyperbolic sine and hyperbolic cosine. Basic properties of these functions can

be found in standard text books.
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A (univariate) sequence is a function defined over a set S of (usually consec-

utive) integers, and can be denoted by {uk}k∈S or {u(k)}k∈S . When S is finite

and, say, equals {1, 2, ..., n}, a sequence is also denoted by {u1, ..., un}. Bivariate or

multivariate sequences are functions defined on subsets Ω of Z2 or Zκ respectively.

There are many different ways to denote bivariate or double sequences. One way is

to denote a bivariate sequence by {ui,j}. However, we may also denote it by {uij}
if no confusion is caused. Another way is by {u(j)

i }. In general, when the inde-

pendent variables have different interpretations, the latter notation is employed.

For instance, u
(t)
i may represent the temperature of a mass placed at the integral

position i and in the time period t. For multivariate sequences, it is cumbersome

to denote them by writing {ui,j,...,k}. For this reason, we may employ the following

device. First, an element in a subset of Ω ⊆ Zκ has the form v = (v1, v2, ..., vκ).

Therefore, we may write {uv}v∈Ω for a multivariate sequence, and v is naturally

called a multi-index . When v is treated as a multi-index, it will be convenient to

use the standard notation |v|1 = v1 + v2 + · · · + vκ, and v! = v1!v2! · · · vκ!. |v|1 is

usually called the order of v.

It will be necessary to list the components of a sequence in a linear order. For

this purpose, we will order the multi-indices in a linear fashion. We say that a

mapping Ψ : N → Ω ⊆ Zκ is an ordering for Ω if Ψ is one to one and onto. For

example, let Ω = N×N, a well known ordering for Ω is the mapping Ψ̃ defined by

Ψ̃(0) = (0, 0), Ψ̃(1) = (1, 0), Ψ̃(2) = (0, 1), Ψ̃(3) = (2, 0),

Ψ̃(4) = (1, 1), Ψ̃(5) = (0, 2), ...
(1.3)

In terms of an ordering Ψ for Ω, a rearrangement or enumeration of a multivari-

ate sequence {fv}v∈Ω is the sequence {gi}i∈N
such that gi = fΨ(i).

The notation lΩ will denote the set of all real or complex sequences defined

on Ω. In particular, lN denotes the set of all real or complex sequences of the form

{fk}k∈N
. We will call fk the k-th term of the sequence f. There are several common

sequences in lN which will be useful. First, for each m ∈ N, ~〈m〉 ∈ lN denotes the

Dirac sequence defined by

~
〈m〉
k =

{
1 k = m

0 k 6= m
,

and H(m) ∈ lN denotes the jump (or Heaviside) sequence defined by

H
(m)
k =

{
0 0 ≤ k < m

1 k ≥ m
.

Let α ∈ F, the sequence {α, 0, 0, ...} will be denoted by α and is called a scalar

sequence, and the geometric sequence
{
1, α, α2, α3, ...

}
will be denoted by α. Thus

zn = zn for n ∈ N. The sequence {0, 0, ...} can be denoted by 0 (but it is also com-

monly denoted by 0), and {1, 0, 0, ...} can be denoted by 1 or ~〈0〉. The ‘summation’

sequence {1, 1, 1, ...} will be denoted by σ which is equal to H(0), and the ‘difference’

sequence {1,−1, 0, 0, ...} by δ. The sequence {1/0!, 1/1!, 1/2!, 1/3!, 1/4!, ...} will be
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denoted by $. It is also convenient to write ~ instead of ~〈1〉 and this practice will

be assumed for similar situations in the sequel.

For any z ∈ F, the sequence bzc ∈ lN is defined by

bzc = {1, z, z(z− 1), z(z − 1)(z − 2), ...} .

Thus bzc0 = 1 and

bzcm = z(z − 1)(z − 2) · · · (z −m+ 1), m ∈ Z+.

Note that bncn = n!, b0c0 = 0! = 1, and 0 = bncn+1 = bncn+2 = · · ·
for n ∈ N. Therefore, the sequence {1,−3, 3,−1, 0, 0, ...} can be written as

{(−1)k b3ck /k!}k∈N, and the sequence {1, 2, 3, ...} as {bk + 1c1}k∈N.

For any z ∈ F, the binomial sequence C(z) ∈ lN is defined by

C(z) = bzc ·$ =

{
1

0!
,
z

1!
,
z(z − 1)

2!
,
z(z − 1)(z − 2)

3!
, ...

}

so that C
(z)
0 = 1 and

C(z)
m =

z(z − 1) · · · (z −m− 1)

m!
, m ∈ N, z ∈ C.

In particular, for i, j ∈ N such that j ≤ i, C
(i)
j is the usual binomial coefficient.

A real function (including a real sequence, a real matrix, etc.) f is said to be

nonnegative if f(x) ≥ 0 for each x in its domain of definition. In such a case, we

write f ≥ 0. Similarly, given two real functions with a common domain of definition

Ω, we say that f is less than or equal to g if f(x) ≤ g(x) for each x ∈ Ω. The

corresponding notation is f ≤ g. Other monotonicity concepts for real functions

(such as f < g, f > 0, etc.) are similarly defined.

The product set Fκ, where κ is a positive integer, is assumed to be equipped

with the usual vector operations and the usual Euclidean topology. In particular,

the distance between two points w = (w1, ..., wκ) and z = (z1, ..., zκ) in Fκ is defined

by

|w − z| =
{
|w1 − z1|2 + · · · + |wκ − zκ|2

}1/2

.

If r > 0 and c = (c1, ..., cκ) ∈ Fκ, we will set

B(c; r) = {z ∈ Fκ| |z − c| < r}

B̄(c; r) = {z ∈ Fκ| |z − c| ≤ r} ,

and

B′(c; r) = {z ∈ Fκ| 0 < |z − c| < r} .

They are usually called the open ball, the closed ball and the punctured ball respec-

tively with center at c and radius r. It is well known that the set of all open balls

can be used to generate the Euclidean topology for Fκ. In particular, a subset Ω of
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Fκ is said to be open if every point in Ω is the center of an open ball lying inside

Ω.

Besides the open balls, polycylinders are also natural in future considerations.

By a polycylinder of polyradius ρ = (ρ1, ρ2, ..., ρκ), where ρ1, ..., ρκ > 0, and poly-

center w = (w1, w2, ..., wκ) ∈ Fκ, we mean the set

{(z1, ..., zκ) ∈ Fκ| |zj − wj | < ρj , 1 ≤ j ≤ κ} .

We remark that the boundary of the above polycylinder is described by the set of

inequalities

|zj − wj | ≤ ρj , 1 ≤ j ≤ κ,

whereby at least one equality must hold. Thus for κ = 2, the boundary consists of

those (z1, z2) for which

|z1 − w1| = ρ1, |z2 − d2| ≤ ρ2,

and those for which

|z1 − w1| ≤ ρ1, |z2 − d2| = ρ2.

A subset Ω of Fκ is said to be a domain if it is nonempty, open and pathwise

connected (i.e., a nonempty open set such that any two points of which can be

joined by a path lying in the set). We remark that a path in Ω from w to z is a

continuous function γ from a real interval [s, t] into Ω with γ(s) = w and γ(t) = z.

In this case, w and z are the initial and final points of the path.

In terms of the distance d and the open balls, we can then define as usual

limits and continuity for complex-valued functions f = f(z1, z2, ..., zκ) defined on

a domain Ω or a more general subset of Fκ, we can also define partial derivatives,

etc. More precisely, the limit

lim
h→0

f(c1, ..., ci−1, ci + h, ci+1, ..., cκ) − f(c1, ..., cκ)

h
,

if it exists, is called the i-th partial derivative of f at (c1, ..., cκ) and is denoted by

∂f(c1, ..., cκ)

∂zi
.

Higher partial derivatives of the form

∂v1

∂zv11

∂v2

∂zv22

· · · ∂
vκ

∂zvκ
κ
f(c1, ..., cκ)

are defined in recursive manners. Multi-indices can also be used to simplify such

notations. Such simplifications are convenient and can be seen in our later sections.

We will need to define integrals for functions f : F → F. One such integral is

the Cauchy (line) integral
∫

Γ

f(z)dz
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where Γ is a well behaved path. In this book, it suffices to consider paths Γ that

are representable by ‘piecewise smooth’ functions γ : [a, b] → F, that is, there are

points t0, t1, ..., tn with a = t0 < t1 < · · · < tn = b such that γ′ is continuous on

each [tk, tk+1] for k = 0, ..., n−1. Then by the standard theory of Riemann-Stieltjes

integral, when f is continuous on the image Γ([0, 1]) ⊂ F,∫

Γ

f(z)dz =

∫ 1

0

f(γ(t))γ′(t)dt.

In case Γ is the straight line segment joining the point u = γ(a) to v = γ(b), we will

also write ∫

Γ

f(z)dz =

∫ v

u

f(z)dz.

Note that when F = R, the above line integral is compatible with the usual

Riemann integral of a real function.

Recall that Ω is a metric space if there is a metric d : Ω × Ω → [0,∞) which

satisfies (i) for every pair of x, y ∈ Ω, d(x, y) = 0 if, and only if, x = y, (ii) d(x, y) =

d(y, x) for x, y ∈ Ω, and (iii) d(x, z) ≤ d(x, y) + d(y, x) for x, y, z ∈ Ω. Ω is said to

be complete if every Cauchy sequence in Ω converges to a point in Ω. T : Ω → Ω

is a contraction if there is number λ in [0, 1) such that d(Tx, Ty) ≤ λd(x, y) for all

x, y ∈ Ω.

A large number of metric spaces are normed linear spaces, that is, linear spaces

whose metrics are induced by norms. Recall that a norm ‖·‖ on a linear space

Ω is a function that maps Ω into [0,∞) such that (i) for every x ∈ Ω, ‖x‖ = 0

if, and only if, x = 0, (ii) ‖αx‖ = |α| ‖x‖ for any scalar α and x ∈ Ω, and (iii)

‖x+ y‖ ≤ ‖x‖ + ‖y‖ for x, y ∈ Ω. When a normed linear space is also a complete

metric space, it is called a Banach space.

A well known result for mappings defined on complete metric spaces is the

Banach contraction mapping theorem: If Ω is a nonempty complete metric space

and T : Ω → Ω a contraction mapping, then T has a fixed point in Ω.

1.3 Notes

There are several standard reference books on functional equations, see for exam-

ples, the books by Aczel [1], Aczel and Dhombres [2], Kuczma [104], Kuczma and

Choczewshi [107], and the survey papers by Cheng [29], Kuczma [102], Li and Si

[126], Zhang et al. [232]. In this book, we also treat differential equations as func-

tional equations. The corresponding references are too many to list. The books

by Bellman and Cooke [16], Coddington and Levinson [40], Driver [52], Friedrichs

[66], Hale [73], Hille [78], Kamke [92], Sansone [167], etc., are related to some of our

discussions.

There are also several text books which emphasize on analytic functions, see for

examples, Balser [13], Krantz and Parks [99], Krantz [100], Smith [211], Sneddon

[212], Valiron [216].
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In this book, we do not use sophisticated mathematics beyond the usual material

taught in courses such as Advanced Engineering mathematics. The reader may also

consult text books in real and complex analysis such as Apostol [5], Fichtenholz

[62, 63], Kaplan [94], Watson [223], Whittaker and Watson [224], etc.

We have introduced univariate sequences and discussed some of their properties.

Further properties will be discussed in later chapters. A summary of their properties

can be found in the Appendix.
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Chapter 2

Sequences

2.1 Lebesgue Summable Sequences

Note that a power series appears to be a ‘sum’ of infinitely many terms. For this

reason, we need to introduce means to deal with infinite sums.

Let Ω be a (finite or infinite) subset of Zκ where κ is a positive integer. Each

member in the set lΩ of all functions defined on Ω is then a multiply indexed

sequence of the form {fk| k ∈ Ω} . Such a sequence will be denoted by f or {fk} or

{fk}k∈Ω instead of {fk|k ∈ Ω} if no confusion is caused.

For any α ∈ C and f = {fk}, g = {gk} in lΩ, we define −f, αf, |f | and f + g

respectively by {−fk}, {αfk}, {|fk|} and {fk+ gk} as usual. The termwise product

f · g is defined to be {fkgk}. The products f · f, f · f · f, ... will be denoted by

f2, f3, ... respectively. We define f1 = f and f0 = {1} . The sequence fp is called

the p-th termwise (product) power of f. If fk 6= 0 for all k, then there is a unique

sequence x ∈ lΩ such that x · f = {1} . This unique sequence will be denoted by

f−1.

For any f, g ∈ lΩ, if fk ≤ gk for all k ∈ Ω, then we write f ≤ g. The notation

f < g is similarly defined.

Any sequence with zero values only will be denoted by 0. The sequence in lN

whose i-th term is 1 and the other terms are 0 will be called the Dirac delta sequence

and denoted by ~〈i〉.
For a given real sequence f = {fk}, we can always write it in the form f+ − f−

for some nonnegative sequences f+ and f−. Indeed, the positive part f+ is given

by (|f | + f)/2, and the negative part by (|f | − f)/2. A sequence f = {fk} is said

to have finite support if the number of nonzero terms of f is finite. The set Φ(f)

of k ∈ Ω for which fk 6= 0 will be called the support of f. When {f (j)}j∈N is a

sequence of sequences in lΩ, we say that {f (j)}j∈N converges (pointwise) to f ∈ lΩ

if

lim
j→∞

f
(j)
k = fk, k ∈ Ω.

Note that for any nonnegative sequence f = {fk} ∈ lΩ, we can always find a

11
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sequence {g(j)}j∈N of nonnegative sequences in lΩ such that

0 ≤ g(0) ≤ g(1) ≤ · · · ≤ f

and g(j) converges pointwise to f as j → ∞. For instance, if f ∈ lN, we may pick

g(j) =

j∑

k=0

fk~
〈k〉, j ∈ N.

The concept of a Lebesgue summable sequence will be needed in order to define

a convergent series. This will be done in steps.

First of all, for a sequence f with finite support, we define its sum by the number∑

Ω

f =
∑

k∈Φ(f)

fk.

For a nonnegative sequence f = {fk} in lΩ, we define its sum by

sup
∑

Ω

g,

where the supremum is taken over all sequences g with finite support such that

0 ≤ g ≤ f, and denoted by ∑

Ω

f or
∑

k∈Ω

fk.

If the supremum on the right hand side is finite, we say that f is (Lebesgue)

summable and denote this fact by ∑

Ω

f <∞.

Occasionally, it is convenient to allow the right hand side to be infinite and in such

a case, we write ∑

Ω

f = ∞.

Note that it easily follows from the definition that a finite linear combination

of nonnegative Lebesgue summable sequences is Lebesgue summable and its sum

is equal to the corresponding linear combination of the separate sums, that is, for

nonnegative α, β ∈ R and nonnegative f, g ∈ lΩ,∑

Ω

(αf + βg) = α
∑

Ω

f + β
∑

Ω

g,

and that if 0 ≤ f ≤ g, then

0 ≤
∑

Ω

f ≤
∑

Ω

g. (2.1)

We remark that the above definition of the sum of a nonnegative sequence in lN

can be simplified to

∑

N

f = lim
j→∞

j∑

k=0

fk; (2.2)
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in lZ to

∑

Z

f = sup
m,j∈Z

j∑

k=m

fk = lim
m,j→∞

j∑

k=−m
fk; (2.3)

and in lN×N to

∑

N×N

f = lim
m,n→∞

m∑

i=0

n∑

j=0

fij . (2.4)

To see this, for f ∈ lN, since

j∑

k=0

fk =
∑

N

h,

where h = {f0, ..., fj , 0, 0, ...} is a sequence with finite support, we have

j∑

k=0

fk =
∑

N

h ≤
∑

N

f.

Conversely, for any g such that 0 ≤ g ≤ f and Φ(g) is finite, since Φ(g) ⊆ {0, ...,m}
for some m, we see that 0 ≤ g ≤ u ≤ f, where u = {f0, ..., fm, 0, 0, ...}, and

∑

N

g ≤
∑

N

u =

m∑

k=0

fk ≤ lim
j→∞

j∑

k=0

fk.

For f ∈ lZ or f ∈ lN×N, (2.3) or (2.4) are similarly proved.

We pause here to recall that for a sequence f = {fk}k∈N in lN, the sequence{∑j
k=0 fk

}
j∈N

is called the partial sum sequence generated by f. The limit L =

limj→∞
∑j

k=0 fk, if it exists, is usually called the sum of the ‘series’
∑∞

k=0 fk. For

this reason, the (finite or infinite) limits on the right hand side of (2.2) and (2.3)

will also be denoted by the conventional notations, that is,

lim
j→∞

j∑

k=0

fk =

∞∑

k=0

fk =
∑

N

f

and

lim
m,j→∞

j∑

k=−m
fk =

∞∑

k=−∞
fk =

∑

Z

f

respectively. Limits of partial sum sequences will be discussed in details in the next

section.

We remark also that our definition of a sum of infinite sequence is a special case

of the Lebesgue integral for measurable functions. Thus standard results from the

theory of Lebesgue integrals can be applied. In particular, Lebesgue’s monotone

convergence theorem holds.
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Theorem 2.1 (Lebesgue Monotone Convergence Theorem). Let g ∈ lΩ

and let {f (j)}j∈N be a sequence of nonnegative sequences f (j) ∈ lΩ such that

0 ≤ f
(0)
k ≤ f

(1)
k ≤ · · · <∞, k ∈ Ω,

and

lim
j→∞

f
(j)
k = gk, k ∈ Ω,

then

lim
j→∞

∑

Ω

f (j) =
∑

Ω

g.

Indeed, since

0 ≤
∑

Ω

f (j) ≤
∑

Ω

f (j+1) ≤
∑

Ω

g,

thus

lim
j→∞

∑

Ω

f (j) ∈ [0,∞]

and

lim
j→∞

∑

Ω

f (j) ≤
∑

Ω

g.

To see the converse, let u be a sequence with finite support that satisfies 0 ≤ u ≤ g.

Let c be a constant in (0, 1). Since f (j) → g, we have f (j) ≥ cu for all large j. Hence
∑

Ω

f (j) ≥
∑

Ω

cu = c
∑

Ω

u

for all large j. Since c and u are arbitrary, we must have

lim
j→∞

∑

Ω

f (j) ≥ sup
∑

Ω

u =
∑

Ω

g.

The proof is complete.

As a corollary, if {g(j)}j∈N is a sequence of nonnegative sequences in lΩ such

that
∞∑

j=0

g
(j)
k <∞, k ∈ Ω,

then

0 ≤
0∑

j=0

g
(j)
k ≤

1∑

j=0

g
(j)
k ≤

2∑

j=0

g
(j)
k ≤ · · · <∞, k ∈ Ω,

and

lim
m→∞

m∑

j=0

g
(j)
k =

∞∑

j=0

g
(j)
k , k ∈ Ω.
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Hence the Lebesgue monotone convergence theorem leads us to

∑

k∈Ω





∞∑

j=0

g
(j)
k



 = lim

n→∞

∑

k∈Ω





n∑

j=0

g
(j)
k



 = lim

n→∞

n∑

j=0

∑

Ω

g(j) =

∞∑

j=0

∑

Ω

g(j), (2.5)

where we have used the linearity of the Lebesgue sum in the second equality.

As another corollary, we have Fatou’s lemma: If {f (n)}n∈N is a sequence of

nonnegative sequences in lΩ such that

lim inf
n→∞

f
(n)
k <∞, k ∈ Ω,

then
∑

Ω

lim inf
n→∞

f (n) ≤ lim inf
n→∞

∑

Ω

f (n).

To see this, let h(m) =
{
h

(m)
k

}
k∈Ω

be defined by h
(m)
k = infn≥m f

(n)
k for each k ∈ Ω

and m ≥ 0. Then 0 ≤ h
(0)
k ≤ h

(1)
k ≤ · · · ≤ h

(m)
k ≤ f

(m)
k for each k ∈ Ω and m ≥ 0,

and

lim
m→∞

h
(m)
k = lim inf

n→∞
f

(n)
k <∞, k ∈ Ω,

so that
∑

Ω

lim inf
n→∞

f (n) =
∑

Ω

lim
m→∞

h(m) = lim
m→∞

∑

Ω

h(m)

= lim inf
m→∞

∑

Ω

h(m) ≤ lim inf
m→∞

∑

Ω

f (m).

We have mentioned that any discrete set Ω in Zκ can be linearly ordered. Note

however, that for each linear ordering, the corresponding sum of a sequence defined

over Ω may be different from the one that arises from another linear ordering.

Fubini’s theorem states, however, that such cannot be the case. We will state

Fubini’s theorem for Ω = N × N, the general case being similar. Recall first that

{gk}k∈N
is called an enumeration or rearrangement of the sequence {fv}v∈Ω if there

is a linear ordering Ψ : N → Ω such that gk = fΨ(k).

Theorem 2.2 (Fubini Theorem). Suppose {gk}k∈N is any enumeration of the

nonnegative doubly indexed sequence {fij}i,j∈N. Then {gk}k∈N is Lebesgue

summable if, and only if,

∞∑

j=0

fij <∞ for i ∈ N, and

∞∑

i=0





∞∑

j=0

fij



 <∞; (2.6)

moreover, if {gk}k∈N is Lebesgue summable, then

∑

N

g =
∞∑

i=0





∞∑

j=0

fij



 . (2.7)
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For a proof, let us first assume that (2.6) holds. Let M be any integer and choose

integers I and J so large that g1, ..., gM occur among {fij | 0 ≤ i ≤ I, 0 ≤ j ≤ J}.
Then

M∑

m=0

gk ≤
I∑

i=0

J∑

j=0

fij ≤
∞∑

i=0





∞∑

j=0

fij



 <∞.

This shows that g is Lebesgue summable.

Conversely, assume that g is Lebesgue summable. Let J be an integer and, for

a fixed i ∈ N, choose the integer M so large that fi1, ..., fiJ occur among g1, ..., gM .

Then

J∑

j=0

fij ≤
M∑

k=0

gk ≤
∞∑

k=0

gk,

which implies

∞∑

j=0

fij <∞, i ∈ N.

Now let {w(n)}n∈N be a sequence of nonnegative sequences in lN×N each of which

has finite support and 0 ≤ w(0) ≤ w(1) ≤ · · · ≤ f as well as limn→∞ w
(n)
k = fk for

k ∈ N. For each n ∈ N, let v(n) be the corresponding enumeration of w(n). Then

since

∑

N

v(n) =
∞∑

i=0

∞∑

j=0

w
(n)
ij ,

and since
∞∑

j=0

w
(n)
ij ≤

∞∑

j=0

fij <∞, i ∈ N,

we may apply Lebesgue’s monotone convergence theorem to obtain

∑

N

g = lim
n→∞

∑

N

v(n) = lim
n→∞

∞∑

i=0

∞∑

j=0

w
(n)
ij =

∞∑

i=0

lim
n→∞

∞∑

j=0

w
(n)
ij =

∞∑

i=0

∞∑

j=0

fij ,

which shows that (2.6) and (2.7) hold.

Let us denote by lΩ1 the subset of all sequences f ∈ lΩ for which |f | is Lebesgue

summable. Let us also denote by lΩp the set of all sequences f ∈ lΩ for which

‖f‖p ≡
{∑

Ω

|f |p
}1/p

<∞, p ∈ (0,∞).

The number ‖f‖p is called the lΩp -norm of f, while the infinity norm of f is

‖f‖∞ = max
k∈Ω

{|fk|} .
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The set of all sequences f ∈ lΩ for which ‖f‖∞ <∞ will be denoted by lΩ∞.
Let f ∈ lΩ1 . We define its sum by

∑

Ω

f =
∑

Ω

u+ −
∑

Ω

u− + i
∑

Ω

v+ − i
∑

Ω

v−,

where f = u + iv, and u+, v+, u−, v− are the positive parts and negative parts

defined before. Note that each of the four sums on the right hand side exists since

0 ≤ u+, v+, u−, v− ≤ |f |.
If f is a real multivariate sequence (which may or may not be in lΩ1 ), we define

its sum by
∑

Ω

f =
∑

Ω

f+ −
∑

Ω

f−,

provided that at least one of the sums on the right hand side is finite. The left side

is then a number in the extended real number system [−∞,∞].

Note that it easily follows from the definition of lΩ1 that the sum of a finite linear

combination of Lebesgue summable sequences in lΩ1 is equal to the corresponding

linear combination of the separate sums, and that for any f ∈ lΩ1 ,∣∣∣∣∣
∑

Ω

f

∣∣∣∣∣ ≤
∑

Ω

|f | . (2.8)

Lebesgue’s dominated convergence theorem also holds.

Theorem 2.3 (Lebesgue Dominated Convergence Theorem). Suppose

{f (n)}n∈N is a sequence of complex sequences in lΩ such that f = limn→∞ f (n) ∈ lΩ.

If there is g ∈ lΩ1 such that
∣∣f (n)

∣∣ ≤ g for n ∈ N, then f ∈ lΩ1 ,

lim
n→∞

∑

Ω

∣∣∣f (n) − f
∣∣∣ = 0, (2.9)

and

lim
n→∞

∑

Ω

f (n) =
∑

Ω

f. (2.10)

Indeed, since |f | ≤ g, and since
∣∣f (n) − f

∣∣ ≤ 2g, by Fatou’s lemma, we see that
∑

Ω

2g =
∑

Ω

lim inf
n→∞

(
2g −

∣∣∣f (n) − f
∣∣∣
)
≤ lim inf

n→∞

∑

Ω

(
2g −

∣∣∣f (n) − f
∣∣∣
)

=
∑

Ω

2g − lim sup
n→∞

(∑

Ω

∣∣∣f (n) − f
∣∣∣
)
.

Thus

lim
n→∞

∑

Ω

∣∣∣f (n) − f
∣∣∣ = lim sup

n→∞

∑

Ω

∣∣∣f (n) − f
∣∣∣ = 0.

Finally, (2.10) follows from (2.9) in view of (2.8).

There is also a useful Fubini’s theorem for lΩ1 -sequences.
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Theorem 2.4. Suppose {gk}k∈N is any enumeration of the doubly indexed sequence

{fij}i,j∈N. Then {gk} ∈ lN1 if, and only if,

∞∑

j=0

|fij | <∞ for i ∈ N, and

∞∑

i=0





∞∑

j=0

|fij |



 <∞;

moreover, if {gk} ∈ lN1 , then

∑

N

g =

∞∑

i=0





∞∑

j=0

fij



 .

The proof is not difficult and follows from breaking f into real, complex, positive

and negative parts and then applying Fubini’s theorem for nonnegative sequences.

Example 2.1. If f ∈ lN1 and g ∈ lN1 , then the bivariate sequence h = {figj}i,j∈N

belongs to lN×N

1 and
∑

N×N
h =

∑
N
f
∑

N
g.

Example 2.2. If a, b ∈ F and |a| + |b| < 1, then from
n∑

k=0

C
(n)
k akbn−k = (a+ b)n, n ∈ N,

we see that
∞∑

n=0

n∑

k=0

C
(n)
k |a|k |b|n−k =

1

1 − |a| − |b| <∞.

Thus
∞∑

k=0

∞∑

n=k

C
(n)
k akbn−k =

∞∑

n=0

∞∑

k=0

C
(n)
k akbn−k =

∞∑

n=0

n∑

k=0

C
(n)
k akbn−k =

1

1 − a− b
.

2.2 Relatively Summable Sequences

In the previous section, we use suprema to define sums of sequences. Sums of

sequences defined by limits of their partial sum sequences are also studied quite

extensively. For this reason, we will recall some of the related information in this

section. We say that a sequence {fk} in lN (which is not necessarily nonnegative)

is summable if the limit

lim
n→∞

n∑

k=0

fk (2.11)

exists, otherwise we say that f is not summable or the infinite series
∑∞

k=0 fk
diverges. In case it is summable, the corresponding limit s is called its sum and we

write
∞∑

k=0

fk = s.
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In case f is nonnegative and its infinite series diverges, we will also write

∞∑

k=0

fk = ∞.

Recall that for a nonnegative sequence f = {fk} in lN, its Lebesgue sum and the

limit of partial sum sequence is equal:

∑

N

f =

∞∑

k=0

fk ≡ lim
n→∞

n∑

k=0

fk.

For multivariate sequences, we may generalize the above concept as follows. Let

Ω be a subset of Zκ where κ is a positive integer and let Ψ : N → Ω be an ordering

for Ω. Let f = {fv}v∈Ω , we call

σi =
i∑

j=0

fΨ(j)

the (generalized) partial sum of index i relative to Ψ. If

lim
i→∞

σi = lim
i→∞

i∑

j=0

fΨ(j) = s,

then we say that the sequence f is summable relative to the ordering Ψ and we say

that s is the sum relative to Ψ. We also say that f is relatively summable if f is

summable relative to some ordering Ψ when the specific form of the mapping Ψ is

not important.

By means of standard analytic arguments, it is easily shown that if f = {fv}
and g = {gv} have sums s and t relative to Ψ respectively, then the sum of αf +βg

relative to Ψ is αs + βt. In particular, f is summable relative to Ψ if, and only if,

its real part and its imaginary part are summable relative to Ψ. Furthermore, for a

nonnegative sequence f = {fv}v∈Ω ∈ lΩ, if we take u(k) to be the sequence which is

equal to the values of f when restricted to Ψ ({0, 1, ..., k}) and equal to 0 otherwise,

then 0 ≤ u(0) ≤ u(1) ≤ · · · ≤ f and limk→∞ u(k) = f. By Lebesgue’s monotone

convergence theorem,

∑

Ω

f = lim
k→∞

∑

Ω

u(k) = lim
k→∞

k∑

i=0

fΨ(i)

for any ordering Ψ of Ω. In particular, for any sequence f = {fv} ∈ lΩ and any

ordering Ψ of Ω,

∑

Ω

|f | = lim
k→∞

k∑

i=0

∣∣fΨ(i)

∣∣ .

In case limk→∞
∑k
i=0

∣∣fΨ(i)

∣∣ exists for any Ψ, we say that f is absolutely

summable (relative to Ψ). Note that a sequence in lΩ is absolutely summable
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relative to any Ψ if, and only if, it belongs to lΩ1 . Furthermore, if f ∈ lΩ1 , then

∑

Ω

f =
∑

Ω

u+ −
∑

Ω

u− + i
∑

Ω

v+ − i
∑

Ω

v−

= lim
k→∞

k∑

i=0

u+
Ψ(i) − lim

k→∞

k∑

i=0

u−Ψ(i) + i lim
k→∞

k∑

i=0

v+
Ψ(i) − i lim

k→∞

k∑

i=0

v−Ψ(i)

= lim
k→∞

k∑

i=0

fΨ(i),

where f = u+ iv, that is, if f is absolutely summable, then its sum is independent

of the ordering Ψ.

Theorem 2.5. If f = {fv}v∈Ω is summable relative to an ordering Ψ for Ω, then

f is bounded.

Indeed, since

0 = lim
i→∞




i+1∑

j=0

fΨ(j) −
i∑

j=0

fΨ(j)



 = lim

i→∞
fΨ(i),

thus
∣∣fΨ(i)

∣∣ ≤ M for i greater than some integer I. Thus
∣∣fΨ(i)

∣∣ ≤
max

{∣∣fΨ(0)

∣∣ , ...
∣∣fΨ(I)

∣∣ ,M
}

as required.

In the special case when Ψ : N → N is the identity mapping, the sum of f ∈ lN

relative to Ψ is the limit (2.11) defined above. For the sake of convenience, we will

say that f ∈ lN is summable if it is summable relative to the identity mapping.

There is a large collection of summability criteria such as the root test, integral

test, etc., discussed in elementary analysis texts.

Example 2.3. If f = {fk}, g = {gk} ∈ lN are summable and their sums are f and

g respectively, then

lim
m,n→∞




m∑

i=0

fi +

n∑

j=0

gj


 =

∞∑

i=0

fi +

∞∑

j=0

gj .

Conversely, if limm,n→∞
(∑m

i=0 fi +
∑n
j=0 gj

)
exists, then f and g are summable.

Example 2.4 (Dirichlet Test). Let {∑n
k=0 ak}n∈N

be a bounded sequence and

{bn}n∈N
be a decreasing sequence tending to 0. Then {anbn}n∈N

is summable.

Example 2.5 (Abel Test). Let {an}n∈N
be summable and {bn}n∈N

a monotonic

and convergent sequence. Then {anbn}n∈N
is summable.
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2.3 Uniformly Summable Sequences

We first recall the concept of uniformly convergent sequence and series of functions

in elementary analysis. Given a sequence of real functions u0(x), u1(x), ..., defined

on a set X, if u(x) = limn→∞ un(x) for every x ∈ X, and if given any ε > 0, there

is an integer I ≥ 0 such that n > I implies

|un(x) − u(x)| < ε

for all x ∈ X, then the sequence is said to converge to f uniformly on X. In

particular, if un(x) = f0(x) + · · · + fn(x) for each n ∈ N and x ∈ X, and if the

sequence {un(x)} is uniformly convergent to u(x) on X, then we say that the series∑∞
i=0 fi(x) converges uniformly on X to the function u(x). There are a large of

number of properties of uniformly convergent sequence of functions and uniformly

convergent functional series.

By means of the generalized partial sums introduced in the last section, we can

carry some of these properties to functional series with multiple indices. Let Λ be

a nonempty set in Fκ and let f (λ) ∈ lΩ for each λ ∈ Λ. We now have a family{
f (λ)

}
λ∈Λ

of sequences in lΩ. Since f (λ) =
{
f

(λ)
v

}
v∈Ω

, we may also look at our

family as a sequence of functions fv = fv(λ) defined on Λ. For this reason, we will

write f(λ) instead of f (λ) if no confusion is caused. For each λ ∈ Λ, if f(λ) is

summable relative to an ordering Ψ of Ω, then we may define a function f̃ : Λ → F

such that

f̃(λ) =
∞∑

j=0

fΨ(j)(λ).

Given an ordering Ψ for Ω, if for every ε > 0, there is I ∈ N such that i > I implies∣∣∣∣∣∣

i∑

j=0

fΨ(j)(λ) − f̃(λ)

∣∣∣∣∣∣
< ε (2.12)

for all λ ∈ Λ, then we say that the family {f(λ)}λ∈Λ is uniformly summable in Λ

with respect to Ψ, and its sum function is f̃(λ).

Note that when Λ is a subset of Fκ, Ω = N and Ψ is the identity mapping on

N, then (2.12) reduces to ∣∣∣∣∣

j∑

n=0

fn(λ) − f̃(λ)

∣∣∣∣∣ < ε.

Therefore in this case, we are back to the usual uniform convergence of a functional

series.

Theorem 2.6 (Cauchy’s Test). Let Ψ be an ordering for Ω. The family

{f(λ)}λ∈Λ of sequences in lΩ is uniformly summable on Λ relative to Ψ if, and

only if, for every ε > 0, there is I ∈ N such that m,n > I implies∣∣∣∣∣∣

m∑

j=0

fΨ(j)(λ) −
n∑

j=0

fΨ(j)(λ)

∣∣∣∣∣∣
< ε, λ ∈ Λ. (2.13)
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Indeed, suppose {f(λ)}λ∈Λ is uniformly summable in Λ relative to Ψ with sum

function f̃(λ). Then
∣∣∣∣∣∣

m∑

j=0

fΨ(j)(λ) − f̃(λ)

∣∣∣∣∣∣
,

∣∣∣∣∣∣

n∑

j=0

fΨ(j)(λ) − f̃(λ)

∣∣∣∣∣∣
<
ε

2

for all large m and n. Thus (2.13) hold for all large m and n in view of the triangle

inequality. Conversely, if (2.13) hold for all large m and n, then by Cauchy’s con-

vergence theorem for real sequences,
{∑i

j=0 fΨ(j)(λ)
}
i∈N

converges to some f̃(λ)

for each λ ∈ Λ. If we now replace ε in (2.13) by ε′ ∈ (0, ε), fix m in (2.13) and take

limits on both sides as n→ ∞, we see that
∣∣∣∣∣∣
f̃(λ) −

m∑

j=0

fΨ(j)(λ)

∣∣∣∣∣∣
≤ ε′ < ε, λ ∈ Λ

as required.

Theorem 2.7 (Weierstrass Test). Let Ψ be an ordering for Ω. Let {Mn}n∈Ω be

a sequence of nonnegative numbers such that

0 ≤ |fn(λ)| ≤Mn, n ∈ Ω, λ ∈ Λ.

Then the family {f(λ)}λ∈Λ of sequences in lΩ is uniformly summable on Λ relative

to Ψ if {Mn}n∈Ω is summable relative to Ψ.

Indeed,
∣∣∣∣∣∣

n+p∑

j=0

fΨ(j)(λ) −
n∑

j=0

fΨ(j)(λ)

∣∣∣∣∣∣
≤

n+p∑

j=n+1

MΨ(j)

for all λ ∈ Λ and any p ∈ Z+. Since {Mn}n∈Ω is summable relative to Ψ, in view of

Cauchy’s convergence criterion for real sequences, the right hand side can be made

arbitrary small by requiring large n. Our previous theorem then yields our proof.

Theorem 2.8. Assume that the family {f(λ)}λ∈Λ of sequences in lΩ is uniformly

summable on Λ relative to the ordering Ψ with sum function f̃(λ). Let µ be an

accumulation point of Λ. Suppose each function fn = fn(λ) satisfies

lim
λ→µ

fn(λ) = cn, n ∈ Ω.

Then {cn} is summable relative to Ψ and its sum C is given by

C = lim
λ→µ

f̃(λ).
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To see the proof, note that taking limits on both sides of (2.13) as λ → µ, we

see that ∣∣∣∣∣∣

m∑

j=0

cΨ(j) −
n∑

j=0

cΨ(j)

∣∣∣∣∣∣
≤ ε.

By Cauchy’s convergence criteria, we see that {cn} is summable relative to Ψ. Next,

note that

∣∣∣f̃(λ) − C
∣∣∣ ≤

∣∣∣∣∣∣

i∑

j=0

fΨ(j)(λ) −
i∑

j=0

cψ(j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
f̃(λ) −

i∑

j=0

fΨ(j)(λ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
C −

i∑

j=0

cΨ(j)

∣∣∣∣∣∣
.

If i is sufficiently large, the last two terms can be made arbitrary small and inde-

pendent of λ, while if λ is sufficiently close to µ, the first term on the right hand

side can be made arbitrary small. The proof is complete.

As an immediate consequence, assume that the family {f(λ)}λ∈Λ of sequence

in lΩ is uniformly summable on Λ relative to the ordering Ψ and each function

fn = fn(λ) is continuous at a point µ ∈ Λ, then the corresponding sum function f̃

is also continuous at µ.

Theorem 2.9. Let Λ = B(a; δ) ⊂ F. Let f̃ be the sum function of the family

{f(λ)}λ∈Λ of real sequences in lN uniformly summable in Λ relative to an ordering

Ψ for N, where each fk(λ) is continuous at each point λ in Λ. Then the sequence{∫
Γ fj(λ)dλ

}
j∈N

, where Γ is the straight line segment from a to z ∈ B(a; δ), is

summable relative to Ψ and
∫

Γ

f̃(λ)dλ =
∞∑

j=0

∫

Γ

fΨ(j)(λ)dλ.

To see this, assume without loss of generality that Ψ is the identity mapping

on N. Since f̃ is continuous by the previous Theorem, its integral
∫
Γ
f̃(λ)dλ exists.

Furthermore,
∣∣∣∣∣∣
f̃(λ) −

n∑

j=0

fj(λ)

∣∣∣∣∣∣
<

ε

2δ
, λ ∈ B(a; δ),

for all sufficiently large n, thus
∣∣∣∣∣∣

∫

Γ

f̃(λ)dλ −
n∑

j=0

∫

Γ

fj(λ)dλ

∣∣∣∣∣∣
≤ 2δ sup

λ∈B(a;δ)

∣∣∣∣∣∣
f̃(λ) −

n∑

j=0

fj(λ)

∣∣∣∣∣∣
< ε

for all large n.

Theorem 2.10. Let Λ = B(a; δ). Let {f(λ)}λ∈Λ be a family of real sequences in

lΩ such that each fn = fn(λ) has a finite derivative f ′
n in Λ. Suppose {fn(c)} is

summable for c ∈ Λ relative to an ordering Ψ and the family {f ′(λ)}λ∈Λ is uniformly
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summable in Λ relative to Ψ. Then {f(λ)}λ∈Λ is uniformly summable in Λ relative

to Ψ to f̃(λ) and

df̃(z)

dλ
=

∞∑

j=0

f ′
Ψ(j)(z), z ∈ Λ.

To see the sketch of the proof, choose two distinct points λ, µ ∈ B(a; δ). Without

loss of any generality, we will also assume that Ψ is the identity mapping for N. Let

gn(λ) =

{
fn(λ)−fn(µ)

λ−µ λ 6= µ

f ′
n(µ) λ = µ

. (2.14)

Then the family

{g(λ)}λ∈Λ

is uniformly summable in Λ. Indeed, given any ε > 0, there is a number N such

that
∣∣∣∣∣
n+m∑

k=n+1

f ′
k(λ)

∣∣∣∣∣ < ε, λ ∈ Λ

for all n > N and m ∈ Z+ by the uniform summability of {f ′
n(λ)}λ∈Λ . Let

U(λ) =

n+m∑

k=n+1

fk(λ)

where n and m are temporarily fixed. Then
∣∣∣∣∣
n+m∑

k=n+1

fk(λ) − fk(µ)

λ− µ

∣∣∣∣∣ =
∣∣∣∣
U(λ) − U(µ)

λ− µ

∣∣∣∣ ≤ |U ′(ξ)| =

∣∣∣∣∣
n+m∑

k=n+1

f ′
k(ξ)

∣∣∣∣∣ < ε

for all λ ∈ Λ\{µ}, where ξ is between λ and µ, and
∣∣∣∣∣
n+m∑

k=n+1

gk(µ)

∣∣∣∣∣ =
∣∣∣∣∣
n+m∑

k=n+1

f ′
k(µ)

∣∣∣∣∣ < ε.

This shows that {g(λ)}λ∈(a,b) is uniformly summable in Λ.

Now take µ = c in (2.14), the corresponding family {g(λ)} is uniformly

summable. Thus {g(λ)(λ − c)} is also uniformly summable since |λ− c| is bounded

on Λ. In turn, we see that {g(λ)(λ − c) + f(c)} = {f(λ)} is uniformly summable.

Finally,

df̃(z)

dλ
= lim

λ→z

f̃(λ) − f̃(z)

λ− z
=

∞∑

n=0

lim
λ→z

fn(λ) − fn(z)

λ− z
=

∞∑

n=0

f ′
n(z)

as desired.
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2.4 Properties of Univariate Sequences

2.4.1 Common Sequences

As before, let lN be the set of all real or complex sequences of the form f = {fk}k∈N.

We will call fk the k-th term of the sequence f. Note that the first k terms of f are

f0, ..., fk−1 respectively.

Let m be a nonnegative integer. Recall that ~〈m〉 ∈ lN denotes the Dirac

sequence defined by

~
〈m〉
k =

{
1 k = m

0 k 6= m
.

Besides the Dirac sequences, there are a number of common sequences in lN which

deserve special notations. First of all, let α be a complex number, the sequence

{α, 0, 0, ...} is denoted by α and is called a scalar sequence. In particular, the se-

quences {0, 0, ...} and {1, 0, ...} is denoted by 0 (or 0 if no confusion is caused)

and 1 respectively. The sequence {1, 1, 1, ...} is denoted by σ, and the sequence

{1,−1, 0, 0, ...} by δ. The sequence {1/0!, 1/1!, 1/2!, 1/3!, 1/4!, ...} is called the expo-

nential sequence and is denoted by $. For m ∈ N, H(m) is the jump (or Heaviside)

sequence defined by

H
(m)
k =

{
0 0 ≤ k < m

1 k ≥ m
.

Note that we have also used ~〈0〉 to denote 1 and H(0) for σ. It is also convenient

to write ~ instead of ~〈1〉 and this practice will be assumed for similar situations in

the sequel.

The sequence {f1 − f0, f2 − f1, ...} obtained by taking the difference of the

consecutive components of the sequence {fk} will be denoted by ∆f and is called the

first difference of f. The higher differences ∆mf, m = 2, 3, ..., are defined recursively

by ∆mf = ∆
(
∆m−1f

)
. Thus

(∆f)k = fk+1 − fk,

(∆2f)k = fk+2 − 2fk+1 + fk,

(∆3f)k = fk+3 − 3fk+2 + 3fk+1 − fk,

etc., for k ∈ N. We also define ∆0f = f and ∆1f = ∆f.

Example 2.6. The following is the well known telescoping property for the differ-

ence operations: for f ∈ lN,

b∑

k=a

(∆f)k = fb+1 − fa, 0 ≤ a ≤ b.

The sequence {fm, fm+1, ...} obtained by ‘deleting’ the first m terms of

the sequence {f0, ..., fm, fm+1, ...} will be denoted by Emf, and the sequence
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{0, ..., 0, f0, f1, ..} obtained by ‘adding’ m zeros to the front of the terms of f by

E−mf. The more precise definitions of Emf and E−mf are respectively

Emf = {fm+k}k∈N ,

and

(E−mf)k =

{
f−m+k k ≥ m

0 1 ≤ k ≤ m
.

These definitions require m ≥ 1. However, it is natural to define E0f = f and

Ef = E1f. Note that we have

EmE−mf = f, m ∈ Z+,

but for m ∈ Z+, E−mEmf is not equal to f in general. The sequence Emf will be

called a translated or shifted sequence of f.

Example 2.7. It is easy to see that Em(f + g) = Emf +Emg, E(Ef) = E2f, and

∆f = Ef − f holds for any f ∈ lN. Thus,

∆2f = E(Ef − f) − (Ef − f) = E2f − 2Ef + f,

∆3f = E3f − 3E2f + 3Ef − f,

etc.

For any number λ ∈ F, where λ = 0 is allowed, the geometric sequence {λn}n∈N
,

where λ ∈ C, is denoted by λ. By means of this notation, we see that λn = λn for

n ∈ N. The product sequence λ · f =
{
λk
}
· {fk} = {λkfk} is called an attenuated

sequence of f. It is easily seen that 0 · f = f0, 1 · f = f, λ · µ · f = λµ · f and

λ · (f + g) = λ · f + λ · g, f, g ∈ lN.

2.4.2 Convolution Products

For any f = {fk} and g = {gk} in lN, we define the convolution product f ∗ g, by

(f ∗ g)k =

k∑

i=0

fk−igi, k ∈ N.

Example 2.8. For any f = {fk} in lN, 1 ∗ f = f, 0 ∗ f = 0, α ∗ β = αβ, α ∗ f =

(α1) ∗ f = α(1 ∗ f) = αf and ~ ∗ f = E−1f. The last equality means that the

product ~ ∗ f is equal to translating f ‘one unit’ to the right.

It is also easy to verify that for any f = {fk}, g = {gk} and h = {hk} in lN,

f ∗ (g + h) = f ∗ g + f ∗ h.



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

Sequences 27

We will also denote the products f ∗ f, f ∗ f ∗ f, ... by f 〈2〉, f 〈3〉, ... respectively.

If no confusion is caused, the k-th term of the sequence f 〈p〉 will be written as f
〈p〉
k

instead of
(
f 〈p〉)

k
. Note that

f
〈p〉
k =

∑

v1+···+vp=k;v1,...,vp∈N

fv1fv2 · · · fvp
, k ∈ N. (2.15)

Although p is implicitly defined to be greater than 1, the same formula holds for

p = 1. Thus we will define f 〈1〉 = f. For the sake of convenience, we will also define

f 〈0〉 = 1. The sequence f 〈p〉 is called the p-th convolution (power) product of f.

Example 2.9. Recall ~ = {0, 1, 0, 0, ...} . We have ~〈0〉 = {1, 0, 0...} , ~〈2〉 =

{0, 0, 1, 0, ...} = ~ ∗ ~, ~〈3〉 = ~ ∗ ~ ∗ ~, etc.

Example 2.10. Let f, g ∈ lN. Then

(f + g)〈k〉 =
k∑

i=0

C
(k)
i f 〈i〉 ∗ g〈k−i〉, k ∈ N.

Theorem 2.11 (Merten’s Theorem). If f = {fk} ∈ lN1 and g = {gk} ∈ lN is

summable, then f ∗ g is summable and

∞∑

n=0

(f ∗ g)n =

(∑

N

f

)( ∞∑

k=0

gk

)
.

Proof. Let hn = (f ∗ g)n, Fn =
∑n
k=0 fk and Gn =

∑n
k=0 gk for n ∈ N. Let∑

N
f = α,

∑
N
|f | = γ and

∑∞
k=0 gk = β. Then

p∑

n=0

hn =

p∑

n=0

n∑

k=0

fkgn−k =

p∑

k=0

p∑

n=k

fkgn−k =

p∑

k=0

fk

p−k∑

m=0

gm =

p∑

k=0

fkGp−k

=

p∑

k=0

fkβ −
p∑

k=0

fk (β −Gp−k) = Fpβ −
p∑

k=0

fk (β −Gp−k) .

To conclude our proof, it suffices now to show that

lim
p→∞

p∑

k=0

fk (β −Gp−k) = 0.

To see this, note first that limn→∞(β −Gn) = 0. Thus we may choose M > 0 such

that |β −Gn| ≤M for n ∈ N. Given ε > 0, choose P in N sufficiently large so that

n > P implies |β −Gn| < ε/(2γ) and

∞∑

n=P+1

|fn| <
ε

2M
.
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Then for p > 2P, we have
∣∣∣∣∣

p∑

k=0

fk (β −Gp−k)

∣∣∣∣∣ ≤
P∑

k=0

|fk| |β −Gp−k| +
p∑

k=P+1

|fk| |β −Gp−k |

≤ ε

2γ

P∑

k=0

|fk| +M

p∑

k=P+1

|fk|

≤ ε

2γ

∞∑

k=0

|fk| +M

∞∑

k=P+1

|fk|

<
ε

2
+
ε

2
.

This proves

lim
p→∞

p∑

n=0

hn = lim
p→∞

Fpβ =

(∑

N

f

)( ∞∑

k=0

gk

)
.

As an immediate corollary, if f = {fk}, g = {gk} ∈ lN1 , then f ∗ g ∈ lN1 , and

∑

N

f ∗ g =

(∑

N

f

)(∑

N

g

)
.

Indeed, let hn = (f ∗ g)n for n ∈ N. Since

n∑

k=0

|hk| ≤
n∑

k=0

|fk|
n∑

k=0

|gk| ≤
∞∑

k=0

|fk|
∞∑

k=0

|gk| ,

and since {∑n
k=0 |hk|} is nondecreasing, thus

∑∞
k=0 |hk| <∞. We have thus shown

that f ∗ g ∈ lN1 . Furthermore,

∑

N

f ∗ g =

∞∑

k=0

(f ∗ g)k =

(∑

N

f

)( ∞∑

k=0

gk

)
=

(∑

N

f

)(∑

N

g

)
.

Several elementary facts related to the convolution product of sequences will be

useful later. First of all, we may easily show that for any two sequences f = {fk}
and g = {gk} in lN, f ∗ g = g ∗ f. Furthermore, if f ∗ g = 0, then f = 0 or g = 0.

Indeed, suppose that f0 = · · · = fm−1 = 0, fm 6= 0, g0 = · · · = gn−1 = 0 and

gn 6= 0. Then we have

(f ∗ g)m+n = f0gm+n + · · · + fmgn + · · · + fm+ng0 = fmgn 6= 0.

This shows that f ∗g 6= 0. It is also easily verified that under the above addition and

convolution product, lN is a commutative ring with no zero divisor, i.e. f ∗ g = 0

implies f = 0 or g = 0, and the additive and multiplicative identities are 0 and 1

respectively.

Theorem 2.12. Let f = {fk}, g = {gk} be sequences in lN. If g0 6= 0, then there

is a unique sequence x = {xk} ∈ lN such that g ∗ x = f.
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Indeed, we simply note that the infinite linear system

g0x0 = f0,

g0x1 + g1x0 = f1,

g0x2 + g1x1 + g2x0 = f2,

... = ...,

can be solved successively in the following unique manner: x0 = f0/g0, x1 = (f1 −
g1x0)/g0, ... .

In case g = {gk} satisfies g0 6= 0, the quotient f/g will denote the (unique)

solution sequence of the equation

g ∗ x = f.

One important question is how to find the explicit form of a quotient f/g. The

algorithm just stated is one way to calculate f/g. However, it may also be found by

other means.

Example 2.11. Let f = {fk} ∈ lN. If f0 = 0, then the first n terms of the

convolution product f 〈n〉 are equal to zero. Indeed, let

f 〈1〉 = f = {0, f1, f2, f3, ...} ,
then

f 〈2〉 =
{
0, 0, f2

1 , 2f1f2, 2f1f3 + f2
2 , ...

}
,

f 〈3〉 =
{
0, 0, 0, f3

1 , 3f
2
1f2, ...

}
,

f 〈4〉 =
{
0, 0, 0, 0, f4

1 , ...
}
,

and then by induction we may show that the first n terms of the sequence f 〈n〉 are

equal to zero. Furthermore, since

f
〈k〉
i =

∑

v1+···+vk=i;v1,...,vk∈N

fv1fv2 · · · fvk
=

∑

l1+···+lk=i;l1,...,lk∈Z+

fl1 · · · flk ,

for each k ∈ {0, ..., n}, the term f
〈k〉
n involves f1, ..., fn−1 only and can be expressed

as

f 〈k〉
n = P (f1, ..., fn−1), n ≥ 2, 0 ≤ k ≤ n,

where P is an (n − 1)-variate polynomial with positive coefficients. Hence the

conditions f0 = 0, f1 = µ and the iteration formula

fn = F
(
f 〈2〉
n , ..., f 〈n〉

n

)
, n ≥ 2,

will define f in a unique manner. For example, if F (u2, u3, ..., un) = u1+u2+· · ·+un,
then

fn =
n∑

i=2

f 〈i〉
n , n ≥ 2,

will yield f2 = f
〈2〉
2 = f2

1 , f3 = f
〈2〉
3 + f

〈3〉
3 = 2f1f2 + f3

1 = 2f3
1 + f3

1 , ... .
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Example 2.12. Let f = {fk} ∈ lN. If f0 = f1 = 0, then the first 2n terms of the

convolution product f 〈n〉 are equal to zero.

Example 2.13. In case g = {gk} satisfies g0 6= 0, then (f/g)〈n〉 = f 〈n〉/g〈n〉 for

n ∈ N.

Example 2.14. Let f, g, p, q ∈ lN such that g0 6= 0 and q0 6= 0. Then

f ∗ p
g ∗ q =

f

g
∗ p
q

since

(g ∗ q) ∗ f
g
∗ p
q

= f ∗ p.

Theorem 2.13. Let f = {fk}, g = {gk} ∈ lN. Then λ · (f ∗ g) = (λ · f) ∗ (λ · g) for

λ ∈ C.

Indeed,

λ · (f ∗ g) =





k∑

j=0

λkfjgk−j



 =





k∑

j=0

λjfjλ
k−jgk−j



 = (λ · f) ∗ (λ · g).

Example 2.15. Let f = {fk} ∈ lN.

(λ · f)〈2〉 =

{
k∑

i=0

fiλ
ifk−iλ

k−i
}

=

{
λk

k∑

i=0

fifk−i

}
= λ · f 〈2〉.

Similarly, we may show by induction that

(λ · f)
〈n〉

= λ · f 〈n〉, n ∈ N.

Example 2.16. Note that

σ ∗ {fk} =

{
k∑

i=0

fi

}
,

σ ∗ σ ≡ σ〈2〉 =

{
k∑

i=0

1

}
= {bk + 1c1} ,

and in general,

σ〈n〉 =

{bk + n− 1cn−1

(n− 1)!

}
, n ∈ N. (2.16)

Example 2.17. Note that δ = {1,−1, 0, 0, ...} = 1−~. Also, δ〈2〉 = {1,−2, 1, 0, ...},
and in general,

δ〈n〉 =

{
(−1)k

bnck
k!

}
, n ∈ Z+.
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Example 2.18. Let f be a sequence in lN, ∆f its first difference, and f0 the

sequence {f0, 0, 0, ...}. Then it is easily checked that

δ ∗ f = ∆f + f0 − δ ∗ (∆f) = f0 + ~ ∗ (∆f). (2.17)

Example 2.19. As an immediate application of (2.17), let f =
{
2k
}
k∈N

. Since

∆f = f,

f = δ ∗ f − 1 + δ ∗ f,
from which we obtain

{2k} =
1

2δ − 1
=

1

2 ∗ δ − 1
.

Similarly, the same principle leads to

{αk} =
1

α ∗ δ − α+ 1
. (2.18)

Substituting α = 1/(1− β) into the above formula, we obtain

1

δ − β
=

{(
1

1 − β

)k+1
}
, β 6= 1. (2.19)

Now in view of Theorem 2.13,
{
ck
}
∗
{
ck
}

= (c · σ) ∗ (c · σ) = c · σ2 =
{
ck bk + 1c1

}
,

we see that

1

(δ − β)〈2〉
=
{
(1 − β)−k−2 bk + 1c1

}
. (2.20)

By induction, it is not difficult to see that for any scalar β 6= 1, the following

extension of formula (2.16) holds

1

(δ − β)〈n〉
=

{bk + n− 1cn−1

(n− 1)!
(1 − β)

−k−n
}
, n ∈ Z+. (2.21)

Recall that δ + ~ = 1. By means of this simple relation, some of the previous

formulas can also be expressed in terms of the ‘translation operator’ ~. For instance,

(2.18) can be written as

{αk} =
1

1 − α ∗ ~
.

Similarly, (2.19) and (2.21) are equivalent to

{γ−k−1} =
1

γ − ~
, γ 6= 0, (2.22)

and

1

(γ − ~)〈n〉
=

{bk + n− 1cn−1

(n− 1)!
γ−k−n

}
, γ 6= 0, n ∈ Z+, (2.23)

or

1

(1 − γ~)〈n〉
=

{bk + n− 1cn−1

(n− 1)!
γk
}
, n ∈ Z+. (2.24)
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2.4.3 Algebraic Derivatives and Integrals

Given a sequence f = {fk}∞k=0 ∈ lN, we define the algebraic derivative of f by

Df = {(k + 1)fk+1)}∞k=0.

The higher algebraic derivatives Dnf are defined recursively by Dnf = D(Dn−1f).

Thus we have

D{f0, f1, f2, ...} = {f1, 2f2, 3f3, ...},

and

Dnf = {(k + 1) · · · (k + n)fk+n}

for n ∈ Z+. For instance, for any complex number α, Dα = 0, and we have

Dnσ = {(k + 1)(k + 2) · · · (k + n)}

for n ∈ Z+.

It can easily be verified that for α, β ∈ C and f, g ∈ lN,

D(αf + βg) = αDf + βDg,

D(f ∗ g) = f ∗Dg + g ∗Df,

D(f · g) = (Df) ·Eg = (Ef) ·Dg

and

D

(
f

g

)
=
g ∗Df − f ∗Dg

g〈2〉
,

where we recall that f/g is only defined when the zeroth term of g is not 0. For

instance, the last equality can be seen from

g ∗ x = f ⇒ D(g ∗ x) = Df ⇒ g ∗D
(
f

g

)
+
f

g
∗Dg = Df,

so that

g ∗ g ∗D
(
f

g

)
+ f ∗Dg = g ∗Df.

Algebraic derivatives of some common sequences can easily be found. More

complicated derivatives can be obtained by employing the following list of useful

formulae:

~ ∗Df = {kfk}, (2.25)

D~〈n〉 = n~〈n−1〉, n ∈ Z+, (2.26)

Dδ〈n〉 = −nδ〈n−1〉, n ∈ Z+, (2.27)
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Df 〈n〉 = D(f 〈n−1〉 ∗ f) = f 〈n−1〉 ∗Df + f ∗Df 〈n−1〉

= · · · = n ∗ f 〈n−1〉 ∗Df, n ∈ Z+, (2.28)

Dn
(

~〈m〉 ∗ {fk}
)

= ~〈m−n〉 ∗ {bm+ kcn fk} , m ≥ n ≥ 1, (2.29)

and finally

~〈m〉 ∗Dn{fk} = {bk + n−mcn fk+n−m} , n ≥ m ≥ 0. (2.30)

To see that (2.29) holds, let f = {fk}, then

D
(

~〈m〉 ∗ f
)

= ~〈m〉 ∗Df + f ∗D~〈m〉

= ~〈m−1〉 ∗ (~ ∗Df +mf)

= ~〈m−1〉 ∗ {(k +m)fk} .
Similarly,

D
(
D
(

~〈m〉 ∗ f
))

= ~〈m−1〉 ∗D {(k +m)fk} + {(k +m)fk} ∗ ((m− 1)~〈m−2〉)

= ~〈m−2〉 ∗ {k(k +m)fk} + ~〈m−2〉 ∗ ((m− 1){(k +m)fk})
= ~〈m−2〉 ∗ {(k +m)(k +m− 1)fk} .

The general formula is then obtained by induction.

It is interesting to note that if Dφ = 0, then φ is a scalar sequence. The

algebraic derivatives may also be used to derive identities involving sequences in

lN. For instance, the equalities ~ ∗ σ〈2〉 = {k} and D{k} = {(k + 1)2} imply

{(k + 1)2} = D(~ ∗ σ〈2〉) = ~ ∗Dσ〈2〉 + σ〈2〉 = 2~ ∗ σ〈3〉 + σ〈2〉,

The same principle leads to

{(k + 1)3} = D
(
~ ∗D

(
~ ∗ σ〈2〉

))
,

{(k + 1)4} = D
(

~ ∗D
(
~ ∗D(~ ∗ σ〈2〉)

))
,

etc., and

{(k + 1)3} = 6~〈2〉 ∗ σ〈4〉 + 6~ ∗ σ〈3〉 + σ〈2〉,

{(k + 1)4} = 24~〈3〉 ∗ σ〈5〉 + 36~〈2〉 ∗ σ〈4〉 + 14~ ∗ σ〈3〉 + σ〈2〉,

etc.

Example 2.20. The equation

Da = ra, r ∈ R,

can be solved by writing

(k + 1)ak+1 = rak , k ∈ N,

which yields a1 = ra0, a2 = ra1/2 = r2a0/2, ...,

a = a0

{
rk

k!

}

k∈N

.
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As in calculus, we may define the concept of a primitive of a sequence. Let φ be

a sequence, if there is a sequence ψ such that Dψ = φ, then ψ is called the primitive

of φ. In particular, given φ = {φ0, φ1, φ2, ...}, the primitive
{

0,
φ0

1
,
φ1

2
,
φ2

3
,
φ3

4
, ...

}

is called the algebraic integral of φ and is denoted by

ψ =

∫
φ.

Hence
∫
φ = ~ ∗

{
φk
k + 1

}

k∈N

,

and clearly, for any ξ, ζ ∈ lN and any α, β ∈ F,
∫

(αξ + βζ) = α

∫
ξ + β

∫
ζ.

2.4.4 Composition Products

Let f = {fn}n∈N
and g = {gn}n∈N

be sequences in lN. Recall that g〈0〉 = 1,

g〈1〉 = g and g〈i〉 = g ∗ g〈i−1〉 for i ≥ 2. If no confusion is caused, we will write the

n-th term of g〈i〉 by g
〈i〉
n instead of (g〈i〉)n. If

lim
k→∞

k∑

i=0

fig
〈i〉
n =

∞∑

i=0

fig
〈i〉
n <∞, n ∈ N,

then the sequence
{∑∞

i=0 fig
〈i〉
n

}
n∈N

is called the composition product of f and g

and denoted by f ◦ g. For example,

f ◦ ~ = f.

The products f ◦ f, f ◦ f ◦ f, ..., will be denoted by f [2], f [3], ..., respectively. We

also define f [1] = f and f [0] = ~. The sequence f [p] is called the p-th composition

(product) power of f.

Example 2.21. Let $ = {1/n!}n∈N
and c be a scalar sequence. Since c

〈i〉
0 = ci

and c
〈i〉
n = 0 for i ∈ N and n ∈ Z+, we see that

($ ◦ c)0 = 1 + c+
1

2!
c2 + · · · = ec

and

($ ◦ c)n = 0, n ∈ Z+.

Thus

$ ◦ c = ec.
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Example 2.22. Let a = {an}n∈N
, b = {bn}n∈N

∈ lN such that b0 = 0. Then a ◦ b
is well defined. Indeed, in view of Example 2.11, b

〈i〉
n = 0 for i > n. Thus

∞∑

i=0

aib
〈i〉
n =

n∑

i=0

aib
〈i〉
n =

{
a0 n = 0∑n
i=1 aib

〈i〉
n n ≥ 1

.

Example 2.23. Let g = {gn} ∈ lN such that g0 = 0. Recall the Heavidside se-

quence H(m) defined by H
(m)
i = 0 for i = 0, 1, ...,m− 1, and H

(m)
i = 1 for i ≥ m.

Then
(
H(m) ◦ g

)
n

=

∞∑

i=0

H
(m)
i g〈i〉n =

n∑

i=0

H
(m)
i g〈i〉n , n ∈ N.

Hence,

(
H(m) ◦ g

)
n

=

{∑n
i=m g

〈i〉
n n ≥ m

0 n = 0, 1, ...,m− 1
.

If we recall the convention that empty sums are equal to 0, then we may write

H(m) ◦ g =

{ ∞∑

i=0

H
(m)
i g〈i〉n

}
=

{
n∑

i=0

H
(m)
i g〈i〉n

}
=

{
n∑

i=m

H
(m)
i g〈i〉n

}
=

{
n∑

i=m

g〈i〉n

}
.

Example 2.24. Let $ =
{

1
n!

}
n∈N

and g = {gn}n∈N
. For fixed n ∈ N, let Mn =

max0≤i≤n |gi| . Since

∣∣∣g〈2〉j
∣∣∣ =

∣∣∣∣∣

j∑

i=0

gigj−i

∣∣∣∣∣ ≤
j∑

i=0

|gi| |gj−i| ≤M2
j (j + 1), j = 0, ..., n,

we have
∣∣∣g〈3〉j

∣∣∣ =
∣∣∣∣∣

j∑

i=0

g
〈2〉
i gj−i

∣∣∣∣∣ ≤
n∑

i=0

∣∣∣g〈2〉i

∣∣∣ |gj−i| ≤M3
j (j + 1)2, j = 0, ..., n,

and by induction, ∣∣∣g〈k〉j

∣∣∣ ≤Mk
j (j + 1)k−1, j = 0, ..., n.

Thus by the ratio test,

|($ ◦ g)n| =

∣∣∣∣∣
∞∑

i=0

fig
〈i〉
n

∣∣∣∣∣ ≤ 1
∣∣∣g〈0〉n

∣∣∣+ 1

1!

∣∣∣g〈1〉n

∣∣∣+ 1

2!

∣∣∣g〈2〉n

∣∣∣+ · · ·

≤ 1 +
1

1!
Mn +

1

2!
M2
n(n+ 1) +

1

3!
M3
n(n+ 1)2 + · · ·

= 1 +
1

n+ 1

{
eMn(n+1) − 1

}

<∞.

In other words, $ ◦ g is a well defined sequence. It is also useful to note that

($ ◦ g)0 = 1 +
1

1!
g0 +

1

2!
g2
0 + · · · = eg0 .
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The same principle leads to the following result.

Theorem 2.14. Let f = {fn}n∈N
∈ lN be a sequence such that λ · f is absolutely

summable for any λ. Then for any g ∈ lN, f ◦ g is well defined.

Theorem 2.15. Let g = {gn}n∈N
∈ lN such that g0 = 0 and g1 6= 0. Then the

equation x ◦ g = ~ has a unique solution x ∈ lN.

To see the proof, recall that g
〈n〉
n = gn1 6= 0 and g

〈m〉
n = 0 form > n. The equation

x ◦ g = ~ is thus equivalent to the infinite system

(x ◦ g)0 = x0g
〈0〉
0 = 0,

(x ◦ g)1 = x0g
〈0〉
1 + f1g

〈1〉
1 = 1,

(x ◦ g)2 = x0g
〈0〉
2 + x1g

〈1〉
2 + x2g

〈2〉
2 = 0,

(x ◦ g)3 = x0g
〈0〉
3 + x1g

〈1〉
3 + x2g

〈2〉
3 + x3g

〈3〉
3 = 0,

... = ...,

from which we may obtain x0 = 0, x1 = 1/g1, x2 = −x1g
〈1〉
2 /g2

1, ... in a unique

manner.

The unique solution in the above result is denoted by g[−1].

For g ∈ lN, we will call $ ◦ g the exponential of g. Two reasons for naming it in

such a manner are

($ ◦ f) ∗ ($ ◦ g) = $ ◦ (f + g), (2.31)

and

D($ ◦ f) = ($ ◦ f) ∗Df (2.32)

for any f, g ∈ lN. To show these, we first recall that a sequence {f (j)}j∈N of

sequences in lN is said to converge (pointwise) to f ∈ lN if

lim
j→∞

f
(j)
k = fk, k ∈ N.

Clearly, if {f (j)}j∈N and {g(j)}j∈N are two sequences of sequences which converge

to f and g respectively, then

lim
j→∞

(
f (j) + g(j)

)
= f + g,

lim
j→∞

(
f (j) · g(j)

)
= f · g,

and

lim
j→∞

f (j) ∗ g(j) = f ∗ g.

We may also define the infinite sum of a sequence {f (j)}j∈N of sequences as the

limiting sequence of the partial sum sequence
{∑n

j=0 f
(j)
}
n∈N

:

∞∑

j=0

f (j) = lim
n→∞

n∑

j=0

f (j).
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If such a limiting sequence exists, we say that the series
∑∞

j=0 f
(j) converges. Note

that
∑∞

j=0 f
(j) converges if, and only if,

∞∑

j=0

f (j) =

∞∑

j=0

{
f (j)
n

}
n∈N

=





∞∑

j=0

f (j)
n




n∈N

,

that is, the k-th term of the series is obtained by ‘adding’ all the k-th terms of the

individual sequences.

In case the composition product f ◦ g of f, g ∈ lN is defined, we may now easily

see from the previous observation that

f ◦ g =

{ ∞∑

i=0

fig
〈i〉
n

}

n∈N

=

∞∑

i=0

fig
〈i〉.

If the infinite sums
∑∞

j=0 f
(j) and

∑∞
j=0 g

(j) of two respective sequences

{f (j)}j∈N and
{
g(j)
}
j∈N

of sequences in lN converge, then it is also easy to see

that
∞∑

j=0

(
αf (j) + βg(j)

)
= α

∞∑

j=0

f (j) + β

∞∑

j=0

g(j), α, β ∈ C,

∞∑

j=0

Df (j) = D




∞∑

j=0

f (j)


 ,

and

∞∑

j=0

∫
f (j) =

∫ 


∞∑

j=0

f (j)


 ,

and for any g ∈ lN ,

∞∑

j=0

f (j) · g =




∞∑

j=0

f (j)


 · g

and

∞∑

j=0

f (j) ∗ g =




∞∑

j=0

f (j)


 ∗ g.

We first show the validity of (2.32):

D($ ◦f) = D

( ∞∑

k=0

1

k!
f 〈k〉

)
=

∞∑

k=0

D

(
1

k!
f 〈k〉

)
=

∞∑

k=1

kf 〈k−1〉 ∗Df
k!

= ($ ◦f)∗Df.

To show (2.31), we need the following result.
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Example 2.25. Consider the equation

Dg = λ(Dh) ∗ g,
where λ is a fixed number different from 0, h is a given sequence in lN and g is a

sequence in lN to be sought. Then g = $ ◦ (λh) is such a solution since

Dg = D($ ◦ (λh)) = ($ ◦ (λh)) ∗D(λh) = λ(Dh) ∗ g.
We assert that any other solution must be a constant multiple of $ ◦ (λh). To see

this, let g be another solution and consider the ratio g/($ ◦ (λh)) which is defined

since ($ ◦ (λh))0 is not zero by Theorem 2.12. Note that

D

(
g

$ ◦ (λh)

)
=

($ ◦ (λh)) ∗Dg − g ∗D($ ◦ (λh))

($ ◦ (λh))〈2〉

=
($ ◦ (λh)) ∗Dg − g ∗ (λDh) ∗ ($ ◦ (λh))

($ ◦ (λh))〈2〉

=
($ ◦ (λh)) ∗ (Dg − λ(Dh) ∗ g)

($ ◦ (λh))〈2〉

= 0,

thus,
g

$ ◦ (λh)
= β,

for some scalar sequence β, or,

g = β ($ ◦ (λh)) .

We now show the validity of (2.31). First note that

q = ($ ◦ f) ∗ ($ ◦ g)
satisfies the equation

Dq = (D(f + g)) ∗ q,
since

Dq = ($ ◦ f) ∗D($ ◦ g) + (D($ ◦ f)) ∗ ($ ◦ g)
= ($ ◦ f) ∗ {(Dg) ∗ ($ ◦ g)} + {(Df) ∗ ($ ◦ f)} ∗ ($ ◦ g)
= q ∗Dg + q ∗Df
= q ∗D(f + g).

By the uniqueness in the previous example, we see that

($ ◦ f) ∗ ($ ◦ g) = β ($ ◦ (f + g))

for some constant β. But since

(($ ◦ f) ∗ ($ ◦ g))0 = ef0+g0 = ($ ◦ (f + g))0 ,

we see that β = 1.
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As an interesting consequence, note that
( ∞∑

k=0

f 〈k〉

k!

)
∗
( ∞∑

k=0

g〈k〉

k!

)
= ($ ◦ f) ∗ ($ ◦ g)

= $ ◦ (f + g)

=

∞∑

k=0

1

k!
(f + g)〈k〉

=

∞∑

k=0

1

k!

k∑

m=0

k!

m!(m− k)!
(f 〈m〉 ∗ g〈k−m〉)

=

∞∑

k=0

k∑

m=0

(
f 〈m〉

m!
∗ g〈k−m〉

(m− k)!

)
.

As another interesting consequence, we have the following result which will be

useful in the calculation of the higher derivatives of composite functions.

Example 2.26. Consider the equation

(E$) · (DB) = λ [(E$) · (Dg)] ∗ ($ ·B) , (2.33)

where λ is a fixed number different from 0, g is a given sequence in lN and B is a

sequence in lN to be sought (recall also that {pk}·{qk} = {pkqk}). Note that (2.33)

can be written as

D ($ ·B) = λD ($ · g) ∗ ($ · B) .

By our previous Example, we see that

$ ·B = β ∗ ($ ◦ (λ$ · g))
for some scalar sequence β. Thus,

B = $−1 ·
(
β ∗ ($ ◦ (λ$ · g))

)
.

The previous facts are useful in finding the n-th derivative of a composite func-

tion. For the sake of convenience, we will use Dn
t f(t) to denote the n-th derivative

f (n)(t) for n ∈ N.

Theorem 2.16 (Formula of Faa di Bruno). If f (t) and g (t) are functions for

which all the necessary derivatives are defined, then for n ∈ Z+,

Dn
t f (g (t)) =

n!

k!

∑

j1+···+jk=n;j1,··· ,jk∈Z+

Dk
uf (u) |u=g(t)

(
Dj1
t g (t)

j1!

)
· · ·
(

Djk
t g (t)

n!

)
.

Proof. Let us write h (t) = f(g (t)) and

hn = Dn
t h (t) ,

gn = Dn
t g (t) ,

fn = Dn
uf (u) |u=g(t)
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for n ∈ N. Then

h1 = D1
th (t) = D1

uf (u) |u=g(t)D
1
t g (t) = f1g1,

and similarly

h2 = f1g2 + f2g
2
1

h3 = f1g3 + f23g1g2 + f3g
3
1.

It is easily established by induction that hn has the form

hn =

n∑

k=1

fkln,k (g1, ..., gn) (2.34)

where ln,k (g1, ..., gn) does not depend on any of the functions fj . Now, since we

wish only to determine ln,k (g1, ..., gn) , we are free to choose f (t) arbitrarily. Let

us take f (t) = eλt where λ is an arbitrary constant different from 0. Then

fk = Dk
uf (u) |u=g(t) = λkeλg(t), k ∈ N, (2.35)

and

hn = Dn
t e
λg(t), n ∈ N. (2.36)

Substituting (2.35) and (2.36) into (2.34) and multiplying by e−λg(t) gives

e−λg(t)Dn
t e
λg(t) =

n∑

k=1

λkln,k (g1, ..., gn) .

If we set Bn (t) = e−λg(t)Dn
t e
λg(t) for n ∈ N, then B0(t) = 1 and

Bn (t) = e−λg(t)Dn−1
t λg1 (t) eλg(t)

= λe−λg(t)
n−1∑

k=0

(
n− 1

k

)
gk+1 (t)Dn−k−1

t eλg(t)

= λ

n−1∑

k=0

(
n− 1

k

)
gk+1 (t)Bn−k−1 (t) (2.37)

for n ∈ Z+, where we have used Leibniz’s formula for the second equality. Now we

may think of t as being fixed and define sequences B = {Bn}n∈N
and g = {gn}n∈N

where Bn (t) = Bn and gn (t) = gn for n ∈ N.

Equation (2.37) now becomes

(E$) · (DB) = λ [(E$) · (Dg)] ∗ ($ · B) (2.38)

In view of Example 2.26, all its solutions are of the form

B = $−1 · [c ∗ [$ ◦ (λ$ · g)]]
where c may depend on the fixed t. In order to determine c, we recall that B0(t) = 1

and so

1 = B0(t) = c
(
$−1

)
0
[$ ◦ (λ$ · g)]0 = ce(λ$g)0 = ceλg0 ,
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which implies c = e−λg0 . Thus in view of the previous Example,

B = $−1 ·
[
e−λg0 ∗ [$ ◦ (λ$ · g)]

]

= $−1 · [($ ◦ (−λg0)) ∗ ($ ◦ (λ$ · g))] = $−1 · {$ ◦ [λ($ · g − g0)]} .

Since ($g − g0)0 = 0, by Theorem 2.12 and (2.15),

Bn =
n!

0!
[λ($g − g0)]

<0>
n + n!

n∑

k=1

λk

k!

∑

j1+···+jk=n;j1,...,jk∈Z+

(
gj1
j1!

)
· · ·
(
gjk
jk!

)

= n!

n∑

k=1

λk

k!

∑

j1+···+jk=n;j1,...,jk∈Z+

(
gj1
j1!

)
· · ·
(
gjk
jk!

)

for n ≥ 1. By equating coefficients of λk, where k ≥ 1, in the two expressions for

Bn gives

ln,k (g1, ..., gn) =
n!

k!

∑

j1+···+jk=n;j1,...,jk∈Z+

(
gj1
j1!

)
· · ·
(
gjk
jk!

)
, n ∈ Z+.

This is the desired formula and the proof is complete.

We remark that (see Roman [164])

n!

k!

∑

j1+···+jk=n;j1,...,jk∈Z+

(
gj1
j1!

)
· · ·
(
gjk
jk!

)
=
∑ n!

k1! · · · kn!
fk

(g1
1!

)k1
· · ·
(gn
n!

)kn

,

where the last sum is over all k1, ..., kn for which k1 + · · · + kn = k and k1 + 2k2 +

· · · + nkn = n.

Example 2.27. Take

g(t) =
1

1 − t
=

∞∑

n=0

tn, t ∈ (−1,+1)

and

f(x) =
1

1 − r(x − 1)
=

∞∑

n=0

rj(x− 1)j , |r(x − 1)| < 1.

Then

f(g(t)) =
1 − t

1 − (r + 1)t
=

1

1 − (r + 1)t
− t

1 − (r + 1)t

=
∞∑

n=0

(1 + r)ntn −
∞∑

n=0

(1 + r)ntn+1

= 1 +

∞∑

n=1

r(1 + r)n−1tn
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for |(r + 1)t| < 1. Thus g(j)(0) = j!, f (k)(g(0)) = k!rk and
dnf(g(0))

dt
= n!r(1 + r)n−1

=
∑ n!

k1!k2! · · · kn!
f(g(0))

(
g(1)(0)

1!

)k1
· · ·
(
g(n)(0)

n!

)kn

=
∑ n!

k1!k2! · · · kn!
k!rk

where k = k1 + · · ·+ kn and the sum is taken over all k1, ..., kn for which k1 +2k2 +

· · · + nkn = n. Consequently,∑

k1+2k2+···+nkn=n;k1,...,kn∈N

k!

k1!k2! · · · kn!
rk = r(1 + r)n−1, n ∈ Z+.

2.5 Properties of Bivariate Sequences

Let lN×N be the set of all complex bivariate sequences of the form f = {fij}i,j∈N.

Such a bivariate sequence f is a function defined on the set of all nonnegative lattice

points N×N and it is natural to view a bivariate sequence as an infinite matrix of

the form 

f00 f01 ...

f10 f11 ...

... ... ...


 .

We will also write {fij} instead of {fij}i,j∈N if no confusion is caused. The number

fij will be called the (i, j)-th component of the bivariate sequence f, while the

sequences {fi0, fi1, ...} and {f0j , f1j , ...} will be called its i-th row and j-th column.

For any complex number α and f = {fij}, g = {gij} ∈ lN×N, we define −f, αf,
f · g and f + g respectively by {−fij}, {αfij}, {fijgij} and {fij + gij} as usual.

There are some common sequences in lN×N which deserve special notations.

First of all, let α be a complex number, the sequence whose (0, 0)-th component is

α and others are zero will be denoted by α and is called a scalar bivariate sequence.

In particular, the sequence with all zero components will be denoted by 0. The

bivariate sequence whose (1, 0)-th component is 1 and others are zero will be denoted

by ~x, while the sequence whose (0, 1)-th component is 1 and others are zero will

be denoted by ~y :

~x =




0 0 0 ...

1 0 0 ...

0 0 0 ...

... ... ... ...


 , ~y =




0 1 0 ...

0 0 0 ...

0 0 0 ...

... ... ... ...


 ,

while the bivariate sequences σx, σy, δx and δy are defined by

σx =




1 0 0 ...

1 0 0 ...

1 0 0 ...

... ... ... ...


 , σy =




1 1 1 ...

0 0 0 ...

0 0 0 ...

... ... ... ...


 ,
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δx =




1 0 0 ...

−1 0 0 ...

0 0 0 ...

... ... ... ...


 , δy =




1 −1 0 ...

0 0 0 ...

0 0 0 ...

... ... ... ...




respectively. Note that δx + ~x = 1 and δy + ~y = 1.

The bivariate sequence {fi+m,j+n}i,j∈Z will be denoted by Emx E
n
y {fij}, where

m,n ∈ N. The sequence Emx E
n
y f is called a translated sequence of f. For the sake of

convenience, E0
xE

n
y f and Emx E

0
yf are also denoted by Eny f and Emx f respectively.

For any complex numbers λ and µ, the sequence {λiµjfij} is called an attenuated

bivariate sequence of f and is denoted by (λ, µ)·f. It is easily seen that (0, 0)·f = f00,

(1, 1) · f = f and (λ, µ) ·
(
(ρ, τ) · f

)
= (λρ, µτ) · f.

For any f = {fij}, g = {gij} ∈ lN×N, we define the convolution product f ∗ g,
by

(f ∗ g)ij =

i∑

u=0

j∑

v=0

fuvgi−u,j−v , i, j ≥ 0.

We may evaluate the components of h = f ∗ g in an orderly manner as follows:

h00 = f00g00; h10 = f10g00 + f00g10, h01 = f01g00 + f00g01;

h20 = f20g00 + f10g10 + f00g20, h11 = f11g00 + f01g10 + f10g01 + f00g11, ... .

For the sake of convenience, we will also use the simpler notation fg for the product

f ∗g. Note that f ∗f, f ∗ (f ∗f), ..., will also be written as f 〈2〉, f 〈3〉, ..., respectively.

For example, 0 ∗ f = 0, 1 ∗ f = f, α ∗ β = αβ, and α ∗ f = (α1) ∗ f =

α(1 ∗ f) = αf. More complicated examples can also be given. First of all, ~
〈m〉
x

(or ~
〈m〉
y ) is a bivariate sequence whose (m, 0)-th component (respectively (0,m)-th

component) is 1 and others are zero, while ~
〈m〉
x ∗~

〈n〉
y is a bivariate sequence whose

(m,n)-th component is 1 and others are zero. It is also interesting to note that

~
〈m〉
x ∗ ~

〈n〉
y ∗ {fij} = {gij} where

gij =

{
fi−m,j−n i ≥ m, j ≥ n

0 otherwise
.

For instance, the matrix representation of the bivariate sequence ~
〈2〉
x ∗ ~

〈1〉
y ∗ {fij}

is




0 0 0 0 ...

0 0 0 0 ...

0 f00 f01 f02 ...

0 f10 f11 f12 ...

. ... ... ... ...



,
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while f21~
〈2〉
x ∗ ~

〈1〉
y is




0 0 0 ...

0 0 0 ...

0 f21 0 ...

0 0 0 ...

... ... ... ...



.

There are several elementary facts related to the convolution product of bivariate

sequences. First of all, we may show that for any bivariate sequences f = {fij},
g = {gij} and h = {hij}, we have f ∗ g = g ∗ f and f ∗ (g ∗ h) = (f ∗ g) ∗ h.
Indeed, these are due to the fact that the convolution product of sequences of a

single integral variable are commutative and associative:

i∑

k=0

xkyi−k =

i∑

k=0

xi−kyk,

and

m∑

k=0

(
k∑

i=0

xiyk−i

)
zm−k =

m∑

i=0

m∑

k=i

xiyk−izm−k =

m∑

i=0

xi

m−i∑

j=0

yjzm−i−j .

Next, we show that when f 6= 0 and g 6= 0, then f ∗ g 6= 0. Indeed, suppose the

components of f and g are ordered by the mapping Ψ̃ defined by (1.3). Then we

may assume without loss of generality that

f00 = f10 = f01 = · · · = fm+1,n−1 = 0, fmn 6= 0,

and

g00 = g10 = g01 = · · · = gs+1,t−1 = 0, gst 6= 0,

where Ψ̃−1(m,n) ≤ Ψ̃−1(s, t). Since when s+ t ≥ m+ n,

(fg)m+s,n+t = f00gm+s,n+t + · · · + fmngst + · · · + fm+s,n+tg00 = fmngst 6= 0.

we see that f ∗ g 6= 0.

Theorem 2.17. Let f = {fij} and g = {gij} be bivariate sequences in lN×N. If

g00 6= 0, then there is a unique bivariate sequence x = {xij} such that g ∗ x = f.

The proof is elementary. We write the component equations of g ∗ x = f in the

following orderly manner:

g00x00 = f00,

g00x10 + g10x00 = f10,

g00x01 + g01x00 = f01,

g00x20 + g10x10 + g20x00 = f20,

g00x11 + g10x01 + g01x10 + g11x00 = f11,



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

Sequences 45

and so on, and then obtain x00 = f00/g00, x10 = (f10 − g10x00)/g00, ..., successively

in a unique manner.

In case g = {gij} satisfies g00 6= 0, the quotient f/g will denote the solution

sequence of the equation

g ∗ x = f.

One important question is how to find the explicit form of a quotient f/g. We

remark that although we have mentioned an algorithm to calculate f/g, as we will

see below, it may also be found by other means.

Example 2.28. Let f = {fij} ∈ lN×N. If f00 = 0, then for all (i, j) ∈{
(i, j) ∈ N2| i+ j ≤ n− 1

}
, we have f

〈n〉
ij = 0, where n ∈ Z+. Indeed, let

Qk =
{
(i, j) ∈ N2| i+ j = k

}
for k ∈ N. Assume by induction that f

〈k〉
ij = 0 for

(i, j) ∈ Qk−1 where k is a positive integer. Then for (i, j) ∈ Q0 + · · · +Qk−1,

f
〈k+1〉
ij =

i∑

u=0

j∑

v=0

f 〈k〉
uv fi−u,j−v =

i∑

u=0

j∑

v=0

0 · fi−u,j−v = 0.

For (i, j) ∈ Qk, let S = {0, 1, ..., i}× {0, 1, ..., j}, then

f
〈k+1〉
ij =

∑

(u,v)∈S\{(i,j)}
f 〈k〉
uv fi−u,j−v + f

〈k〉
ij f00 = 0.

For instance, when f00 = 0, the matrix representation of f 〈4〉 is of the form



0 0 0 ∗ ...
0 0 ∗ . ...
0 ∗ . . ...
∗ . . . ...
. . . . ...




Theorem 2.18. Let f = {fij}, g = {gij} be bivariate sequences in lN×N. Then

(λ, µ) · (f ∗ g) =
(
(λ, µ) · f

)
∗
(
(λ, µ) · g

)
for λ, µ ∈ C.

Indeed,

(λ, µ) · (f ∗ g) =

{
i∑

u=0

j∑

v=0

λiµjfuvgi−u,j−v

}

=

{
i∑

u=0

j∑

v=0

λuµjfuvλ
i−uµj−vgi−u,j−v

}

=
(
(λ, µ) · f

)
∗
(
(λ, µ) · g

)
.

Theorem 2.19. Let f = {fij}, g = {gij} be bivariate sequences in lN×N

1 . Then

f ∗ g ∈ lN×N

1 and
∑

N×N
f ∗ g =

(∑
N×N

f
) (∑

N×N
g
)
.
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To see the proof, we first assume that f, g ≥ 0. Note that

m∑

i=0

n∑

j=0

(
i∑

u=0

j∑

v=0

fuvgi−u,j−v

)
≤

m∑

i=0

n∑

j=0

fij

m∑

i=0

n∑

j=0

gij ≤
∑

N×N

f
∑

N×N

g.

Thus for any w ∈ lN×N such that 0 ≤ w ≤ f ∗ g and the support of u is finite, we

have
m∑

i=0

n∑

j=0

wij ≤
∑

N×N

f
∑

N×N

g

for all sufficiently large m and n. Taking the supremum on the left hand side, we see

that f ∗ g ∈ lN×N

1 and
∑

N×N
f ∗ g ≤

(∑
N×N

f
) (∑

N×N
g
)
. Next, let u, v ∈ lN×N

1

such that u, v have finite supports and 0 ≤ u ≤ f and 0 ≤ v ≤ g. We may

assume that the supports Φ(u) and Φ(v) are {(i, j)| i = 0, 1, ..., α; j = 0, 1, ..., β} and

{(i, j)| i = 0, 1, ..., γ; j = 0, 1, ..., δ} . Let E be the set {(i, j)| i, j = 0, 1, ..., αβγδ} .
Since it can easily be checked by listing all the terms of u ∗ v that

0 ≤
∑

N×N

u
∑

N×N

v ≤
∑

N×N

f ∗ g.

Thus
(∑

N×N
f
) (∑

N×N
g
)
≤
∑

N×N
f ∗ g. For f and g which are not necessary

nonnegative, the routine procedure of breaking f and g into real and imaginary

parts and/or positive and negative parts will then lead to a proof.

Given a bivariate sequence f = {fij}, we denote the sequences {(i+1)fi+1,j} and

{(j + 1)fi,j+1} by Dxf and Dyf respectively and call them the (partial) algebraic

derivatives of f. The higher algebraic and mixed derivatives are defined recursively.

Thus we have

Dxα = Dyα = 0, α ∈ C,

and

Dm
x D

n
y f = {[(i+ 1) · · · (i+m)][(j + 1) · · · (j + n)]fi+m,j+n} = Dn

yD
m
x f

for m,n ∈ Z+. It is easily verified that for any α, β ∈ C, and f, g ∈ lN×N,

Dx(αf + βg) = αDxf + βDxg, Dy(αf + βg) = αDyf + βDyg,

Dx(f ∗ g) = f ∗Dxg + g ∗Dxf, Dy(f ∗ g) = f ∗Dyg + g ∗Dyf,

and

Dx

(
f

g

)
=
g ∗Dxf − f ∗Dxg

g〈2〉
, Dy

(
f

g

)
=
g ∗Dyf − f ∗Dyg

g〈2〉
,

where we have assumed that g00 6= 0 in the quotient f/g.

Algebraic derivatives of some common operators can easily be found. More

complicated derivatives can be obtained by employing the following list of useful

formulas:

Dx~y = Dy~x = 0̄,
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~x ∗Dx{fij} = {ifij},

Dx~
〈m〉
x = m~〈m−1〉

x , m ∈ Z+

Dxφ
〈m〉 = Dx(φ

〈m−1〉φ)

= φ〈m−1〉 ∗Dxφ+ φ ∗Dxφ
〈m−1〉

= · · ·
= mφ〈m−1〉 ∗Dxφ, m ∈ Z+,

Dn
x (~〈m〉

x ∗ {fij}) = ~〈m−n〉
x ∗ {bm+ icn fij} , m ≥ n ≥ 1,

and finally

~〈m〉
x ∗Dn

x{fij} = {bi+ n−mcn f(i+ n−m, j)} , n ≥ m ≥ 0.

Example 2.29. Let us calculate

Dx
1

(1 − 3~x) ∗ (1 − 3~y)
.

Since

Dx
1

1 − 3~y
=

3Dx~y

(1 − 3~y)〈2〉
= 0,

and

Dx
1

(1 − 3~x)
=

3Dx~x

(1 − 3~x)〈2〉
=

3

(1 − 3~x)〈2〉
,

thus

Dx
1

(1 − 3~x) ∗ (1 − 3~y)
=

1

1 − 3~x
∗Dx

1

1 − 3~y
+

1

1 − 3~y
∗Dx

1

1 − 3~x

=
3

(1 − 3~y) ∗ (1 − 3~x)〈2〉
.

We conclude this section by remarking that iterated algebraic integrals can be

introduced. They are just the primitives of partial algebraic derivatives and thus

their properties follow from those of algebraic integrals defined in a previous Section.

2.6 Notes

Most of the material in this Chapter are well known and can be found in standard

analysis text books such as Apostol [5], Cheng [28], Krantz and Parks [99], Smith

[211], Fichtenholz [62], Balser [13], Kaplan [94], etc. Some of the terminologies used

here, however, are slightly different. For instance, instead of the term ‘series’, we

use ‘sum’; instead of the term ‘sequence of functions’, we use ‘family of sequences’,

etc.
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We have employed limits of generalized partial sums relative to an ordering for

the definition of sums of multiple sequences. This is the usual approach in the theory

of several complex variables (see e.g. Krantz [100]). There are other definitions for

partial sums of multiple sequences as well (see e.g. Sheffer [169, 170], Wilansky

[225]). For instance, the double series
∑

fij

is said to converge to s in the sense of Pringsheim if the limit

lim
m,n→∞

m∑

i=0

n∑

j=0

fij

exists and equals s. It is possible to develope results based on Pringsheim’s concept

for bivariate power series functions similar to those described in our previous sec-

tions. However, as pointed out by Sheffer [169], there are some technical difficulties

which have to be circumvented due to the fact that Pringsheim’s summability does

not imply boundedness of {fij} .
Algebraic properties of multiple sequences have also been reported quite exten-

sively. Indeed, some concepts and results in Sections 2.1, 2.4 and 2.5 are taken

from Cheng [28]. There are, however, unpublished material in this Chapter. For

the sake of convenience, we collect some of the properties of univariate sequences

in our Appendix.

There are now active research into functional equations where the unknown

functions are sequences. Some of these equations are called recurrence relations,

some ordinary or partial difference equations. The former equations are called since

their recursive structures are more important, while the latter are called since the

concept of rate of changes is more important. In this book, as we shall see, a large

number of recurrence relations arising from seeking analytic solutions will be solved.

The introduction of algebraic operations and/or limiting operations will enable us

to handle the recurrence relations in less cumbersome manners.

The concept of composition product is new. This concept is related to compo-

sition of analytic functions. Composition of analytic functions has been studied as

abstract mappings, see e.g. Cowen [44].

The formula of Faa di Bruno is well known and is proved in several manners

(see e.g. Jordan [90], Roman [164], McKiernan [139]). The one we present in

this Chapter is new (and part of the arguments are provided by J. J. Lin). It is

based on the idea of Roman [164], but no knowledge of umbral algebra is required.

The formula of Faa di Bruno will play important roles in manipulating functional

equations with composition of known or unknown analytic functions.
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Power Series Functions

3.1 Univariate Power Series Functions

Let a = {an}n∈N
∈ lN. Let Λ be a subset of F such that the attenuated sequence

λ · a is summable for each λ ∈ Λ, that is, such that the limit

lim
n→∞

n∑

k=0

(λ · a)k =

∞∑

k=0

akλ
k

exists for each λ ∈ Λ, then we may define a function â : Λ → C by

â(λ) =
∞∑

k=0

akλ
k, λ ∈ Λ. (3.1)

If Λ is a priori unknown, we will take Λ as the set of all λ ∈ F such that λ · a is

summable. This function, which is completely determined by a, is called the power

series function in λ generated by a, or the generating function of a. The function

g(z) defined by g(z) = â(z−c) for z ∈ c+Λ = {c+ z| z ∈ Λ} is called the generating

function of a about (or with center at) c.

Since properties of power series functions with nonzero centers can easily be

deduced from power series functions with center 0, we will therefore concentrate

our attention to the latter functions.

Example 3.1. Let f be a complex function defined on a domain Θ of F which has

derivatives of any order at the point c ∈ Θ. Let

a =

{
1

k!
f (k)(c)

}

k∈N

.

The power series function â(z − c) is called the Taylor series function with center c

generated by f.

Theorem 3.1 (Abel’s Lemma). Let a = {ak}k∈N ∈ lN. If the attenuated se-

quence λ · a, where λ 6= 0, is summable relative to an ordering Ψ for N, then µ · a
is absolutely summable for |µ| < |λ| . If λ · a is not summable at λ = α 6= 0 relative

to some ordering for N, then λ · a is also not summable for all |λ| > |α| relative to

any ordering for N.

49
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Indeed, if λ · a is summable relative to an ordering Ψ, then in view of Theorem

2.5, {akλk} is bounded, say by M. Hence for k ∈ N,

∣∣akµk
∣∣ =

∣∣∣∣ak
µkλk

λk

∣∣∣∣ =
∣∣akλk

∣∣
∣∣∣∣
(µ
λ

)k∣∣∣∣ ≤M
∣∣∣µ
λ

∣∣∣
k

.

Thus when |µ| < |λ| , the comparison test for series yields

∞∑

k=0

|akµ|k ≤M

∞∑

k=0

∣∣∣µ
λ

∣∣∣
k

<∞

as desired. The second assertion of our Theorem follows from the first.

Suppose we have a sequence a = {ak}k∈N ∈ lN. Let Γ be the union of {0} and

the set of all nonnegative numbers λ such that λ · a is summable relative to some

ordering for N. Since 0 ∈ Γ, the (extended) real number

ρ(a) = sup Γ

belongs to [0,∞]. The number ρ(a) is called the radius of convergence of the sequence

a or of the power series function â generated by it. Note that by definition, if w · a
is summable for each w that satisfies |w| < |c| , then ρ(a) ≥ |c| .

Theorem 3.2. With each a = {ak}k∈N
∈ lN, there is associated an extended

number ρ(a) ∈ [0,∞] such that λ · a is absolutely summable for |λ| < ρ(a) and not

summable for |λ| > ρ(a) relative to any ordering for N. Furthermore, the family

{λ · a} is uniformly and absolutely summable for |λ| ≤ r where r < ρ(a).

The first assertion of the above Theorem follows from Theorem 3.1. The second

assertion means the sequence
{∣∣akλk

∣∣}
k∈N

is uniformly summable for |λ| < r, and

follows from Weierstrass test for uniform convergence.

In the rest of this section, a = {ak} and b = {bk} are sequences in lN, ρ(a)

and ρ(b) respectively are their radii of convergence, and â(λ) and b̂(λ) are the

corresponding power series generated by them respectively.

Theorem 3.3. The radius of convergence ρ(a) is given by

1

ρ(a)
= lim sup

k→∞
|ak|1/k

where ρ(a) = +∞ if lim supk→∞ |ak|1/k = 0 and ρ(a) = 0 if lim supk→∞ |ak|1/k =

+∞.

The above Theorem (due to Cauchy and Hadamard) follows from the root test

in elementary analysis.

Example 3.2. Let a = {ak}k∈N
∈ lN. Then ρ(a) = ρ(Da) = ρ

(∫
a
)

= ρ(|a|),
where Da is the algebraic derivative of a,

∫
a is the algebraic integral of a, and |a|

is the sequence {|ak|}k∈N
.
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The fact that ρ(|a|) = ρ(a) is clear from the previous result, that ρ(Da) = ρ(a)

from

lim sup
n→∞

|(Da)n|1/n = lim sup
n→∞

|nan|1/n = lim sup
n→∞

|an|1/n ,

and that ρ
(∫
a
)

= ρ(a) from

lim sup
n→∞

∣∣∣∣
1

n+ 1
an

∣∣∣∣
1/n

= lim sup
n→∞

|an|1/n .

In case each term ak in the sequence a ∈ lN is not zero, the ratio test for series

also yields

lim inf
n→∞

∣∣∣∣
an
an+1

∣∣∣∣ ≤ ρ(a) ≤ lim sup
n→∞

∣∣∣∣
an
an+1

∣∣∣∣ .

Theorem 3.4. Let a, b ∈ lN. For any α, β ∈ F,

ρ(αa+ βb), ρ(a ∗ b) ≥ min (ρ(a), ρ(b)) .

Furthermore,

̂(αa+ βb)(λ) = αâ(λ) + βb̂(λ) = α̂a(λ) + β̂b(λ)

and

â ∗ b(λ) = â(λ)b̂(λ)

for |λ| < min (ρ(a), ρ(b)) .

To see that ρ(a ∗ b) ≥ min (ρ(a), ρ(b)) , it suffices to show that λ · (a ∗ b) =

(λ · a) ∗ (λ · b) is summable for |λ| < min (ρ(a), ρ(b)) . But this is true in view of

Theorem 2.13. Furthermore, for |µ| < min (ρ(a), ρ(b)) , since µ · a and µ · b are

absolutely summable, by Merten’s Theorem 2.11 and Theorem 2.13,

â ∗ b(µ) =
∑

N

µ · (a ∗ b) =
∑

N

(µ · a) ∗ (µ · b) =

(∑

N

µ · a
)(∑

N

µ · b
)
.

The other assertions in the above result are proved in similar manners.

As an interesting consequence, we see that

â〈m〉(λ) = âm(λ), |λ| < ρ(a), (3.2)

for m = 2, 3, ... . Recall that a〈1〉 = a, hence (3.2) is also valid for m = 1. Further-

more, since a〈0〉 is defined to be 1, and (â)0(λ) = 1, we see that (3.2) is valid for

m = 0.

The following follows from Theorem 2.8.

Theorem 3.5. The power series function â(λ) generated by a is continuous for

|λ| < ρ(a).
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Example 3.3 (Abel’s Limit Theorem). If a is a real sequence and if λ · a is

summable at λ = ρ(a) > 0 (or λ = −ρ(a) < 0), then â(λ), as a function of real

variable, is continuous at ρ(a) from the left (respectively continuous at −ρ(a) from

the right).

Proof. Without loss of generality, we will assume that ρ(a) = 1 and show that

if

w =

∞∑

i=0

ai <∞,

then

lim
x→1−

â(x) = lim
x→1−

∞∑

i=0

aix
i =

∞∑

i=0

ai.

First of all, it can easily be proved from

1 − xn+1

1 − x
= 1 + x+ x2 + · · · + xn

that

1

1− x
=

∞∑

i=0

xi, − 1 < x < 1.

Since

1

1 − x
â(x) =

∞∑

i=0

(σ ∗ a)ixi, − 1 < x < 1,

where σ = {1, 1, 1, ...} , thus

â(x) − w = (1 − x)

∞∑

i=0

{(σ ∗ a)i − w}xi, − 1 < x < 1.

By assumption, there exists an integer I such that i ≥ I implies

|(σ ∗ a)i − w| =

∣∣∣∣∣∣

i∑

j=0

aj −
∞∑

j=0

aj

∣∣∣∣∣∣
<
ε

2
.

Therefore,

|â(x) − w| <
∣∣∣∣∣(1 − x)

I−1∑

i=0

{(σ ∗ a)i − w}xi
∣∣∣∣∣+

ε

2

∣∣∣∣∣(1 − x)

∞∑

i=I

xi

∣∣∣∣∣

≤ (1 − x) · I · max
0≤i≤I

|(σ ∗ a)i − w| + ε

2

for 0 < x < 1. If we take x sufficiently close to 1, then the right hand side can be

made arbitrary small which is what we need. The proof is complete.
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Theorem 3.6 (Representation Theorem). Let â(λ) be the power series func-

tion generated by a sequence a ∈ lN with ρ(a) > 0. Then for each nonzero

µ ∈ B(0; ρ(a)), there exists β > 0 such that B(µ;β) ⊆ B(0; ρ(a)) and

â(λ) =
∞∑

k=0

( ∞∑

n=0

C
(n)
k anµ

n−k
)

(λ− µ)k <∞, λ ∈ B(µ;β). (3.3)

Proof. Choose β > 0 such that β + |µ| < ρ(a). Then B(µ;β) is contained in

B(0; ρ(a)), and λ · a is absolutely summable for each λ ∈ B(µ;β). Since for each

λ ∈ B(µ;β),

∞∑

n=0

anλ
n =

∞∑

n=0

an(λ− µ+ µ)n =

∞∑

n=0

an

n∑

k=0

C
(n)
k (λ − µ)kµn−k,

by Fubini’s Theorem 2.4, we may interchange the order of summation and obtain

∞∑

n=0

anλ
n =

∞∑

k=0

∞∑

n=k

C
(n)
k anµ

n−k(λ− µ)k <∞.

Since C
(n)
k = 0 for n < k, we see that (3.3) holds. The proof is complete.

Theorem 3.7. Let a ∈ lN with ρ(a) ∈ (0,∞] and b = Da be the algebraic derivative

of a. Then ρ(b) = ρ(a). Furthermore,

â′(µ) = D̂a(µ) = b̂(µ)

for |µ| < ρ(a).

Proof. We have already seen that ρ(b) = ρ(a). Let µ ∈ B(0; ρ(a)). Then by the

representation theorem, there exists β > 0 such that B(µ;β) ⊆ B(0; ρ(a)) and for

λ ∈ B(µ;β),

â(λ) − â(µ)

λ− µ
=

1

λ− µ

{ ∞∑

n=0

anµ
n +

∞∑

k=1

∞∑

n=k

C
(n)
k anµ

n−k(λ − µ)k − â(µ)

}

=

∞∑

n=1

nanµ
n−1 +

∞∑

k=2

( ∞∑

n=k

C
(n)
k anµ

n−k
)

(λ− µ)k−1.

By taking limits on both sides as λ→ µ and invoking Theorem 3.2, we see that

â′(µ) =
∞∑

n=1

nanµ
n−1 = b̂(µ)

as required. The proof is complete.

We remark that by repeated application of the above theorem, we see that

â(m)(λ) = D̂ma(λ) =
∞∑

n=m

n!

(n−m)!
anλ

n−m
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for |λ| < ρ(a). If we put λ = 0 in the above formula, we see that

â(m)(0) = m!am, m ∈ Z+. (3.4)

As an interesting consequence, if

∞∑

n=0

an(z − c)n =

∞∑

n=0

bn(z − c)n <∞ (3.5)

for z in a neighborhood of c, then an = bn for n ∈ N.

Theorem 3.8 (Unique Representation Theorem). If two power series func-

tions
∑∞
n=0 an(z− c)n and

∑∞
n=0 bn(z − c)n are defined in a neighborhood of c and

(3.5) holds, then an = bn for n ∈ N.

Theorem 3.9. Let a ∈ lN with ρ(a) ∈ (0,∞]. Let b be the algebraic integral
∫
a of

a. Then ρ(b) = ρ(a). Furthermore, for z ∈ B(0; ρ(a)),

∫ z

0

â(λ)dλ =

∫̂
a(z) = b̂(z).

Indeed, by Theorem 2.9,

∫ z

0

â(λ)dλ =

∫ z

0

∞∑

j=0

ajλ
jdλ =

∞∑

j=0

∫ z

0

ajλ
jdλ =

∞∑

j=0

aj
j + 1

zj+1 = b̂(z)

as required.

Recall from Theorem 2.12 that for any sequence a = {ak} ∈ lΩ which satisfies

a0 6= 0, there exists a unique b = {bk} ∈ lΩ such that

a ∗ b = {1, 0, 0, ...} .

The unique solution b has been denoted by 1/a.

Theorem 3.10 (Inversion Theorem). Let a = {ak}k∈N
∈ lN with ρ(a) > 0 and

a0 6= 0. Let b = 1/a. Then ρ(b) > 0. Furthermore,

â(λ)̂b(λ) = 1 (3.6)

for |λ| < min (ρ(a), ρ(b)) .

Proof. Since limλ→0

∑∞
n=1 |anλn| = 0, we may choose γ > 0 such that

∞∑

n=1

|an| γn ≤ |a0| .

We assert that

|bn| ≤ |a0|−1
γ−n, n ∈ N. (3.7)
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Indeed, recall

a0b0 = 1,

a1b0 + a0b1 = 0,

... = ...,

amb0 + am−1b1 + · · · + a0bm = 0,

... = ...,

thus |b0| = |a0|−1 ≤ |a0|−1
γ−0. Assume by induction that (3.7) holds for n =

0, ...,m− 1, then

|a0bm| ≤ |a1bm−1| + |a2bm−2| + · · · + |amb0|
≤ |a1| |a0|−1

γ−(m−1) + |a2| |a0|−1
γ−(m−2) + · · · + |am| |a0|−1

γ−0

= |a0|−1
γ−m

{
|a1| γ + |a2| γ2 + · · · + |am| γm

}

≤ |a0|−1
γ−m |a0|

= γ−m

as desired. Thus for any |λ| < γ,
∞∑

n=0

|bn| |λ|n ≤ |a0|−1
∞∑

n=0

( |λ|
γ

)n
<∞.

Thus ρ(b) ≥ γ > 0. Finally, an application of Theorem 3.4 yields (3.6). The proof

is complete.

We remark that in case a ∈ lN such that ρ(a) ∈ (0,∞], a0 6= 0 for z ∈ B(0; ρ(a)),

then the above result asserts that
1

â(z)
= 1̂/a(z)

for z ∈ B(0; min(ρ(a), ρ(1/a)).

Theorem 3.11 (Substitution Theorem). Let a = {ak}k∈N
, b = {bk}k∈N

be se-

quences in lN with positive ρ(a) and ρ(b) respectively. For any λ ∈ B(0; ρ(b)) such

that
∑∞
n=0 |bnλn| < ρ(a), we have

â(̂b(λ)) = â ◦ b(λ) =
∑

N

λ · (a ◦ b) <∞,

where we recall that a◦b is the composition product defined by (a◦b)n =
∑∞

i=0 aib
〈i〉
n

for n ∈ N.

Proof. Since |λ| < ρ(b), we see that b̂(λ) is defined and
∣∣∣̂b(λ)

∣∣∣ ≤
∑∞

n=0 |bnλn| <

ρ(a). Therefore, â(b̂(λ)) and |̂a|
(
|̂b|(|λ|)

)
(where we recall |̂a|(λ) and |̂b|(λ) are the

power series functions generated by |a| and |b| respectively) are defined and

â(̂b(λ)) =

∞∑

n=0

an

(
b̂(λ)

)n
=

∞∑

n=0

an

{ ∞∑

k=0

b
〈n〉
k λk

}
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in view of (3.2). By changing the order of summation, we see that the last sum can

formally be written as
∞∑

n=0

∞∑

k=0

akb
〈k〉
n λn

or
∞∑

n=0

(a ◦ b)nλn.

Since b〈0〉 = 1 and

b
〈n〉
k =

∑

v1+v2+···+vn=k;v1,...,vn∈Z+

bv1bv2 · · · bvn

≤
∑

v1+v2+···+vn=k;v1,...,vn∈Z+

|bv1 | |bv2 | · · · |bvn
|

for n ≥ 1, we see that

∞∑

n=0

∞∑

k=0

∣∣∣anb〈n〉k λk
∣∣∣ ≤

∞∑

n=0

|an|
( ∞∑

k=0

∣∣bkλk
∣∣
)n

= |̂a|
(
|̂b|(|λ|)

)
<∞.

By Fubini’s Theorem 2.4, we see that the change of the order of summation is legal.

The proof is complete.

We remark that the series
∑

N
λ · (a ◦ b) is the power series which arises by

substituting w = b̂(λ) into â(w) and then formally expand the resulting expression

and rearranging terms in increasing powers of λ.

3.2 Univariate Analytic Functions

A function f with domain an open set Θ ⊆ F and range F is said to be analytic at

c if there is a sequence a ∈ lN and a ball B(c; γ) contained in Θ such that

f(λ) =
∑

N

λ− c · a <∞, λ ∈ B(c; γ).

Note that, in view of Abel’s Lemma (Theorem 3.1), f is analytic at c if, and only

if, there is a sequence b ∈ lN, an ordering Ψ for N and a ball B(c; δ) contained in

Θ such that

f(λ) =

∞∑

j=0

bΨ(j)(λ− c)Ψ(j) <∞, λ ∈ B(c; δ).

For the same reason, f is analytic at c if, and only if, there is a sequence b ∈ lN

and a ball B(c; δ) contained in Θ such that

f(λ) =

∞∑

j=0

bj(λ− c)j <∞, λ ∈ B(c; δ).



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

Power Series Functions 57

The function f is said to be analytic on or over Θ if it is analytic at each c ∈ Θ.

The set of all analytic functions f : Θ ⊆ F → F will be denoted by H(Θ). Analytic

functions are plenty as can be seen from the following result.

Theorem 3.12. Let a = {ak}k∈N ∈ lN with positive radius of convergence

ρ(a). Then the corresponding power series function â(λ) generated by it belongs

to H (B(0; ρ(a))) .

Indeed, â(λ) =
∑

N
λ · a < ∞ for λ in some B(0; δ) contained in B(0; ρ(a))

and thus â(λ) is analytic at 0. For any µ ∈ B(0; ρ(a)) which is distinct from 0, by

Theorem 3.6, there exists β > 0 such that B(µ;β) ⊆ B(0; ρ(a)) and (3.3) holds.

Thus â(λ) is analytic at µ.

There are several important properties of analytic functions which we shall need

in the sequel and follow from the results in the previous section. In the following,

Θ, Θ1 and Θ2 denote open subsets of F.

Theorem 3.13. If f ∈ H(Θ), then its derived function also belongs to H(Θ). If in

addition Θ = B(w; δ), then its primitive function g(z) =
∫ z
w
f(u)du also belongs to

H(Θ).

If f = f(z) is analytic at c, then its definition asserts that f is the power series

function â generated by some sequence a ∈ lN:

f(z) =
∞∑

n=0

an(z − c)n.

By Theorem 3.7, we see that f has derivatives of any order and hence

an =
1

n!
â(n) =

1

n!
f (n)(c), n ∈ N.

That is

f(z) =

∞∑

n=0

1

n!
f (n)(c)(z − c)n

for z in a neighborhood of c. As a consequence, we have the following result.

Theorem 3.14. If f, g ∈ H(Θ), then αf + βg ∈ H(Θ) for any α, β ∈ C and

f · g ∈ H(Θ).

Theorem 3.15. If f ∈ H(Θ) and f(λ) 6= 0 for λ ∈ Θ, then 1/f ∈ H(Θ).

The above result follows from the Inversion Theorem 3.10.

Theorem 3.16. If f is analytic at c and g is analytic at f(c), then g ◦f is analytic

at z = c.

Example 3.4. Polynomials (of one variable) are analytic everywhere, and rational

functions f(z) are analytic for all z which are not roots of the denominator.
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Example 3.5. The power series

1 + z + z2 + z2 + · · ·
is convergent for each z ∈ B(0; 1) as can be seen by the ratio test. Furthermore,

since

1 + z + · · · + zn =
1 − zn+1

1 − z

for z 6= 1, by taking limits on both sides, we see that the rational function f(z) =

(1 − z)−1 is analytic on B(0; 1) and

1

1 − z
=

∞∑

n=0

zn, z ∈ B(0; 1).

By substituting w = −z into the above equality, we see further that

1

1 + w
=

∞∑

n=0

(−1)nwn, w ∈ B(0; 1).

Theorem 3.17 (Unique Continuation Theorem). Let f, g ∈ H(Θ) where Θ is

connected. If there is a sequence {µi}i∈N
contained in Θ such that limi→∞ µi =

µ ∈ Θ, µ 6= µi for i ∈ N and f(µi) = g(µi) for i ∈ N, then f(λ) = g(λ) for λ ∈ Θ.

Proof. It suffices to assume that g is the trivial function. We first note that

there is some a ∈ lN and δ > 0 such that

f(λ) =

∞∑

i=0

ai(λ− µ), λ ∈ B(µ; δ) ⊆ Θ.

If a 6= 0, then there is some I ∈ N such that a0 = a1 = · · · = aI−1 = 0 but aI 6= 0

(where the case a−1 is taken to be vacuously true). Thus,

f(λ) = (λ− µ)Iq(λ), λ ∈ B(µ; δ),

where

q(λ) =

(
aI +

∞∑

i=I+1

ai(λ − µ)i−I
)
, λ ∈ B(µ; δ).

Thus, in view of the fact that f(µk) = 0 for all large k, we see that

0 = (µk − µ)q(µk)

for all large k, so that q(µk) = 0 for all large k. By continuity, q(µ) = 0, which

is contrary to the fact that q(µ) = aI 6= 0. We conclude that f(λ) = 0 for λ ∈
B(µ; δ) ⊆ Θ.

Next, let w be any point in Θ and distinct from µ, by connectedness, we may

join µ to w by a path h defined on [0, 1] and h(t) ∈ Θ for t ∈ [0, 1]. By what we

have just shown, the composite function f ◦ h is identically zero on [0, α] for some

α ∈ (0, 1]. We assert that f(w) = f(h(1)) = 0. To see this, let

S = {β ∈ (0, 1]| f(h(t)) = 0 for t ∈ [0, β]} .
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Since α ∈ S, thus β′ = supS exists and β′ ≤ 1. By continuity, we see further that

f(h(β′)) = 0. We assert that β′ = 1. Suppose not, by what we have shown above,

f(λ) is identically zero for λ ∈ B(h(β
′

), δ′) ⊆ Θ where δ′ is some positive number.

Thus β′ + δ ∈ S which is contrary to the definition of β′. The proof is complete.

As an immediate corollary, we have the following results.

Theorem 3.18. If f ∈ H(Θ) and f (k)(c) = 0 for k ∈ N and some c ∈ Θ, then

f(λ) = 0 for all λ ∈ Θ.

In particular, if the power series functions â(λ) and b̂(λ) generated by a, b ∈ lN

(are defined and) satisfy â(λ) = b̂(λ) in a neighborhood of 0 (or any neighborhood

in Θ), then a = b. That is, the Uniquenss Representation Theorem 3.8 holds.

As another interesting consequence, let g be an analytic extension of the function

f ∈ H(Θ), that is, g ∈ H(Θ̃) where Θ ⊂ Θ̃ and g(z) = f(z) for z ∈ Θ. If there

are two analytic extensions g1 ∈ H(Θ̃1) and g2 ∈ H(Θ̃2) of f, then g1(z) = g2(z)

for z ∈ Θ̃1 ∩ Θ̃2. Hence the union g1 ∪ g2 is a well defined function over Θ̃1 ∪ Θ̃2

and belongs to H
(
Θ̃1 ∪ Θ̃2

)
. By similar reasoning, given an analytic function f ∈

H(Θ), the following
⋃

{g : g is an analytic extension of f on an open set containing Θ}

is a well defined analytic function. It will be called the analytic continuation of f.

Example 3.6. The Newton binomial expansion formula asserts that

(1 + x)α =

∞∑

n=0

C(α)
n xn, x ∈ R, |x| < 1,

where we recall that C
(α)
n is the extended binomial coefficient defined by C

(α)
0 = 1

for α ∈ C, and C
(α)
n = α(α − 1) · · · (α − n + 1)/n! for n ∈ Z+ and α ∈ C. This

formula can be proved in several manners. One proof is obtained by observing that

f(x) = (1 + x)α for x ∈ (−1, 1) satisfies f(0) = 1 and

(1 + x)f ′(x) = αf(x), |x| < 1.

Assume that

f(x) =
∞∑

n=0

anx
n

is an analytic solution of the above equation. Then a0 = f(0) = 1 and by Theorem

3.18 (or by the Unique Representation Theorem 3.8),

(n+ 1)an+1 + nan = αan, n ∈ N.

The above recurrence is easily solved and

an =
1

n!
α(α − 1) · · · (α − n+ 1), n ∈ Z+.
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The solution is a true solution by checking (by means of the root test) that

∞∑

n=0

C(α)
n xn <∞

for |x| < 1.

Example 3.7. By the Newton binomial expansion formula in the previous Example

3.6,

(1 + x)
1/2

=

∞∑

n=0

C(1/2)
n xn, x ∈ R, |x| < 1.

Since (1 + x)1/2(1 + x)1/2 = 1 + x, we see that

{
C

(1/2)
0 , C

(1/2)
1 , C

(1/2)
2 , ...

}
∗
{
C

(1/2)
0 , C

(1/2)
1 , C

(1/2)
2 , ...

}
=

{
n∑

k=0

C
(1/2)
k C

(1/2)
n−k

}

n∈N

= {1, 1, 0, 0, ...} .

The power series

∞∑

n=0

C(1/2)
n zn,

as can be seen from the ratio test, is convergent for complex z ∈ B(0; 1). According

to what we have just shown,
( ∞∑

n=0

C(1/2)
n zn

)( ∞∑

n=0

C(1/2)
n zn

)
= 1 + z,

thus this power series is a square root of the complex number 1 + z when |z| < 1.

We will write

√
1 + z = (1 + z)1/2 =

∞∑

n=0

C(1/2)
n zn, z ∈ B(0; 1).

As a consequence, we see that the function f(z) = (1+z)1/2 is analytic over B(0; 1).

Example 3.8. (See pp. 83–87 of [63]) The sine and cosine functions can be intro-

duced as analytic solutions. To see this, we introduce two real power series functions

formally defined by

C (x) =

∞∑

n=0

(−1)
n x2n

(2n)!
,

and

S (x) =

∞∑

n=0

(−1)
n x2n+1

(2n+ 1)!
.
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By means of the ratio test, we can easily check that both series converge for every

x ∈ R. Therefore they are infinitely differentiable functions defined on R. We may

list several additional properties: (1) by direct term by term multiplications that

the two basic formulas

C(x+ y) = C(x)C(y) − S(x)S(y), (3.8)

S(x+ y) = S(x)C(y) + C(x)S(y), (3.9)

are valid for all real x and y; (2) C (x) is a even function, while S (x) is an odd

function, that is, C (−x) = C (x) and S (−x) = −S (x) , (3) C (0) = 1 and S (0) = 0,

(4) replacing y by −x in (3.8) and invoking the properties just described, we get

C2 (x) + S2 (x) = 1, (3.10)

(5) by differentiating the functions C(x) and S(x) term by term, we easily find that

C ′ (x) = −S (x) , S′ (x) = C (x) , (3.11)

(6) we have C(2) < 0 since

C (2) = 1 − 22

2!
+

24

4!
−
(

26

6!
− 28

8!

)
− · · · −

(
22n

(2n)!
− 22n+2

(2n+ 2)!

)
+ · · · ,

1 − 22

2!
+

24

4!
= −1

3

and

22n

(2n)!
− 22n+2

(2n+ 2)!
=

22n

(2n)!

[
1 − 2 · 2

(2n+ 1) (2n+ 2)

]
> 0

for n ≥ 3, (7) the function

−C ′(x) = S (x) = x

(
1 − x2

2 · 3

)
+
x5

5!

(
1 − x2

6 · 7

)
+ · · ·

is obviously positive in (0, 2], so that the derivative C ′ (x) = −S (x) is negative in

(0, 2). Therefore C (x) has exactly one root in (0, 2). Let π′/2 denote the point at

which C (x) vanishes. Thus

C

(
π′

2

)
= 0, S

(
π′

2

)
= 1,

where the second formula follows from (3.10), if we note that S (x) is positive in

the interval (0, 2). Furthermore, setting first x = y = π′/2 and then x = y = π′ in

formulas (3.8) and (3.9), we get

C (π′) = −1, S (π′) = 0, C (2π′) = 1, S (2π′) = 0.

Hence, holding x fixed in (3.8) and (3.9), we get

C (x+ π′) = −C (x) , S (x+ π′) = −S (x) (3.12)
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if y = π′ and

C (x+ 2π′) = C (x) , S (x+ 2π′) = S (x)

if y = 2π′, i.e., the functions C (x) and S (x) are periodic, with period 2π′. Further-

more, S(x) > 0 for 0 < x < π′/2. Changing x to −t in the second of the formulas

(3.12), we get

S (π′ − t) = −S (−t) = S (t) ,

from which it follows that S (t) > 0 for π′/2 ≤ t < π′. Thus the function C(t),

with derivative −S(t), is strictly decreasing over the interval (0, π′), and hence is

one-to-one on [0, π′]. We now show that C(x) = cosx and S(x) = sinx for x ∈ R.

To this end, we consider the curve specified by the parametric equations

x = C (t) , y = S (t) , 0 ≤ t ≤ 2π′.

Since C2(t)+S2(t) = 1, every point of this curve satisfies the equation x2 + y2 = 1,

and hence lies on the circle of radius 1 with center at the origin. Since C(t) is

one-to-one on [0, π′], there is a one-to-one correspondence between the points of the

upper half of our circle and values of the parameter t in the interval [0, π′]. By

similar arguments, there is a one-to-one correspondence between the points of the

lower half of our circle and values of the parameter t in the interval [π′, 2π′] . We

now calculate the length s(t) of the arc joining the point (1, 0) and the point P on

the unit circle with parameter t. By a familiar formula of calculus,

s (t) =

∫ t

0

√
[C ′ (t)]2 + [S′ (t)]2dt =

∫ t

0

dt = t, (3.13)

where (3.10) and (3.11) are used. It follows from (3.13) that t is just the angle

subtending our arc, expressed in radians. But then

C (θ) = x = cos θ, S (θ) = y = sin θ,

as desired. By the same token, (3.13) shows that the length of the unit circle is just

2π′, so that our number π′ can be identified with the number π.

We recall from Example 1.5 that the exponential function f(z) = ez is defined

by

ez = ex(cos y + i sin y), z = x+ iy.

In that example, we have implicitly assumed the existence of the sine and cosine

functions. Now that we know the power series expansion of the sine and cosine

functions, we may see further that for each z ∈ C:

ez =

∞∑

n=0

zn

n!
, z ∈ C.

and

cos z =
1

2

(
eiz + e−iz

)
=

∞∑

n=0

(−1)
n z2n

(2n)!
, z ∈ C,
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sin z =
1

2

(
eiz − e−iz

)
=

∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!
, z ∈ C,

sinh z =
1

2

{
ez − e−z

}
=

∞∑

n=0

z2n+1

(2n+ 1)!
, z ∈ C,

cosh z =
1

2

{
ez + e−z

}
=

∞∑

n=0

z2n

(2n)!
, z ∈ C.

Example 3.9. Let ψ = ψ(z) be analytic over B(ξ;σ) such that ψ(i)(ξ) = 0 for i =

0, 1, 2, ...,m− 1 and ψ(m)(z) is continuous on B(ξ;σ). Then by Taylor’s expansion,

ψ(z) =
(z − ξ)m

(m− 1)!

∫ 1

0

(1 − t)m−1ψ(m)(ξ + t(z − ξ))dt,

so that

sup
z∈B(ξ;σ)

|ψ(z)| ≤ σm

m!
sup

z∈B(ξ;σ)

∣∣∣ψ(m)(z)
∣∣∣ .

3.3 Bivariate Power Series Functions

Let us first recall the concept of multi-indices and their uses as shorthand notations.

Since we will be concerned with bivariate sequences in lN×N, we will concentrate on

bi-indices. A bi-index is an element of N2 of the form v = (v1, v2). The notations v!

and |v|1 stand for v1!v2! and v1 + v2 respectively. Furthermore, for p = (w, z) ∈ F2

and a = {aij}i,j∈N
,

pv = (w, z)v = (w, z)(v1,v2) = wv1zv2 ,

|p|v = |(w, z)|(v1,v2) = |w|v1 |z|v2 ,
pbvc = (w, z)b(v1,v2)c = wbv1czbv2c,

C(p)
v = C

(w,z)
(v1,v2)

=
(w, z)b(v1,v2)c

(v1, v2)!
,

∂|v|1

∂pv
=

∂|(v1,v2)|1

∂(w, z)(v1,v2)
=

∂v1+v2

∂wv1∂zv2
,

p · a = (w, z) · a =
{
aijw

izj
}
.

If u = (u1, u2) and v = (v1, v2) are bi-indices, we will also write u < v if u1 < v1
and u2 < v2; and write u ≤ v if u1 ≤ v1 and u2 ≤ v2.

Let a = {aij}i,j∈N
∈ lN×N. Let Λ be the set (or part of the set) of all p =

(w, z) ∈ F2 such that the attenuated sequence
{
wizjaij

}
is absolutely summable.

Then we may define a function â : Λ → C by

â(p) = â(w, z) =
∑

v∈N×N

avp
v =

∞∑

i,j=0

aijw
izj , p = (w, z) ∈ Λ.



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

64 Analytic Solutions of Functional Equations

This function, which is completely determined by a, is called a (bivariate) power

series function in p generated by a. In practice, for any q ∈ F2, the function g(p)

defined by â(p − q) is also called a power series function in p = (w, z) about (or

with center at) q.

Example 3.10. Let f = f(w, z) be a function defined on a domain Θ of F2 which

has partial derivatives of any order at the point (c, d) ∈ Θ. Let

a =

{
1

i!j!

∂i+jf(c, d)

∂wi∂zj

}

i,j∈N

.

The power series function â(w − c, z − d) is called the Taylor series function with

center (c, d) generated by f.

Example 3.11. In view of Example 2.1, the double sequence
{
wizj

}
i,j∈N

is abso-

lutely summable if |w| < 1 and |z| < 1. Thus,

h(w, z) =

∞∑

i=0

∞∑

j=0

wizj , |w| < 1, |z| < 1,

is a power series function.

For p = (w, z) ∈ F2, we will call the set

S(p) =
{
(αw, βz) ∈ F2| |α| < 1, |β| < 1

}

the silhouette of p.

Theorem 3.19. Let a ∈ lN×N. If the attenuated sequence (λ, µ) · a is summable

relative to an ordering for N × N, then the family {(w, z) · a} is absolutely and

uniformly summable on compact subsets of the silhouette S(λ, µ).

Indeed, suppose λ 6= 0 and µ 6= 0. Since {aijλiµj} is bounded, say, by M > 0,

and since |w| ≤ ρ1 |λ| and |z| ≤ ρ2 |µ| for some ρ1, ρ2 ∈ (0, 1), hence
∣∣aijwizj

∣∣ ≤Mρi1ρ
j
2, i, j ∈ N,

for any (w, z) ∈ S(λ, µ). Since the double sequence
{
ρi1ρ

j
2

}
(i,j)∈N×N

is absolutely

summable, the family
{
aijw

izj
}

(i,j)∈N×N
is absolutely and uniformly summable.

The case where λ = 0 or µ = 0 is similarly proved.

If (λ, µ) · a is absolutely summable, then
{∣∣aijλiµj

∣∣} is bounded. Thus, the

above arguments also show that for (w, z) ∈ S(λ, µ), there is some M > 0 such

that

|aij | ≤
M

|w|i |z|j
, i, j ∈ N.

Let B(a) be the set of (w, z) ∈ F2 such that (w, z) · a is summable relative to

some ordering Ψ (which may depend on (w, z)) for N × N. The interior D(a) of

B(a) is called the domain of convergence for the power series function generated by
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a. It is known that when D(a) is nonempty, it is a complete Reinhart domain with

center (0, 0) and logarithmically convex subset of F2. Here a subset S ⊂ F2 is said

to be logarithmically convex if

{(ln |w| , ln |z|)| (w, z) ∈ S,w 6= 0, z 6= 0}
is a convex subset of R2, and is called complete Reinhart domain with center (0, 0)

if S is open and connected and (w, z) ∈ S implies (ρ1w, ρ2z) ∈ S for all ρ1, ρ2 ∈ F

satisfying |ρ1| , |ρ2| ≤ 1.

Theorem 3.20. Suppose D(a) is nonempty. Then D(a) is a complete Reinhart

domain of F2 with center (0, 0). Furthermore, the family {wx · zy · a} is absolutely

and uniformly summable on each closed dicyclinder of the form{
(z1, z2) ∈ F2| |z1| ≤ ρ1, |z2| ≤ ρ2

}

contained in D(a).

Proof. Since D(a) is nonempty, there exists some point (u, v) in D(a) with

nontrivial components. By the previous Theorem 3.19, the silhoutte S(u, v) is

contained in D(a). Therefore (u, v) can be joined to (0, 0) by a straight line segment

completely contained in D(a). If (w, 0) belongs to D(a) where w 6= 0, then some

ball with center (w, 0) and contained in D(a) will contain some point (u, v) with

nontrivial components. Therefore, we can join (w, 0) to (u, v) by a straight line

segment completely contained in D(a). As a consequence, any two points in D(a)

can be joined by a broken line completely contained in D(a). This shows that D(a) is

connected. Next note that for any (w, z) ∈ D(a), (w(1+ε), z(1+ε)) ∈ D(a) for some

positive number ε. Since (ρ1w(1+ ε), ρ2z(1+ ε)) ∈ D(a) for all ρ1, ρ2 ∈ F satisfying

|ρ1| , |ρ2| < 1, thus (ρ3w, ρ4z) ∈ D(a) for all ρ3, ρ4 ∈ F satisfying |ρ3| , |ρ4| ≤ 1. This

shows that D(a) is a complete Reinhardt domain. Furthermore, the same reasoning

shows that the family {(w, z) · a} is absolutely and uniformly summable on each

closed polycyclinder of the form{
(z1, z2) ∈ F2| |z1| ≤ ρ1, |z2| ≤ ρ2

}

contained in D(a). The proof is complete.

We remark that when D(a) is nonempty, it is also a logarithmically convex

subset of F2. The proof is not difficult and make use of the fact that a1−tbt ≤ a+ b

whenever a, b ≥ 0 and 0 ≤ t ≤ 1. Since we have no need of this result in the sequel,

we refer to pages 181-182 in Kaplan [94] for a proof. It is also remarkable that every

logarithmically convex complete Reinhardt domain with center (0, 0) is the domain

of convergence of the power series function generated by a double sequence.

There are several properties of power series functions generated by double se-

quences in lN×N which are similar to those for power series functions generated by

sequences in lN. In particular, we can show the following.

(i) If a, b ∈ lN×N such that â and b̂ are defined in a neighborhood of (0, 0),

then for α, β ∈ F2, αâ + βb̂ is also defined in a neighborhood of (0, 0) and

( ̂αa+ βb)(w, z) = αâ(w, z) + βb̂(w, z) for any (w, z) in this neighborhood.
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(ii) If a, b ∈ lN×N such that â and b̂ are defined in a neighborhood of (0, 0), then

â ∗ b is also defined in a neighborhood of (0, 0) and â ∗ b(w, z) = â(w, z)b̂(w, z) for

any (w, z) in this neighborhood.

(iii) Let â be the power series function generated by a double sequence a ∈
lN×N and D(a) is nonempty. Then for each (λ, µ) ∈ D(a), there exists a ball

B((λ, µ); γ) ⊆ D(a) and

â(w, z) =
∑

N×N

bij(w − λ)i(z − µ)j <∞, (w, z) ∈ B((λ, µ); γ)

for some {bij}i,j∈N
∈ lN×N.

Indeed, as in the proof of Theorem 3.6, we may write

∞∑

m=0

∞∑

n=0

amnw
mzn =

∞∑

m=0

∞∑

n=0

amn(w − λ+ λ)m(z − µ+ µ)n

=
∞∑

m=0

∞∑

n=0

amn

m∑

i=0

C
(m)
i (w − λ)iλm−i

n∑

j=0

C
(n)
j (z − µ)jµn−j

=
∞∑

m=0

∞∑

n=0

m∑

i=0

n∑

j=0

{
amnC

(m)
i λm−iC(n)

j µn−j
}

(w − λ)i(z − µ)j .

When B((λ, µ); γ) is chosen properly, the last sum, by Fubini’s theorem, can be

rearranged into the form

∑

N×N

bij(w−λ)i(z−µ)j =

∞∑

i=0

∞∑

j=0

∞∑

m=i

∞∑

n=j

{
amnC

(m)
i λm−iC(n)

j µn−j
}

(w−λ)i(z−µ)j .

This result may be called the representation theorem in the sequel for bivariate

power series functions.

(iv) Let â = â(w, z) be the power series function generated by a double sequence

a ∈ lN×N and D(a) is nonempty. Then the domains of convergence of the power

series functions generated by the partial algebraic derivatives Dxa and Dya are

equal to D(a) and

∂â

∂w
(λ, µ) = D̂xa(λ, µ),

∂â

∂z
(λ, µ) = D̂ya(λ, µ),

for (λ, µ) ∈ D(a).

(v) Let a ∈ lN×N with nonempty D(a). If a00 6= 0, then D(1/a) is also nonemty

and

â(w, z)1̂/a(w, z) = 1

in a neighborhood of (0, 0).
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3.4 Bivariate Analytic Functions

A function f with domain an open set Θ ⊆ F2 and range F is said to be analytic

at q = (λ, µ) if there is a sequence a ∈ lN×N and a ball B(q; γ) contained in Θ such

that

f(w, z) =
∑

N×N

(w − λ, z − µ) · a <∞, (w, z) ∈ B(q; γ).

The function f is said to be analytic on Θ if it is analytic at each q ∈ Θ. The set of

all analytic functions f : Θ ⊆ F2 → F will be denoted by H(Θ).

Theorem 3.21. Let a ∈ lN×N such that the domain of convergence D(a) of the

power series â generated by a is nonempty. Then â is analytic on D(a).

Since the family
{
(w, z) · a

}
is uniformly and absolutely summable on each

closed dicylinder of the form
{
(z1, z2) ∈ F2| |z1| ≤ ρ1, |z2| ≤ ρ2

}

in the domain of convergence D(a) of a power series â of two variables generated by

a double sequence a, and since every point of D(a) can be included in the interior

of such a polycylinder, we may conclude that â is continuous everywhere in D(a).

There are several other properties of analytic functions which can be proved in

manners similar to those for analytic functions in one variables.

Theorem 3.22. Let U, V be open subsets of F2. If f : U → F and g : V →
F are analytic, then f + g, f · g are analytic on U ∩ V, and f/g is analytic on

U ∩ V ∩ {p ∈ V | g(p) 6= 0} .

Theorem 3.23. Let f ∈ H(Θ). Then f is continuous and has continuous and

analytic partial derivatives of all orders in Θ.

We remark that if f = f(w, z) is analytic at (c, d), then its definition asserts

that f is the power series function â generated by some double sequence a ∈ lN×N.

By the above results, we see that

f(w, z) =

∞∑

i=0

∞∑

j=0

1

i!j!

∂i+jf(c, d)

∂wi∂zj
(w − c)i(z − d)j , i, j ∈ N,

for (w, z) in a neighborhood of (c, d).

Theorem 3.24. Let f, g ∈ H(Θ) where Θ is connected. If there is a sequence

{(λi, µi)}i∈N
contained in Θ such that limi→∞(λi, µi) = (λ, µ) ∈ Θ, (λ, µ) 6= (λi, µi)

for i ∈ N and f(λi, µi) = g(λi, µi) for i ∈ N, then f(w, z) = g(w, z) for (w, z) ∈ Θ.

Theorem 3.25 (Substitution Theorem). If f1 and f2 are analytic on some

neighborhood of (λ, µ) ∈ F2 and g is analytic on some neighborhood of

(f1(λ, µ), f2(λ, µ)), then the composite function g(f1(w, z), f2(w, z)) is analytic on

a neighborhood of (λ, µ).
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3.5 Multivariate Power Series and Analytic Functions

Multiple sequences, multivariate power series functions and analytic functions are

only slightly more complicated than the double sequences, bivariate power series

functions and analytic functions. We will therefore be brief in the following discus-

sions.

First of all, κ is positive integer greater than or equal to 2. Elements in Fκ is

denoted by w = (w1, ..., wκ), z = (z1, ..., zκ), etc. The element (0, ..., 0) in Fκ is

denoted by 0 as usual. A multi-index v is an element in Nκ of the form (v1, ..., vκ).

The notations v! and |v|1 stand for v1!v2! · · · vκ! and v1 + v2 + · · ·+ vκ respectively.

The multi-index e(i) is defined by e
(i)
i = 1 and e

(i)
j = 0 for j 6= i. Multiple sequences

are denoted by f = {fv}v∈Nκ , g = {gv}v∈Nκ , etc. Let α ∈ F, the multiple sequence

whose (0, ..., 0)-th component is α and others are zero will be denoted by α and is

called a scalar multiple sequence. For w ∈ Fκ and a = {av}v∈Nκ ,

wv = wv11 w
v2
2 · · ·wvκ

κ ,

|w|v = |w1|v1 |w2|v2 · · · |wκ|vκ ,

wbvc = (w1)bv1c(w2)bv2c · · · (wκ)bvκc,

C(w)
v =

wbvc
v!

,

∂|v|1

∂wv
=

∂v1

∂wv11

∂v2

∂wv22

· · · ∂vκ

∂wvκ
κ

=
∂v1+v2+···vκ

∂wv11 ∂w
v2
2 · · · ∂wvκ

κ
,

w · a = {avwv}v∈Nκ .

If u = (u1, ..., uκ) and v = (v1, ..., vκ) are multi-indices, we will also write u < v if

u1 < v1, ..., uκ < vκ; and write u ≤ v if u1 ≤ v1, ..., uκ ≤ vκ.

For a = {av}v∈Nκ , we define the partial difference

∆ia = av+e(i) − av, i = 1, ..., κ,

and the mixed partial difference

∆ua = (∆1)
u1(∆2)

u2 · · · (∆κ)
uκa,

where u = (u1, ..., uκ) is a multi-index. We also define attenuated sequences by

z · a = {avzv}v∈Nκ ,

where z ∈ Fκ.

The convolution product of two multiple sequences f, g ∈ lN
κ

is the multiple

sequence {hv}v∈Nκ defined by

hw =
∑

u+v=w

fugv.

The convolution product f ∗ f will be denoted by f 〈2〉. The notation f 〈n〉 is defined

recursively by f ∗ f 〈n−1〉 for n = 2, 3, ... . For the sake of convenience, f 〈0〉 = 1, and

f 〈1〉 = f.
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By means of arguments similar to those we have seen for bivariate sequences, we

can show that if f, g ∈ lN
κ

1 , then f ∗ g ∈ lN
κ

1 , and
∑

Nκ f ∗ g = (
∑

Nκ f) (
∑

Nκ g) .

We may also show that if g(0,0,...,0) 6= 0, then there exists a unique multiple sequence

x such that x ∗ g = f. This unique sequence will be denoted by f/g.

The partial algebraic derivatives of a multiple sequence a are defined by

Dia =
{
(vi + 1)fv+e(i)

}
v∈Nκ , i = 1, 2, ..., κ,

and the mixed partial algebraic derivatives by

Dua = Du1
1 Du2

2 · · ·Duκ
κ a,

where u is a multi-index. Properties of these algebraic derivatives are similar to

those for the bivariate sequences.

Let a = {av}v∈Nκ ∈ lN
κ

. Let Λ be the set (or part of the set) of all λ ∈ Fκ such

that the attenuated sequence λ · a is absolutely summable. Then we may define a

function â : Λ → C by

â(λ) =
∑

v∈Nκ

avλ
v , λ ∈ Λ.

This function, which is completely determined by a, is called a (multivariate) power

series function in λ generated by a. In practice, for any µ ∈ Fκ, the function g(λ)

defined by â(λ−µ) is also called a power series function in λ about (or with center

at) µ.

Let B(a) be the set of λ ∈ Fκ such that λ · a is summable relative to some

ordering Ψ (which may depend on λ) for Nκ. The interior D(a) of B(a) is called

the domain of convergence for the power series function generated by a. It is known

that when D(a) is nonempty, it is a complete Reinhart domain with center 0 ∈ Fκ

and logarithmically convex subset of Fκ, where logarithmically convex subsets and

complete Reinhart domain are defined in manners similar to those for subsets of

F2.

We can also show the following:

(i) When D(a) is nonempty, D(a) is a complete Reinhart domain of F2 with

center 0. Furthermore, the family {w · a} is absolutely and uniformly summable on

each closed polycyclinder of the form

{w = (w1, ..., wκ) ∈ Fκ| |w1| ≤ ρ1, ..., |wκ| ≤ ρκ}

contained in D(a).

(ii) If a, b ∈ lN
κ

such that â and b̂ are defined in a neighborhood of 0, then

for α, β ∈ Fκ, αâ + βb̂ is also defined in a neighborhood of 0 and (αâ + βb̂)(z) =

αâ(z) + βb̂(z) for any z in this neighborhood.

(iii) If a, b ∈ lN
κ

such that â and b̂ are defined in a neighborhood of 0, then

â ∗ b is also defined in a neighborhood of 0 and â ∗ b(z) = â(z)b̂(z) for any z in this

neighborhood.
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(iv) Let â be the power series function generated by a double sequence a ∈ lN
κ

and D(a) is nonempty. Then for each λ ∈ D(a), there exists a ball B(λ; γ) ⊆ D(a)

and

â(w) =
∑

Nκ

bv(w − λ)v <∞, w ∈ B(λ; γ)

for some {bv}v∈Nκ ∈ lN
κ

.

(v) Let â = â(w) be the power series function generated by a double sequence

a ∈ lN
κ

and D(a) is nonempty. Then the domains of convergence of the power series

functions generated by the partial algebraic derivatives D1a, ..., Dκa are equal to

D(a) and

∂â

∂wi
(µ) = D̂ia(µ), i = 1, 2, ..., κ,

for µ ∈ D(a).

(vi) Let a ∈ lN
κ

with nonempty D(a). If a(0,...,0) 6= 0, then D(1/a) is also

nonempty and

â(w)1̂/a(w) = 1

in a neighborhood of 0.

A function f with domain an open set Θ ⊆ Fκ and range F is said to be analytic

at λ if there is a sequence a ∈ lN
κ

and a ball B(λ; γ) contained in Θ such that

f(w) =
∑

Nκ

w − λ · a <∞, w ∈ B(λ; γ).

The function f is said to be analytic on Θ if it is analytic at each λ ∈ Θ. The set

of all analytic functions f : Θ ⊆ Fκ → F will be denoted by H(Θ).

The following conclusions are similar to those for the bivariate analytic functions.

(a) Let a ∈ lN
κ

such that the domain of convergence D(a) of the power series â

generated by a is nonempty. Then â is continuous and analytic on D(a).

(b) Let U, V be open subsets of Fκ. If f : U → F and g : V → F are analytic,

then f+g, f ·g are analytic on U∩V, and f/g is analytic on U∩V ∩{p ∈ V | g(p) 6= 0} .
(c) Let f ∈ H(Θ). Then f is continuous and has continuous and analytic partial

derivatives of all orders in Θ. Further, when Θ is subset of Rκ, the indefinite integral

of f with respect to any of its independent variable is analytic. Furthermore, if

f = f(w) is analytic at λ, then

f(w) =
∑

Nκ

1

v!

∂|v|1f(λ)

∂wv
(w − λ)v , i, j ∈ N,

for w in a neighborhood of λ.

(d) Let f, g ∈ H(Θ) where Θ is connected. If there is a sequence {µi}i∈N

contained in Θ such that limi→∞ µi = µ ∈ Θ, µ 6= µi for i ∈ N and f(µi) = g(µi)

for i ∈ N, then f(λ) = g(λ) for λ ∈ Θ.

(e) If f1, f2, ..., fm are analytic on some neighborhood of λ ∈ Fκ and g is ana-

lytic on some neighborhood of (f1(λ), f2(λ), ..., fm(λ)), then the composite function

g(f1(λ), f2(λ), ..., fm(λ)) is analytic on a neighborhood of λ.
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3.6 Matrix Power Series and Analytic Functions

Finite dimensional matrix (and vector) power series functions and matrix analytic

functions are ordered tuples of power series functions or analytic functions and

they are handled by componentwise manipulations. For instance, a matrix function

F (z) = (fij(z)) is said to be analytic at w if each fij(z) is analytic at w, and it is

said be analytic over an open set Θ ⊆ F if F is analytic at each w ∈ Θ. The set

of matrix functions are endowed with the usual operations, e.g. let F (z) = (fij(z))

and G = (gij(z)), then

(F +G)(z) = (fij(z) + gij(z))

for z in their common domains. Therefore many of the properties of matrix power

series and analytic functions can be inferred from their component functions without

too much trouble. For example, the (real) matrix function

[
cos t sin t

et 1/(1− t)

]

is analytic at t = 0 since cos t, sin t, et and 1/(1− t) are analytic at t = 0. Further-

more, since

cos t = 1 − t2

2!
+
t4

4!
− t6

6!
+ · · · ,

sin t = t− t3

3!
+
t5

5!
− t7

7!
+ · · · ,

et = 1 + t+
t2

2!
+
t3

3!
+ · · · ,

and

1

1 − t
= 1 + t+ t2 + t3 + t4 + · · · , t ∈ (−1, 1),

we see that our matrix analytic function can be expressed as a matrix power series

function of the form

[
1 0

1 1

]
+

[
0 1

1 1

]
t+

[
− 1

2! 0
1
2! 1

]
t2 + · · ·

for t ∈ (−1, 1).

Other properties can similarly be obtained whenever they are needed in the

sequel. Hence we will not bother with them at this point.
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3.7 Majorants

Given a power series function f(z) generated by a sequence a = {an}n∈N
, it is of

great interest to estimate the sizes of f(z) or of a. First of all, recall from Theorem

2.5 that if λ · a is absolutely summable, then
{∣∣akλk

∣∣}
k∈N

is bounded. Thus, for

each number w ∈ (0, ρ(a)), there is some Mw > 0 such that

|ak| ≤
Mw

|w|k
, k ∈ N. (3.14)

The above estimate for the sequence a is called the Cauchy’s estimate. Conversely,

if there is a number r ≥ ρ(a) such that for each λ ∈ (0, r), there exists Mλ such

that

|ak| ≤
Mλ

λk
, k ∈ N,

then for any number µ ∈ F that satisfies |µ| < λ,

∣∣akµk
∣∣ =

∣∣∣∣ak
µkλk

λk

∣∣∣∣ =
∣∣akλk

∣∣
∣∣∣∣
(µ
λ

)k∣∣∣∣ ≤Mλ

∣∣∣µ
λ

∣∣∣
k

, k ∈ N.

Thus
∞∑

k=0

|akµ|k ≤Mλ

∞∑

k=0

∣∣∣µ
λ

∣∣∣
k

<∞.

Since λ is arbitrary, r ≤ ρ(a) and hence ρ(a) = r.

Theorem 3.26 (Cauchy’s Estimation). Suppose a = {an}n∈N
∈ lN has a pos-

itive radius of convergence ρ(a). Then for any w ∈ (0, ρ(a)), there is some Mw > 0

such that (3.14) holds. Furthermore, there exists a positive number r such that

|an| ≤ rn+1, n ∈ N.

Proof. By Cauchy’s estimate, for any β ∈ (0, ρ(a)), there is Mβ > 0 such that

|anzn| ≤ |anβn| ≤ Mβ for n ∈ N and |z| ≤ β. Pick a sufficiently small positive

r−1 that satisfies r−1 ≤ β and the additional property that Mβr
−1 < 1. Then

|anr−n| ≤Mβ so that

|an| ≤Mβr
n = Mβr

−1rn+1 < rn+1, n ∈ N.

The proof is complete.

As a consequence, if

f(z) =

∞∑

n=0

anz
n

is analytic over a neighborhood of the origin, then

f ′(z) =

∞∑

n=0

(n+ 1)an+1z
n
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is also analytic over a neighborhood of the origin, so that there exists a positive

constant r̃ such that

|nan| < r̃n, n ∈ Z+.

Similarly,

f ′′(z) =
∞∑

n=0

(n+ 2)(n+ 1)an+2z
n

is analytic on a neighborhood of the origin, thus there is a positive constant β such

that

|n(n− 1)an| < βn−1, n ≥ 2.

Example 3.12. Let

f(z) = sz +
∞∑

n=2

anz
n

be analytic at 0. Then for |z| sufficiently small, there are r and K such that
∣∣∣∣∣
∞∑

n=2

anz
n

∣∣∣∣∣ ≤ |z|2
∞∑

n=0

|an+2| |z|n ≤ |z|2
∞∑

n=0

rn+1 |z|n = r |z|2 1

1 − r |z| ≤ Kr |z|2 .

Hence

|f(z) − sz| ≤ K |z|µ+1

for some K,µ > 0.

Another useful technique for estimating the sizes of a power series function is

related to the idea of majorization. Let a = {ak}k∈N
, b = {bk}k∈N

∈ lN. The

sequence a is said to be majorized by b (or b is a majorant of a) if |ak| ≤ bk for

k ∈ N. In such a case, we will write a � b. Clearly, if a � b, then a � αb for any

real α ≥ 1, and

Da� Db

as well as ∫
a�

∫
b.

Theorem 3.27. Let a, b ∈ lN. If a is majorized by b, then ρ(a) ≥ ρ(b).

Indeed, this follows from

lim sup
k→∞

|ak|1/k ≤ lim sup
k→∞

|ak|1/k .

Alternatively, it suffices to assume that ρ(b) > 0 and show that

∞∑

k=0

∣∣akλk
∣∣ <∞
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for |λ| < ρ(b). But this follows from

∞∑

k=0

∣∣akλk
∣∣ ≤

∞∑

k=0

bkµ
k <∞

where µ is a fixed positive number satisfying |λ| < µ < ρ(b).

We remark that the above Theorem still holds if we only require |ak| ≤ bk for

k ≥ K for some K ≥ 0.

It is easy to see that if a� b, then a〈2〉 � b〈2〉 since

∣∣∣a〈2〉k
∣∣∣ =

∣∣∣∣∣
k∑

i=0

ak−iai

∣∣∣∣∣ ≤
k∑

i=0

|ak−i| |ai| ≤
k∑

i=0

bk−ibi, k ∈ N.

The same principle leads to the fact that if a� b and if c = {ck}k∈N
∈ lN is defined

by

ck = Pk
(
ai1 , ai1 , ..., aij

)
, k ∈ N, (3.15)

where each Pk(z1, ..., zj) is a multi-variate polynomial with nonnegative coefficients

and j independent variables (where j may depend on k), then c is majorized by the

sequence d = {dk}k∈N
defined by

dk = Pk
(
bi1 , bi1 , ..., bij

)
, k ∈ N. (3.16)

In particular, if a� b, then a〈m〉 � b〈m〉 for m ∈ Z+.

Theorem 3.28. Let a, b ∈ lN, and let c, d ∈ lN be defined by (3.15) and (3.16)

respectively. If a� b, then c� d.

As an immediate application, let p, q, f, g ∈ lN such that p � q and f � g. If

the composition product q ◦ g is defined, then since

|(p ◦ f)n| ≤
∞∑

i=0

|pi|
∣∣∣f 〈i〉
n

∣∣∣ ≤
∞∑

i=0

qig
〈i〉
n = (q ◦ g)n,

we see that

p ◦ f � q ◦ g. (3.17)

Let â(λ) and b̂(λ) be the power series functions generated by the lN sequences

a and b respectively. If a is majorized by b, then we say that â is majorized by b̂ on

their common domain Ω of definition (which contains B(0;β(b)) by Theorem 3.27).

In such a case, we write â� b̂, or â(λ) � b̂(λ) for λ ∈ Ω.

In view of the properties of majorizing sequences, we see that

â(λ) � b̂(λ), b̂(λ) � ĉ(λ) ⇒ â(λ) � ĉ(λ),

â(λ) � b̂(λ) ⇒ âm(λ) � b̂m(λ), m ∈ N,

â(λ) � b̂(λ) ⇒ â′(λ) � b̂′(λ),
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â(λ) � b̂(λ) ⇒
∫ z

0

â(λ)dλ �
∫ z

0

b̂(λ)dλ,

and

â(λ) � b̂(λ), ĉ(λ) � d̂(λ) ⇒ â(ĉ(λ)) � b̂(d̂(λ)),

where the last assertion, in view of Theorem 3.11, needs the additional assumption

that
∑∞
n=0 |dnλn| < ρ(b) for |λ| < ρ(d),

∑∞
n=0 |cnλn| < ρ(a) for |λ| < ρ(c) (and

conditions that guarantee (a ◦ c)n, (b ◦ d)n <∞).

Example 3.13. Let a ∈ lN such that
{
akλ

k
0

}
k∈N

is relatively summable, where

λ0 6= 0. Then in view of Theorem 2.5, {
∣∣akλk0

∣∣} is bounded, say by M. Hence

|ak| ≤
M

|λ0|k
, k ∈ N,

so that

a�
{
M/ |λ0|k

}
�
{
M/rk

}
, 0 < r ≤ |λ0| .

Note that

∞∑

k=0

M

rk
zk = M

1

1 − z/r
, |z| < r ∈ (0, |λ0|].

Thus there is some positive M such that

â(z) � M

1 − z/r
, |z| < r ∈ (0, |λ0|].

We have defined majorant series functions generated by univariate sequences.

Similar definitions hold for bivariate or multivariate sequences. For the sake of

simplicity, we quickly go through the corresponding facts for multiple sequences.

Let a = {av}v∈Nκ and b = {bv}v∈Nκ be multiple sequences in lN
κ

. The sequence a

is said to be majorized by b if |av| ≤ bv for v ∈ Nκ. In such a case, we will write

a� b. If a� b and if c = {cv}v∈Nκ ∈ lN
κ

is defined by

cv = Pv (au(1) , au(2) , ..., au(j) ) , v, u(1), ..., u(j) ∈ Nκ, (3.18)

where each Pv is a multivariate polynomial with nonnegative coefficients and j in-

dependent variables (where j may depend on the multi-index v), then c is majorized

by the sequence d = {dv}v∈Nκ defined by

dv = Pv (bu(1) , ..., bu(j) ) , v, u(1), ..., u(j) ∈ Nκ. (3.19)

Theorem 3.29. Let a, b, c, d ∈ lN
κ

where cv and dv are defined by (3.18) and (3.19)

respectively. If a� b, then c� d.
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If a � b, then we say that the power series functions â(w) generated by a is

majorized by the power series function b̂(w) generated by b on their common domain

Ω of convergence. In such a case, we write â� b̂, or â(w) � b̂(w) for λ ∈ Ω.

Example 3.14. By Example 2.2, if w, z ∈ F and |w| + |z| < 1, then

∞∑

k=0

∑

i+j=k;i,j≥0

k!

i!j!
wizj =

∞∑

k=0

(w + z)k =
1

1 − w − z
.

Since the power series

∞∑

i,j=0

wizj

is generated by the double sequence a = {aij} where aij = 1 for all i, j ∈ N, and

since the coefficient of the term wizj in the power series function 1/(1 − w − z) is

greater than or equal to 1, we see from Example 2.1 that

1

(1 − w)(1 − z)
=

∞∑

i=0

wi
∞∑

j=0

zj =
∞∑

i,j=0

wizj � 1

1 − w − z
.

Example 3.15. If {avλv}v∈Nκ is relatively summable for some λ = (λ1, ..., λκ)

with positive components, then {|avλv |} is bounded, say, by M. Thus

|av| ≤
M

|λ|v , v ∈ Nκ,

so that a � {M/ |λ|v}v∈Nκ . Thus for each z = (z1, ..., zκ) ∈ Fκ which satisfies

0 < |z1| ≤ λ1, ..., 0 < |zκ| ≤ λκ, we have a � {M/ |z|v} . Note that for |w1| <
|z1| , ..., |wκ| < |zκ| , by Example 2.1,

∑

v∈Nκ

M

|z|vw
v =

∑

(v1,...,vκ)∈Nκ

M

(
w1

|z1|

)v1
· · ·
(
wκ
|zκ|

)vκ

= M

{ ∞∑

i=0

(
w1

|z1|

)i}
· · ·
{ ∞∑

i=0

(
wκ
|zκ|

)i}

=
M

(1 − w1/ |z1|) · · · (1 − wκ/ |zκ|)
.

As a consequence, if {avλv} is relatively summable at λ with positive components

λ1, ..., λκ, then there is some positive number M such that for 0 < |z1| ≤ λ1, ..., 0 <

|zκ| ≤ λκ,

â(w) � M

(1 − w1/ |z1|) · · · (1 − wκ/ |zκ|)
, |w1| < |z1| , ..., |wκ| < |zκ| .
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Note that if we set ρ = min {|z1| , ..., |zκ|} , then for w ∈ Fκ which satisfies

|w1| + |w2| + · · · + |wκ| < ρ, by the same reasoning used in Example 3.14, we have

â(w) � M(
1 − w1

|z1|

)
· · ·
(
1 − wκ

|zκ|

) = M
∑

(v1,...,vκ)∈Nκ

(
w1

|z1|

)v1
· · ·
(
wκ
|zκ|

)vκ

� M

∞∑

k=0

∑

|v|1=k;v∈Nκ

k!

v!

(
w1

|z1|

)v1
· · ·
(
wκ
|zκ|

)vκ

�M

∞∑

k=0

1

ρk

∑

|v|1=k;v∈Nκ

k!

v!
wv

= M

∞∑

k=0

(
w1 + w2 + · · · + wκ

ρ

)k
=

M

1 − w1+w2+···+wκ

ρ

.

Theorem 3.30. Let f, F be analytic functions from B(0; ρ) ⊂ Fκ into B(0;µ) ⊂ Fτ

such that f(0) = F (0) = 0. Let g,G be analytic functions from B(0;µ) ⊂ Fτ

into F. If f(z) � F (z) for z ∈ B(0; ρ) and g(w) � G(w) for w ∈ B(0;µ), then

g(f(z)) � G(F (z)) for z ∈ B(0; ρ).

3.8 Siegel’s Lemma

An important result in the method of majorants is due to Siegel [203]. Before going

into the details, let us make the following definition.

Definition 3.1. A complex number α is called a Siegel number if |α| = 1, αn 6= 1

for n ∈ Z+ and

log |αn − 1|−1 ≤ T logn, n = 2, 3, ... (3.20)

for some positive constant T.

By writing α as e2πiω, the condition (3.20) may be expressed in the form
∣∣∣ω − m

n

∣∣∣ > λn−µ,

for arbitrary m,n ∈ Z+, where λ and µ denote positive numbers depending upon

ω. It is then easily seen that (3.20) holds for all points of the unit circle |α| = 1

with the exception of a set of ‘measure’ 0.

Before stating an important result due to Siegel [203], it is convenient to intro-

duce the following notation. Let d = {dk} ∈ lN which satisfies d0 = 0. Then we set

Υn (d) to be

max {dv1dv2 · · · dvt
| v1 + v2 + · · · + vt = n, 0 < v1 ≤ v2 ≤ · · · ≤ vt, 2 ≤ t ≤ n} .

For instance,

Υ2(d) = max
{
d2
1

}
,

Υ3(d) = max
{
d1d2, d

2
1

}
,

Υ4(d) = max
{
d1d3, d

2
2, d

2
1d2, d

4
1

}
,
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etc. In view of the definition of Υn(d), it is easily seen that it depends only on the

terms d1, d2, ..., dn−1.

Next recall from Example 2.11 that for a sequence f ∈ lN that satisfies f0 = 0,

we have {
f
〈2〉
2

}
=
{
f2
1

}
,

{
f
〈2〉
3 , f

〈3〉
3

}
=
{
2f1f2, f

2
1

}
,

{
f
〈2〉
4 , f

〈3〉
4 , f

〈4〉
4

}
=
{
2f1f3 + f2

2 , 3f
2
1f2, f

4
1

}
,

and

f 〈t〉
n =

∑

v1+···+vt=n;v1,...,vt∈Z+

fv1fv2 · · · fvt
.

Thus it is also easily realized that fv1fv2 · · · fvt
, where v1+v2+· · ·+vt = n, 0 < v1 ≤

v2 · · · ≤ vt, is one of the terms in f
〈t〉
n . Consequently, if q, c ∈ lN satisfy q0 = c0 = 0,

ck ≥ 0, qk ≥ 0 for k ≥ 1, then

(c · q)〈t〉n ≤ Υn(c)q
〈t〉
n , 2 ≤ t ≤ n. (3.21)

Theorem 3.31 (Siegel’s Lemma). Let α be a Siegel number. Then there is a

positive number δ such that |αn − 1|−1 < (2n)δ for n ∈ Z+. Furthermore, the

sequence {dn}∞n=0 defined by d0 = 0, d1 = 1 and

dn =
1

|αn−1 − 1|Υn(d), 2 ≤ t ≤ n, n ≥ 2, (3.22)

will satisfy

dn ≤
(
25δ+1

)n−1
n−2δ, n ∈ Z+.

The proof is rather long and we will therefore require several assertions.

First of all, we show that if x1, ..., xr and y1, ..., ys are positive integers, where

r ≥ 0, s ≥ 2, such that

r∑

p=1

xp +
s∑

q=1

yq = k,

s∑

q=1

yq >
k

2
,

and

yq ≤
k

2
, q = 1, ..., s,

then
r∏

p=1

xp

s∏

q=1

y2
q ≥ k381−t, t = r + s. (3.23)
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To see this, denote the left-hand side of (3.23) by L. Consider first the case

k < 2t− 2. Then

k−3L ≥ k−3 > (2t− 2)
−3
. (3.24)

Assume now k ≥ 2t− 2 and let g = [k/2] , η = r +
∑s

q=1 yq . Then t ≤ g + 1 ≤
g + 1 + r ≤ η ≤ k and

r∑

p=1

xp = k − η + r,

so that
r∏

p=1

xp ≥ k − η + 1,

and
s∏

q=1

yq ≥
{
η − t+ 1, η ≤ g − 1 + t

(η − g − t+ 2) g, η ≥ g − 1 + t
.

In the interval g + 1 ≤ η ≤ g − 1 + t,

(k − η + 1) (η − t+ 1)2 ≥ min
{
(k − g) (g − t+ 2)2 , (k − g − t+ 2) g2

}
;

in the interval g − 1 + t ≤ η ≤ k,

(k − η + 1) (η − g − t+ 2)
2
g2 ≥ (k − g − t+ 2) g2;

and in the interval 0 ≤ ζ ≤ g,

(k − g) (g − ζ)
2 − (k − g − ζ) g2 = {(k − g) ζ − (2k − 3g) g} ζ ≤ g (2g − k) ζ ≤ 0;

consequently

L ≥ (k − g) (g − t+ 2)2

and

k−3L ≥ k − g

k

(
g − t+ 2

k

)2

≥ 1

2
(2t− 2)−2 ≥ (2t− 2)−3 . (3.25)

Now

t− 1 ≤ 2t−2, t ≥ 2,

and our assertion follows from (3.24) and (3.25).

Next, let

εn =
1

|αn − 1| , n ∈ Z+.

In view of (3.20), there is a positive number δ such that

εn < (2n)
δ
, n ∈ Z+.
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Let N1 = 22δ+1 and N2 = 8δN1 = 25δ+1. We assert that if m1, ...,mr are positive

integers, where r ≥ 0, such that m0 > m1 > · · · > mr > 0, then

r∏

l=0

εml
< Nr+1

1

{
m0

r∏

l=1

(ml−1 −ml)

}
. (3.26)

Indeed, the assertion is true in the case r = 0. Assume r ≥ 1. Note that

aq1
(
ap−q1 − 1

)
= (ap1 − 1) − (aq1 − 1) , 0 < q < p,

hence

ε−1
p−q ≤ ε−1

p + ε−1
q

and

min (εp, εq) ≤ 2εp−q < 2δ+1 (p− q)δ .

Let min{εm1 , ...εmr
} = εmh

. Then

εmh
< 2δ+1 min

{
(mh−1 −mh)

δ , (mh −mh+1)
δ
}
, (3.27)

provided we define m−1 = ∞ and mr+1 = −∞. Assume by induction that (3.26)

holds for r − 1 instead of r, we have

ε−1
mh

r∏

l=0

εml
< Nr

1

{
m0 (mh−1 −mh+1)

(mh−1 −mh) (mh −mh+1)

r∏

l=1

(ml−1 −ml)

}
. (3.28)

Since

mh−1 −mh+1

(mh−1 −mh) (mh −mh+1)
=

1

mh−1 −mh
+

1

mh −mh+1

≤ 2

min (mh−1 −mh,mh −mh+1)
,

the inequality (3.26) follows from (3.27) and (3.28).

We now turn to the proof of Siegel’s Lemma (Theorem 3.31). Let the positive

sequence {dn}∞n=1 be defined by d1 = 1 and (3.22). We assert that

dk ≤ k−2δNk−1
2 , k ∈ Z+. (3.29)

Our assertion is true in the case k = 1. Assume k ≥ 2. The numbers αk =

k−2δNk−1
2 satisfy

αkαl
αk+l

=
(
k−l + l−l

)2δ
N−1

2 ≤ 22δN−1
2 < 1,

for k, l ≥ 1, and consequently

dj1dj2 · · · djf ≤ j−2δN j−1
2 , 1 ≤ j1 + · · · + jf = j < k; f ≥ 1. (3.30)

By (3.22), there exists a decomposition

dk = εk−1dg1dg2 · · · dgα
, g1 + · · · + gα = k > g1 ≥ · · · ≥ gα ≥ 1.
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In the case g1 > k/2, we use this formula with g1 instead of k and find a decompo-

sition

dg1 = εg1−1dh1dh2 · · · dhβ
, h1 + · · · + hβ = g1 > h1 ≥ · · · ≥ hβ ≥ 1;

if also h1 > k/2, we decompose again

dh1 = εh1−1di1di2 · · · diγ , i1 + · · · + iγ = h1 > i1 ≥ · · · ≥ iγ ≥ 1;

and so on. Writing k0 = k, k1 = g1, k2 = h1, ..., we obtain in this manner the

formula

dk =

r∏

p=0

(
εkp−1∆p

)

with k = k0 > k1 > · · · > kr > k/2, where ∆p denotes for p = 0, ..., r a certain

product dj1 · · · djf and

j1 + · · · + jf =

{
kp − kp+1, p = 0, ..., r − 1

kr, p = r
,

all subscripts j1, ..., jf being ≤ k/2. The number f depends upon p; let f = s

for p = r. Using (3.29) for the s single factors of ∆r and applying (3.30) for the

estimation of ∆p, p = 0, ..., r − 1, we find the inequality

r∏

p=0

∆p ≤ Nk−r−s
2

{
s∏

q=1

jq

r∏

p=1

(kp−1 − kp)

}−2δ

,

where 1 ≤ jq ≤ k/2 for q = 1, ..., s and j1 + · · · + js = kr. In view of (3.26),

r∏

p=0

εkp−1 < Nr+1
1

{
k

r∏

p=1

(kp−1 − kp)

}δ
,

and consequently

dk < Nr−1
1 Nk−t

2

(
k−1

r∏

p=1

xp

s∏

q=1

y2
q

)−δ

with t = r + s, xp = kp−1 − kp, yq = jq. In view of (3.23),

N1−k
2 k2δδk < Nr+1

1 N1−t
2 8δ(t−1) ≤

(
8δN1

N2

)t−1

= 1,

and (3.29) is proved.

Siegel’s Lemma can be used to obtain majorants. For instance, we have the

following result.

Theorem 3.32. Let α be a Siegel number. Let {un}n∈N
be a complex sequence

defined by u0 = 0, u1 = µ > 0 and

un =
M

|αn−1 − 1|

n∑

i=2

aiu
〈i〉
n , n ≥ 2,
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where M > 0 and ai > 0 for i ≥ 2. Let {vn}n∈N
be a complex sequence defined by

v0 = 0, v1 = η ≥ µ and

vn = M

n∑

i=2

biv
〈i〉
n , n ≥ 2,

where ai ≤ bi for i ≥ 2. Then there is δ > 0 such that

un ≤ vn
(
25δ+1

)n−1
n−2δ , n ≥ 2.

Proof. It is not difficult to see by induction that uk, vk > 0 for k ≥ 1. Let

d = {dn}∞n=0 be defined by d0 = 0, d1 = 1 and (3.22). Note that u1 ≤ v1 = d1v1.

Assume by induction that uk ≤ dkvk for k = 1, 2, ..., n − 1 where n ≥ 2. Then by

(3.21) and Siegel’s Lemma, there is δ > 0 such that

un =
M

|αn−1 − 1|

n∑

i=2

aiu
〈i〉
n ≤ M

|αn−1 − 1|

n∑

i=2

bi(d · v)〈i〉n

≤ 1

|αn−1 − 1|Υn(d)M

n∑

i=2

biv
〈i〉
n

= dnvn

≤ vn
(
25δ+1

)n−1
n−2δ .

The proof is complete.

We remark that under the assumptions in Theorem 3.32 and the additional

assumption that there is some r > 0 such that vn ≤ rn for n ∈ N, then we may

conclude that u has a positive radius of convergence as can be seen from

lim sup
n→∞

u1/n
n ≤ lim sup

n→∞
r
(
25δ+1

)(n−1)/n
n−2δ/n = r25δ+1.

3.9 Notes

Most of the material in this Chapter are well known and can be found in standard

analysis text books such as Balser [13], Hille [78], Krantz and Parks [99], Krantz

[100], Smith [211], Sneddon [212], Valiron [216].

Example 3.8 is adopted from Fichtenholz (see pp. 83-87 of [63]).

Siegel’s Lemma and its proof can be found in Siegel [203]. It is also asserted in

[203] that ‘almost all’ complex numbers on the unit circle are Siegel numbers.
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Chapter 4

Functional Equations without

Differentiation

4.1 Introduction

Roughly, a functional equation is a mathematical relation involving at least one

unknown function and one or more known functions. Such equations and their

extensions arise in many mathematical models. For instance, the defining relation

for the unit circle is given by

x2 + y2 = 1, x, y ∈ R.

Intuitively, it is clear that the upper part of the unit circle can be described by a

function y = y(x). Therefore, we have a functional equation of the form

x2 + y2(x) − 1 = 0.

The unknown function y = y(x) is said to be ‘implicit’ in the above relation.

More generally, given a relation of the form

F (x, y) = 0,

where F is some given function of two variables, it is desirable to ‘extract’ a function

y = f(x) from such a relation so that

F (x, f(x)) = 0

for x in some appropriate domain.

In this Chapter, we will assume that the derivatives of the unknown functions

are not involved in the implicit relations.

Example 4.1. Consider the functional equation

F (x, f(x)) = f2(x) − f(x) − 1 = 0. (4.1)

Suppose we are interested in finding a solution f(x) which renders the equation

(4.1) into an identity on some interval. Although there may be many possible types

of solutions, an analytic solution is a good candidate. We therefore assume that

f(x) is an analytic solution defined over a neighborhood of 0 and is generated by

the sequence a = {ak}k∈N, that is,

f(x) = â(x) =

∞∑

n=0

anx
n.

83



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

84 Analytic Solutions of Functional Equations

Then substituting it into (4.1), we obtain â〈2〉(x)− â(x)−1 = 0 for x in a neighbor-

hood of 0. By the Unique Representation Theorem 3.8, we see that a〈2〉−a−1 = 0,

that is,

a2
0 − a0 − 1 = 0,

2a0a1 − a1 = 0,

2a0a2 + a2
1 − a2 = 0,

2a0a3 + 2a1a2 − a3 = 0,

and

a
〈2〉
k − ak = 0

for k ≥ 4. Thus a0 =
(
1±

√
5
)
/2. Since a0 6= 0, we see from 2a0a1 − a1 = 0 that

a1 = 0, and by induction, ak = 0 for k ∈ Z+. This shows that any analytic solution

of (4.1) is necessarily of the form f(x) =
(
1 +

√
5
)
/2 or f(x) =

(
1 −

√
5
)
/2. On the

other hand, we may easily show by direct verification that either f(x) =
(
1 +

√
5
)
/2

or f(x) =
(
1 −

√
5
)
/2 is a solution of (4.1). Since both functions are analytic on

F, we have found all the analytic solutions of (4.1) on F.

Example 4.2. Let us consider the functional equation

f2(z) − β2

β +M
f(z) +

Mβ2

β +M

z

α− z
= 0.

where α, β,M > 0. Solving the quadratic equation

w2 − β2

β +M
w +

Mβ2

β +M

z

α− z
= 0, (4.2)

we see that

w =
β2

2(β +M)

{
1 ±

√
1 − 4M(β +M)

β2

z

α− z

}
.

Setting

β1 = α

(
β

β + 2M

)2

,

we see that

w =
β2

2(β +M)

{
1 ±

(
1 − z

β1

)1/2 (
1 − z

α

)−1/2
}
.

Thus we are led to the solutions

f+(z) =
β2

2(β +M)

{
1 +

(
1 − z

β1

)1/2 (
1 − z

α

)−1/2
}

and

f−(z) =
β2

2(β +M)

{
1 −

(
1 − z

β1

)1/2 (
1 − z

α

)−1/2
}
.

Recall from Example 3.7 that the functions
(
1 − z

β1

)1/2

and
(
1 − z

α

)1/2
are analytic

over B (0;β1) and B(0;α) respectively. Thus f+(z) and f−(z) are solutions of (4.2)

which are analytic over a neighborhood of the origin.



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

Functional Equations without Differentiation 85

Example 4.3. To see another simple example, let us consider

f(2x) = 2f2(x) − 1. (4.3)

Assume that f(x) = â(x) is an analytic solution of (4.3) defined over a neighborhood

of 0 and is generated by the sequence a = {ak}k∈N, that is,

â(x) =

∞∑

n=0

anx
n,

then substituting it into (4.3), we obtain 2 · a = 2a〈2〉 − 1, that is,

a0 = 2a2
0 − 1,

2a1 = 4a0a1,

22a2 = 2
(
a2
1 + 2a0a2

)
,

23a3 = 2 (2a0a3 + 2a1a2) ,

and

2kak = 2a
〈2〉
k

for k ≥ 4. Thus, a0 = 1 or a0 = −1/2, and a1 = 0. By induction, we may easily see

that

a2k−1 = 0, k ∈ Z+.

Furthermore, if a0 = −1/2, then a2k = 0 for k ∈ Z+; while if a0 = 1, then a2 may

be arbitrary, say, a2 = α, and

a2k =
(2α)k

(2k)!
, k ∈ Z+.

Thus

â(x) = 1 +
∞∑

k=1

(2α)k

(2k)!
x2k

or

â(x) = −1

2
.

In both cases, the power series function â are analytic on F (by applying the ratio

test to the former case). We remark that one particular case occurs when α < 0,

since letting b2 = −2α, we have

â(x) =

∞∑

k=0

(−1)k
(bx)2k

(2k)!
= cos bx,

and another particular case occurs when α > 0, since letting d2 = 2α, we have

â(x) =

∞∑

k=0

(dx)2k

(2k)!
= cosh dx.
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4.2 Analytic Implicit Function Theorem

In the previous section, the functional relations contain enough information to yield

recurrence relations which define explicit sequences for generating the desired an-

alytic solutions. In general, recurrence relations may only yield implicitly defined

sequences, and alternate technique has to be used to show that the power series

functions generated by these sequences are analytic.

As an example, let F be a function of two (real or complex) variables and

consider the functional equation

F (x, f(x)) = 0. (4.4)

Consider the possibility of determining a solution f(x) such that substituting f(x)

into (4.4) renders it into an identity. The function F is in general not specified.

However, if we assume that F = F (x, y) is analytic at the point (x0, y0) and

F (x0, y0) = C00 = 0, F ′
y(x0, y0) 6= 0, (4.5)

we may show that there is a solution y = f(x) of (4.4) which is analytic at x0. To

see this, we assume without loss of generality that x0 = y0 = 0. Then in view of

(4.4),

0 = F (x, y) =

∞∑

j=0

∞∑

i=0

Cijx
iyj

in a neighborhood of (0, 0). Since F (0, 0) = 0 and Fy(0, 0) = C01 6= 0, we may

divide the above equation by C01 to obtain

y = c10x+ c20x
2 + c11xy + c02y

2 + c30x
3 + c21x

2y + c12xy
2 + c03y

3 + · · · , (4.6)

where cij = −Cij/C01. Assuming an analytic solution y = â(x) of (4.4) in the form

y =
∞∑

k=0

akx
k (4.7)

in a sufficiently small neighborhood of 0, we obtain from the assumption that y = 0

for x = 0 that a0 = 0 and from (4.6) that

a1x+ a2x
2 + a3x

3 + · · · = c10x+ c20x
2 + c11x

(
a1x+ a2x

2 + a3x
3 + · · ·

)

+c02
(
a1x+ a2x

2 + a3x
3 + · · ·

)2
+ c30x

3

+c21x
2
(
a1x+ a2x

2 + a3x
3 + · · ·

)

+c12x
(
a1x+ a2x

2 + a3x
3 + · · ·

)2

+c03
(
a1x+ a2x

2 + a3x
3 + · · ·

)3
+ · · ·

By Theorems 3.16 and 3.11 (which show that substituting one power series into

another and combining coefficients of like powers of x is legitimate), and equating

coefficients of like powers of x, we arrive at the system of equations

a1 = c10,

a2 = c20 + c11a1 + c02a
2
1,

a3 = c11a2 + 2c02a1a2 + c30 + c21a1 + c12a
2
1 + c03a

3
1,

... = ... (4.8)
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Although the explicit forms of a1, a2, ... are not given, their calculations involve

only with additions and multiplications, therefore, it is not difficult to see by

induction that the coefficients a2, a3, ... are of the form a2 = P2(a1, c11, c20),

a3 = P3(a1, a2, c11, c02, c30, c21, c12, c03), ..., ak = Pk(a1, a2, ..., ak−1, c11, ..., c0k)

where P2, P3, ... are uniquely determined polynomials with positive coefficients.

These show the uniqueness of the solution â(x).

To see that (4.7) is indeed an analytic solution of (4.4), we only need to show

that it converges in a neighborhood of 0. This is accomplished by finding a majorant

function for â(x).

To this end, suppose there is a double sequence {dij}i,j∈N
such that d00 = 0

and dij > 0 for (i, j) 6= (0, 0) and satisfies

|cij | ≤ dij , i, j ∈ N.

Then letting the sequence {bk}k∈N
be defined by b0 = 0, b1 = d10 and bk =

Pk(b1, b2, ..., bk−1, d11, ..., d0k) for k ≥ 2, in view of the similarity between the se-

quence a and b, it is easily seen that the coefficients b1, b2, ... are all positive and

satisfy

|ai| ≤ bi, , i ∈ Z+,

i.e., a is majorized by b; furthermore, its corresponding power series function

Y = b̂(x) = b1x+ b2x
2 + b3x

3 + · · ·
satisfies

Y = d10x+d20x
2 +d11xY +d02Y

2 +d30x
3 +d21x

2Y +d12xY
2 +d03Y

3 + · · · . (4.9)

Such a double sequence {dij} exists. Indeed, since F (x, y) is analytic in a neigh-

borhood of (0, 0), there exist positive numbers α and β such that the double series

|c10|α+ |c20|α2 + |c11|αβ + |c02|β2 + · · ·
converges. Then

|cij |αiβj ≤M, i ∈ Z+; j ∈ N,

for some positive constant M so that we may set

dij =
M

αiβj
, i ∈ Z+; j ∈ N.

To complete our investigation, we need to show that Y = b̂(x) is analytic at 0. To

this end, note from (4.9) that

Y =
M

α
x+

M

α2
x2 +

M

αβ
xY +

M

β2
Y 2 + · · · =

M
(
1 − x

α

) (
1− Y

β

) −M − M

β
Y,

or,

Y 2 − β2

β +M
Y +

Mβ2

β +M

x

α− x
= 0.
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In view of Example 4.2, Y = Y+ or Y = Y− where

Y± =
β2

2(β +M)

{
1 ±

(
1 − x

β1

)1/2 (
1 − x

α

)−1/2
}
,

and

β1 = α

(
β

β + 2M

)2

,

The correct one is Y− since Y = 0 when x = 0. Since the function Y = Y− = b̂(x)

is analytic at 0, hence (4.7) is also analytic over a neighborhood of 0. The proof is

complete.

We summarize the above discussions as follows.

Theorem 4.1 (Analytic Implicit Function Theorem). Suppose F = F (x, y)

is analytic at the point (x0, y0), F (x0, y0) = 0 and F ′
y(x0, y0) 6= 0. Then there exists

a unique function

f(x) = y0 −
F ′
x(x0, y0)

F ′
y(x0, y0)

(x − x0) +

∞∑

k=2

ak(x − x0)
k

which is analytic on a neighborhood of x0 and satisfies F (x, f(x)) = 0 for x near

x0.

We remark that the assumption that Fy(x0, y0) 6= 0 in (4.5) is a sufficient but

not a necessary condition.

Example 4.4. Consider the analytic function

F (x, y) = ((1 − x)y − x)(x2 + y2) = (1 − x)y3 − xy2 + x2(1 − x)y − x3

for x, y ∈ R. It is easily checked that F (0, 0) = 0 and F ′
y(0, 0) = 0. But

y = f(x) =
x

1 − x
, |x| < 1,

is an analytic solution of the equation F (x, y) = 0.

We remark further that an immediate consequence of the above implicit function

theorem is the analytic inverse function theorem.

Theorem 4.2 (Analytic Inverse Function Theorem). If y = g(x) is an ana-

lytic function of x at x0 such that g′(x0) 6= 0, then the inverse function g−1 exists

and is analytic at y0 = g(x0).

Indeed, let g(x) =
∑∞
k=0 ak(x − x0)

k, and let {cij}i,j∈N
be defined by cij = aj

if i = 0 and cij = 0 if i > 0. Then the bivariate function

F (u, v) = u−
∞∑

j=0

∞∑

i=0

ciju
i(v − x0)

j = u−
∞∑

j=0

aj(v − x0)
j
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is analytic at (u, v) = (y0, x0) and

F ′
v(y0, x0) = −a1 = g′(x0) 6= 0.

By our implicit function theorem, there exists a function v = f(u) defined in a

neighborhood Ω of the point u = y0 such that

0 = F (u, f(u)) = u−
∞∑

j=0

aj (f(u) − x0)
j

= u− g(f(u)).

That is, f(u) = g−1(u) for u ∈ Ω.

Example 4.5. Recall from Example 1.6 that the inverse function of exp is the

function log0 defined on {z ∈ C| I(z) ∈ (−π, π]} . Furthermore, as can be veri-

fied directly, the exponential function of a complex variable maps the domain

{z ∈ C| I(z) ∈ (−π, π)} one-to-one onto the domain C\(−∞, 0]. Since exp′(w) =

expw 6= 0 and since exp is analytic at each w ∈ {z ∈ C| I(z) ∈ (−π, π)} , its inverse

function log0 is analytic on C\(−∞, 0]. Furthermore, since

z log′0(z) = exp (log0(z)) log′0(z)

= exp′ (log0(z)) log′0(z)

=
d

dz
exp (log0(z)) =

d

dz
z = 1,

we see that

log′0(z) =
1

z
, z ∈ C\{z ∈ C : R(z) ≤ 0}.

Thus

log′0(1 + z) =
1

1 + z
=

∞∑

n=0

(−1)nzn, z ∈ B(0; 1),

and

log0(1 + z) =

∫ z

0

log′0(1 + w)dw =

∫ z

0

∞∑

n=0

(−1)nwndw =

∞∑

n=0

(−1)n
zn+1

n+ 1

for z ∈ B(0; 1).

Example 4.6. Recall from Example 1.7 that for w ∈ C and z ∈ C\(−∞, 0],

zw = ew log0(z). Hence the power function f : C\(−∞, 0] → C defined by

f(z) = zw

is analytic on C\(−∞, 0]. Furthermore,

d

dz
zw = wzw−1.

The Newton binomial expansion formula in Example 3.6 takes the form

(1 + x)α =

∞∑

n=0

C(α)
n xn
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for real α and x that satisfies |x| < 1. If z ∈ C and |z| < 1, then for any w ∈ C, in

view of the Substitution Theorem 3.11,

(1 + z)w = ew log0(1+z) = exp

{
w

∞∑

n=0

(−1)n
zn+1

n+ 1

}

= 1 + wz +
w(w − 1)

2!
z2 + · · · .

To find the coefficients of zn, we argue as follows: Clearly this coefficient is some

polynomial Qn(w) of degree n in w. Since there is no term involving zn in the

above expansion if w = 0, 1, 2, ..., n−1, the polynomial must vanish at the indicated

points. But then,

Qn(w) = dw(w − 1) · · · (w − n− 1)

where d is a constant. For w = n, the coefficient of zn is just 1, and henceQn(n) = 1.

It follows that

d =
1

n!
,

so that Qn(w) = C
(w)
n . Thus we have

(1 + z)w =

∞∑

n=0

C(w)
n zn, |z| < 1.

Example 4.7. An alternate derivation of the Newton Binomial Expansion Theorem

can be seen by observing that f(z) = (1 + z)w satisfies f(0) = 1 and

(1 + z)f ′(z) = wf(z), |z| < 1.

Assume that

f(z) =
∞∑

n=0

anz
n.

Then a0 = f(0) = 1 and by the Unique Representation Theorem 3.8,

(n+ 1)an+1 + nan = wan, n ∈ N.

The above recurrence is easily solved and

an =
1

n!
w(w − 1) · · · (w − n+ 1), n ∈ Z+.

4.3 Polynomial and Rational Functional Equations

Given a polynomial P (z) of the form

P (z) = zm + am−1z
m−1 + · · · + a1z + a0,
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then formally ‘replacing’ each i-th power by the i-th power Gi of a function G will

result in a polynomial in G, which is naturally denoted by P (G). Given a polynomial

P (G) in the function G = G(z) and a function h = h(z), the equation

P (G)(z) = h(z)

is called a polynomial functional equation. For instance,

Gm(z) + am−1G
m−1(z) + · · · + a1G(z) + a0 = h(z)

is such an equation. A rational functional equation is similarly defined. For instance,

G(z) − αz − β
G(z)

1 −G(z)
= H(z)

is a rational functional equation.

In this section, we find analytic solutions to several polynomial and rational

functional equations. As our first example, consider the polynomial equation

G2(z) − 1

µ
G(z) +

α

µ
z = 0, (4.10)

where α 6= 0 and µ 6= 0. Solving the quadratic equation

w2 − 1

µ
w +

α

µ
z = 0,

we see that

w =
1

2µ

{
1 ±

√
1 − 4αµz

}
.

Thus we may conclude that either

G+ (z) =
1

2µ

{
1 +

√
1 − 4αµz

}

or

G− (z) =
1

2µ

{
1 −

√
1 − 4αµz

}

are formal solutions of our polynomial equation. Furthermore, since (1 − 4αµz)
1/2

is analytic on B(0; 1/ |4αµ|) (see Example (3.21)), we see that both are solutions

which are analytic on B(0; 1/ |4αµ|). They are the only solutions that are analytic

near 0. Indeed, if G(z) is defined at z = 0, then

0 = G2(0) − 1

µ
G(0) + 0 = G(0)

(
G(0) − 1

µ

)
,

so that G(0) = 0 or G(0) = 1/µ. But then the additional condition G(0) = 0

will lead us to G(z) = G−(z), while the additional condition G(0) = 1/µ to the

G(z) = G+(z).

There is another approach to solving (4.10). We may treat G(z) as an implicit

function to be sought in the relation

F (z,G) ≡ G2 − 1

µ
G+

α

µ
z = 0.
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Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0 and

F ′
w(0, 0) = −1/µ 6= 0, by the Analytic Implicit Function Theorem 4.1, we see that

the implicit relation F (z,G) = 0 has a solution

G(z) =

∞∑

n=0

gnz
n

which is analytic on a neighborhood of the origin, and the sequence g = {gn}n∈N

satisfies g0 = 0 as well as g1 = −F ′
z(0, 0)/F ′

w(0, 0) = α. The other terms of g can

also be determined. To see this, we substitute G(z) =
∑∞

n=0 gnz
n into our equation

(4.10), then

0 =
∞∑

n=0

g〈2〉n zn − 1

µ

∞∑

n=0

gnz
n +

α

µ
z =

∞∑

n=2

g〈2〉n zn − 1

µ

∞∑

n=1

gnz
n +

α

µ
z.

By the Unique Representation Theorem 3.8, we see that

gn = µg〈2〉n , n ≥ 2.

Or equivalently, by Theorem 3.4, we may view (4.10) as

ĝ〈2〉(z) − 1

µ
ĝ(z) +

α

µ
~ = 0,

which leads us to

g
〈2〉
1 − 1

µ
g1 +

α

µ
= − 1

µ
g1 +

α

µ
= 0,

and

g〈2〉n − 1

µ
gn = 0, n ≥ 2,

yielding the same conclusion about the sequence g.

The solution just determined satisfies G(0) = 0, and hence it must be equal to

G−(z) found above. Therefore,

1

2µ

{
1 −

√
1 − 4αµz

}
=

∞∑

n=0

gnz
n,

where g = {gn}n∈N
is determined by g0 = 0, g1 = α and gn = µg

〈2〉
n for n ≥ 2 (cf.

Example 2.11).

We can also find the solution G+(z) by the Analytic Implicit Function Theorem

4.1 since F (0, 1/µ) = 0 and F ′
w(0, 1/µ) = 1/µ 6= 0. The ideas are not much different

and hence the details are skipped.

Similar techniques will lead us to analytic solutions of several polynomial and

rational functional equations as follows.

Example 4.8. Let µ 6= 0 and K ∈ Z+. Then the equation

G(z) −
K∑

i=1

αiz
i − 1

µ

GK+1(z)

1−G(z)
= 0
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has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To this end, let

F (z, w) ≡ w −
K∑

i=1

αiz
i − 1

µ

wK+1

1− w
.

Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0

and F ′
w(0, 0) = 1, by the Analytic Implicit Function Theorem 4.1, we see that the

implicit relation F (z, w) = 0 has an analytic solution w = G(z) which satisfies

G(0) = 0 and G′(0) = −F ′
z(0, 0)/F ′

w(0, 0) = α1, and is defined on a disk with the

origin as the center and with a positive radius. This solution can be determined in

a recursive manner. To see this, let

G(z) =

∞∑

k=0

gkz
k.

Then g0 = G(0) = 0 and g1 = G′(0) = α1. Furthermore, by substituting w = G(z)

into F (z, w) = 0, we see that

G(z) −
K∑

i=1

αiz
i =

1

µ
GK+1(z)

∞∑

n=0

Gn(z)

=
1

µ

∞∑

n=K+1

Gn(z)

=
1

µ

∞∑

n=K+1

{
n∑

k=K+1

g〈k〉n

}
zn.

By comparing coefficients, we see that gi = αi for i = 1, ...,K and

gn =
1

µ

n∑

k=K+1

g〈k〉n , n ≥ K + 1.

The proof is complete.

We remark that the sequence g in the above result can be obtained in the

following manner as well. First note that

w−
K∑

i=1

αiz
i− 1

µ

wK+1

1 − w
= w−

K∑

i=1

αiz
i− 1

µ

∞∑

i=K+1

wi = w−
K∑

i=1

αiz
i− 1

µ
Ĥ(K+1)(w),

where H(m) is the Heaviside sequence defined before by H
(m)
n = 1 for n ≥ m and

H
(m)
n = 0 for 0 ≤ n ≤ m − 1. Since G(z) = ĝ(z) where g ∈ lN, thus substituting

w = ĝ(z) into F (z, w) = 0 then leads us to the equation

g −
K∑

i=1

αi~
〈i〉 − 1

µ
H(K+1) ◦ g = 0.
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Since

H(K+1) ◦ g =

{
n∑

i=K+1

g〈i〉n

}

by Example 2.23, we see that

ĝ(z) −
K∑

i=1

αiz
i =

1

µ

∞∑

n=K+1

n∑

i=K+1

g〈i〉n zn

as desired.

Example 4.9. The equation

G(z) − αz − β
G2(z)

1 −G(z)
− γ

z

1 − z
G(z) = 0

has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To see this, let

F (z, w) ≡ w − αz − β
w2

1− w
− γ

z

1 − z
w.

Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0

and F ′
w(0, 0) = 1 6= 0, by the Analytic Implicit Function Theorem 4.1, we see that

the implicit relation F (z, w) = 0 has an analytic solution w = G(z) which satisfies

G(0) = 0 and G′(0) = −F ′
z(0, 0)/F ′

w(0, 0) = α, and is defined on a disk with the

origin as the center and with a positive radius. Let G(z) = ĝ(z) where g ∈ lN. Then

g0 = G(0) = 0 and g1 = G′(0) = α. Furthermore, by writing

F (z, w) = w − αz − βĤ(2)(w) − γwĤ(1)(z),

then substituting w = ĝ(z) into it leads us to

g = α~ + βH(2) ◦ g + γg ∗H(1).

By Example 2.23 and the fact that

g ∗H(1) =

{
n∑

i=0

giH
(1)
n−i

}
=

{
n−1∑

i=1

gi

}
,

we may then see that

gn = β

n∑

k=2

g〈k〉n +

n−1∑

k=1

gk, n ≥ 2.

Example 4.10. The equation

G(z) − αz − βz2 − γzG(z)− δ
zG2(z)

1 −G(z)
− ξ

z2G(z)

1 − z
= 0

has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To see this, let

F (z, w) = w − αz − βz2 − γzw − δ
zw2

1 − w
− ξ

z2w

1 − z
.
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Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0

and F ′
w(0, 0) = 1 6= 0, by the Analytic Implicit Function Theorem 4.1, we see that

the implicit relation F (z, w) = 0 has an analytic solution w = G(z) which satisfies

G(0) = 0 and G′(0) = −F ′
z(0, 0)/F ′

w(0, 0) = α, and is defined on a disk with the

origin as the center and with a positive radius. Let G(z) = ĝ(z) where g ∈ lN. Then

g0 = G(0) = 0 and g1 = G′(0) = α. Furthermore, by writing

F (z, w) = w − αz − βz2 − γzw − δzĤ(2)(w) − ξwĤ(2)(z),

then substituting w = ĝ(z) into it leads us to

g = α~ + β~〈2〉 + γ~ ∗ g − δ~ ∗
(
H(2) ◦ g

)
+ ξ

(
g ∗H(2)

)
.

By equating the corresponding terms on both sides, we see that

g2 = αγ + β

and

gn = γgn−1 + δ

n−1∑

k=2

g
〈k〉
n−1 + ξ

n−2∑

k=1

gk, n ≥ 3.

Example 4.11. The equation

G(z) − αz − z
βG(z)

1− βG(z)
− zQ(z) = 0

where

Q(z) = q̂(z), q = {qk} ∈ lN,

is analytic at each z in a neighborhood of the origin, has a solution G(z) which is

analytic at each z in a neighborhood of the origin and G(z) can be defined in a

recursive manner. To see this, let

F (z, w) = w − αz − z
βw

1− βw
− zQ(z).

Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0 and

F ′
w(0, 0) = 1, the Analytic Implicit Function Theorem 4.1 asserts that the implicit

relation F (z, w) = 0 has a unique solution w = G(z) which satisfies G(0) = 0 and

G′(0) = −F ′
z(0, 0)/F ′

w(0, 0) = α+ q0, and is defined on a disk with the origin as the

center and with a positive radius. Let G(z) = ĝ(z) where g ∈ lN. Then g0 = 0 and

g1 = G′(0) = α+ q0. Furthermore, by writing

F (z, w) = w − αz − zĤ(1)(βw) − zQ(z)

and substituting w = ĝ(z) into it, we see that

g = α~ + ~ ∗
(
H(1) ◦ (βg)

)
− ~ ∗ q.

By equating the corresponding terms on both sides, we see that

gn =

n−1∑

k=1

βkg
〈k〉
n−1 + qn−1, n ≥ 2.
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Example 4.12. The equation

G(z) − αz − βz2 − z2 δG(z)

1 − δG(z)
− z2Q(z) = 0,

where

Q(z) = q̂(z), q = {qk} ∈ lN,

is analytic at each z in a neighborhood of the origin, has a solution G(z) which is

analytic at each z in a neighborhood of the origin and G(z) can be defined in a

recursive manner. To see this, let

F (z, w) = w − αz − βz2 − z2 δw

1 − δw
− z2Q(z).

Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0 and

F ′
w(0, 0) = 1, the Analytic Implicit Function Theorem 4.1 asserts that the implicit

relation F (z, w) = 0 has a unique solution w = G(z) which satisfies G(0) = 0 and

G′(0) = −F ′
z(0, 0)/F ′

w(0, 0) = α + q0, and is defined on a disk with the origin as

the center and with a positive radius. G(z) = ĝ(z) where g ∈ lN. Then g0 = 0 and

g1 = G′(0) = α+ q0. Furthermore, by writing

F (z, w) = w − αz − βz2 − z2Ĥ(1)(δw) − z2Q(z)

and substituting w = ĝ(z) into it, we see that

g = α~ + β~〈2〉 + ~〈2〉 ∗
(
H(1) ◦ (δg)

)
+ ~〈2〉 ∗ q

By equating corresponding terms on both sides, we see that

g2 = β

and

gn =

n−2∑

k=1

δkg
〈k〉
n−2 + hn−2, n ≥ 3.

Example 4.13. Let µ 6= 0. The equation

G(z) − αz − β
δG2(z)

1 − δG(z)
− γz2

µ2 − µz
= 0

has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To see this, let

F (z, w) ≡ w − αz − β
δw2

1 − δw
− γz2

µ2 − µz
. (4.11)

Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0 and

∂F

∂w
= 1 − β

{
2δw

1 − δw
+

δ2w2

(1 − δw)2

}
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which is not zero at (0, 0), by the Analytic Implicit Function Theorem 4.1, we see

that the implicit relation F (z, w) = 0 has an analytic solution w = G(z) which

satisfies G(0) = 0 and G′(0) = −F ′
z(0, 0)/F ′

w(0, 0) = α, and is defined on a disk

with the origin as the center and with a positive radius. G(z) = ĝ(z) where g ∈ lN.

Then g0 = G(0) = 0 and g1 = G′(0) = α. By writing

F (z, w) = w − αz − βwĤ(1)(δw) − γ

µ2
z2Ĥ(0)(z/µ)

and substituting w = ĝ(z) into it, we see that

g = α~ + βg ∗
(
H(1) ◦ (δg)

)
+

γ

µ2
~〈2〉 ∗

(
µ−1 ·H(0)

)

By equating the corresponding terms on both sides, we see that

gn = β

n∑

i=0

gn−i

{
i∑

k=1

δkg
〈k〉
i

}
+

γ

µn
, n ≥ 2.

We remark that in case δ = 1, the function in (4.11) reduces to

F (z, w) ≡ w − αz − βw2

1 − w
− γz2

µ2 − µz
.

The corresponding analytic solution

G(z) =

∞∑

n=0

gnz
n.

can then be defined recursively by g0 = 0, g1 = α and

gn = β
n∑

k=2

g〈k〉n +
γ

µn

for n ≥ 2.

Example 4.14. Let µ 6= 0 and M ∈ Z+. The equation

G2(z) − 1

µ
G(z) +

α1

µ
z +

M∑

n=2

(
αn
µ

−
n−1∑

k=1

αkαn−k

)
zn = 0

has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To see this, let

F (z, w) = w2 − 1

µ
w +

α1

µ
z +

M∑

n=2

(
αn
µ

−
n−1∑

k=1

αkαn−k

)
zn, M ∈ Z+.

Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, 0), F (0, 0) = 0 and

∂

∂w
F (0, 0) = − 1

µ
6= 0,
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the Analytic Implicit Function Theorem 4.1 asserts that there is a function G (z)

which is a solution of F (z,G(z)) = 0 and is analytic at each z in a neighborhood of

the origin. To determine G(z) = ĝ(z), we write F (z, w) = 0 as

µw2 − w + α1 +
M∑

n=2

(
αn − µ

n−1∑

k=1

αkαn−k

)
zn = 0,

which leads us to

g = µg〈2〉 + α1~ +

M∑

n=2

(
αn − µ

n−1∑

k=1

αkαn−k

)
~〈n〉.

By comparing coefficients on both sides, we see that g0 = 0,

gn = αn, n = 1, ...,M,

and

gn+1 = µ

n−1∑

k=0

gk+1gn−k = µg
〈2〉
n+1, n ≥M.

We remark that F (z,G(z)) = 0 in the above Example can be verified directly

as follows:

G2 (z) =

∞∑

n=2

(
n−1∑

k=1

gkgn−k

)
zn

=
M∑

n=2

(
n−1∑

k=1

αkαn−k

)
zn +

∞∑

n=M+1

(
n−1∑

k=1

gkgn−k

)
zn

=

M∑

n=2

(
n−1∑

k=1

αkαn−k

)
zn +

1

µ

∞∑

n=M

gn+1z
n+1

=

M∑

n=2

(
n−1∑

k=1

αkαn−k

)
zn +

1

µ
G (z) − 1

µ

M∑

n=1

αnz
n.

We remark further that the case M = 1 has been discussed in depth at the

beginning of this section.

Example 4.15. Let µ 6= 0. The equation

G3(z) − 2αG2(z) −
(

1

µ
− α2

)
G(z) +

1

µ
(βz + α) = 0

has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To see this, let

F (z, w) = w3 − 2αw2 −
(

1

µ
− α2

)
w +

1

µ
(βz + α) .

Since F (z, w) is analytic for each (z, w) in a neighborhood of (0, α), F (0, α) = 0 and

F ′
w (0, α) = −1/µ 6= 0, the Analytic Implicit Function Theorem 4.1 asserts there
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exists a function G (z) which is a solution of F (z,G(z)) = 0 and is analytic at each

z in a neighborhood of the origin. To determine G(z) = ĝ(z), we write F (z, w) = 0

as

µw (w − α)
2 − w + βz + α = 0,

which leads us to

µg ∗ (g − α)
〈2〉 − g + β~ + α = 0.

By comparing coefficients on both sides, we see that g0 = α, g1 = β and

gn+2 = µ
n∑

k=0

n−k∑

j=0

gk+1gj+1gn−k−j = µ
(
g ∗ (g − α)〈2〉

)
n+2

, n ∈ N.

We remark that F (z,G(z)) = 0 in the above Example can be verified directly

as follows:

G2 (z) =

(
g0 +

∞∑

n=0

gn+1z
n+1

)( ∞∑

n=0

gnz
n

)
= g0

∞∑

n=0

gnz
n+

∞∑

n=0

(
n∑

k=0

gk+1gn−k

)
zn+1

and

G3 (z) =

(
g0 +

∞∑

n=0

gn+1z
n+1

)(
g0

∞∑

n=0

gnz
n +

∞∑

n=0

(
n∑

k=0

gk+1gn−k

)
zn+1

)

= g2
0

∞∑

n=0

gnz
n + 2g0

∞∑

n=0

(
n∑

k=0

gk+1gn−k

)
zn+1

+

∞∑

n=0




n∑

k=0

n−k∑

j=0

gk+1gj+1gn−k−j


 zn+2

= g2
0G (z) + 2g0

(
G2 (z) − g0G (z)

)
+

1

µ

∞∑

n=0

gn+2z
n+2

= g2
0G (z) + 2g0

(
G2 (z) − g0G (z)

)
+

1

µ
(G (z) − g0 − g1z)

= 2g2
0G

2 (z) +

(
1

µ
− g2

0

)
G (z) − 1

µ
(g1z + g0)

= 2αG2 (z) +

(
1

µ
− α2

)
G (z) − 1

µ
(βz + α) ,

thus

G3 (z) − 2αG2 (z) +

(
1

µ
− α2

)
G (z) − 1

µ
(βz + α) = 0

as desired.
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4.4 Linear Equations

We have considered some specific implicit relations and their analytic solutions.

Now we will consider more general functional equations of the form

F (z, φ(z), φ(f1(z)), ..., φ(fm(z))) = 0. (4.12)

In general, z belongs to a subset of F, while the functions F, f1, ..., fm are assumed

known. We will be interested in finding analytic solutions φ or to derive existence

theorems for these equations. When the function F in (4.12) is linear, we obtain

the following ‘nonhomogeneous’ linear functional equation

m∑

i=0

ai(z)φ (fi(z)) + h(z) = 0. (4.13)

A fair amount of investigations have been carried out for this equation. We select

a few simple ones to illustrate how power series solutions are found.

4.4.1 Equation I

A simple case of equation (4.13) is [112]

φ(z) =

m∑

i=1

aiφ(λiz) +G(z), z ∈ C. (4.14)

Theorem 4.3. Suppose |λ1| , |λ2| , ..., |λm| < 1 and a1λ
k
1 + a2λ

k
2 + · · · + amλ

k
m 6= 1

for all k ∈ N. Suppose further that

G(z) = ĝ(z) =

∞∑

k=0

gkz
k

is analytic over a neighborhood of the origin. Then equation (4.14) has a solution

which is analytic over B(0; ρ(g)) where ρ(g) is the radius of convergence of the

sequence g = {gn}n∈N
.

Proof. Assume that

φ(z) = b̂(z) =

∞∑

k=0

bkz
k

is an analytic solution of (4.14) on a neighborhood of 0. Then inserting φ into (4.14)

and employing the Unique Representation Theorem 3.8, we see that

b = g +

m∑

i=1

aiλi · b.

Hence

bk = a1bkλ
k
1 + a2bkλ

k
2 + · · · + ambkλ

k
m + gk, k ∈ N,
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or

bk =
gk

1 −
(
a1λk1 + a2λk2 + · · · + amλkm

) , k ∈ N.

This proves the uniqueness of the analytic solution φ(z). To see that φ(z) is indeed

an analytic solution, we only need to show that it converges in a neighborhood of

0. This is accomplished by finding a majorant function for φ(z). To this end, recall

from Cauchy’s Estimation (Theorem 3.26) that for each r ∈ (0, ρ(g)), there is some

Mr > 0 such that

|gk| ≤
Mr

rk
, k ∈ N.

Next, since |λ1| , ..., |λm| < 1, there is some positive integer T such that

|a1| |λ1|k + |a2| |λ2|k + · · · + |am| |λm|k < 1, k > T.

Let the sequence c(r) =
{
c
(r)
k

}
k∈N

be defined by

c
(r)
k =

Mr

rk
1

1 −
(
|a1| |λ1|k + |a2| |λ2|k + · · · + |am| |λm|k

) , k > T,

and

ck ≥ |bk| , k = 0, 1, ..., T.

Then b� c(r) since∣∣∣∣∣
gk

1 −
(
a1λk1 + a2λk2 + · · · + amλkm

)
∣∣∣∣∣

≤ Mr

rk
1

1 −
(
|a1| |λ1|k + |a2| |λ2|k + · · · + |am| |λm|k

)

for k > T. Since

lim
k→∞

c
(r)
k+1

c
(r)
k

=
1

r
,

we see from the ratio test that

r = ρ
(
c(r)
)
≤ ρ(b).

Since r is an arbitrary number satisfying 0 < r < ρ(g), we see further that ρ(g) ≤
ρ(b). Finally, since φ(z) is majorized by

∑∞
k=0 c

(r)zk, we see that φ(z) defined by

(5.2) is an analytic solution on B(0; ρ(g)). The proof is complete.

Example 4.16. As an example, consider the functional equation

φ(z) = 2φ
(z

2

)
+ 3φ

(z
3

)
+

sin z

z
,

where we take
sin z

z
=

∞∑

k=0

(−1)kz2k

(2k + 1)!
, z ∈ C.

By means of our Theorem 4.3, we see that it has the unique analytic solution

φ(z) =

∞∑

k=0

(−1)kz2k

(2k + 1)! (1 − 2−2k+1 − 3−2k+1)
, z ∈ C.
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4.4.2 Equation II

Next we consider another simple case of (4.13) [112]:

φ(z) = P (z)φ(αz) +Q(z), z ∈ C. (4.15)

Theorem 4.4. Suppose |α| < 1 and P (0)αk 6= 1 for k ∈ N. Suppose further that

P (z) = p̂(z) and Q(z) = q̂(z) are power series functions generated respectively by

p = {pk}k∈N
and q = {qk}k∈N

in lN with positive ρ(p) and ρ(q). Then (4.15) has

a solution which is analytic over B(0, ρ) where ρ = min {ρ(p), ρ(q)} .

Proof. Assume that

φ(z) = b̂(z) =
∞∑

k=0

bkz
k

is an analytic solution of (4.15) in a neighborhood of 0. Then inserting φ into (4.15)

and employing the Unique Representation Theorem 3.8, we see that

b = p ∗ (α · b) + q,

that is,

b0 = p0 + q0,

and

bk
(
1 − p0α

k
)

= p1α
k−1bk−1 + · · · + pkα

0b0 + qk, k ∈ Z+.

Since P (0)αk = p0α
k 6= 1 for k ∈ N, we can easily show by induction that {bk}k∈N

is uniquely defined. This proves the uniqueness of the analytic solution φ(z). To see

that b̂(z) is indeed an analytic solution, we only need to show that it converges in

a neighborhood of 0. This is accomplished by finding majorant functions for φ(z).

To do this, first observe that the convergence of the series p̂(z) and q̂(z) implies,

by Cauchy’s Estimation 3.26, that for each r ∈ (0, ρ) where ρ = min {ρ(p), ρ(q)} ,
there is some Mr > 0 such that

|pk| , |qk| ≤
Mr

rk
, k ∈ N.

Next, since |α| < 1, there is some positive integer T such that Mr |α|k < 1 for

k > T. Let the sequence c(r) =
{
c
(r)
k

}
k∈N

be defined by

c
(r)
k =

1

1 −Mr |α|k
{(

Mr

r
|α|k−1 c

(r)
k−1 + · · · + Mr

rk
|α|0 c(r)0

)
+
Mr

rk

}

for k > T, and

c
(r)
k ≥ |bk| , k = 0, 1, ..., T.
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Note that

|bT+1| ≤
1

1 − |p0| |α|T+1

{(
|p1| |α|T |bT | + · · · + |pT+1| |α|0 |b0|

)
+ |qT+1|

}

≤ 1

1 −Mr |α|T+1

{(
Mr

r
|α|T c(r)T + · · · + Mr

rT+1
|α|0 c(r)0

)
+

Mr

rT+1

}

= cT+1,

and by induction, it is easy to show that

|bk| ≤ c
(r)
k , k ≥ T + 2.

Thus b is majorized by c. Furthermore, since

r
(
1 −Mr |α|k+1

)
c
(r)
k+1 = Mr |α|k c(r)n +

{(
Mr

r
|α|k−1

+ · · · + Mr

rk
c
(r)
0

)
+
Mr

rk

}

= M |α|k c(r)k +
(
1 −Mr |α|k c(r)k

)
c
(r)
k

= c
(r)
k ,

we see that

lim
k→∞

c
(r)
k+1

c
(r)
k

= lim
k→∞

1

r
(
1 −Mr |α|k+1

) =
1

r
.

Thus r = ρ
(
c(r)
)
≤ ρ(b). Since r is an arbitrary number satisfying 0 < r < ρ, we

see further that ρ ≤ ρ(c). Finally, since φ(z) is majorized by ĉ(z), we see that φ(z)

is an analytic solution on B(0; ρ). The proof is complete.

Example 4.17. Consider the functional equation

φ(z) = (1 − αz)φ(αz)

subject to the condition φ(0) = 1, where |α| < 1. By means of Theorem 4.4, we see

that it has the analytic solution

φ(z) = 1 +

∞∑

k=1

αk(k+1)/2zk

(α − 1)(α2 − 1) · · · (αk − 1)
, z ∈ C.

4.4.3 Equation III

As our third simple case of (4.13), consider the equation [145]

φ(αz) = P (z)φ(z) +Q(z), z ∈ C. (4.16)

Theorem 4.5. Suppose 0 < |α| < 1. Suppose that P (z) = p̂(z) and Q(z) = q̂(z) are

power series functions generated respectively by p = {pk}k∈N
and q = {qk}k∈N

in

lN with positive ρ(p) and positive ρ(q). If P (z) 6= 0 for z ∈ B(0; ρ(p)) and αk 6= p0

for k ∈ N, then (4.16) has a solution which is analytic over a neighborhood of 0.
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Proof. Assume

φ(z) = ĉ(z) =

∞∑

k=0

ckz
k

is an analytic solution of (4.16) over some ball B(0; ρ). Then substituting φ into

(4.16) and invoking the Unique Representation Theorem 3.8, we see that

α · c = p ∗ c+ q,

or

(αn − p0)cn = p1cn−1 + · · · + pnc0 + qn, n ∈ N.

If αn 6= p0 for n ∈ N, then c can be uniquely determined by induction. This shows

that an analytic solution of (4.16) is unique. To show that ĉ(z) is analytic on some

ball B(0; ρ), we may try to calculate ρ(c) directly. This turns out to be difficult.

We therefore proceed in a different manner. First observe that if φ0(z) is a solution

of the equation

φ0(αz) = P (z)φ0(z) +Q(z) + P (z)φ̄(z) − φ̄(αz), (4.17)

where

φ̄(z) =

m−1∑

i=0

ciz
i, m ∈ Z+,

then φ0(z) + φ̄(z) is a solution of (4.16). Now pick m ∈ Z+ such that

|α|m < |p0| , (4.18)

and let

Q̃(z) = Q(z) + P (z)φ̄(z) − φ̄(αz). (4.19)

Then

φ0(z) = −
∞∑

n=0

Q̃(αnz)




n∏

j=0

P (αjz)




−1

is a formal solution of (4.17) since

P (z)φ0(z) + Q̃(z) = P (z)




− Q̃(z)

P (z)
−

∞∑

n=1

Q̃(αnz)




n∏

j=0

P (αjz)




−1




+ Q̃(z)

= −
∞∑

n=1

Q̃(αnz)




n∏

j=0

P (αjz)




−1

= −
∞∑

n=0

Q̃(αn+1z)




n∏

j=0

P (αj+1z)




−1

= φ0(αz).
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It suffices to show that φ0 just defined is analytic in some B(0; ρ). To see this,

note that Q̃(z) is analytic in B(0; r) where r = min {ρ(p), ρ(q)} . If we write Q̃(z) =

ĥ(z) where h = {hk}k∈N
∈ lN, then we may easily check that h0 = h1 = · · · =

hm−1 = 0 in view of (4.19). Thus there is B > 0 such that
∣∣∣Q̃(z)

∣∣∣ ≤ B |z|m for |z|
sufficiently small. Next, we note that P̃ (z) = 1/P (z) is analytic in some ball B(0; s)

and P̃ (0) = p−1
0 . Thus by continuity, there is A > 1 such that A |α|m |p0|−1

< 1

and
∣∣∣P̃ (z)

∣∣∣ ≤ A
∣∣p−1

0

∣∣ for |z| sufficiently small. We may now conclude that

∣∣∣Q̃(z)
∣∣∣ ≤ B |z|m ,

∣∣∣P̃ (z)
∣∣∣ ≤ A |p0|−1

, A |α|m |p0|−1
< 1, z ∈ B(0; τ)

where τ is some small positive number in (0, r).

Now let B(0; ξ) be any closed ball inside B(0; τ). Then there exists some positive

integer T such that αkz ∈ B̄(0; ξ) for k > T and z ∈ B̄(0; τ). Thus for z ∈ B(0; ξ),
∣∣∣∣∣∣
Q̃(αnz)

n∏

j=0

P̃ (αjz)

∣∣∣∣∣∣
≤ {B |αm|n |z|m}



 max
z∈B̄(0;ξ)

∣∣∣∣∣∣

T∏

j=0

P̃ (αjz)

∣∣∣∣∣∣




{
An−T |p0|−(n−T )

}

≤



 max
z∈B̄(0;ξ)

∣∣∣∣∣∣

T∏

j=0

P̃ (αjz)

∣∣∣∣∣∣





{
B |α|mT |z|m

(
A |p0|−1 |αm|

)n−T}
.

Since A |α|m |p0|−1 < 1, the series
∑∞

n=0

(
A |α|m |p0|−1

)n−T
converges. This shows,

in view of the Weierstrass Test (Theorem 2.7), that
∑∞
n=0 Q̃(αnz)

(∏n
j=0 P (αjz)

)−1

is analytic on B(0; ξ). The proof is complete.

We remark that if the condition that αk 6= p0 for k ∈ N in the above result is

replaced by the alternate condition

αk = p0, p1cn−1 + · · · + pnc0 + qn = 0, n ∈ N.

Then the sequence c can be chosen in an arbitrary manner. The uniqueness now

does not hold. However, the rest of the proof goes through so that we may now

conclude that (4.16) has a solution which is analytic on a neighborhood of 0.

4.4.4 Equation IV

We next consider linear equations of the form [145]

φ(z) = g(z)φ(f(z)) + h(z), (4.20)

where φ is the unknown function, and f, g and h are assumed to be given. In case

f(z) = αz, equation (4.20) reduces to (4.15).

Assume f : B(0; r) → B(0; r) and g, h : B(0; r) → C are analytic over B(0; r)

and f(0) = 0. Then for any analytic function φ : B(0; r) → C, we have

d

dz
[g(z)φ(f(z))] = g(z)φ′(f(z))f ′(z) + g′(z)φ(f(z)),
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and in general, by the Formula of Faa di Bruno (Theorem 2.16), we have

dk

dzk
[g(z)φ(f(z))] = g(z)(f ′(z))kφ(k)(f(z)) +

k−1∑

i=0

Pki(z)φ
(i)(f(z)) (4.21)

for k ∈ Z+, where each Pki is analytic in U. Therefore, if we look for an analytic

solution of (4.20), then ck = φ(k)(0) satisfies

ck = g(0)(f ′(0))kck +

k−1∑

i=0

Pki(0)ci + h(k)(0) (4.22)

for each k ∈ N.

Theorem 4.6. Suppose f : B(0;σ) → B(0;σ) and g, h : B(0;σ) → C are analytic

over B(0;σ) and f(0) = 0. Suppose further that |f ′(0)| < 1. Then given a sequence

{ck}k∈N
which satisfies (4.22) for each k ∈ N, there is B(0; δ) and a solution φ(z)

of (4.20) which is analytic over B(0; δ) and satisfies

φ(k)(0) = ck, k ∈ N.

Proof. The formal power series function

φ(z) =

∞∑

i=0

ci
zi

i!
,

in view of (4.22), is easily seen to be a formal solution of (4.20). We need to show

that it is analytic at 0. To see this, choose a positive integer r, a real number

θ ∈ (0, 1) and B(0; δ) strictly inside B(0; r), and

|f ′(z)|r |g(z)| < θ, z ∈ B(0; δ).

Let φ(z) = Q(z) + ψ(z), where

Q(z) =
r∑

i=0

ci
zi

i!
, (4.23)

and ψ : B(0; δ) → C is analytic over B(0; δ) and satisfies

ψ(k)(0) = 0, k = 0, ..., r.

Then

ψ(z) = g(z)ψ(f(z)) +H(z), (4.24)

where

H(z) = h(z) −Q(z) + g(z)Q(f(z)) (4.25)

is analytic in B(0;σ) and H(k)(0) = 0 for k = 0, ..., r.

Let Ξ be the set of all analytic functions ψ on B(0; δ) such that ψ(k)(0) = 0 for

k = 0, ..., r and ψ(r) is continuous on B(0; δ). When endowed with the usual linear

structure and the norm

‖ψ‖ = sup
z∈B(0;δ)

∣∣∣ψ(r)(z)
∣∣∣ ,
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it is easy to show that Ξ is a Banach space. Define a mapping T : Ψ → Ψ by

(Tψ)(z) = g(z)ψ(f(z)) +H(z), z ∈ B(0; δ).

Then for any ψ1, ψ2 ∈ Ξ, in view of (4.21), we have

dr

dzr
(g(z) (ψ1(f(z)) − ψ2(f(z)))) = g(z) (f ′(z))

r
(
ψ

(r)
1 (f(z)) − ψ

(r)
2 (f(z))

)

+

r−1∑

i=0

Pki(z)
(
ψ

(i)
1 (f(z)) − ψ

(i)
2 (f(z))

)
.

By Example 3.9,

sup
w∈B(0;δ)

∣∣∣ψ(i)
1 (w) − ψ

(i)
2 (w)

∣∣∣ ≤ δr−i ‖ψ1 − ψ2‖ , i = 0, 1, ..., r − 1.

Thus,

‖Tψ1 − Tψ2‖ ≤
{
θ +

r−1∑

i=0

δr−i sup
z∈B(0;δ)

|Pki(z)|
}
‖ψ1 − ψ2‖ .

If we choose δ so small that

θ +
r−1∑

i=0

δr−i sup
z∈B(0;δ)

|Pki(z)| < 1,

then T is a contraction mapping. Thus (4.24) has a unique solution ψ ∈ Ψ. This

in turn implies (4.20) has a unique analytic solution φ : U0 → C of the form

φ(z) =
∑∞

i=0 ciz
i/i! which satisfies φ(k)(0) = ck for k ∈ N. The proof is complete.

We also remark that the condition f(0) = 0 asserts that 0 is a fixed point of f.

4.4.5 Equation V

Next we consider equations of the form

φ(f(z)) = g(z)φ(z) + h(z), (4.26)

where φ is the unknown function, and f, g and h are assumed to be given function

analytic at 0. In case f(z) = αz, equation (4.26) reduces to (4.16).

First we consider the situation

f (0) = f ′ (0) = g (0) = 0. (4.27)

To avoid trivial cases, we assume that f and g are nontrivial. There exist integers

p, q, r such that

f (z) = zpF (z) ,

g (z) = zqG (z) ,

and

h (z) = zrH (z) ,
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where F (0) 6= 0, G (0) 6= 0 and H (0) 6= 0 unless h = 0. By (4.27) we have p ≥ 2,

q ≥ 1 and r ≥ 0 (we take r = ∞ if h = 0). We exclude from further considerations

the trivial solutions of equation (4.26) (occurring iff h = 0). Thus we seek analytic

solutions of (4.26) in the form

ϕ (z) = zsΦ (z) , Φ (0) 6= 0, s ∈ N.

By substituting ϕ into (4.26), we see that

zps (F (z))s Φ (f (z)) = zq+sG (z) Φ (z) + zrH (z) , (4.28)

and thus by comparing the orders of the zeros at z = 0 we arrive at the four

possibilities (i) ps = q + s = r, (ii) ps = q + s < r, (iii) ps > q + s = r, and (iv)

ps = r < q + s. (Note that the case h = 0 comes under (ii).)

We need to find nonnegative integers s satisfying one of the relations (i)-(iv).

This leads to the following conditions for p, q, r:

p− 1 divides q and pq = (p− 1) r (s = q/ (p− 1)) ; (4.29)

p− 1 divides q and pq < (p− 1) r (s = q/ (p− 1)) ; (4.30)

p (r − q) > r (s = r − q) ; (4.31)

p divides r and pq > (p− 1) r (s = r/p) . (4.32)

In each of the above cases, there is a unique s ∈ N (given in the parentheses)

satisfying the corresponding cases (i)-(iv). Conditions (4.29)-(4.32) exclude each

other, with the only exception that (4.30) is a special case of (4.31) (since pq <

(p− 1) r ⇔ p (r − q) > r). Of course, the s from (4.30) is smaller than that from

(4.31), when calculated for the same p, q, r. Moreover, each of conditions (4.29)-

(4.31) implies q < r.

The first thing to be determined now is the value c0 = Φ (0) of an analytic

solution Φ of (4.28) in each of the cases (4.29)-(4.32). Whenever it exists, all the

remaining ck = Φ(k) (0) for k ≥ 1, as we shall see, can be uniquely determined by

applying Theorem 4.6 to equation (4.28).

Let us examine cases (4.29)-(4.31). In case (4.29), equation (4.28) becomes

Φ (z) =
(F (z))

s

G (z)
Φ (f (z)) − H (z)

G (z)
, s =

q

p− 1
.

Since H (0) 6= 0, c0 exists if, and only if, (F (0))
s 6= G (0).

In case (4.30), we obtain from (4.28) that

Φ (z) =
(F (z))s

G (z)
Φ (f (z)) − zr−psH (z)

G (z)
, s =

q

p− 1
. (4.33)

Now, if (F (0))
s

= G (0), then c0 = τ may be taken as arbitrary. Then equation

(4.26) has a unique one-parameter family of analytic solution ϕτ (z) = zsΦτ (z),

where s = q/ (p− 1). For τ = 0 we obtain the solution ϕ0 which at the origin has
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a zero of an order higher than q/ (p− 1). If h 6= 0, this order must be r − q (Case

(4.31)), while if h = 0, then ϕ0 = 0.

In case (4.31), let us exclude (4.30). Now (4.28) may be written as

Φ (z) =
(F (z))

s

G (z)
zps−rΦ (f (z)) − H (z)

G (z)
, s = r − q.

Then c0 = Φ (0) = −H (0) /G (0) always exists.

The observations obtained so far can be summarized as follows.

Theorem 4.7. Let the functions f (z) = zpF (z) , g (z) = zqG (z) and h (z) =

zrH (z) be analytic at 0 and F (0) 6= 0, G (0) 6= 0 as well as H (0) 6= 0 except when

h = 0. Further assume that p ≥ 2, q ≥ 1 and r ≥ pq/ (p− 1). Then (i) when (4.29)

and (F (0))
q/(p−1) 6= G (0) hold, equation (4.26) has a unique analytic solution ϕ

defined over a neighborhood of 0; (ii) when (4.30) and (F (0))
q/(p−1)

= G (0) hold,

equation (4.26) has a unique one-parameter family of analytic solutions ϕt defined

over a neighborhood of 0; (iii) when (4.31) and q/ (p− 1) /∈ N hold, equation (4.26)

has a unique analytic solution ϕ defined over a neighborhood of 0; (iv) for other cases

covered by (4.29), (4.30) and (4.31), equation (4.26) does not have any solutions

which are analytic at 0.

Now we turn to the case (4.32). We need some extra work before we can apply

Theorem 4.6. Put s = r/p and let m be the smallest integer fulfilling

m ≥ q/ (p− 1) . (4.34)

Of course, m > s by (4.32). Suppose that equation (4.26) has an analytic solution

ϕ. Since the order of zero of ϕ at the origin must be s, we can write

ϕ (z) = P (z) + ϕ∗ (z) , (4.35)

where

P (z) = dsz
s + · · · + dm−1z

m−1, (4.36)

and ϕ∗ (z) = zSΦ∗ (z) , S ≥ m, Φ∗ (0) 6= 0. It follows from (4.26) that

ϕ∗ (f (z)) = g (z)ϕ∗ (z) + h∗ (z) , (4.37)

where

h∗ (z) = h (z) − P (f (z)) + g (z)P (z) . (4.38)

Write h∗ (z) = zRH∗ (z), where H∗ (0) 6= 0 unless h∗ = 0. By (4.34) we have

Sp ≥ q + S, whence R ≥ q + S ≥ q +m.

We conclude from the above remarks that equation (4.26) cannot have analytic

solutions unless there exists a polynomial (4.36) such that function (4.38) has at

the origin a zero of an order at least m + q. If such a polynomial does exist, it is

uniquely determined by (4.38). Indeed, we have by (4.38) and (4.36) that

h∗ (z) = h (z) −
m−1∑

i=s

diz
ip(F (z))i +

m−1∑

i=s

diz
i+qG(z). (4.39)
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The integer m being the smallest one to fulfil (4.34), we have ip < i+ q for i < m.

Thus the coefficient of zip on the right-hand side of (4.39) has the form di (F (0))
i
+

Ai, where Ai depends only on f, g, h and on dj for j < i. All the coefficients of

zk in (4.39) must vanish whenever k < m + q. If k = ip for i = s, ...,m − 1, then

di = Ai (F (0))
−i

and the ds, ..., dm−1 in (4.36) are uniquely determined (if they

exist). The existence of P depends on whether the coefficients of the remaining zk

in (4.39), i.e. of those where k, not an integral multiple of p and k < m+ q, vanish

for the di just determined.

Suppose the polynomial P exists, then equation (4.26) has analytic solutions if

and only if equation (4.37) has, and these solutions are linked by formula (4.35).

As we have R ≥ m+ q > q for h∗ given by (4.38). Theorem 4.6 applies to equation

(4.37), yielding the following result.

Theorem 4.8. Let the hypotheses of Theorem 4.7 be satisfied, except that now

r < pq/ (p− 1). Assume that there exists a polynomial (4.36) such that function

(4.38) has at the origin a zero of an order R ≥ q+m, where m is the smallest integer

fulfilling (4.34). Then (i) when q/ (p− 1) ∈ N, pq = R (p− 1) and (F (0))
q/(p−1) 6=

G (0) hold, equation (4.26) has a unique analytic solution ϕ over a neighborhood

of the origin; (ii) when q/ (p− 1) ∈ N, pq < R (p− 1) and (F (0))
q/(p−1)

= G (0)

hold, equation (4.26) has a unique one-parameter family of analytic solutions ϕt
over neighborhood of the origin; (iii) when q/ (p− 1) /∈ N, and pq < R (p− 1) hold,

equation (4.26) has a unique analytic solution ϕ on a neighborhood of the origin;

and (iv) when remaining cases hold, equation (4.26) does not have any analytic

solutions near the origin.

4.4.6 Schröder and Poincaré Equations

Schröder equation is

φ(f(z)) = sφ(z), (4.40)

where z ∈ F, s is a given number in F different from 0 or 1, and f is a given function

(which will be taken to be analytic at 0 and satisfies f(0) = 0). This equation can

be regarded as a special case of (4.20) (by taking g(z) = 1/s). Since formally,

φ(f(f(z))) = sφ(f(z)) = s2φ(z),

and

φ(f [n](z)) = snφ(z), n ∈ Z+,

where we recall that f [n] denotes the n-th iterate of f. It appeared for the first time

in Schröder [173] in connection with the problem of continuous iteration. After the

proof of a fundamental existence and uniqueness of analytic solutions by Koenigs

[96, 97], it has been studied by many authors.
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Note that if f(0) = 0 and if φ is a differentiable function that satisfies (4.40),

then the number φ′(0) = η satisfies

f ′(0)η = sη.

If η 6= 0, then f ′(0) = s is necessarily true; while if η = 0, f ′(0) and s can be

arbitrary. For this reason, we will consider the existence of analytic solutions of the

Schröder equation under two different assumptions on the given number s = f ′(0).

We first assume 0 < |s| < 1. We have the following theorem of Koenigs [96, 97].

Theorem 4.9. Suppose f is analytic at 0 and f(0) = 0, f ′(0) = s where 0 < |s| < 1.

Then (4.40) has an analytic solution φ defined over a neighborhood of the origin

and satisfies φ′(0) = η.

Indeed, if φ is an analytic solution of (4.40), then

φ(0) = φ(f(0)) = sφ(0)

so that φ(0) = 0. Next, by (4.40),

φ′(f(z))f ′(z) = sφ′(z),

so that

φ′(0)s = sφ′(0).

Thus φ′(0) can be any given number η. Furthermore, by (4.22), we see that ck =

φ(k)(0) satisfies

ck =
1

s
(f ′(0))kck +

k−1∑

i=0

Pki(0)ci = sk−1ck +

k−1∑

i=0

Pki(0)ci

for k ≥ 2. Hence

ck =
1

1 − sk−1

k−1∑

i=0

Pki(0)ci, k ≥ 2.

Thus by Theorem 4.6, (4.40) has a solution φ which is analytic on a neighborhood

of the origin.

We remark that the analytic solution φ just found satisfies the interesting prop-

erty

φ(z) = η lim
n→∞

f [n](z)

sn
, (4.41)

a proof of this fact can be found in Kuczma [104].

We remark further that the condition f(0) = 0 asserts that 0 is a fixed point of

f. When φ′(0) = η 6= 0, by the Analytic Inverse Function Theorem 4.2, we know

that the inverse function ψ(z) = φ−1(z) exists and is analytic on a neighborhood of

the origin. By substituting φ(z) = w and z = ψ(w) into the Schröder equation, we

see that

φ(f(ψ(w)))) = sw,
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or

f(ψ(w)) = ψ(sw),

which is called the Poincaré equation. For obvious reasons, we will write this equa-

tion as

ψ(sz) = f(ψ(z)).

Next we consider the case where |s| = 1. This case is more complicated. Under

the assumption on f in the previous Theorem, we may write

f(z) = sz +

∞∑

n=2

anz
n.

If |s| = 1 but s is not a root of unity, then (4.22) has a solution {ck}k∈N
. Note

that c1 is arbitrary as before, in other words, (4.40) has a one parameter family of

formal solutions of the form

φ(z) =

∞∑

n=1

cn
n!
zn. (4.42)

However, it is possible that for each c1, φ(z) is divergent for any z 6= 0. Thus it is of

great interest to find a set of points in the unit circle such that the corresponding

Schröder equation has analytic solutions.

Theorem 4.10. Suppose s is a Siegel number. Suppose further that

f(z) = sz +

∞∑

n=2

anz
n

is analytic at 0. Then (4.40) has an analytic solution defined over a neighborhood

of 0.

Proof. In view of the above remark, it suffices to derive an analytic solution of

the Poincaré equation

ψ(sz) = f(ψ(z)) (4.43)

in a neighborhood of the origin. To accomplish this, note that by applying Cauchy’s

Estimation (Theorem 3.26) to the power series function

∞∑

n=0

an+2z
n,

we see that there is ρ > 0 such that

|an+2| ≤ ρn+1, n ∈ N.

Introducing new functions Ψ(z) = ρψ
(
ρ−1z

)
and F (z) = ρf

(
ρ−1z

)
, we obtain

from (4.43) that

Ψ(sz) = F (Ψ(z)) ,
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which is again an equation of the form (4.43). Here F is of the form

F (z) = sz +

∞∑

n=2

Anz
n,

but |An| =
∣∣anρ1−n∣∣ ≤ 1 for n ≥ 2. Consequently, we may assume that

|an| ≤ 1, n ≥ 2.

Let us assume an analytic solution of (4.43) in the form

ψ(z) =

∞∑

n=0

bnz
n,

where b0 = 0 and b1 is an arbitrary nonzero number. By substituting ψ into (4.43),

we obtain

ψ(sz) − sψ(z) = f (ψ(z)) − sψ(z),

and
∞∑

n=2

(sn − s)bnz
n =

∞∑

n=2

an (ψ(z))n =
∞∑

n=2

n∑

i=2

aib
〈i〉
n zn.

By the Unique Representation Theorem 3.8, we see that

bn = (sn−1 − 1)−1
n∑

i=2

aib
〈i〉
n .

It now suffices to show that ψ(z) is analytic over a neighborhood of the origin. To

see this, consider

Q(z) =

∞∑

n=0

unz
n,

where u0 = 0, u1 = |b1| and

un =
1

|sn−1 − 1|

n∑

i=2

u〈i〉n , n ≥ 2.

We assert that

|bn| ≤ un, n ∈ Z+.

Indeed, |b1| ≤ u1. Assume by induction that |bk| ≤ uk for k = 2, 3, ..., n− 1, then

|bn| ≤
1

|sn−1 − 1|

n∑

i=2

u〈i〉n = un

as asserted. In other words, Q(z) is a majorant series of ψ(z).

Next, we show that Q has a positive radius of convergence. To see this, note

that by Example 4.8, the solution

Φ(z) =

∞∑

n=0

vnz
n
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of the implicit relation

Φ − |b1| z −
Φ2

1 − Φ
= 0

is analytic on a neighborhood of the origin and v = {vn}n∈N
is given by v0 = 0,

v1 = |b1| and

vn =
n∑

k=2

v〈k〉n , n ≥ 2.

By Cauchy’s Estimation (Theorem 3.26), there is a positive number A such that

|vn| ≤ An+1, n ∈ Z+.

Hence by Theorem 3.32, there is a positive number δ such that

un ≤ An+1
(
25δ+1

)n−1
n−2δ, n ≥ 2,

which shows that Q(z) has a positive radius of convergence. The proof is complete.

We remark that since the coefficient b1 of ψ(z) in the above proof can be taken

as any nonzero number, we have actually shown that (4.40) has a one-parameter

family of nontrivial analytic solutions defined over a neighborhood of 0.

4.5 Nonlinear Equations

We have considered some functional equations of the form

F (z, φ(z), φ(f1(z)), ..., φ(fm(z))) = 0,

where F is linear. We now consider some equations where F is nonlinear. Such

equations are difficult to handle. We will only give two examples.

Recall the Poincaré equation derived in the previous section. Although it is

obtained from the linear Schröder equation, it can be regarded as nonlinear. Here

let us illustrate the technique of finding analytic solutions further by considering

the nonhomogeneous Poincaré equation

f(ψ(z)) = ψ(αz) + F (z), (4.44)

where f and F are given functions, and α is a given number.

Theorem 4.11. Suppose

f(z) = αz +
∞∑

n=2

fnz
n,

where α ≥ (1+
√

5)/2, is analytic on B(0; δ). Suppose further that the power series

function

F (z) =

∞∑

n=2

Fnz
n (4.45)

is analytic on B(0; τ). Then for any η 6= 0, (4.44) has a solution ψ(z) which is

analytic on a neighborhood of the origin and satisfies ψ(0) = 0 and ψ′(0) = η.
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Proof. In view of Cauchy’s Estimation (Theorem 3.26), there is p > 0 such

that |fn| ≤ pn−1 for n ≥ 2. Introducing new functions φ and g defined by

φ(z) = pψ

(
z

p

)
, g(z) = pf

(
z

p

)
,

it is easily seen from (4.44) that

g(φ(z)) = φ(αz) + pF

(
z

p

)

which is again an equation of the form (4.44). Here g(z) = pf(z/p) is of the form

g(z) = αz +

∞∑

n=2

fn
pn−1

zn,

but

|gn| ≤
|fn|
pn−1

≤ 1, n = 2, 3, ... .

Consequently, we may assume that

|fn| ≤ 1, n = 2, 3, ... .

Next, by Cauchy’s Estimation (Theorem 3.26), there is M > 0 such that

|Fn| ≤
M

rn
, 0 < r < τ, n = 2, 3, ... .

Suppose (4.44) has an analytic solution

ψ(z) =

∞∑

n=0

bnz
n (4.46)

where b0 = 0. By substituting ψ into (4.44), we obtain

αb1 = b1α, (4.47)

and

(αn − α) bn =
n∑

i=2

fib
〈i〉
n − Fn, n ≥ 2. (4.48)

Since (4.47) is satisfied by taking b1 in an arbitrary manner, we will take b1 = η,

and then b2, b3, ... can then be determined by (4.48) in a unique manner. It suffices

now to show that the subsequent series (4.46) converges on a neighborhood of the

origin. To see this, note that α ≥ (1 +
√

5)/2 implies α2 − α− 1 ≥ 0 for n ≥ 2 and

hence

|bn| ≤ |αn − α| |bn| ≤
n∑

i=2

|b|〈i〉n + |Fn| ≤
n∑

i=2

|b|〈i〉n +
M

rn

for n ≥ 2. If we now define a sequence q = {qn}n∈N
by q0 = 0, q1 = |η| and

qn =

n∑

i=2

q〈i〉n +
M

rn
, n ≥ 2,
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then it is easily seen that

|bn| ≤ qn, n ≥ 1.

In other words, the series Q(z) = q̂(z) is a majorant series of ψ. But by Example

4.13, Q(z) is a solution of the implicit relation

F (z,Q) ≡ Q− ηz − Q2

1 −Q
− Mz2

r2 − rz
= 0

which is analytic on a neighborhood of the origin, thus ψ(z) is also analytic there.

The proof is complete.

Next, we consider the more difficult nonlinear equation

φ(z) = h(z, φ(f(z))), z ∈ C, (4.49)

where (i) f(z) is analytic on B(ξ;σ0), f(ξ) = ξ and 0 < |f ′(ξ)| < 1, and (ii) h(z, w)

is analytic over the dicylinder

Ω =
{
(z, w) ∈ C2| |z − ξ| < σ0, |w − η| < τ

}
(4.50)

with dicenter (ξ, η) and h(ξ, η) = η.

In view of the above assumptions, we may write

f(z) = ξ +

∞∑

n=1

bn(z − ξ)n, |z − ξ| < σ0, 0 < |b1| < 1. (4.51)

and

h(z, w) =

∞∑

n,m=0

anm(z − ξ)n(w − η)m, a00 = η, (z, w) ∈ Ω. (4.52)

We will seek an analytic solution of (4.49) of the form

φ(z) = η +

∞∑

n=1

cn(z − ξ)n. (4.53)

After substituting (4.51), (4.52) and (4.53) into (4.49) and comparing coefficients,

we see that

(1 − a01b1)c1 = a10,

and

(1 − bn1a01)cn = Fn(c1, ..., cn−1), n = 2, 3, ..., (4.54)

where Fn is a (n− 1)-variate polynomial, with coefficients depending on aij and bk.

If

bn1a01 6= 1, n ∈ Z+, (4.55)

then c1, c2, ... can be uniquely determined and hence a formal solution of (4.49) is

found. If

b1a01 = 1 and a10 = 0,
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then we may let c1 to be an arbitrary number, and then c2, c3, ..., can be determined.

Or if for some l ≥ 2,

bl1a01 = 1 and Fl(c1, ..., cl−1) = 0, (4.56)

then cl can be chosen in an arbitrary manner and the subsequent cl+1, cl+2, ... can

be determined.

Next, observe that since φ(z) is an analytic solution of (4.49) satisfying φ(ξ) = η,

in view of (4.49), we see that

φ′(z) = h′z(z, w) + h′w(z, w)φ′(f(z))f ′(z)

where w = φ(f(z)). Let us write w1 = φ′(f(z)) and

H1(z, w, w1) = h′z(z, w) + h′w(z, w)f ′(z)w1,

the applying another differentiation, we see that

φ′′(z) =
∂H1(z, w, w1)

∂z
+
∂H1(z, w, w1)

∂w
φ′(f(z))f ′(z) +

∂H1(z, w, w1)

∂w1
φ′′(f(z))f ′(z)

=
∂H1

∂z
+ f ′(z)

(
∂H1

∂w
w1 +

∂H1

∂w1
w2

)

where we have set w1 = φ′′(f(z)). In general, let f = f(z) and h = h(z, w) be Cr

functions and let

H1(z, w, w1) = h′z(z, w) + h′w(z, w)f ′(z)w1,

and

Hk+1(z, w, w1, ..., wk+1) =
∂Hk

∂z
+ f ′(z)

(
∂Hk

∂w
w1 + · · · + ∂Hk

∂wk
wk+1

)

for k ≥ 2. Then Hk(z, w, w1, ..., wk) is a Cr−k function and

Hk(z, w, w1, ..., wk) = Pk(z, w, w1) +Qk(z, w, wk) +Rk(z, w, w1, ..., wk−1), (4.57)

where

Pk(z, w, w1) =

k∑

i=0

C
(k)
i

∂kh(z, w)

∂zk−i∂wi
[f ′(z)]

i
wi1, (4.58)

Qk(z, w, wk) =
∂h(z, w)

∂w
[f ′(z)]

k
wk , (4.59)

and Rk(z, w, w1, ..., wk−1) is a (k+1)-variate polynomial with coefficients which are

Cr−k functions in z and w. Furthermore, if φ(z) is a Cr solution of (4.49), then

φ(k)(z) = Hk(z, φ(f(z)), φ′(f(z)), ..., φ(k)(f(z))), k = 1, 2, ..., r. (4.60)

Under the additional analyticity assumptions on h, f, it is easy to see that for every

positive integer k, Hk(z, w, w1, ..., wk) and Rk(z, w, w1, ..., wk−1) are analytic over

{(z, w, w1, ..., wk)| (z, w) ∈ Ω} .
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Now that φ(z) in (4.53) is a formal solution of (4.49), we infer from (4.60) that

η1 = c1, η2 = 2!c2, ..., ηk = k!ck, ... (4.61)

and

ηk = Hk(ξ, η, η1, ..., ηk).

Theorem 4.12. Suppose f(z) defined by (4.51) is analytic on B(ξ;σ0), and h(z, w)

defined by (4.52) is analytic on the dicylinder Ω defined by (4.50). Suppose further

that (4.55) or (4.56) is satisfied. Then the formal solution φ(z) given by (4.53) is

analytic on a disk B(ξ; δ), and φ(z) is unique in case (4.55) while φ(z) depends on

a parameter in case (4.56).

Proof. Since 0 < |b1| < 1, there is a positive integer r ≥ 1 such that
∣∣h′w(ξ, η) [f ′(ξ)]

r∣∣ < 1. (4.62)

We can also find numbers ν ∈ (0, 1), σ1 > 0 and d ∈ (0, τ) such that for |z − ξ| < σ1

and |w − η| ≤ d,
∣∣h′w(z, w) [f ′(z)]

r∣∣ < ν. (4.63)

Furthermore, for any positive numbers M1, ...,Mr, we can find L0, L1, ..., Lr−1 and

Lr = ν such that for any (z, w′, w′
1, ..., w

′
r), (z, w

′′, w′′
1 , ..., w

′′
r ) in B(ξ;σ1)×B(η; d)×

B(η1;M1) × · · · ×B(ηr;Mr) (where η1, ..., ηk are given in (4.61)),

|Hr(z, w
′, w′

1, ..., w
′
r) −Hr(z, w

′′, w′′
1 , ..., w

′′
r )| ≤ L0 |w′ − w′′| +

r∑

k=1

Lk |w′
k − w′′

k | .

(4.64)

Let

P (z) = η +
r∑

i=1

ci(z − ξ)i

and pick a positive number K such that for z ∈ B(ξ;σ1),

|Hr(z, η, η1, ..., ηr) −Hr(ξ, η, η1, ..., ηr)| ≤
1 − ν

2
K.

Also pick σ2 > 0 such that when |z − ξ| ≤ σ ≤ σ2,

|P (z) − η| < d− σrK

r!
. (4.65)

In view of 0 < |b1| < 1, there is some positive number σ3 such that for |z| ≤ σ3,

|f(z) − ξ| ≤ |z − ξ| .
Finally, pick λ ∈ (0, 1) and σ which satisfies

0 < σ ≤ min {1, σ0, σ1, σ2, σ3} ,
r∑

k=1

|ηk|
σk

k!
+K

σk

r!
< d,
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r−1∑

k=0

r−k∑

i=1

Lk |ηk+i|
σi

i!
+K

r∑

k=1

Lr−k
σk

k!
<

1 − ν

2
K

and
r−1∑

k=0

Lk
σr−k

(r − k)!
+ ν < λ < 1.

Let S be the set of functions of the form

φ(z) = P (z) +

∞∑

n=r+1

un(z − ξ)n (4.66)

which is analytic in B(ξ;σ), with φ(r)(z) continuous on B(ξ;σ), and
∣∣∣φ(r)(z) − ηr

∣∣∣ ≤ K, z ∈ B(ξ;σ).

The set S is nonempty since P belongs to it, and is a complete metric space when

equipped with the usual linear structure and metric

ρ (φ1, φ2) = sup
z∈B(ξ;σ)

∣∣∣φ(r)
1 (z) − φ

(r)
2 (z)

∣∣∣ .

Note that in view of Example 3.9,

sup
z∈B(ξ;σ)

∣∣∣φ(k)
1 (z) − φ

(k)
2 (z)

∣∣∣ ≤ σr−k

(r − k)!
ρ (φ1, φ2) . (4.67)

Define a mapping T on S by

(Tφ)(z) = h(z, φ(f(z))).

Since for z ∈ B(ξ;σ) and φ ∈ S,

|φ(z) − η| = |φ(z) − P (z)| + |P (z) − η|

≤ σr

r!
sup

z∈B(ξ;σ)

∣∣∣φ(r)(z) − ηr

∣∣∣+ sup
z∈B(ξ;σ)

|P (z) − η|

< d,

Tφ is analytic in B(ξ;σ). In view of the properties of Hr, φ(f(z)), ...., φ(r)(f(z)),

the function

(Tφ)(r)(z) = Hr(z, φ(f(z)), ..., φ(r)(f(z)))

is continuous on B(ξ;σ). Also, Tφ can be expressed in the form (4.66). Finally, we

will show that for z ∈ B(ξ;σ),
∣∣∣(Tφ)(r)(z) − ηr

∣∣∣ ≤ K.

To see this, note that in view of Example 3.9, the function

φ(z) − η −

r−1∑

j=1

cj(z − ξ)j




(k)

= φ(k)(z) −
r−1∑

j=k

ηj
(j − k)!

(z − ξ)j−k
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satisfies

φ(k)(z)−ηk =

r−k−1∑

i=1

ηi+k
i!

(z−ξ)i+ (z − ξ)r−k

(r − k − 1)!

∫ 1

0

(1−t)r−k−1φ(r) (ξ + t(z − ξ)) dt,

so that

∣∣∣φ(k)(z) − ηk

∣∣∣ ≤
r−k∑

i=1

|ηi+k |
σi

i!
+K

σr−k

(r − k)!
, k = 0, 1, ..., r − 1. (4.68)

Hence,
∣∣∣(Tφ)(r)(z) − ηr

∣∣∣ =
∣∣∣Hr(z, φ(f(z)), φ′(f(z)), ..., φ(r)(f(z))) −Hr(ξ, η, η1, ..., ηr)

∣∣∣

≤
∣∣∣Hr(z, φ(f(z)), φ′(f(z)), ..., φ(r)(f(z)) −Hr(z, η, η1, ..., ηr)

∣∣∣
+ |Hr(z, η, η1, ..., ηr) −Hr(ξ, η, η1, ..., ηr)|

≤ L0 |φ(f(z)) − η| +
r−1∑

k=1

Lk

∣∣∣φ(k)(f(z)) − ηk

∣∣∣

+ν
∣∣∣φ(r)(f(z)) − ηr

∣∣∣+ 1 − ν

2
K

≤
r−1∑

k=0

r−k∑

i=1

Lk |ηk+i|
σi

i!
+K

r∑

k=1

Lr−k
σk

k!
+ νK +

1 − ν

2
K

<
1 − ν

2
K +

1 − ν

2
K + νK

= K.

These show that Tφ ∈ S.

Now by means of (4.64), (4.67) and

r−1∑

k=0

Lk
σr−k

(r − k)!
+ ν < λ < 1,

we see that

ρ (Tφ1, Tφ2) = sup
z∈B(ξ,σ)

∣∣∣(Tφ1)
(r)(z) − (Tφ2)

(r)(z)
∣∣∣

≤ sup
z∈B(ξ,σ)

∣∣∣∣∣L0 |φ1(f(z)) − φ2(f(z))| +
n∑

k=1

Lk

∣∣∣φ(k)
1 (f(z)) − φ

(k)
2 (f(z))

∣∣∣
∣∣∣∣∣

≤ L0

{
sup

z∈B(ξ,σ)

|φ1(z) − φ2(z)| +
r∑

k=1

Lk sup
z∈B(ξ,σ)

∣∣∣φ(k)
1 (z) − φ

(k)
2 (z)

∣∣∣
}

≤
r−1∑

k=0

Lk
σr−k

(r − k)!
ρ(φ1, φ2) + Lrρ(φ1, φ2)

≤ λρ(φ1, φ2).
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By means of the Banach contraction theorem, (4.49) has a solution in S. The proof

is complete.

Example 4.18. Consider the equation

ψ(f(z)) = (ψ(z))p, (4.69)

where p is a positive integer greater than or equal to 2. Suppose f(z) = zpF (z)

where F is analytic in B(0; δ) and F (0) 6= 0. Then (4.69) has a solution ψ(z) which

is analytic on a neighborhood of the origin and satisfies ψ(0) = 0 and ψ′(0) 6= 0.

Indeed, pick c such that cp−1 = F (0) and consider

φ(z) = (F (z)φ(f(z)))
1/p

(4.70)

where u1/p denotes the branch of the root function in a neighborhood of u = cp for

which (cp)
1/p

= c. By Theorem 4.12, equation (4.70) has an analytic solution φ(z)

defined over a neighborhood of 0 and φ(0) = c.

4.6 Notes

The Analytic Implicit Function Theorem 4.1 is well known and is believed to be due

to Cauchy. The presentation here is based on Fichtenholz [63]. More information

can be found in Krantz and Parks [101]. It is interesting to note that the basic idea

of the proof is to make use of the Newton binomial series as a majorant!

The results in the section on polynomial and rational functional equations are

obtained in the processes of deriving analytic solutions of other functional equations

(see later discussions).

The linear functional equation (4.14) is studied by Li [112], in which Theorem

4.3 is obtained.

The linear functional equation (4.15) is also studied by Li [112], in which The-

orem 4.4 is also obtained.

Equation (4.16) and the corresponding Theorem 4.5 are in [145].

Equation (4.26) has been studied by Smajdor and Smajdor [210], Myrberg [145],

Li and Si [125] and Kuczma [105, 106]. In Kuczma [105], Theorem 4.7 is given.

A Chapter on Schröder equation (see Schröder [173]) can be found in Kuczma

[104], in which more references can be found. A new reference is Smajdor [209].

Theorem 4.10 is due to Siegel [203].

The same method of proof of Theorem 4.11 found in [125] can be used to deal

with a more general equation of the form

f (ψ(z)) =

m∑

i=1

ψ(αiz) + F (z).

Equation (4.69) is the Böttcher equation which is a special conjugacy equation.

Suppose f is analytic on the unit disk D, maps D into itself, and can be expanded

as f(z) = akz
k + ak+1z

k+1 + · · · , where ak 6= 0 and k ≥ 2. Cowen [43] gives a
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necessary and sufficient condition for the existence of single-valued analytic solutions

defined on all of D to the Böttcher’s equation. It is seen in [43] that the only

non-zero solutions occur when k = m. There is always a solution of the equation

ψ(f(z)) = (ψ(z))k that is analytic and univalent in a neighborhood of the origin

(see Valiron [216]).

Implicit function theorems for equations (4.20), (4.49) and more general equa-

tions such as

Φ(z) = H (z,Φ(f1(z)), ...,Φ(fm(z))) , z ∈ C,

where Φ is the unknown function, and f1, ..., fm as well as H are given complex

valued functions, can be handled by the Banach contraction theorem as can be seen

in Smajdor [205–208], Matkowski [135], Baron et al. [15].
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Chapter 5

Functional Equations with Differentiation

5.1 Introduction

A differential equation is an equation that involves an unknown function and its

derivatives. Differential equations play an extremely important and useful role in

applied mathematics since they are used to model natural evoluntionary processes

in which the unknown functions and their rate of changes are involved.

It may occur in some natural processes that the unknown function is involved

in an indirect manner. For instance, the following relation

f ′(t) = f(t− 1)

states that the derived function of the unknown function f is equal to the function

f translated one unit to the right. Such an equation or similar ones arise when

the rate of changes at time t of the unknown processes are influenced by the past

histories of the processes. We will grossly call such equations functional differential

equations. Nowadays, functional equations with differentiation can be much more

complicated than the functional differential equations and may involve operations

of iteration, composition, integration, etc., besides the usual algebraic operations.

Recall our very first example in this book which is concerned with finding a

solution y = y(t) to the equation

dy

dt
= ry,

and the condition y(0) = 1. If we assume that y is an analytic function on a

neighborhood of 0, then y(t) = â(t) for t in the open interval B(0; ρ(a)) for some

sequence a ∈ lN. By Theorem 3.7, y′(t) = â′(t) = D̂a(t) for t ∈ B(0; ρ(a)). Thus,

from D̂a(t) = ry(t) = r̂a(t) and Theorem 3.18, we have Da = ra, that is,

(k + 1)ak+1 = rak , k ∈ N.

Since y(0) = a0 = 1, we see that

a =

{
rk

k!

}

k∈N

.

123
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Finally, by the ratio test, we see that

lim
k→∞

∣∣∣∣
ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣
r

k + 1

∣∣∣∣ = 0.

Thus ρ(a) = ∞. This means y = â(x) is an analytic function on R, and since

Da = ra implies y′(t) = ry(t) for t ∈ R, it is the unique analytic solution of our

equation satisfying y(0) = 1.

Based on similar ideas, we may obtain many existence theorems for different

types of ordinary and partial differential equations. Some of these equations have

been discussed quite extensively and systematically in standard texts (see e.g. Hille

[78], Balser [13]), while others including the functional differential equations are

only reported in different research papers. We will present a variety of existence

results in this Chapter, but more attention will be paid to the less known and more

recent results in the literature for obvious reasons.

5.2 Linear Systems

Recall that a matrix function B(t) of one variable is analytic at t = t0 if all its

component functions are analytic at t0. The initial value problem

x′(t) = A(t)x(t), x(t0) = x0 (5.1)

is now studied under the condition that the m by m matrix function A(t) is analytic

at t = t0. Such a point is also called an ordinary point of the differential system

x′ = A(t)x.

Assume that x(t) and A(t) are respectively analytic functions of the form

x(t) =

∞∑

k=0

xk(t− t0)
k, (5.2)

and

A(t) =
∞∑

k=0

Ak(t− t0)
k (5.3)

in a neighborhood of the point t0, say B(t0; ρ), where we interpret the above no-

tations as an abbreviation for simultaneously writing component functions. Then

inserting these expressions and employing the Unique Representation Theorem 3.8,

we see that

(k + 1)xk+1 =

k∑

m=0

Ak−mxm, k ∈ N. (5.4)

Hence, given x0, we can recursively compute x1, x2, ... in a unique manner which

proves the uniqueness of the analytic solution x(t). To see that (5.2) is indeed

an analytic solution, we may assume without loss of generality that x0 is not 0 for

otherwise xn = 0 for all n. We only need to show that it converges in a neighborhood
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of t0. This is accomplished by finding majorant functions for the components of x(t).

To this end, first observe that the convergence of the series in (5.3) implies, in view

of Cauchy’s Estimation (Theorme 3.26), that for 0 < r < ρ, there is some Mr > 0

such that

‖Ak‖ ≤ Mr

rk
, k ∈ N,

where ‖·‖ stands for a natural norm for matrices. Let the sequence c = {ck}k∈N
be

defined by c0 = ‖x0‖ and

(k + 1)ck+1 = Mr

k∑

m=0

1

rk−m
cm, k ∈ N.

Then we may conclude by induction that ck 6 =0 and ‖xk‖ ≤ ck for k ∈ N, and

(k + 1)ck+1 =

(
Mr +

k

r

)
ck, k ∈ N.

By means of the ratio test, we see that {r′ · c} is absolutely summable for any

r′ ∈ (0, r). Since r is an arbitrary number satisfying 0 < r < ρ, we see further that

ρ(c) = ρ. Finally, since each component function of x(t) is majorized by ĉ(t), we see

that x(t) defined by (5.2) is an analytic solution on B(t0; ρ).

Theorem 5.1. Suppose the m by m matrix function A(t) is analytic at each point

t in an open set S of R. Then for every t0 ∈ S, there exists a unique vector function

x(t) analytic on the largest open ball B(t0; ρ) with center t0 contained in S such

that x′(t) = A(t)x(t) for t ∈ B(t0; ρ) and x(t0) = x0.

We remark that with the help of a monodromy theorem (see e.g. page 225 in

Balser [13]), we can extend the above local existence theorem into a global existence

theorem.

We remark further that the above theorem holds if the functions involved are

defined on subsets of the complex plane. The proof is almost the same with minor

modifications.

Example 5.1. Consider the differential system
(
y′(t)
z′(t)

)
=

(
0 1

1 1

)(
y(t)

z(t)

)
.

Since the coefficient matrix is analytic on R, by Theorem 5.1, it has an unique

solution (y(t), z(t))† which is analytic on R and satisfies y(0) = a0 and z(0) = b0.

Furthermore, if we let y(t) = â(t) and z(t) = b̂(t), then in view of (5.4), we see that

(k + 1)

(
ak+1

bk+1

)
=

(
0 1

1 1

)(
ak
bk

)
, k ∈ N.

Since y(0) = a0 and z(0) = b0, we see that
(
ak
bk

)
=

{
1

k!

(
0 1

1 1

)k (
a0

b0

)}

k∈N

.
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Hence,

(
y(t)

z(t)

)
=

∞∑

k=0

tk

k!

(
0 1

1 1

)k (
a0

b0

)
, t ∈ R.

We remark that when a scalar linear differential equation can be expressed as

a linear differential system, then the above theorem can be applied. For instance,

the following equation

y′′(t) − y(t) = 0, (5.5)

can be written as
(
y′(t)
z′(t)

)
=

(
0 1

1 0

)(
y(t)

z(t)

)
.

Thus an analytic solution of (5.5) exists. However, to find the explicit solution, it

is sometimes easier to proceed in a direct manner illustrated as follows.

We first assume that y(t) = â(t) is an analytic solution of (5.5) on B(0; ρ(a))

for some a ∈ lN and y(0) = a0 = α and y′(0) = a1 = 0. By Theorem 3.7, y′′(t) =

â′′(t) = D̂2a(t) for t ∈ B(0; ρ(a)). Thus, from y′′(t) = y(t) we have D2a = a, that

is,

(k + 1)(k + 2)ak+2 = ak, k ∈ N.

Since a0 = α and a1 = 0, we may calculate

a2k =
α

(2k)!
, a2k+1 = 0, k ∈ Z+.

This shows the uniqueness of the analytic solution

y(t) =
∞∑

k=0

α

(2k)!
t2k.

If α = 0, then y(x) = 0 is analytic on R. If α 6= 0, note that for t 6= 0,

lim
k→∞

∣∣∣∣
α

(2(k + 1))!
t2(k+1)

∣∣∣∣
∣∣∣∣
(2k)!

α

1

t2k

∣∣∣∣ = lim
k→∞

∣∣t2
∣∣

(2k + 2)(2k + 1)
= 0.

Thus y(x) is analytic on R.

Similarly, if we assume that z(t) = b̂(t) is an analytic solution in B(0; ρ(b)) for

some a ∈ lN and z(0) = b0 = 0 and z′(0) = b1 = β, then D2b = b is valid and

b2k = 0, b2k+1 =
β

(2k + 1)!
, k ∈ Z+.

As before, we may show that

z(t) =
∞∑

k=0

β

(2k + 1)!
t2k+1

is analytic on R.
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Therefore the radius of convergence of a + b is ∞, which follows from the fact

that the sum
∞∑

k=0

a2kt
2k +

∞∑

k=0

b2k+1t
2k+1

is convergent. Finally, the analytic function w(t) = â+ b(t) over R is the unique

analytic solution of (5.5) satisfying w(0) = α and w′(0) = β.

The same method can be used to find analytic solutions for linear ordinary

differential equations with nonconstant analytic coefficient functions. For instance,

consider the second-order equation

y′′ + p (x) y′ + q (x) y = 0. (5.6)

An important fact about (5.6) is that the behavior of its solutions near a point

x0 is determined by the behavior of p (x) and q (x) near this point. If p (x) and

q (x) are analytic at x0, then x = x0 is called an ordinary point of the equation. A

solution is sought of the form

y(x) = â(x− x0), (5.7)

where a ∈ lN. For instance, if we consider equation (5.6) with p (x) = 3x/
(
x2 + 4

)

and q (x) = 1/
(
x2 + 4

)
, or in working form(

x2 + 4
)
y′′ + 3xy′ + y = 0, (5.8)

then 0 is an ordinary point and the substitution y(x) = â(x) leads to

an+2 = − (n+ 1)

4 (n+ 2)
an, n ∈ N.

Given a0 and a1, we may then find the terms in the series. To treat convergence, we

first find the radius of convergence of the sequence ρ(a) from the recurrence formula

involving two terms such as

an+p = f (n) an, n ∈ N. (5.9)

Example 5.2. Suppose the sequence a = {ak}k∈N
is generated by the recurrence

formula (5.9) where p ∈ Z+. Then

1

ρ(a)
=

[
lim
k→∞

|f (pk)|
]1/p

(5.10)

(with the convention that 1
+∞ = 0). The idea of proof has been explained. More

specifically, note that

lim
k→∞

[∣∣∣∣
apk+p+s
apk+s

∣∣∣∣ |x|
p

]
= lim

k→∞
[|f(pk + s)| |x|p] = |x|p lim

k→∞
|f(pk)| .

If limk→∞ |f(pk)| = fp <∞, then when |x| < 1/f
1/p
p , we have

∞∑

k=0

apk+sx
pk+s <∞, s = 0, 1, 2, ..., p− 1.

Thus x · a is summable, which shows that ρ(a) ≥ f
−1/p
p . If |x| > 1/f

1/p
p , then x · a

is not summable, thus ρ(a) ≤ f
−1/p
p . The case where limk→∞ |f(pk)| is either 0 or

∞ is similarly proved.
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Example 5.3. Consider equation (5.8). Application of (5.10) now gives

ρ(a) = lim
k→∞

∣∣∣∣
4 (2k + 2)

2k + 1

∣∣∣∣
1/2

= 2.

Note that the radius of convergence of the series solutions are equal to the distance

of the ordinary point (x = 0) to the nearest singularity ±2i of the rational function

1/(z2 + 4).

Example 5.4. Consider the Airy’s equation y′′ − xy = 0. Substitution of solution

y to Airy’s equation about the ordinary point x0 = 0 in the form of (5.7) gives

an+3 =
an

(n+ 2) (n+ 3)
, n ∈ N,

with a2 = 0, which is of the form (5.9). Application of relation (5.10) gives

ρ(a) = lim
k→∞

|(3k + 2) (3k + 3)|1/3 = ∞.

Example 5.5. Consider the Chebyshev’s equation

(
1 − x2

)
y′′ − xy′ +

1

4
y = 0.

The point x = 0 is also an ordinary point for Chebyshev’s equation so that the

substitution (5.7) with x0 = 0 leads to

an+2 =
n2 − 1/4

(n+ 2) (n+ 1)
an, n ∈ N. (5.11)

The application of (5.10) gives

ρ(a) = lim
k→∞

∣∣∣∣∣
(2k + 2) (2k + 1)

(2k)
2 − 1/4

∣∣∣∣∣

1/2

= 1.

5.3 Neutral Systems

Let J be an interval in [0,∞). Consider the system [35]

tx′ (t) + cx′ (t/α) = Ax (t) + F (t) , t ∈ J ⊆ [0,∞), (5.12)

under the condition

x (0) = x0 ∈ Rk (5.13)

where F : J → Rk is analytic and is of the form

F (t) =

∞∑

n=0

Fnt
n, Fn ∈ Rk, t ∈ J, (5.14)

A is a real k by k nonsingular matrix, c, α ∈ R and α > 1, c 6= 0.
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Let

x (t) =

∞∑

n=0

xnt
n, xn ∈ Rk (5.15)

be a formal power series solution of (5.12) and (5.13). Then

x′ (t) =

∞∑

n=0

nxnt
n−1, x′ (t/α) =

∞∑

n=0

nxnα
1−ntn−1. (5.16)

Substituting x(t) into (5.12), we obtain

(n− 1)xn−1 + cnα1−nxn = Axn−1 + Fn−1, n ∈ Z+,

so that

xn =
1

nc
αn−1 {A− (n− 1)Exn−1 + Fn−1} , n ∈ Z+, (5.17)

where E is the identity matrix. Thus

x1 =
1

c
(Ax0 + F0) ,

x2 =
α

2c
[(A−E)x1 + F1] =

α

2c2
(A−E)Ax0 +

α

2c2
(A−E)F0 +

α

2c
F1,

x3 =
α2

3c
[(A− 2E)x2 + F2] =

α3

3!c2
(A− 2E)F1 +

α2

3c
F2

=
α3

3!c3




3∏

j=1

[A− (3 − j)E]


x0 +

2∑

l=0

l!α3−l(l−1)/2

3!c3−l




2−l∏

j=1

[A− (3 − j)E]


Fl,

and by induction,

xn =
αn(n−1)/2

n!cn




n∏

j=1

[A− (n− j)E]


x0

+
n−1∑

l=0

l!α(n−l)(n+l−1)/2

n!cn−1



n−1−l∏

j=1

[A− (n− j)E]


Fl. (5.18)

Theorem 5.2. Suppose det(A− nE) 6= 0 for n ∈ Z+. Then for any nonzero x0 in

Rk, the homogeneous system

tx′ (t) + cx′ (t/α) = Ax (t) , t ∈ J ⊆ [0,∞), (5.19)

does not have any nontrivial analytic solution that satisfies x (0) = x0.

Proof. Any formal solution x(z) of (5.19) that satisfies x(0) = x0 is of the form

xn =
αn(n−1)/2

n!cn




n∏

j=1

[A− (n− j)E]


x0. (5.20)
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In view of (5.17), we see that

xn = −
(
αn−1/c

)
(E − (A+E) /n)xn−1.

Since α > 1 and ‖A+E‖ is finite, there exists a m ∈ Z+ such that

r := α

(
1− 1

m
‖A+E‖

)
> 1.

Set t = cα−m. Then

α

(
1 − 1

m+ k
‖A+E‖

)
≥ r, k ∈ N,

and

x̄n = −αn−m−1 (E − (A+E) /n) x̄n−1, (5.21)

where x̄n = xnt
n. We have

‖xm+2‖ = |α|
∥∥∥∥xm+1 −

1

m+ 2
(A+E)xm+1

∥∥∥∥

≥ |α|
(
‖xm+1‖ −

1

m+ 2
‖A+E‖ ‖xm+1‖

)

≥ |α|
(

1 − 1

m+ 2
‖A+E‖

)
‖xm+1‖

≥ r ‖xm+1‖ .

By induction, we see that

‖xm+1+k‖ ≥ rk ‖xm+1‖ , k ∈ Z+

and hence limn→∞ ‖x̄n‖ = +∞. This shows that x(t) =
∑∞
n=0 xnt

n =
∑∞
n=0 x̄n

diverges for any t different from 0. The proof is complete.

Next, let A has real and simple eigenvalues λ1, λ2, ..., λk only. Let Ā be the

Jordan canonical form of the matrix A so that

Ā = TAT−1 (5.22)

for some nonsingular T ∈ Rk×k. Let

z (t) = Tx (t) (5.23)

and

z (0) = Tx (0) = Tx0 = z0.

Then (5.19) can be written as

tT−1z′ (t) + cT−1z′ (t/α) = AT−1z (t) , t ∈ J,

so that

tz′ (t) + cz′ (t/α) = Āz (t) , t ∈ J. (5.24)
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Let

z(t) = (z1(t), z2(t), ..., zk(t))
† =

∞∑

m=0

zmt
m,

where zm = (zm1, zm2, ..., zmk)
†, be a formal power series solution of (5.24). Then

zm = Txm, m ∈ Z+, (5.25)

and

zmi =
αm−1

mc
[λi − (m− 1)] zm−1,i =

αm(m−1)/2

m!cm

m∏

j=1

[λi − (m− j)] z0i (5.26)

for i = 1, 2, ..., k and m ∈ Z+.

Note that when one of the eigenvalues λ1, ..., λk, say, λξ , is a positive integer,

then

zmξ =
αm(m−1)/2

m!cm

m∏

j=1

[λξ − (m− j)] z0ξ = 0

for m = λξ + 1, λξ + 2, ... . This shows that

zξ (t) =

λξ∑

m=0

zmξt
m, t ∈ J,

which is a polynomial in t.

As a consequence, when the eigenvalues of the matrix A are simple positive

integers, then in view of (5.23), we see that the homogeneous system (5.23) has a

unique analytic solution that satisfies x(0) = x0. Each component of this solution

is a polynomial.

Next, we consider the nonhomogeneous equation (5.12) when F (t) is a polyno-

mial.

Theorem 5.3. Suppose

F (t) =

M∑

n=0

Fnt
n, t ∈ J.

Suppose further that det(A − nE) 6= 0 for n = M + 2,M + 3, ..., and that for any

x0 ∈ Rk,

FM 6= (ME −A)

[
αM(M−1)/2

M !cM




M∏

j=1

[A− (M − j)E]


x0 +

M−1∑

l=0

l!α(M−l)(M+l−1)/2

M !cM−l



M−1−l∏

j=1

[A− (M − j)E]


Fl

]
.

Then there does exist any analytic solution x(z) of (5.12) on J that also satisfies

x(0) = x0.
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Proof. In view of (5.17), we see that a formal power series solution x(t) =∑∞
n=0 xnt

n of (5.12) satisfies

xn =
1

nc
αn−1 {[A− (n− 1)E]xn−1 + Fn−1} , n = 1, ...,M + 1,

and

xn =
1

nc
{[A− (n− 1)E]xn−1} , n = M + 2, ... .

Thus, for any x0 ∈ Rk, xn is uniquely determined up to n = M + 1, and

xM+1 =
1

Mc
αM [(A−ME)xM + FM ] .

Furthermore, in view of (5.18) and the condition on FM , we see further that FM 6=
(ME −A)xM and xM+1 6= 0. For n ≥M + 2, we can determine xn from

xn = −α
n−1

c

(
E − A+E

n

)
xn−1.

We may now proceed as in the proof of Theorem 5.2 to show that the corresponding

formal power series solution diverges for all nonzero t. The proof is complete.

Let us investigate the existence of analytic solutions for the nonhomogeneous

problem (5.12), based on the analysis of structures of the spectrum of the matrix

A. A substitution

z (t) = Tx (t) , (5.27)

where T ∈ Rk×k is a real nonsingular matrix, allows us to write

z (0) = Tx (0) = Tx0 = z0

and (5.12) in the form

tT−1z′ (t) + cT−1z′ (t/α) = AT−1z (t) + F (t) , t ∈ J,

or, equivalently,

tz′ (t) + cz′ (t/α) = Āz (t) +B (t) , t ∈ J, z (0) = z0, (5.28)

where Ā = TAT−1 and B (t) = TF (t) . Let

z (t) = (z1 (t) , z2 (t) , ..., zk (t))
†

=

∞∑

n=0

znt
n, zn ∈ Rk, t ∈ J, (5.29)

be a formal solution of (5.28), and let

B(t) = (B1(t), ..., Bk(t))
† =

∞∑

n=0

Bnt
n, Bn = (Bn1, ...Bnk)

†,

then

zi (t) =

∞∑

n=0

znit
n, zi ∈ R, i = 1, 2, ..., k (5.30)

and

zni =
αn−1

nc
{[λi − (n− 1)] zn−1,i +Bn−1,i} , n ∈ Z+; i = 1, 2, ..., k. (5.31)

Theorem 5.4. Suppose the eigenvalues of the matrix A are simple positive integers

λ1, ..., λk. If each component Bi(t) of B(t) is a polynomial of degree less than or equal

to λi − 1, then for each x0 ∈ Rk, equation (5.28) has a unique solution x(t) that

satisfies x(0) = x0 and is a polynomial of degree no greater than max {λ1, ..., λk} .
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Proof. It suffices to look at i = 1. Since

zn1 =
αn−1

nc

{
[λ1 − (n− 1)] zn−1

1 +Bn−1
i

}
, 1 ≤ n ≤ λ1,

and

zn1 =
αn−1

nc
[λ1 − (n− 1)] zn−1

1 , n = λ1 + 1, ...,

thus,

zn1 = 0, n ≥ λ1 + 1.

It follows that

z1 (t) =

λ1∑

n=0

zn1t
n, t ∈ J.

The proof is complete.

As a direct consequence, if the eigenvalues of A are simple positive integers,

and if each component Fi(t) of F (t) is a polynomial of degree not exceeding

min{λ1, ..., λk} − 1, then for each x0 ∈ Rk, equation (5.28) has a unique solu-

tion x(t) that satisfies x(0) = x0 and is a polynomial of degree no greater than

max {λ1, ..., λk} .
By (5.15) and (5.18), the solution of (5.12) can be written as

x (t) = X (t)x0 + Y (t) ,

where the ‘fundamental matrix’ X(t) and the vector Y (t) are determined as

X (t) =

max1≤i≤k λi∑

n=0

αn(n−1)/2

n!cn




n∏

j=1

[A− (n− j)E]


 tn,

and

Y (t) =

max1≤i≤k λi∑

n=0

n−1∑

=0

l!α(n−l)(n+l−1)/2

n!cn−l



n−1−l∏

j=1

[A− (n− j)E]


Flt

n.

5.4 Nonlinear Equations

We consider the simple nonlinear differential equation

dy

dx
= f(x, y). (5.32)

which includes the following nonhomogeneous equation

F ′ (t) = G (F (t)) +H (t) , (5.33)

where G and H are known functions.

Theorem 5.5. Suppose G(x) = ĝ(x) and H(t) = ĥ(t) are analytic over some

B(0; δ). Then equation (5.33) under the condition F (0) = 0 has an analytic solution

of the form F (t) = b̂(t) over some B(0; ε), where b0 = 0 and b1 = g0 + h0.
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Proof. Let F (t) = b̂(t), where b0 = 0, be a formal solution of (5.33). After

substituting it into (5.33), we see that

Db = g ◦ b+ h.

Hence, b1 = g0b
〈0〉
0 + h0 = g0 + h0 and

(n+ 1) bn+1 = (g ◦ b)n + hn =

n∑

k=0

gkb
〈k〉
n + hn (5.34)

for n ≥ 2. The sequence {bn}∞n=2 can be uniquely determined by (5.34), and thus

the formal solution F (t) is found. Next, we will show that F (t) is analytic on some

B(0; ε). To this end, note that by Cauchy’s Estimation (Theorem 3.26), there is

some p > 0 such that

|gn| ≤ pn, n ∈ Z+. (5.35)

Since (5.33) is invariant under the transformations F̄ (t) = pF
(
p−1t

)
and Ḡ (x) =

pG
(
p−1x

)
:

F̄ ′ (x) = Ḡ
(
F̄ (qt)

)
+H

(
p−1t

)
,

and

Ḡ (x) = G
(
p−1x

)
=

∞∑

n=0

ḡnx
n =

∞∑

n=0

gn
pn
xn,

where |ḡn| = |gn/pn| ≤ 1 for n ∈ Z+, we may thus assume without loss of generality

that |gn| ≤ 1 for n ≥ 1. Next, we consider the power series function γ(t) = û(t),

where u0 = 0,

u1 = |g0| + |h0| ,

and

un+1 =

n∑

k=0

u〈k〉n + |hn| , n ∈ Z+.

By induction, we may easily show that

|bn| ≤ un, n ∈ Z+,

thus F (t) is majorized by γ(t). Note that, by Example 4.11, the power series function

γ(t) is an analytic solution of the implicit relation

P (t, γ) ≡ γ − (|g0| + |h0|) t− t

(
γ

1 − γ
+ H̄ (t)

)
= 0

near the origin. Hence F (t) is also analytic in some B(0; ε). The proof is complete.

As a corollary, if G(x) is analytic on some disk B(0; δ), then the equation

F ′ (t) = G (F (t)) (5.36)
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under the condition F (0) = 0 has an analytic solution of the form

F (t) = g0t+

∞∑

n=2

gnt
n

on some B(0; ε).

Theorem 5.6. Suppose f = f(x, y) is analytic in a neighborhood of the point

(x0, y0). Then there is a unique analytic solution y = g(x) of (5.32) in a neigh-

borhood of x0 which satisfies y0 = g(x0).

Proof. Assume without loss of generality that x0 = y0 = 0 and

f(x, y) = â(x, y)

for |x| < α, |y| < β. Assume further that g(x) = b̂(x) for |x| < µ ≤ α. Then b0 = 0.

Furthermore, in view of the Substitution Theorems 3.11 and 3.25, the composite

function â(x, b̂(x)) is analytic on a neighborhood of 0, so that

â(x, b̂(x)) =
∞∑

m=0

∞∑

n=0

amnx
m
(
b̂(x)

)n
=

∞∑

m=0

∞∑

n=0

∞∑

k=0

amnb
〈n〉
k xm+k =

∞∑

i=0

cix
i

for x in a neighborhood of 0, where {ci} ∈ lN with ρ(c) > 0. The first few terms of

the sequence c can be easily determined. To this end, let us write

a(m) = {amn}n∈N
, n ∈ N.

Then

c0 =

∞∑

n=0

a0nb
〈n〉
0 = (a(0) ◦ b)0 = a00 + a01b0 + a02b

2
0 + · · · = a00,

and

c1 =

∞∑

n=0

a0nb
〈n〉
1 +

∞∑

n=0

a1nb
〈n〉
0

= (a(0) ◦ b)1 + (a(1) ◦ b)0
=
{
a00b

〈0〉
1 + a01b

〈1〉
1 + a02b

〈2〉
2 + · · ·

}
+
{
a10 + a11b0 + a12b

2
0 + · · ·

}

= a01b1 + a10,

and in general,

ct = (a(0) ◦ b)t + (a(1) ◦ b)t−1 + · · · + (a(t) ◦ b)0 =
t∑

p=0

(a(p) ◦ b)t−p.

In view of (5.32) and the Unique Representation Theorem 3.8, we see from

D̂b(x) = â(x, b̂(x))
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that

b1 = a00,

b2 =
1

2
(a10 + a01a00),

and by induction that

bt =

t∑

p=0

(a(p) ◦ b)t−p = Pt(a00, a10, a01, ..., a0,t−1), t ≥ 3,

where each Pn is a nontrivial polynomial with nonnegative coefficients. This proves

the uniqueness of the analytic function g(x). To see that g(x) is indeed an analytic

solution, we only need to show that it converges absolutely in a neighborhood of 0.

This is accomplished by finding a majorant function for g(x). For this purpose, let

τ ∈ (0, α) and ρ ∈ (0, β). Then by Example 3.15, there is some positive constant M

such that

f(x, y) � M

(1 − x/τ) (1 − y/ρ)
=

∞∑

m=0

∞∑

n=0

Amnx
myn,

where

Amn =
M

τmρn
, m, n ∈ N.

Note that any analytic solution h(x) = d̂(x) of the differential equation

dy

dx
=

M

(1 − x/τ) (1 − y/ρ)
(5.37)

satisfying the initial condition h(0) = 0 is a majorizing function of g(x):

d1 = A00 ≥ |a00| = b1,

d2 =
1

2
(A10 +A01A00) ≥

1

2
(|a10| + |a01| |a00|) ≥ b2,

and by induction,

dn = P (A00, A10, A01, ..., A0,n−1) ≥ bn, n ≥ 3.

Furthermore, this solution h(x) can be found by rewriting (5.37) as
(

1 − y

ρ

)
dy

dx
=

M(
1 − x

τ

) ,

then integrating and substituting (x, y) = (0, 0), we obtain

y = ρ

(
1 −

√
1 +

2Mτ

ρ
ln
(
1 − x

τ

))
.

Note that the function √
1 +

2Mτ

ρ
ln
(
1 − x

τ

)
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is a composite function of the form F (G(x)) where G(x) = ln(1−x/τ) and F (u) =

(1+2Mτu/ρ)1/2. Since G is analytic for |x| < τ and F is analytic for (2Mτ/ρ) |u| <
1, we see that F (G(x)), and hence, g(x) are analytic on a neighborhood of 0 by

Theorem 3.16. The proof is complete.

We remark that since it can easily be checked that F (G(x)) is analytic for

|x| < τ
(
1 − e−ρ/(2Mτ)

)
, the above theorem can be stated in a more precise manner,

namely, if f(x, y) is analytic for |x| < α and |y| < β, then the equation y′ =

f(x, y) has a solution y = g(x) which satisfies g(0) = 0 and is analytic for |x| <
τ
(
1 − e−ρ/(2Mτ)

)
, where τ ∈ (0, α), ρ ∈ (0, β) and |f(x, y)| ≤ M for |x| < τ and

|y| < ρ.

We remark further that if f(x, y) = â(x, y) where a is a nonnegative double

sequence, then the analytic solution found above is of the form b̂(x) and b is a

nonnegative sequence.

Example 5.6. Consider the equation

1

α

du

dt
=

M
(
1 − u+t

r

) (
1 − 1

ρ
du
dt

) −M (5.38)

in the unknown function u = u(t), where α ∈ (0, 1) and M, r, ρ are fixed positive

numbers. If we rewrite (5.38) as

1

αρ

(
du

dt

)2

−
(

1

α
− M

ρ

)
du

dt
+

M

1 − (u+ t)/r
−M = 0,

then

du

dt
=
αρ

2





(
1

α
− M

ρ

)
−

√(
1

α
− M

ρ

)2

− 4M

αρ

(
t+ u

r

)(
1 − t+ u

r

)−1




=
αρ

2

(
1

α
− M

ρ

)(
1 −

√
1 −W

)
, (5.39)

where

W =
4Mαρ

(ρ− αM)2

(
t+ u

r

)(
1 − t+ u

r

)−1

.

Since

1 −
√

1 −W =
1

2
W +

1

2 × 4
W 2 +

1 × 3

2 × 4 × 6
W 3 + · · ·

=
∞∑

k=1

1 × 3 × · · · × (2k − 1)

2 × 4 × · · · × (2k)
W k

for |W | < 1, we see that the function 1−
√

1 −W is analytic at 0 and generated by a

nonnegative sequence. Thus, for α sufficiently small, the composite function on the

right hand side of (5.39) is also analytic at (0, 0) and is generated by a nonnegative
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double sequence. In view of the preceding remark, we see that (5.39), and hence

(5.38), have a solution

u(t) =
∞∑

k=1

bkt
k

which satisfies the additional condition u(0) = 0 and bk ≥ 0 for k ∈ Z+ and is

analytic at 0.

There is a natural extension of Theorem 5.6: Suppose f1(t, x1, ..., xn), ...,

fn(t, x1, ..., xn) are analytic in a neighborhood of the point (t0, u0, ..., un). Then

there is a unique analytic solution (x1, ..., xn) = (x1(t), ..., xn(t)) of

x′1(t) = f1(t, x1(t), ..., xn(t)),

x′2(t) = f2(t, x1(t), ..., xn(t)),

... = ...

x′n(t) = fn(t, x1(t), ..., xn(t)),

in a neighborhood of t0 satisfying (x1(t0), ..., xn(t0)) = (u0, ..., un). The proof, in

spite of the more complicated technical detail, is similar to that of Theorem 5.6 and

hence is omitted. Instead, we consider a more specific example as follows.

Example 5.7. Consider the nonlinear differential equation

x′′′(t) = e−tx2(t), (5.40)

subject to the boundary conditions

x(0) = 1, x′(0) = 1, x(1) = e.

Our problem is to try to find an ‘approximate’ solution. Since (5.40) is equivalent

to a system of differential equations just described, we see that a unique analytic

solution x(t) = â(t) of (5.40) exists which satisfies x(0) = a0 = 1, x′(0) = a1 = 1

and x′′(0) = a2. Substituting this solution into (5.40), we see that

D3a = (−1 ·$) ∗ a〈2〉.

Hence

ak+3 =
1

(k + 3)(k + 2)(k + 1)

k∑

j=0

k−j∑

i=0

(−1)j

j!
aiak−j−i, k ∈ N,

which yields

a3 =
1

60
a2 −

1

80
,

a4 =
1

6300
a2 −

23

25200
,

a5 = a2
2 −

3149

1058400
a2 +

1301

2116800
,
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etc. These lead us to

x(t) = 1 + t+ a2t
2 +

(
1

60
a2 −

1

80

)
t3 +

(
1

6300
a2 −

23

25200

)
t4 + · · · .

If we now solve

e = x(1) ≈ 1 + 1 + a21
2 +

(
1

60
a2 −

1

80

)
13 +

(
1

6300
a2 −

23

25200

)
14,

we obtain

a2 ≈ 3150

3203
e− 25031

12812
≈ 0. 71959.

Then

x̃(t) = 1 + t+ a2t
2 +

(
1

60
a2 −

1

80

)
t3 +

(
1

6300
a2 −

23

25200

)
t4

is a candidate for an approximate solution of our problem. To check our assertion,

note that x(t) = et is the unique analytic solution of our problem (as can be checked

by direct verification). Now we may obtain the following supporting data:

x̃(0.5) = 1.6798 · · · ≈ 1.6487 · · · = e0.5,

x̃(0.1) = 1.09020509 · · · ≈ 1.1052 · · · = e0.1,

etc.

5.5 Cauchy-Kowalewski Existence Theorem

As an application of Theorem 5.6, let us consider the following partial differential

equation in the unknown function u = u(x, y),

∂u

∂x
= f

(
x, y, u,

∂u

∂y

)
, (5.41)

subject to the initial data

u(0, y) = 0. (5.42)

We will assume that f is an analytic function so that f(0, 0, 0, 0) = 0 and

f(x, y, u, v) =
∑

(i,j,k,l)∈N4

aijklx
iyjukvl, |x| , |y| , |u| ≤ r; |v| ≤ ρ.

The Cauchy-Kowalewski Theorem asserts the existence of a solution u = u(x, y)

which is analytic at (0, 0). To this end, we first compute the partial derivatives of

u(x, y). Note that u(0, 0) = 0 and

∂u

∂x
(0, 0) = f

(
0, 0, u(0, 0),

∂u

∂y
(0, 0)

)
= f(0, 0, 0, 0) = 0.



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

140 Analytic Solutions of Functional Equations

Furthermore, since

∂2u

∂y∂x
= f2 (x, y, u, uy) + f3(x, y, u, uy)zy + f4(x, y, u, uy)uyy

= f2 (x, y, u, uy) ,

we see that

uxy(0, 0) = f2(0, 0, 0, 0) = a0100.

Similarly,

∂2u

∂x2
= f1(x, y, u, uy) + f3(x, y, u, uy)ux + f4(x, y, u, uy)uyx,

so that

∂2u

∂x2
(0, 0) = a1000 + a0001a0100.

It should be clear by now that we can calculate all the partial derivatives of u(x, y)

at (0, 0), and

∂α+βu

∂xα∂yβ
(0, 0) = Pα+β

(
a0000, a1000, ..., a000(α+β−1)

)
.

where Pn is a nontrivial polynomial with a finite number of independent variables

and nonnegative coefficients. We have thus found a unique formal power series

solution u(x, y).

To see that the power series function

u(x, y) =
∑

(α,β)∈N2

1

α!β!

∂α+βu

∂xα∂yβ
(0, 0)xαyβ

is analytic at (0, 0), we first infer from the Cauchy’s Estimation (Theorem 3.26)

that there is some positive constant M such that

|aijkl| ≤
M

ri+j+kρl
, (i, j, k, l) ∈ N4.

Thus

|aijkl| ≤
(i+ j + k)!M

i!j!k!δiri+j+kρl
:= cijkl

for some δ ∈ (0, 1). As a consequence,

f(x, y, u, v) �
∑

(i,j,k,l)∈N4

(i+ j + k)!M

i!j!k!δiri+j+kρl
xiyjukvl −M

= M





∑

(i,j,k)∈N3

(i+ j + k)!

i!j!k!

( x
δr

)i (y
r

)j (u
r

)k∑

l∈N

(
v

ρ

)l


−M

= M





1(
1− x/δ+y+u

r

)(
1 − v

ρ

) − 1



 .
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We now consider the problem

∂U

∂x
= M





1(
1 − x/δ+y+U

r

)(
1 − 1

ρ
∂U
∂y

) − 1



 . (5.43)

In view of Example 5.6, for sufficiently small δ > 0, there is a nontrivial analytic

solution

W (t) =

∞∑

k=1

bkt
k

of (5.38):

1

α

dW

dt
=

M
(
1 − W+t

r

) (
1 − 1

ρ
dW
dt

) −M

which is analytic at 0 and bk ≥ 0 for k ∈ Z+. If we let

U(x, y) = W
(x
δ

+ y
)
,

then U(x, y) is a solution of (5.43) which is analytic at (0, 0) and satisfies

U(0, y) = W (y) =
∞∑

k=1

bky
k ≥ 0

for y in a neighborhood of 0. Furthermore, since

∂α+βU

∂xα∂yβ
(0, 0) = Pα+β

(
c0000, c1000, ..., c000(α+β−1)

)

≥ Pα+β

(
|a0000| , |a1000| , ...,

∣∣a000(α+β−1)

∣∣)

≥ ∂α+βu

∂xα∂yβ
(0, 0),

we see that U(x, y) majorizes u(x, y) in a neighborhood of (0, 0). This shows that

u(x, y) is analytic near (0, 0). The proof is complete.

5.6 Functional Equations with First Order Derivatives

In this section, we consider functional differential equations involving first order

derivatives of the unknown function. Sometimes it is relatively easy to find analytic

solutions. For example, we first consider a simple equation

x′(z) = x(az),

where a is a fixed complex number different from 0. We may easily show that it

has a solution of the form

x(z) =

∞∑

n=0

a(n(n−1)/2)

n!
ηzn
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which is analytic at each z ∈ C. Indeed, if we seek a power series solution of the

form

x(z) =
∞∑

n=0

bnz
n,

then substituting it into the above equation and comparing coefficients, we see that

Db = a · b,

or

(n+ 1)bn+1 = anbn, n ∈ N.

Let b0 be an arbitrary number η, then the sequence {bn} is uniquely determined by

bn =
a(n(n−1)/2)

n!
η, n ∈ N.

If η = 0, our original assertion clearly holds. If η 6= 0, then

lim
n→∞

bn+1

bn
= lim

n→∞
an

n+ 1
= 0,

so that x(z) is analytic at each z ∈ C.

5.6.1 Equation I

We consider the equation [118]

x′ (z) = G(x(qz)) +H (z) , q ∈ C. (5.44)

Theorem 5.7. Suppose G(z) = ĝ(z), where g0 = 0, and H(z) = ĥ(z) are analytic

on a neighborhood of the origin. If |q| < 1, then the equation (5.44) has a solution

x(z) which is analytic on a neighborhood of the origin.

Proof. By Cauchy’s Estimation (Theorem 3.26), there is p > 0 such that

|gm| ≤ pm, m ≥ 1. (5.45)

Let x(z) = b̂(z), where b0 = 0, be a formal power series solution of (5.44). Substi-

tuting it into (5.44), we see that

Db = q · (g ◦ b) + h.

Hence

b1 = h0

and

(n+ 1) bn+1 = qn
n∑

t=1

gtb
〈t〉
n + hn, n ∈ N. (5.46)
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Note that Example 4.11 asserts that the implicit relation

F (z, w) ≡ w − z

(
p |q|w

1 − p |q|w + h̄ (z)

)
= 0 (5.47)

where h̄ (z) =
∑∞
n=0 |hn| zn, has a solution w(z) which is analytic on a neighborhood

of the origin and

w(z) =

∞∑

n=0

unz
n,

where the sequence u = {un}n∈N
is defined by u0 = 0, u1 = |h0| and

un+1 =

n∑

t=1

pt |q|t u〈t〉n + |hn| , n ∈ N. (5.48)

We assert that b is majorized by u. Indeed, b0 = u0 = 0, |b1| = |h0| = u1. Assume

by induction that |bi| ≤ ui for i = 0, 1, ..., n where n ≥ 1. Then

|bn+1| =

∣∣∣∣∣
qn

n+ 1

n∑

t=1

gtb〈t〉n + hn

∣∣∣∣∣ ≤
n∑

t=1

|q|t ptu〈t〉n + |hn| = un+1

as required. Now that b � u, thus x(z) has a positive radius of convergence. The

proof is complete.

5.6.2 Equation II

We consider the equation

G (x)F ′ (x) = G (F (x)) , (5.49)

where G and H are known functions.

Theorem 5.8. Suppose G(x) = â(x), where a0 6= 0, is analytic on some B(0; δ).

Then the equation (5.49) under the condition F (0) = 0 has the unique analytic

solution F (x) = x on B(0; δ).

Proof. Let F (x) = ĉ(x), where c0 = 0, be a formal power series solution of

(5.49). Substituting it into (5.49), we see that

a ∗Dc = a ◦ c

or,

n∑

k=0

(k + 1)ck+1an−k =

n∑

k=0

akc
〈k〉
n , n ∈ N. (5.50)

Since a0c1 = a0, 2a0c2 + c1a1 = a1c1 and since a0 6= 0, we see that c1 = 1 and

c2 = 0. Assume by induction that ck = 0 for k = 2, ..., n, then in view of (5.50),

(n+ 1) a0cn+1 = anc
n
1 − anc1 = 0,
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so that cn+1 = 0. In other words, F (x) = x, which is analytic for |x| < δ. The proof

is complete.

Theorem 5.9. Suppose G(x) = â(x), where a0 = 0 and a1 6= 0, is analytic on some

B(0; δ). Then the equation (5.49) under the condition F (0) = 0 has an analytic

solution of the form

F (x) = ηx+
∞∑

n=2

cnx
n (5.51)

on some B(0; ε), where η is arbitrary.

Proof. Let F (x) = ĉ(x), where c0 = 0, be a formal power series solution of

(5.49). As in the proof of Theorem 5.8, we see that (5.50) holds. Since a0c1 = a0,

and a0 = 0, we may choose c1 to be any number η. Then c2, c3, ... can be determined

from (5.50):

na1cn =

n∑

k=0

akc
〈k〉
n −

n−1∑

k=1

kckan+1−k (5.52)

for n ≥ 2. Since a1 6= 0, c1 can be chosen in an arbitrary manner. Let c1 = η. Then

the sequence {cn}∞n=1 can be uniquely determined by (5.52). In other words, we

have determined the formal power series solution F (x). We will show that F (x) is

analytic in some B(0; ε). To this end, note that by Cauchy’s Estimation (Theorem

3.26), there is p > 0 such that |an| ≤ pn−1 for n ≥ 2. Since the equation (5.49) is

invariant under the transformations F (x) = f (px) /p and G (x) = g (px) /p :

g (x) f ′ (x) = g (f (x)) ,

and

g (x) =

∞∑

n=1

gnx
n = pG

(
x

p

)
=

∞∑

n=1

an
pn−1

xn,

where
∣∣an/pn−1

∣∣ ≤ 1 for n ≥ 1, we may assume without loss of generality that

|an| ≤ 1, n ∈ Z+. (5.53)

Next, let the power series function h (x) =
∑∞
n=0 hnx

n be defined by h0 = 0,

h1 = |η| and

hn =
1

|a1|

(
n∑

k=0

h〈k〉n +
n−1∑

k=1

hk

)
, n ≥ 1. (5.54)

Then |c1| = |η| ≤ h1. Assume by induction that |ck| ≤ hk for k = 2, 3, ..., n − 1.

Then in view of (5.52),

|cn| ≤
1

|a1|n

(
n∑

k=0

|ak| |c|〈k〉n +

n−1∑

k=1

k |ck| |an+1−k|
)

≤ 1

|a1|

(
n∑

k=0

1

n
|c|〈k〉n +

n−1∑

k=1

k

n
|ck|
)

≤ 1

|a1|

(
n∑

k=0

h〈k〉n +

n−1∑

k=1

hk

)

≤ hn.
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In other words, F (x) is majorized by h(x). Next, by Example 4.9, h = h(x) is an

analytic solution of the implicit relation

h− |η|x− 1

|a1|

(
h2

1 − h
+

x

1 − x
h

)
= 0

near the origin. Hence F (x) is also analytic near the origin. The proof is complete.

5.6.3 Equation III

We consider a simple equation

f (2z) = 2f ′(z)f(z). (5.55)

Assume f(z) = â(z) is a solution of (5.55) which is analytic on a neighborhood

of 0 and generated by the sequence a = {ak}k∈N
. Substituting it into (5.55) and

comparing coefficients, we obtain

a · 2 = 2(Da) ∗ a,

or

a0 = 2a1a0,

2a1 = 4a2a0 + 2a2
1,

and

2nan = 2(n+ 1)a0an+1 +

n∑

k=1

2kakan+1−k, n ≥ 2. (5.56)

In view of the first two equations, there are three cases: (i) a0 = 0, a1 = 0; (ii)

a0 = 0, a1 = 1; and (iii) a0 6= 0. In the first case, we may show by induction that

ak = 0, k ∈ N.

Thus the trivial analytic function is an analytic solution of (5.55). In the second

case, we substitute n = 2 and n = 3 into (5.56) to obtain

4a2 = 2a1a2 + 4a2a1 = 6a2,

and

8a3 = 2a1a3 + 4a2
2 + 6a3a1 = 8a3 + 4a2

2

respectively. Thus a2 = 0 and a3 is arbitrary, say, a3 = α/3!. Then by induction,

we may show that

a2n = 0, n ∈ N,

and

a2n+1 =
αn

(2n+ 1)!
, n ∈ N.
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Indeed, the fact that a2n = 0 for n ∈ N is easily seen by induction. Next, assume

by induction that a2k+1 = αk/(2k + 1)! for k = 1, 2, ..., n, then in view of (5.56),

{
22n+2 − (2n+ 3) − 1

}
a2n+3

=
3αn+1

3!(2n+ 1)!
+

5αn+1

5!(2n− 1)!
+ · · · + (2n+ 1)αn+1

(2n+ 1)!3!

=

{
(2n+ 3)!

2!(2n+ 1)!
+

(2n+ 3)!

4!(2n− 1)!
+ · · · + (2n+ 3)!

(2n)!3!

}
αn+1

(2n+ 3)!
,

that is,

{
22n+2 − C

(2n+3)
2n+2 − C

(2n+3)
0

}
a2n+3 =

{
C

(2n+3)
2 + C

(2n+3)
4 + · · · + C

(2n+3)
2n

} αn+1

(2n+ 3)!
.

Since

22n+2 = C
(2n+2)
0 + C

(2n+2)
2 + · · · + C

(2n+2)
2n + C

(2n+2)
2n+2 ,

we see further that

a2n+3 =
αn+1

(2n+ 3)!

as desired.

It is easily checked that the radius of convergence of the sequence a is ρ(a) = ∞.

Thus the power series function

â(z) = z +

∞∑

k=1

αk

(2k + 1)!
z2k+1, z ∈ C,

is an analytic solution of (5.55). Note that when α = 0, â(z) = 0 for z ∈ C; when

α > 0,

â(z) =
1

α1/2

∞∑

k=0

(
α1/2z

)2k+1

(2k + 1)!
=

1

α1/2
sinhα1/2z, z ∈ C,

and when α < 0,

â(z) =
1

(−α)1/2

∞∑

k=0

(−1)k
(
(−α)1/2z

)2k+1

(2k + 1)!
=

1

(−α)1/2
sin(−α)1/2z, z ∈ C.

In the third case, let a0 = β 6= 0, then a1 = 1/2. We may show that

an =
1

n!2nβn−1
, n ∈ Z+.
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Indeed, assume by induction that ak = 1/(k!2kβk−1) for k = 2, 3, ..., n. Then in

view of (5.56),

an+1 =
1

2(n+ 1)β

{
2nan −

n∑

k=1

2kakan+1−k

}

=
1

2(n+ 1)β

{
(2n − 1 − n)an −

n−1∑

k=2

2kakan+1−k

}

=

{
2n − 1 − n−

n−1∑

k=2

C
(n)
k−1

}
1

(n+ 1)!2n+1βn

=

{
2n −

n∑

k=0

C
(n)
k + 1

}
1

(n+ 1)!2n+1βn

=
1

(n+ 1)!2n+1βn
.

It is again easily checked that the radius of convergence of the sequence a = {ak}k∈N

is ρ(a) = ∞. Thus the power series function

â(z) = β

∞∑

k=0

1

k!

(
z

2β

)k
= β exp

{
z

2β

}
, z ∈ C,

is an analytic solution of (5.55).

Theorem 5.10. Analytic solutions of (5.55) on C exist and are uniquely deter-

mined by the values of their zeroth, first, second and/or third derivatives at the

origin. More specifically, (1) if f(0) = 0 and f ′(0) = 0, then the trivial func-

tion f(x) = 0 is the only analytic solution of (5.55), (2) if f(0) = 0, f ′(0) = 1 and

f ′′′(0) = 0, then the identity function f(z) = z is the only analytic solution of (5.55),

(3) if f(0) = 0, f ′(0) = 1 and f ′′′(0) = α > 0, then f(z) = α−1/2 sinhα1/2z is the

only analytic solution of (5.55), (4) if f(0) = 0, f ′(0) = 1 and f ′′′(0) = γ < 0, then

the function f(x) = (−γ)−1/2 sin(−γ)1/2z is the only analytic solution of (5.55), and

(5) if the additional condition f(0) = β 6= 0 is imposed, then f(z) = β exp {z/(2β)}
is the only analytic solution of (5.55).

5.6.4 Equation IV

Let us now consider functional differential equations of the form

y′ (z) =

p∑

i=1

aiy
′ (λiz) +

q∑

j=1

bjy (µjz) + cy (z) . (5.57)

Theorem 5.11. Suppose 0 < λ1, ..., λp, µ1, ..., µq < 1. Suppose a1, ..., ap, b1, ..., bq, c

are nonnegative numbers and a1 + · · ·+ap < 1. Then (5.57) has a solution y = y(z)

which is analytic on C and satisfies y(0) = 1.
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Proof. We first assume that

y (z) =

∞∑

n=0

dnz
n, (5.58)

where d0 = 1, is a formal power series solution of (5.57). Substituting it into (5.57),

we obtain (
1 −

p∑

i=1

ai

)
d1 =

q∑

j=1

bj + c,

and

(n+ 1) dn+1 = (n+ 1)

(
p∑

i=1

aiλ
n
i

)
dn+1 +




q∑

j=1

bju
n
j


 dn + cdn

for n ≥ 1. Thus

d1 =

∑q
j=1 bj + c

1 −∑p
i=1 ai

, (5.59)

and

dn+1 =

∑q
j=1 bju

n
j + c

(n+ 1) (1 −∑p
i=1 aiλ

n
i )
dn (5.60)

for n ≥ 1. Since a1 + · · · + ap < 1, we see that
p∑

i=1

aiλ
n
i < 1, n ∈ Z+.

Thus {dn}∞n=1 can be uniquely determined by (5.59) and (5.60), and dn ≥ 0 for

n ≥ 0. Furthermore, from our assumptions on λi and µj ,

lim
n→∞

dn+1

dn
= lim
n→∞

∑q
j=1 bju

n
j + c

(n+ 1) (1 −∑p
i=1 aiλ

n
i )

= 0.

This shows that the series (5.58) converges for all z ∈ C. The proof is complete.

5.6.5 Equation V

Consider the equation [184]

x′ (z) =

l∑

i=1

Ai (z)x (Fi (z)) +H (z) , (5.61)

a special case of which is

x′(z) = A(z)x(F (z)) +H(z). (5.62)

Theorem 5.12. Suppose A(z) = â(z), F (z) = f̂(z) and H(z) = ĥ(z) are analytic

over a neighborhood of the origin. Suppose further that F (0) = f0 = 0 and |F ′(0)| =

|s| ∈ (0, 1). Then (5.62) has a solution of the form x(z) = b̂(z), where b0 = 0 and

b1 = h0, which is analytic over a neighborhood of the origin.
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Proof. Let x(z) = b̂(z) be a formal power series solution of (5.62). Then

substituting it into (5.62), we see that

Db = a ∗ (b ◦ f) + h. (5.63)

Hence

(n+ 1)bn+1 =

n∑

k=0

an−k (b ◦ f)k + hk =

n∑

k=0

an−k




k∑

j=0

bjf
〈j〉
k


+ hk, k ∈ N.

If we let b0 = 0, then b1 = h0, and {bn}∞n=2 can be uniquely determined. To show

that the formal solution is also analytic, we consider

y(z) = zA(z)y
(
F (z)

)
+ zH(z), (5.64)

where

A(z) = |̂a|(z), F (z) = |̂f |(z), H(z) = |̂h|(z).

In view of Theorem 4.6, (5.64) has a solution y(z) = û(z), where u0 = 0, which is

analytic over a neighborhood of the origin. Furthermore, by substituting y(z) =

û(z) into (5.64), we see that

u = ~ ∗ |a| ∗ (u ◦ |f |) + ~ ∗ |h| .

Now it suffices to show that b is majorized by y. Indeed, b0 = 0 ≤ u0. Further-

more, from (5.63),

~ ∗Db = {0, b1, 2b2, 3b3, ...} = ~ ∗ a ∗ (b ◦ f) + ~ ∗ h.

Hence,

b1 = (~ ∗ a ∗ (b ◦ f) + ~ ∗ h)1 ≤ (~ ∗ |a| ∗ (u ◦ |f |) + ~ ∗ |h|)1 = u1,

and by induction, bn ≤ un for all n ≥ 2. The proof is complete.

By similar methods, we may also deduce analytic solutions for the more general

equation (5.61).

Theorem 5.13. Suppose A1(z), ..., Al(z), f1(z), ..., fl(z) and h(z) are analytic for

|x− ξ| < R, f1(ξ) = f2(ξ) = · · · = fl(ξ) = ξ and f ′
i(ξ) = si for i = 1, ..., l, where

0 < |si| < 1. Then (5.61) has a solution of the form

x (z) = η (z − ξ) +

∞∑

n=2

bn (z − ξ)
n
, η = h(ξ), (5.65)

which is analytic on a neighborhood of the point ξ.
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5.6.6 Equation VI

Consider the equation [178]

G (z)F ′(z) =

m∑

j=1

pjG (F (qjz)) , (5.66)

where p1, ..., pm, q1, ..., qm are complex numbers. Note that (5.66) is an extension of

(5.49).

Theorem 5.14. Suppose
∑m

j=1 |pj | ≤ 1 and |q1| , ..., |qm| ≤ 1. Suppose further

that G(z) = â(z), where a0 = 0 and a1 6= 0, is analytic on a neighborhood of the

origin. Then for any complex number η, equation (5.66) has a solution F (z) which

is analytic on a neighborhood of the origin and satisfies F (0) = 0 and F ′ (0) =

η +
∑m
j=1 pj .

Proof. In view of the Cauchy Estimation (Theorem 3.26), there exists a positive

β such that

|an| ≤ βn−1, n ≥ 2. (5.67)

Introducing new functions f(z) = βF (β−1z) and g(z) = βG(β−1z), we may trans-

form (5.66) into an equation of the form

g(z)f ′(z) =

m∑

j=1

pjg(f(qjz))

where g(z) is of the form

g(z) =

∞∑

n=1

gnz
n

with

gn =
an
βn−1

, n ≥ 2.

Since |gn| ≤ 1 for n ≥ 2, we may assume without loss of generality that the original

sequence {an}n∈N
satisfies |an| ≤ 1 for n ≥ 2.

Let

F (z) =

∞∑

n=0

bnz
n, (5.68)

where b0 = 0, be a solution of equation (5.66) which is analytic at 0. Inserting

G(z) = â(z) and (5.68) into (5.66) and comparing coefficients we obtain

a0


b1 −

m∑

j=1

pj


 = 0,
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and 
n−

m∑

j=1

pjq
n
j


a1bn =

m∑

j=1

pjq
n
j

n∑

t=2

atb
〈t〉
n −

n−2∑

k=0

(k + 1)an−kbk+1, (5.69)

for n ≥ 2. Since a0 = G (0) = 0, we may choose b1 −
∑m
j=1 pj = η. Since a1 =

G′ (0) 6= 0 and ∣∣∣∣∣∣

m∑

j=1

pjq
n
j

∣∣∣∣∣∣
≤

m∑

j=1

|pj | |qj |n ≤
m∑

j=1

|pj | ≤ 1,

we see that the sequence {bn}∞n=2 is successively determined by the relation (5.69) in

a unique manner. To complete our proof, it suffices now to show that the sequence

{bn}n∈N has a positive radius of convergence. To this end, first note that∣∣∣∣∣
k + 1

n−
∑m

j=1 pjq
n
j

∣∣∣∣∣ ≤ 1 (5.70)

for 0 ≤ k ≤ n− 2 and n ≥ 2. Furthermore, since

lim
n→∞

∑m
j=1 pjq

n
j

n−
∑m

j=1 pjq
n
j

= 0,

there exists a positive number M, such that∣∣∣∣∣

∑m
j=1 pjq

n
j

n−∑m
j=1 pjq

n
j

∣∣∣∣∣ ≤M, n ≥ 2. (5.71)

Next note that Example 4.9 asserts that the equation

W (z) −


|η| +

m∑

j=1

|pj |


 z − M

|a1|
[W (z)]

2

1 −W (z)
− 1

|a1|
z

1 − z
W (z) = 0

has a solution

W (z) =

∞∑

n=0

Bnz
n

which is analytic on a neighborhood of the origin and satisfies B0 = 0, B1 =

|η| +∑m
j=1 |pj | and

Bn =
M

|a1|

n∑

t=1

B〈t〉
n +

1

|a1|

n−2∑

k=0

Bk+1

for n ≥ 2. In view of (5.69) and the inequalities (5.70) and (5.71), it is clear that

|bn| ≤ Bn, n ∈ Z+. (5.72)

This implies that {bn}n∈N has a positive radius of convergence. The proof is com-

plete.

Theorem 5.15. Suppose
∑m

j=1 |pj | ≤ 1 and |q1| , ..., |qm| ≤ 1. Suppose further that

G (z) = â(z) is analytic on a neighborhood of zero and G (0) = a0 6= 0, Then

equation (5.66) has a solution F (z) which is analytic on a neighborhood of the

origin and satisfies F (0) = 0 and F ′ (0) =
∑m

j=1 pj .



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

152 Analytic Solutions of Functional Equations

Proof. As in the previous proof, we seek a power series solution of the form

(5.68). Since a0 = G (0) 6= 0, by defining b1 =
∑m
j=1 pj and then substituting G(z)

and (5.68) into (5.66), we see that the sequence {bn}∞n=2 is successively determined

by the condition

(n+ 1)a0bn+1 +


n−

m∑

j=1

pjq
n
j


 a1bn =

m∑

j=1

pjq
n
j

n∑

t=2

atb
〈t〉
n −

n−2∑

k=0

(k + 1) an−kbk+1,

(5.73)

for n ≥ 2, in a unique manner. Furthermore, it is easy to see from (5.70) and (5.71)

that

|bn+1| ≤
∣∣∣∣∣
n−∑m

j=1 pjq
n
j

n+ 1

∣∣∣∣∣

∣∣∣∣
a1

a0

∣∣∣∣ |bn|

+

∣∣∣
∑m

j=1 pjq
n
j

∣∣∣
(n+ 1) |a0|

n∑

t=2

|at| |b|〈t〉n +

∣∣∣∣
1

a0

∣∣∣∣
n−2∑

k=0

k + 1

n+ 1
|an−k| |bk+1|

≤
∣∣∣∣
a1

a0

∣∣∣∣ |bn| +
∣∣∣∣

1

a0

∣∣∣∣
n∑

t=2

|b|〈t〉n +

∣∣∣∣
1

a0

∣∣∣∣
n−2∑

k=0

|bk+1| . (5.74)

Note that Example 4.10 asserts that the equation

Φ (z) =




m∑

j=1

|pj |


 z + µz2 +

∣∣∣∣
a1

a0

∣∣∣∣ z


Φ (z) −




m∑

j=1

|pj |


 z




+

∣∣∣∣
1

a0

∣∣∣∣
z [Φ (z)]

2

1 − Φ (z)
+

∣∣∣∣
1

a0

∣∣∣∣
z2

1 − z
Φ (z) .

has a solution

Φ (z) =
∞∑

n=0

Bnz
n

which is analytic on a neighborhood of the origin and satisfies B0 = 0, B1 =∑m
j=1 |pj | , B2 =

∑m
j=1 |pj | |a1/a0| + µ and

Bn+1 =

∣∣∣∣
a1

a0

∣∣∣∣Bn +
1

|a0|

n∑

t=2

B〈t〉
n +

∣∣∣∣
1

a0

∣∣∣∣
n−2∑

k=0

Bk+1 (5.75)

for n ≥ 2. By choosing µ so that |b2| ≤ B2, it is then easily seen from (5.74) and

(5.75) that |bn| ≤ Bn for n ≥ 1. Thus the sequence {bn}n∈N
has a positive radius

of convergence. The proof is complete.

5.7 Functional Equations with Higher Order Derivatives

In this section, we consider several functional differential equations involving higher

order derivatives of the unknown functions.
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5.7.1 Equation I

Consider first the equation

x′′ (z) = G(x(qz)) +H (z) , q ∈ C. (5.76)

Theorem 5.16. Suppose G(z) = ĝ(z) and H(z) = ĥ(z) are analytic on a neigh-

borhood of the origin. If |q| < 1, then for any complex number η, equation (5.76)

has a solution x(z) which is analytic on a neighborhood of the origin and satisfies

x(0) = 0 and x′(0) = η.

Proof. By Cauchy’s Estimation (Theorem 3.26), there is p > 0 such that

|gn| ≤ pn, n ≥ 1.

Let

x (z) =

∞∑

n=0

bnz
n (5.77)

be a formal power series solution of (5.76) generated by the sequence b = {bn}n∈N

that satisfies b0 = 0. Then substituting it into (5.76), we obtain

D2b = g ◦
(
b · q

)
+ h,

so that

2b2 = g0 + h0,

and

(n+ 1) (n+ 2) bn+2 = qn
n∑

m=1

gmb
〈m〉
n + hn, n ∈ Z+. (5.78)

By imposing the condition b1 = η, where η is an arbitrary number, we see that

{bn}∞n=1 is then uniquely determined. Note that Example 4.12 asserts that the

equation

u− |η| z − 1

2
(|g0| + |h0|) z2 − z2

[
p |q|u

1 − p |q|u + H̃ (z)

]
= 0,

where H̃(z) =
∑∞
n=0 |hn| zn, has a solution u(z) which is analytic on a neighborhood

of the origin and

u (z) =
∞∑

n=0

unz
n

where the sequence u = {un}n∈N
is defined by u0 = 0, u1 = |η| , u2 = (|g0| + |h0|) /2

and

un+2 =

n∑

m=1

pm |q|m u〈m〉
n + |hn| , n ∈ N.



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

154 Analytic Solutions of Functional Equations

We assert that |bn| ≤ un for n ∈ N. Indeed, |b0| = 0 = u0, |b1| = |η| = u1,

|b2| = |g0 + h0| /2 ≤ (|g0| + |h0|)/2 = u2. Assume by induction that |bi| ≤ ui for

i = 0, 1, ..., n+ 1 where n ≥ 1. Then

|bn+2| ≤
∣∣∣∣

qn

(n+ 1)(n+ 2)

∣∣∣∣
n∑

m=1

|gm| |b|〈m〉
n + |hn|

≤
n∑

m=1

pm |q|m u〈m〉
n + |hn|

= un+2

as required. Now that we have proved that b is majorized by u, we see that

x(z) = ηz +

∞∑

n=2

bnz
n

is convergent for each z near 0. The proof is complete.

5.7.2 Equation II

Consider the equation [184]

znx(n)(z) =

l∑

i=1

βix(qiz) +G(x(qz)) +H(z), q, q1, ..., ql, β1, ..., βl ∈ C. (5.79)

Theorem 5.17. Suppose (i) G(z) = ĝ(z), where g0 = 0 and g1 = α, is analytic on

a neighborhood of the origin, (ii) H(z) = ĥ(z), where h0 = h1 = 0, is analytic for

|z| < R, and (iii) |q| ≤ 1,
∣∣∣
∑l
i=1 βiq

m
i + αqm

∣∣∣ ≥ 1 for m = 1, ..., n− 1, as well as

∣∣∣∣∣
m!

(m− n)!
−

l∑

i=1

βiq
m
i − αqm

∣∣∣∣∣ ≥ 1

for m ≥ n. Then the equation (5.79) has an analytic solution of the form

x (z) =

∞∑

m=1

bmz
m, bi = ηi, i = 1, ..., n− 1, (5.80)

in a neighborhood of the origin, where η1, ..., ηn−1 satisfy

l∑

i=1

βiq
m
i ηm + qm

m∑

t=1

∑

l1+···+lt=m;l1,l2,...,lt∈Z+

gtηl1 · · · ηlt + hm = 0 (5.81)

for m = 1, 2, ..., n− 1.

Proof. In view of the condition on G(z), by Cauchy’s Estimation (Theorem

3.26), there is p > 0 such that

|gm| ≤ pm−1, m = 2, 3, ... . (5.82)
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It is easily checked that (5.79) is invariant with respect to the transformations

y(z) = px(p−1z), ψ(z) = pG(p−1z),

and

ψ(z) = αz +
∞∑

m=2

gm
pm−1

zm

with ∣∣∣∣
gm
pm−1

∣∣∣∣ ≤ 1, m ≥ 2.

Consequently we may assume that

|gm| ≤ 1, m ≥ 2. (5.83)

Next, in view of (ii) and Cauchy’s Estimation (Theorem 3.26), for any r ∈ (0, R),

there is M > 0 such that ,

|hm| ≤ M

rm
. (5.84)

Assume that x(z) = b̂(z), where b0 = 0, is a formal power series solution of (5.79),

then substituting it into (5.79), we see that

~ ∗Dnb =

l∑

i=1

βib · qi + g ◦ (b · q) + h,

so that
(

l∑

i=1

βiq
m
i − αqm

)
bm + qm

m∑

t=1

gtb
〈t〉
m − hm, 1 ≤ m ≤ n− 1, (5.85)

and
(

m!

(m− n)!
−

l∑

i=1

βiq
m
i − αqm

)
bm = qm

m∑

t=1

gtb
〈t〉
m + hm, m ≥ n. (5.86)

Set bi = ηi for i = 1, ..., n − 1, where η1, ..., ηn−1 satisfy (5.81). Then (5.85) is

satisfied. Furthermore, in view of (5.86), {bm}∞m=0 can then be uniquely determined.

Now we need to show that x(z) is analytic in a neighborhood of the origin. To

this end, consider the implicit relation

y = |η1| z +
y2

1 − y
+

Mz2

r2 − rz
, (5.87)

which, in view of Example 4.13 has the analytic solution y = y(z) near 0. If we

write y(z) =
∑∞

m=1 umz
m, then substituting it into (5.87), we see that u1 = |η1|

and

um =

m∑

t=1

u〈t〉m +
M

rm
(5.88)
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for m ≥ 1. In view of (iii), (5.83), (5.85) and (5.86),

|bm| ≤
m∑

t=1

|b|〈t〉m + |hm| (5.89)

for m ≥ 1. We assert that

|bm| ≤ um, m ≥ 1. (5.90)

Indeed, |b1| ≤ u1. Assume by induction that |bk| ≤ uk for k = 1, ...,m− 1, then in

view of (5.89) and (5.84),

|bm| ≤
m∑

t=1

|b|〈t〉m + |hm| ≤
m∑

t=1

u〈t〉m +
M

rm
= um

as desired.

Finally, since x(z) is majorized by y(z), x(z) is also analytic for |z| < δ. The

proof is complete.

5.7.3 Equation III

Consider the equation [174]

f (k) (z) +

k∑

i=1

ϕi (z) f
(k−i) (z) +

n∑

j=1

αj (z) f ′(pjz) +

s∑

l=1

βl (z) f(qlz) = g (z) (5.91)

where k ≥ 1, |pj | ≤ 1 and |ql| ≤ 1 for j = 1, 2, ..., n and l = 1, 2, ..., s.

In case k = 1, we have the following existence result.

Theorem 5.18. Suppose k = 1. Suppose further that (i) ϕ1(z), α1(z), ..., αn(z),

β1(z), ..., βs(z) are analytic on B(0; ρ), and (ii) |p1| , ..., |pn| < 1 and |q1| , ..., |qs| ≤
1. Then (5.91) has a solution y = y(z) which is analytic on B(0; ρ).

Proof. We may assume that

ϕ1 (z) =

∞∑

m=0

ϕ1mz
m,

αj (z) =
∞∑

m=0

αjmz
m, j = 1, 2, ..., n, (5.92)

βl (z) =

∞∑

m=0

βlmz
m, l = 1, 2, ..., s, (5.93)

and

g (z) =

∞∑

m=0

gmz
m. (5.94)



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

Functional Equations with Differentiation 157

By Cauchy’s Estimation (Theorem 3.26), there is some M > 0 such that for any

r ∈ (0, ρ),

|ϕ1m| ≤ M

rm
, |αjm| ≤ M

rm
, |βlm| ≤ M

rm
, |gm| ≤

M

rm
, (5.95)

where m ≥ 0, 1 ≤ j ≤ n and 1 ≤ l ≤ s. Let

f (z) =

∞∑

m=0

fmz
m (5.96)

be a formal power series solution of (5.91), then

gm =


1 +

n∑

j=1

αj0p
m
j


 (m+ 1) f1+m +

m∑

u=0

ϕ1ufm−u

+

n∑

j=1

m∑

u=0

αju (m+ 1 − u) fm+1−up
m−u
j +

s∑

l=1

m∑

u=0

βluq
m−u
l fm−u (5.97)

for m ≥ 0. Since |pj | < 1, there exists T such that for m > T, we have

n∑

j=1

|αj0| |pj |m−1
< 1.

Let {Am} be defined by Am = Bm for 0 ≤ m ≤ T and

Am =
1

m
(
1 −∑n

j=1 |αj0| |pj |
m−1

) ×
(m−1∑

u=0

M

ru
Am−1−u

+

n∑

j=1

m−1∑

u=0

M

ru
(m− u)Am−u |pj |m−1−u

+

s∑

l=1

m−1∑

u=0

M

ru
|ql|m−1−u

Am−1−u +
M

rm−1

)
(5.98)

for m > T, where Bm > 0 satisfies |fm| ≤ Bm for 0 ≤ m ≤ T. In view of (5.98),

Am > 0 for m ≥ 0. Furthermore, in view of (5.95), (5.97) and (5.98), we may show

by induction that

|fm| ≤ Am. (5.99)
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Thus, when m > T,

(m+ 1)


1 −

n∑

j=1

|αj0| |pj |m

Am+1

=

m∑

u=0

M

ru
Am−u +

n∑

j=1

m∑

u=1

M

ru
(m+ 1 − u)Am+1−u |pj |m−u

+

s∑

l=1

m∑

u=0

M

ru
|ql|m−u

Am−u +
M

rm

= MAm +
M

r
mAm

n∑

j=1

|pj |m−1 +MAm

s∑

l=1

|ql|m

+
1

r

(m−1∑

u=1

M

ru
Am−1−u +

n∑

j=1

m−1∑

u=1

M

ru
(m− u)Am−u |pj |m−1−u

+

s∑

l=1

m−1∑

u=0

M

ru
|ql|m−1−u

Am−1−u +
M

rm−1

)

= MAm +
M

r
mAm

n∑

j=1

|pj |m−1 +MAm

s∑

l=1

|ql|m

+
1

r
m


1 −

n∑

j=1

|αj0| |pj |m−1


Am,

so that

Am+1

Am
=

M + M
r m

∑n
j=1 |pj |

m−1
+M

s∑
l=1

|ql|m + m
r

(
1 −

∑n
j=1 |αj0| |pj |

m−1
)

(m+ 1)
(
1 −

∑n
j=1 |αj0| |pj |

m
) .

By taking limits on both sides, we may easily see that

lim
m→∞

Am+1

Am
=

1

r
.

Since the radius of convergence of
∑∞

m=0Amz
m is r and since r is an arbitrary

number in (0, ρ), we see that
∑∞
m=0Amz

m is analytic on B(0; ρ). Finally, since

|fm| ≤ Am for m ≥ 0, we see that
∑∞
m=0 fmz

m is analytic on B(0; ρ). The proof is

complete.

In case k ≥ 2, we have the following result.

Theorem 5.19. Suppose k ≥ 2. Suppose further that (i) ϕ1(z), ..., ϕk(z),

α1(z), ..., αn(z) and β1(z), ..., βs(z) are analytic on B(0; ρ), and (ii) |p1| , ..., |pn| ,
|q1| , ..., |qs| ≤ 1. Then (5.91) has a solution which is analytic on B(0; ρ).
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Proof. We may assume (5.92), (5.93) and (5.94) as well as

ϕi (z) =

∞∑

m=0

ϕimz
m, i = 1, ..., k.

By Cauchy’s Estimation (Theorem 3.26), there is some M > 0 such that for any

r ∈ (0, ρ),

|ϕim| ≤ M

rm
, |αjm| ≤ M

rm
, |βlm| ≤ M

rm
, |gm| ≤ M

rm
, (5.100)

where m ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ n and 1 ≤ l ≤ s. Let

f (z) =
∞∑

m=0

fmz
m (5.101)

be a formal power series solution of (5.91), then

fk · k! +
k∑

i=1

ϕi0fk−i (k − i)! +
n∑

j=1

αj0f1 +
s∑

l=1

βl0f0 = g0, (5.102)

and

gm = fk+m
(k +m)!

m!
+

k∑

i=1

m∑

u=0

ϕiufk−i+m−u
(k − i+m− u)!

(m− u)!

+
k∑

i=1

m∑

u=0

αju (m+ 1 − u) fm+1−up
m−u+1
j +

s∑

l=1

m∑

u=0

βluq
m−u
l f (5.103)

for m ≥ 1. Let {Am} be defined by Am = Bm for 0 ≤ m ≤ k − 1 and

Am =
(m− k)!

m!
×
( k∑

i=1

m−k∑

u=0

M

ru
Am−i−u

(m− i− u)!

(m− k − u)!

+
n∑

j=1

m−k∑

u=0

M

ru
(m− k + 1 − u)Am−k+1−u |pj |m−k−u+1

+

s∑

l=1

m−k∑

u=0

M

ru
|ql|m−k−u

Am−k−u +
M

rm−k

)
(5.104)

for m ≥ k, where Bm > 0 satisfies |fm| ≤ Bm for 0 ≤ m ≤ k− 1. In view of (5.104),

we see that Am > 0 for m ≥ 0. Furthermore, in view of (5.100), (5.102), (5.103)

and (5.104), we see that |fk| ≤ Ak . Then by induction, we may show that

|fm| ≤ Am, m ∈ N.
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Thus, for m ≥ k, we have

Am+1 =
(m+ 1 − k)!

(m+ 1)!

( k∑

i=1

m+1−k∑

u=0

M

ru
Am+1−i−u

(m+ 1 − i− u)!

(m+ 1 − k − u)!

+

n∑

j=1

m+1−k∑

u=0

M

ru
(m+ 2 − k − u)Am+2−k−u |pj |m+1−k−u

+

s∑

l=1

m+1−k∑

u=0

M

ru
|ql|m+1−k−u

Am+1−k−u +
M

rm+1−k

)

=
(m+ 1 − k)!

(m+ 1)!

( k∑

i=1

MAm+1−i +
1

r

k∑

i=1

m−k∑

u=0

M

ru
Am−i−u

(m− i− u)!

(m− k − u)!

+

n∑

j=1

MAm+2−k (m+ 2 − k) |pj |m+1−k

+
1

r

n∑

j=1

m−k∑

u=0

M

ru
(m− k + 1 − u)Am−k+1−u |pj |m−k−u+1

+

s∑

l=1

MAm+1−k |ql|m+1−k
+

1

r

s∑

l=1

m−k∑

u=0

M

ru
|ql|m−k−u

Am−k−u +
M

rm+1−k

)

=
(m+ 1 − k)!

(m+ 1)!

( k∑

i=1

MAm+1−i +
n∑

j=1

MAm+2−k (m+ 2 − k) |pj |m+2−k

+

s∑

l=1

MAm+1−k |ql|m+1−k
+

1

r

m!

(m− k)!
Am

)
,

so that

Am+1

Am
=

M

(m+ 1)〈k〉
+

M

(m+ 1)〈k〉

k∑

i=2

Am+1−i
Am

+
M
∑n
j=1 |pj |

m+2−k

(m+ 1)〈k−1〉
· Am+2−k

Am

+
M
∑s

l=1 |ql|
m+1−k

(m+ 1)〈k〉
· Am+1−k

Am
+
m+ 1 − k

r (m+ 1)
. (5.105)

Let Cm = Am+1

Am
. Then (5.105) becomes

Cm =
M

(m+ 1)〈k〉
+

M

(m+ 1)〈k〉

k∑

i=2

1

Cm−1Cm−2 · · ·Cm+2−i

+
M
∑n

j=1 |pj |
m+2−k

(m+ 1)〈k−1〉
· 1

Cm−1Cm−2 · · ·Cm+2−k

+
M
∑s

l=1 |ql|
m+1−k

(m+ 1)〈k〉
· 1

Cm−1Cm−2 · · ·Cm+1−k
+
m+ 1 − k

r (m+ 1)
. (5.106)
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In view of (5.106), Cm ≥ m+1−k
r(m+1) , thus lim

m→∞
Cm ≥ 1

r > 0. As a consequence,

lim sup
m→∞

1

Cm−1Cm−2 · · ·Cm+1−i
=
{
lim inf
m→∞

Cm−1Cm−2 · · ·Cm+11−i
}−1

≤
{
lim inf
m→∞

Cm−1

}−1

· · ·
{
lim inf
m→∞

Cm+1−i
}−1

< +∞

for i = 1, 2, ..., k. For similar reasons,

lim sup
m→∞

1

Cm−1Cm−2 · · ·Cm+2−i
< +∞.

Thus from (5.106),

lim sup
m→∞

Cm

≤ lim sup
m→∞

M

(m+ 1)〈k〉
+ lim sup

m→∞

M

(m+ 1)〈k〉

k∑

i=2

lim sup
m→∞

1

Cm−1Cm−2 · · ·Cm+1−i

+ lim sup
m→∞

M
∑n

j=1 |pj |
m+2−k

(m+ 1)〈k−1〉
· lim sup
m→∞

1

Cm−1Cm−2 · · ·Cm+2−k

+ lim sup
m→∞

M
∑s

l=1 |ql|
m+1−k

(m+ 1)〈k〉
· lim sup
m→∞

1

Cm−1Cm−2 · · ·Cm+1−k

+ lim sup
m→∞

m+ 1 − k

r (m+ 1)

=
1

r
.

This implies

lim sup
m→∞

Am+1

Am
≤ 1

r
,

and hence

lim sup
m→∞

m
√
Am ≤ lim sup

m→∞

Am+1

Am
≤ 1

r
,

or

1

lim supm→∞
m
√
Am

≥ 1

r
.

Since r is an arbitrary number in (0, ρ), we now see that
∑∞
m=0Amz

m converges

for |z| < ρ. Since |fm| ≤ Am for m ≥ 0, we may now conclude that f(z) is analytic

on B(0; ρ). The proof is complete.

Theorem 5.20. Suppose k ≥ 1 and g(z) ≡ 0. Suppose further that (i) |p1| , ...,
|pn| , |q1| , ..., |qs| ≤ 1, (ii) z = 0 is a ‘regular singular point’ of (5.91), so that
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ziϕi(z), z
k−1αj(z), z

kβl(z), where 1 ≤ i ≤ k, 1 ≤ j ≤ n and 1 ≤ l ≤ s, are analytic

on B(0; ρ), and (iii) d is a root of the ‘indicial’ equation

ω(z) ≡ z〈k〉 +
k∑

i=1

ϕi0z〈k−i〉 +
n∑

j=i

αj0zp
z−1
j +

s∑

l=1

βl0q
z
l = 0

and ω(m+ d) 6= 0 for m ∈ N. Then (5.91) has a solution of the form

f (z) = zd
∞∑

m=0

fmz
m, f0 6= 0, (5.107)

which is analytic on B(0; ρ).

Proof. In view of the conditions imposed in (i), we may assume that

ziϕi (z) =

∞∑

m=0

ϕimz
m, i = 1, ..., k,

zk−1αj (z) =
∞∑

m=0

αjmz
m, j = 1, ..., n,

and

zkβl (z) =

∞∑

m=0

βlmz
m, l = 1, ..., s,

are analytic near 0. By Cauchy’s Estimation (Theorem 3.26), there is some M > 0

such that for any r ∈ (0, ρ),

|ϕim| ≤ M

rm
, |αjm| ≤ M

rm
, |βlm| ≤ M

rm
, (5.108)

where m ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ n and 1 ≤ l ≤ s. Substituting the formal solution

(5.107) into (5.91), we obtain

ω (d) f0 = 0 (5.109)

and

w (m+ d) fm = −
k∑

i=1

m∑

u=1

ϕiu (m− u+ d)〈k−i+2〉 fm−u

−
k∑

j=1

m∑

u=1

αiu (m− u+ d) pm−u+d−1
j fm−u −

s∑

l=1

m∑

u=1

βluq
m−u+d
l fm−u,

for m ≥ 1. Furthermore, in view of (iii), we may also see that {fm}∞m=0 can be

uniquely determined by the above recurrence relations. Let the sequence {Am}∞m=0

be determined by A0 = |f0| and Am is equal to

1

|w (m+ d)|

( k∑

i=1

m∑

u=1

M

ru
(m− u+ d)〈k−i+2〉 Am−u

+

k∑

j=1

m∑

u=1

M

ru
(m− u+ d) |pj |m−u+d−1

+

s∑

l=1

m∑

u=1

M

ru
|ql|m−u+d

Am−u

)
(5.110)
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for m ≥ 1. Then

|w (m+ 1 + d)|Am+1

=

k∑

i=1

m∑

u=1

M

ru
(m+ 1− u+ d)〈k−i+2〉 Am+1−u

+

k∑

j=1

m∑

u=1

M

ru
(m− u+ d) |pj |m−u+d

Am+1−u +

s∑

l=1

m∑

u=1

M

ru
|ql|m+1−u+d

Am+1−u

=
M

r

k∑

i=1

(m+ d)〈k−i〉 Am +
M

r

k∑

j=1

(m+ d) |pj |m+d−1Am

+
M

r

s∑

l=1

|ql|m+d
Am +

1

r
|w (m+ d)|Am.

Thus

Am+1

Am
=

1

r |w (m+ 1 + d)|

(
M

k∑

i=1

(m+ d)〈k−i〉

+M

k∑

j=1

(m+ d) |pj |m+d−1
+M

s∑

l=1

|ql|m+d
+ |w (m+ d)|

)
,

so that

lim
m→∞

Am+1

Am
=

1

r
.

In other words, the series
∑∞
m=0Amz

m converges for |z| < r. Since r is an arbitrary

number in (0, ρ), we see that
∑∞

m=0Amz
m converges for |z| < ρ. On the other

hand, from (5.108)-(5.110), we may prove by induction that |fm| ≤ Am for m ≥ 0.

As a consequence,
∑∞

m=0 fmz
m converges for |z| < ρ. This shows that the formal

solution (5.107) is analytic on B(0; ρ). The proof is complete.

We remark that the same techniques can be used to handle the following equation

f (k) (z) +

k∑

i=1

ϕif
(k−i) (z) +

M∑

n=1

k∑

j=0

ψnj (z) f (k−j)(pnjz) = g(z) (5.111)

under the initial condition

f (t) (0) = ξt, t = 0, 1, 2, .., k − 1. (5.112)

Theorem 5.21. Suppose |pnj | ≤ u < 1 for j = 0, ...,K and n = 1, 2, ..., T and

suppose φ1, ..., φk, ψ10,ψ11, ..., ψTK, as well as g are analytic functions of the form

φi (z) =

∞∑

m=0

φimz
m, i = 1, 2, ...,K,

ψnj (z) =
∞∑

m=0

ψnjmz
m, j = 0, ...,K;n = 1, 2, ..., T,

g (z) =

∞∑

m=0

gmz
m
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on B(0; γ), and

1 +

T∑

n=1

ψn0 (0) pmn0 6= 0, m ∈ N.

Then the initial value problem (5.111)-(5.112) has an unique analytic solution on

B(0; γ).

We now consider several examples.

Example 5.8. Consider

f ′ (z) = af (λz) + bf (z) + cf ′ (βz) + g (z) (5.113)

where g(z) is analytic for |z| < R, |β| < 1 and |λ| ≤ 1. First in view of Theorem

5.18, (5.113) has an analytic solution for |z| < R. Let

g (z) =

∞∑

m=0

gmz
m

and

f (z) =

∞∑

m=0

dmz
m.

Substituting these into (5.113), we see that

(m+ 1) (1 − cβm) dm+1 = (aλm + b) dm + gm, m = 0, 1, 2, ... . (5.114)

If 1 − cβm 6= 0 for m ≥ 0, then

dm+1 =

m∏
i=0

(
aλi + b

)

m∏
i=0

(i+ 1) (1 − cβi)
η +

m∑

k=0

m∏
i=0

(
aλi + b

)

m∏
i=0

(i+ 1) (1− cβi)
gk,

and

f (z) = η +

m∑

k=0




m∏
i=0

(
aλi + b

)

m∏
i=0

(i+ 1) (1 − cβi)
η +

m∑

k=0

m∏
i=0

(
aλi + b

)

m∏
i=0

(i+ 1) (1 − cβi)
gk


 z

m+1,

where f(0) = η. If 1 − cβm = 0 for some m ∈ N, since |β| < 1, there exists some

N such that |cβm| < 1 for m > N. Thus there are m1,m2, ...,mr ≤ N such that

1 − cβmj = 0 for j = 1, ..., r. It is then not difficult to see that

f (z) =

r∑

j=1

cjz
mj+1 +

r∑

j=1

c̃jz
mj +

N∑

m=0;m6=m1,...,mr

ηmz
m

+

∞∑

m=N




m∏
i=0

(
aλi + b

)

m∏
i=0

(i+ 1) (1 − cβi)
η +

m∑

k=0

m∏
i=0

(
aλi + b

)

m∏
i=0

(i+ 1) (1 − cβi)
gk


 z

m+1,
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where c1, ..., cr are arbitrary and c̃1, ..., c̃r satisfy

(aλmi + b) c̃i + gmi
= 0, i = 1, ..., r,

and ηm is determined by

(m+ 1) (1 − cβm) ηm+1 = (aλm + b) dm + gm.

Example 5.9. Consider the Bessel equation

z2y′′ (z) + zy′ (vz) +
(
z2 − v−

1
2

)
y (vz) = 0 (5.115)

where ν ∈ (0, 1]. We may rewrite (5.115) in the form

y′′ (z) +
1

z
y′ (vz) +

z2 − v−
1
2

z2
y (vz) = 0,

where α (z) = 1
z and β (z) = z2−v−

1
2

z2 have regular singular points at z = 0. Since

z = 1 is a root of the indicial equation

z (z − 1) + zvz−1 − vz−1 = 0,

in view of Theorem 5.20, (5.115) has an analytic solution of the form

y (z) = z

∞∑

m=0

amz
m, a0 6= 0. (5.116)

After substituting it into (5.115), we see that

am =
vm−1

m (m+ 1 + vm)
am−2, m ∈ Z+.

Thus a2k+1 = 0 for k ≥ 1 and

a2k =
(−1)

k
v2k−1a0

k∏
i=1

[2i (2i+ 1 + v2i)]

, k ∈ Z+.

This shows that

y (z) = a0 +

∞∑

k=1

(−1)
k
v2k−1a0

k∏
i=1

[2i (2i+ 1 + v2i)]

z2k,

where a0 is an arbitrary number different from 0.

Example 5.10. Consider the equation

f (k) (z) = af (k−1) (λz) + bf (k−1) (z) + cf (k) (βz) + g (z) , (5.117)

under the condition

f (m) (0) = ξt, m = 0, 1, .., k − 1, (5.118)
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where |β| < 1, |λ| ≤ 1 and 1− cβm 6= 0 for m ≥ 0. We will assume that

g (z) =

∞∑

m=0

gmz
m

is analytic for |z| < γ. By Theorem 5.21, our problem has a unique solution of the

form

f (z) =

∞∑

m=0

fmz
m

which is analytic for |z| < γ. To find this solution, we substitute f (z) into (5.117)

and find the difference equation

(m+ 1)!

m!
(1 − cβm) fm+k = (aλm + b)

(m+ k − 1)!

m!
fm+k−1 + gm, m ∈ N.

Since this equation is of the form

hm+1 = ρmhm + χm, m ∈ N,

we easily see that

fm+K =

m∏
i=0

(
aλi + b

)

m∏
i=0

(i+ k) (1 − cβi)

ξk−1

(k − 1)!
+

m∑

n=0

n!

(m+ k)!

m∏
i=n+1

(
aλi + b

)

m∏
i=K

(1 − cβi)
gn

for m ∈ N.

5.7.4 Equation IV

Consider the equation [174]

f (k) (z) +

k∑

i=1

ϕi (z) f
(k−i) (z) +

n∑

j=1

αj (z) f ′ (z − τj) +

s∑

l=1

βs (z) f (z − wl) = g(z)

(5.119)

where k ≥ 1 and |p1| , ... |pn| , |q1| , ..., |qs| ≤ 1.

Theorem 5.22. Suppose there is a positive number D such that for all negative b

that satisfies |b| > D, the functions ϕ1(z), ..., ϕk(z), α1(z), ..., αn(z), β1(z), ..., βs(z)

are analytic for |z − b| < |b| −D :

ϕi (z) =

∞∑

m=0

ϕim (z − b)
m
, i = 1, 2, ..., k, (5.120)

αj (z) =

∞∑

m=0

αjm (z − b)m , j = 0, ..., n, (5.121)

βl =

∞∑

m=0

βlm (z − b)
m
, l = 0, ..., s, (5.122)
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and

g (z) =
∞∑

m=0

gm (z − b)m . (5.123)

Then the following equation

ϕ(k) (z) =

k∑

i=1

ϕ̃iϕ
(k−i) (z)+




n∑

j=1

α̃j (z)


ϕ′ (z)+

(
s∑

l=1

β̃l (z)

)
ϕ (z)+g̃ (z) (5.124)

where

ϕ̃i (z) =

∞∑

m=0

|ϕim| (z − b)
m
, i = 1, 2, ..., k, (5.125)

α̃j (z) =

∞∑

m=0

|αjm| (z − b)
m
, j = 0, ..., n, (5.126)

β̃l =

∞∑

m=0

|βlm| (z − b)
m
, l = 0, ..., s, (5.127)

and

g̃ (z) =

∞∑

m=0

|gm| (z − b)
m
, (5.128)

has a solution ϕ(z) which is analytic for |z − b| < |b| −D and satisfies

0 ≤ ϕ(i) (b) < +∞, i = 0, 1, ..., k − 1. (5.129)

Proof. Let

ϕ (z) =

∞∑

m=0

bm (z − b)
m

(5.130)

be a formal power series solution of (5.124). After substituting it into (5.124), we

obtain

k!bk =

k∑

i=1

|ϕi0| bk−i (k − i)! +

n∑

j=1

|αj0| b1 +

s∑

l=1

|βl0| b0 + |g0| ,

and

bk+m
(k +m)!

m!
=

k∑

i=1

m∑

u=0

|ϕiu| bk−i+m−u
(k − i+m− u)!

(m− u)!

+

n∑

j=1

m∑

u=0

|αju| (m+ 1 − u) bm+1−u

+

s∑

l=1

m∑

u=0

|βlu| bm−u + |gm| , (5.131)
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for m ≥ 1. By Cauchy’s Estimation (Theorem 3.26), there is some M > 0 such that

for any r ∈ (0, |b| −D),

|ϕim| ≤ M

rm
, |αjm| ≤ M

rm
, |βlm| ≤ M

rm
, |gm| ≤ M

rm
, (5.132)

wherem ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ n, 1 ≤ l ≤ s. Let {Am}∞m=0 be defined by Am = Bm
for 0 ≤ m ≤ k − 1 and

Am =
(m− k)!

m!
×
( k∑

i=1

m−k∑

u=0

M

ru
Am−i−u

(m− i− u)!

(m− k − u)!

+

n∑

j=1

m−k∑

u=0

M

ru
(m+ 1 − k − u)Am+1−k−u

+
s∑

l=1

m−k∑

u=0

M

ru
Am−k−u +

M

rm−k

)
, (5.133)

for m ≥ k, where Bm ≥ 0 satisfies bm ≤ Bm for 0 ≤ m ≤ k − 1 (since 0 ≤ ϕ(i)(b) <

+∞ for i = 0, 1, ..., k − 1). In view of (5.131)-(5.133), we may show by induction

that

0 ≤ bm ≤ Am, m ≥ 0. (5.134)

As in the proof of Theorem 5.21, we may show that
∑∞

m=0Am(z − b)m converges

for |z − b| < |b| − D. This then implies ϕ(z) converges for |z − b| < |b| − D. The

proof is complete.

We now turn to equation (5.119). In order to find an analytic solution, we need

to consider “approximating equations”. Let

b < 0, pj = 1 + zjb
−1, ql = 1 + wlb

−1, j = 1, ..., n; l = 1, ..., s.

Construct equation

f (k) (z)+

k∑

i=1

ϕi (z) f
(k−i) (z)+

n∑

j=1

αj (z) f ′(pjz−τj)+

s∑

l=1

βs (z) f(qlz−wl) = g(z).

(5.135)

When b → −∞, we have pj → 1 and ql → 1 for j = 1, ..., n and l = 1, ..., s. Thus

(5.135) ‘tends’ to (5.119) in a formal manner.

Theorem 5.23. Suppose k ≥ 2. Suppose further that there is a positive num-

ber D such that for all negative b that satisfies |b| > D, the functions ϕ1(z), ...,

ϕk(z), α1(z), ..., αn(z), β1(z), ..., βs(z) are analytic for |z − b| < |b| −D. If the an-

alytic solution found in Theorem 5.21 is bounded, i.e., for b < 0 with sufficiently

large |b| , there is K > 0 such that
∣∣∣∣∣

∞∑

m=0

bm (z − b)
m

∣∣∣∣∣ ≤ K, |z − b| < |b| −D (5.136)
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then there is Q < 0 such that |Q| > D and (5.119) has a solution f(z) which is

analytic for R(z) < Q and

f (z) = lim
b→−∞

f (b, z) , (5.137)

where f(b, z) is an analytic solution of (5.135), and the convergence is interpreted

as uniform convergence on compact subsets of the region defined by R(z) < Q.

Proof. By Theorem 5.22, there is a solution of the form (5.130) for equation

(5.124) which is analytic for |z − b| < |b|−D. We assert that (5.135) has an analytic

solution f(z) which satisfies
∣∣∣f (i) (b)

∣∣∣ ≤ ϕ(i) (b) , i = 0, 1, ..., k − 1. (5.138)

To this end, let

f (b, z) =
∞∑

m=0

fm (z − b)m (5.139)

be a formal power series solution of (5.135). Substituting it into (5.135), we obtain

g0 = k!fk =
k∑

i=1

ϕi0fk−i (k − i)! +
n∑

j=1

αj0f1pj +
s∑

l=1

βl0f0,

gm = fk+m
(k +m)!

m!
+

k∑

i=1

m∑

u=0

ϕiufk−i+m−u
(k − i+m− u)!

(m− u)!

+

n∑

j=1

m∑

u=0

αju (m+ 1 − u) fm+1−up
m−u+1
j +

s∑

l=1

m∑

u=0

βlufm−u,

for m ∈ Z+. In view of (5.131) and (5.138), we may show by induction that |fm| ≤
bm for m ≥ 0. Thus, (5.135) has a solution of the form (5.139) which is analytic for

|z − b| < |b| −D and satisfies (5.138). Furthermore, in view of our assumptions,
∣∣∣∣∣

∞∑

m=0

fm (z − b)
m

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑

m=0

bm (z − b)
m

∣∣∣∣∣ ≤ K,

that is, f(b, z) is bounded for |z − b| < |b| −D. Let B be a bounded region whose

closure is contained in R(z) < Q. Then there exists b0 < 0 such that for b < b0, we

have

B ⊂ {z : |z − b| < |b| − |Q|} .

Let {bk}∞k=0 be a sequence which is decreasing and tends to −∞. The family

{f(bj , z)}∞j=0 of solutions is a sequence of bounded functions on B. Thus there

is a subsequence of {bj} which we may, without loss of generality, denote by {bj}
such that the limiting function limj→∞ f(bj , z) is analytic on B, and it is the uni-

form limit of {f(bj , z)}∞j=0 on any compact subset of B. Since {z : Rz < Q} is the
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union of all B that satisfies the above assumption, we may infer from the Unique

Continuation Theorem 3.17 that there is some sequence {dk} such that

f (z) = lim
k→∞

f (dk, z)

is the analytic solution of (5.119). The proof is complete.

We remark that in the above Theorem, if ϕ1(z), ..., ϕk(z), α1(z), ..., αn(z),

β1(z), ..., βs(z) and g(z) are rational functions, then letting a1, a2, ..., aN be the

totality of all their poles, we may take

D > max {|a1| , |a2| , ... |aN |}
so that for any negative number b with sufficiently large absolute value,

ϕ1(z), ..., ϕk(z), α1(z), ..., αn(z), β1(z), ..., βs(z) are analytic for |z − b| < |b| −D.

Example 5.11. Consider the equation

f ′′′ (z) − 5

(1 + z)
2 f

′ (z − τ) =
1

(1 + z)
4 , τ > 0, (5.140)

For any negative b with sufficiently large absolute value, the functions α (x) =

− 5
(1+z)2

and g (z) = 1
(1+z)4

are analytic for |z − b| < |b| − 2. The approximating

equation of (5.140) is

f ′′′ (z) − 5

(1 + z)
2 f

′ (pz − τ) =
1

(1 + z)
4 , (5.141)

where p = 1 + τb−1. Furthermore, the equation

ϕ′′′ (z) − 5

(1 + z)
2 f

′ (z − τ) =
1

(1 + z)
4

on |z − b| < |b| − 2 has the bounded analytic solution ϕ(z) = z/(1 + z). In view of

Theorem 5.23, there exists Q < 0 such that |Q| > 2 and equation (5.140) has an

analytic solution of the form

f (z) = lim
b→−∞

f (b, z) ,

on (−∞, Q), where f(b, z) is an analytic solution of equation (5.141).

5.8 Notes

Equation (5.6) and nonhomogeneous differential equations of the form

y′′ + p (x) y′ + q (x) y = h(x)

arise in a large number of mathematical models in mechnical vibration theory,

quantum mechanics, etc. Therefore there are many results on the analytic solu-

tions of these equations which can be found in standard text books and references

[81, 78, 92]. Therefore we have restricted ourselves to the basic Theorem 5.1. How-

ever, the following remarks may be of further interest.
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First of all, there are equations which do not allow nontrivial analytic solutions.

As a simple example, consider the equation

x3y′′ + y = 0.

If we seek a solution of the form y = â(x) which is analytic at 0, then substituting

y into the above equation, we see that a0 = 0 and

ak = −(k − 1)(k − 2)ak−1, k ∈ Z+.

But then ak = 0 for k ∈ N. This shows that the only solution which is analytic at

0 is the trivial one. As another example, consider the differential equation

x2y′ = y − x. (5.142)

If y = â(x) is an analytic solution at 0, then substituting it into the above equation,

we obtain

â(x) =
∞∑

n=0

n!xn+1 (5.143)

with radius of convergence ρ(a) = 0. In other words, equation (5.143) does not allow

solutions which are analytic at 0. Note that although (5.143) is not analytic at 0,

yet it is a formal solution of (5.142). We can also find equations where no formal

solution can exist. For instance, consider the equation

xy′ = y − x.

Substituting y = â(x) will formally yield

a1 = a1 − 1,

which is impossible.

Although nontrivial analytic solutions cannot be found in general, it is possible in

some cases to find solutions of the form xsf(x) where f is analytic in a neighborhood

of zero. The method for finding such solutions is called the method of Frobenius.

Since this method has been discussed quite extensively in many texts, we will only

refer the interested readers to the references [81, 78, 92].

Examples 5.2, 5.3, 5.4 and 5.5 are due to Herron in [77]. Further examples can

be found in [116].

The neutral system (5.12) is studied by Cherepennikov in [35]. Theorems 5.2,

5.3 and 5.4 can be found in his work. Related systems and more general systems

have also been studied by him in [33, 34, 36–38].

The Cauchy Kowalewski existence theorem has been extended to more general

partial differential equations or systems. For instance, we may seek solutions ẑ, v̂, ŵ

of the system

ẑy = F̂ 1 (x, y, ẑ, v̂, ŵ, ẑx, vx, ŵx) ,

v̂y = F̂ 2 (x, y, ẑ, v̂, ŵ, ẑx, vx, ŵx) ,

ŵy = F̂ 3 (x, y, ẑ, v, ŵ, ẑx, v̂x, ŵx) ,

(5.144)
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which are C1-functions of x and y and which assume prescribed initial various along

the x-axis:

ẑ (x, 0) = ẑ0 (x) , v (x, 0) = v̂0 (x) , ŵ (x, 0) = ŵ0 (x) . (5.145)

From (5.145) the values of ẑx (x, 0) , v̂x (x, 0) , ŵx (x, 0) are known at every point on

the x-axis, and from substitution in (5.144) so are the derivatives with respect to

y. The Cauchy-Kowalewski theorem now asserts that if the functions z0, v0, w0, are

analytic in a neighborhood of x = 0, and if the functions F 1, F 2, F 3 are analytic in

a neighborhood of

x = y = 0, z (0, 0) , v (0, 0) , w (0, 0) , zx (0, 0) , vx (0, 0) , wx (0, 0) ,

then the initial-value problem (5.145) has precisely one solution (z, v, w), which is

analytic in a neighborhood of x = y = 0.

By means of such generalized Cauchy-Kowalewski theorems, we may handle the

existence theorems for analytic solutions of partial differential equations of the form

G (x, y, z, p, q, r, s, t) = 0 (5.146)

where

p = zx, q = zy, r = zxx, s = zxy, t = zyy, (5.147)

under prescribed initial values on an initial curve y0 (x):

z0 (x) = z (x, y0 (x)) , p0 (x) = p (x, y0 (x)) , q0 (x) = q (x, y0 (x)) . (5.148)

Equation (5.44) is studied by Li [118], in which Theorem 5.5 is obtained. The

two results related to equation (5.49) are contained in [118].

Neutral differential equations and systems with proportional delays have been

studied for some time and found potential important applications in a number of

scientific fields. In Carr and Dyson [23] and Kato and McLeod [95], asymptotic

behaviors of solutions of the equation

y′ (x) = ay (λx) + by (x) . (5.149)

are discussed. In Feldstein and Jackiewicz [64], the ‘exponential order’ of the solu-

tions of the pantograph equation

y′ (z) = Ay (z) +B (λz) + Cy′ (yz) (5.150)

is discussed. Viorica in [216] discussed the analytic solutions of the equation

y′ (z) =

p∑

j=1

kjy (λjz) + by (z) , λj ∈ (0, 1) (5.151)

under the initial condition y(0) = 1. In Iserles and Liu [84], the pantograph equation

(5.150) is illustrated by means of interesting examples and figures. In [82], Ifantis

discussed the following linear functional differential equation

dkf (z)

dzk
+

k∑

i=1

ϕi (z)
dk−if (z)

dzk−i
+

n∑

j=1

αj (z) f (qjz) = g (z) ,
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where k ≥ 1 and |qj | ≤ 1 for j = 1, 2, ..., n. He transforms the problem of the

existence of analytic solutions into the problem of finding the null space of an

operator defined on a separable Hilbert space. In particular, the equation

f ′(x) = af(λx) + bf(x), a ∈ C, b ∈ R, λ ∈ C

is discussed in detail.

By methods similar to that in the proof of Theorem 5.12, we may show the

following for equation (5.61):

Theorem 5.24. Suppose A1(z), ..., Al(z), f1(z), ..., fl(z) and h(z) are analytic for

|x− ξ| < R1 and f1(ξ) = f2(ξ) = · · · = fl(ξ) = ξ, f ′
i(ξ) = si for i = 1, ..., l, where

0 < |si| < 1. Suppose further that there exist R2 > 0, N1, ..., Nl > 0 such that for

|z − ξ| < R2, we have |Ai(z)| ≤ Ni for i = 1, ..., l, and R2 (N1 + · · · +Nl) < 1.

Then (5.61) has a solution of the form

x (z) = h(ξ) +

∞∑

n=1

bn (z − ξ)
n
,

which is analytic on a neighborhood of the point ξ.

The above result and Theorem 5.12 can be found in Si and Li [184].

Equation (5.66) and the corresponding Theorems 5.14 and 5.15 can be found in

Si [178].

As mentioned before, there are many differential equations with second order

unknown derivatives which allow analytic solutions and they can be found in stan-

dard text books. There are also many functional differential equations with higher

order unknown derivates which allow analytic solutions. We have only presented

some simple ones. In particular, equation (5.79) and the corresponding Theorem

5.17 are in Si and Li [184], while equations (5.91) and (5.119) and the corresponding

existence theorems are in Si [174].

In Example 5.7, we have demonstrated how analytic solutions can be used to gen-

erate approximate solutions of differential equations under various conditions. Simi-

lar ideas have been employed in a number of recent studies under the so called ‘differ-

ential transformation method’, see e.g. [237, 24, 26, 25, 88, 89, 10, 6]. However,

most of the derivations in these studies are heuristic and error analyses are not

provided. Therefore, there is much to be done in this area.
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Chapter 6

Functional Equations with Iteration

Recall that φ[0](z) = z, φ[1](z) = φ(z), φ[2](z) = φ(φ(z)), ..., φ[n](z) = φ(φ[n−1](z))

are the zeroth, first, second, ..., and the n-th iterate of the function φ(z). Functional

equations (with or without differentiation) that involve iterates of the unknown

functions are called iterative functional equations. Such equations arise naturally

in many problems. In this Chapter, we allow functional equations involving more

complicated composition of known or unknown functions.

6.1 Equations without Derivatives

For motivation, let xn be the amount of money saved in a bank during the time

period n. Then the amount of money during the time period n + 1 is commonly

given by

xn+1 = xn + rxn, n ∈ N,

where r is the interest rate offered by the bank for one period of time. Let f(x) =

(1 + r)x. Then the above recurrence relation can also be written as xn+1 = f(xn).

Given x0 = λ, then x1 = f(x0) = f(λ), x2 = f(x1) = f (f(x0)) , ..., and in general

xn = f [n](λ) for n ∈ N. A natural question is when it is true that f [n](λ) is equal

to a prescribed number. A more general question naturally arises as to what kind

of function φ such that its n-th iterate is equal to a given function Q. Indeed such a

question has been considered by Babbage [11, 12]. Another well known recurrence

equation is

xn+1 = µxn(1 − xn), n ∈ N.

Here f(x) = µx(1−x). By asking the question as to when f [n](λ) = λ (which corre-

sponds to whether periodic solutions exist, see e.g. Li and Yorke [111], Feigenbaum

[60]), there follows a great many number of research works related to ‘chaos theory’ !

As another example, let L be a curve in the x, y-plane which can be described

by a function y = φ(x). By means of a transformation T on the real plane

T (x, y) = (f(x, y), g(x, y)) ,

175
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the curve L is transformed into another curve L̄. If L̄ can be described by another

function y = ψ(x), we call the function ψ the transform of φ and we write ψ = Tφ.

It may happen that L is transformed by T into itself, that is, φ = Tφ. Then L is

called an invariant curve under T. This means that y = φ(x) satisfies

φ (f(x, φ(x))) = g(x, φ(x)), (6.1)

which is called the equation of invariant curves.

We first take up iterative equations of the form

F
(
z, φ(z), φ(f [1](z)), ...φ(f [m](z))

)
= 0, (6.2)

and

F
(
z, φ[1](f(z)), ..., φ[m](f(z))

)
= 0. (6.3)

6.1.1 Babbage Type Equations

We first consider a simple case of (6.3), namely,

φ(φ(λz)) = g(z), λ 6= 0. (6.4)

Suppose

g(z) =
∞∑

n=0

anz
n (6.5)

where a0 = 0 and a1 = g′(0) 6= 0, is analytic on some disk B(0; δ), and |g′(0)/λ| < 1.

Then the equation

ψ(g(x)) =
a1

λ
ψ(λx)

can be written as a Schröder equation

ψ(f(x)) = sψ(x) (6.6)

by letting s = a1/λ and

f(x) = g
(x
λ

)
= sx+

∞∑

n=2

an
λn
xn.

Since 0 < |s| = |a1/λ| = |g′(0)/λ| < 1, in view of Theorem 4.9, (6.6) has a solu-

tion ψ(x) which is analytic on some B(0; η). From the Analytic Inverse Function

Theorem 4.8, ψ−1 is analytic on some B(0;β). Then the composite function

h(x) = ψ−1(b1ψ(x)),

where

b21 =
a1

λ
,
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is analytic on some B(0; γ) and

h(h(λx)) = ψ−1(b1ψ(h(λx))) = ψ−1
(
b1ψ

(
ψ−1 (b1ψ(λx)

))

= ψ−1
(
b21ψ(λx)

)
= ψ−1

(a1

λ
ψ(λx)

)

= ψ−1 (ψ(g(x))) = g(x),

that is, h is an analytic solution of (6.4) and h(0) = ψ−1(b1ψ(0)) = 0.

Once the existence of analytic solutions is guaranteed, we may find them by

setting

φ(x) =
∞∑

n=0

bnx
n, (6.7)

where b0 = 0. Substituting it into (6.4), we see that

a = b ◦ (b · λ).

Hence

an =

n∑

i=0

bi (λ · b)〈i〉n =

n∑

i=0

bi

(
λ · b〈i〉

)
n

=

(
n∑

i=0

bib
〈i〉
n

)
λn, n ∈ N,

which yields

λb21 = a1, (6.8)

and

λn(b1 + bn1 )bn + Pn(b1, b2, ..., bn−1, λ) = an, n ≥ 2, (6.9)

where Pn is an n-variate polynomial. We may thus determine two sequences

{0, b1, b2, ...} as expected.

We remark that any other existence results for the Schröder equation (such as

Theorem 4.10) will yield additional existence results for (6.4).

We remark further that similar principles will lead us to the existence of analytic

solutions of the equation

φ[n](z) = g(z), n = 2, 3, ..., (6.10)

where g stands for a given nontrivial function analytic on some disk B(0; δ) and

satisfies g(0) = 0 and g′(0) = s. In case φ is a solution of (6.10), it is sometimes called

a n-th iterative root of g. Indeed, assume that g is a nontrivial function analytic on

a neighborhood of zero and g (0) = 0 as well as g′ (0) = s. If 0 < |s| < 1, then there

are n local analytic solutions of the form

φ (z) = σ−1
(
s1/nσ (z)

)
, z ∈ U,

where s1/n stands for any of the n possible values of the complex root of s, U is a

neighborhood of zero and σ (z) is a local analytic solution of the Schröder equation

σ(g (z)) = sσ (z).
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We now look for analytic functions f that satisfies the equation [120]

f (p(z) + bf(z)) = h(z), (6.11)

where b is a nonzero complex number, and p, h are given complex functions of

a complex variable. The basic conditions that p(z) and h(z) are analytic in a

neighborhood of the origin, p(0) = h(0) = 0, p′(0) = r and h′(0) = s 6= 0 will be

assumed throughout the rest of this section.

Let β be a root of the equation z2 − rz − bs = 0 (note that β 6= 0 since bs 6= 0).

We will need an auxiliary functional equation in the unknown function g :

g
(
β2z

)
− p (g(βz)) = bh(g(z)). (6.12)

Once we can show the existence of a solution g of this equation which satisfies

g(0) = 0, g′(0) 6= 0 and is analytic on a neighborhood of the origin, then it is easily

seen that f defined by

f(z) =
1

b

{
g
(
βg−1(z)

)
− p(z)

}
(6.13)

is a solution of (6.11) which is also analytic in a neighborhood of the origin. Indeed,

by the assumptions on g, we see that g−1 and hence f are analytic in a neighborhood

of the origin and

f(p(z) + bf(z)) = f
(
p(z) + g

(
βg−1(z)

)
− p(z)

)

= f
(
g
(
βg−1(z)

))

=
1

b

{
g
(
βg−1

(
g
(
βg−1(z)

)))
− p

(
g
(
βg−1(z)

))}

=
1

b

{
g
(
β2g−1(z)

)
− p

(
g
(
βg−1(z)

))}

=
1

b
bh
(
g
(
g−1(z)

))

= h(z).

We will therefore seek analytic solutions of (6.12) which vanish at the origin but

not their first derivatives.

Theorem 6.1. Suppose the equation z2−rz− bs = 0 has a root β such that |β| 6= 1

and |β| 6= |bs|1/(n+1)
for n = 2, 3, ... . Then for any nonzero complex number η,

(6.12) has a solution g(z) which is analytic on a neighborhood of the origin and

satisfies the conditions g(0) = 0 and g′(0) = η.

Proof. Under our assumptions on p and h,

p(z) = rz +

∞∑

n=2

pnz
n, (6.14)

h(z) = sz +

∞∑

n=2

hnz
n, (6.15)
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and the Cauchy’s Estimation (Theorem 3.26) asserts that there is ρ > 0 such that

|pn| , |hn| ≤ ρn−1, n ≥ 2.

Introducing new functions

P (z) = ρp
(
ρ−1z

)
, H(z) = ρh

(
ρ−1z

)
, G(z) = ρg

(
ρ−1z

)
,

we obtain from g(0) = 0 and g′(0) = η that G(0) = 0 and G′(0) = η respectively,

and from (6.12) that

G
(
β2z
)
− P (g(βz)) = bH(g(z)),

which is again an equation of the form (6.12). Here P and H are of the form

P (z) =

∞∑

n=1

Pnz
n,

and

H(z) =

∞∑

n=1

Hnz
n

respectively, but |Pn| =
∣∣pnρ1−n∣∣ ≤ 1 and |Hn| =

∣∣hnρ1−n∣∣ ≤ 1 for n ≥ 2. Conse-

quently, we may assume that

|pn| ≤ 1, |hn| ≤ 1, n ≥ 2. (6.16)

We seek solutions of (6.12) in the form

g(z) = ĝ(z) =

∞∑

n=1

gnz
n. (6.17)

By formally substituting g into (6.12), we obtain

β2 · g − p ◦
(
g · β

)
= b(h ◦ g).

Since g0 = 0, we see that

p ◦
(
g · β

)
= β · (p ◦ g),

hence

(β2 − rβ − bs)g1 = 0, (6.18)

and

(β2n − rβn − bs)gn = βn
n∑

m=2

pmg
〈m〉
n + b

n∑

m=2

hmg
〈m〉
n , n ≥ 2. (6.19)

Since β is a nonzero root of z2 − rz − bs, we can choose g1 as η so that (6.18) is

satisfied. Furthermore, we assert that (βn)2 − rβn − bs 6= 0 for n ≥ 2. Indeed,

if the contrary holds, then βn is a root of the equation z2 − rz − bz = 0. Thus

βn = β or βn 6= β. In the former case, |β| = 1 and in the latter, βnβ = −bs so that

|β| = |bs|1/(n+1)
. Both are contrary to our assumptions on β.
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We may now see from (6.19) that the resulting relation defines g2, g3, ... in a

unique manner. We need to show that the subsequent series (6.17) converges in a

neighborhood of the origin. To see this, note that

lim
n→∞

βn

β2n − rβn − bs
= 0,

and

lim
n→∞

b

β2n − rβn − bs
=

{
0, |β| > 1,

−1/s, 0 < |β| < 1.

Thus there is some positive number M such that
∣∣∣∣

βn

β2n − rβn − bs

∣∣∣∣ ,
∣∣∣∣

b

β2n − rβn − bs

∣∣∣∣ ≤
M

2
(6.20)

for n ≥ 2. From (6.19) and (6.20), we have

|gn| ≤M
n∑

m=2

|g|〈m〉
n , n ≥ 2.

If we now define a sequence {qn}n∈N
by q0 = 0, q1 = |η| and

qn = M

n∑

m=2

q〈m〉
n , n ≥ 2,

then it is easily seen that

|gn| ≤ qn, n ≥ 1.

In other words, the series Q(z) = q1z + q2z
2 + · · · is a majorant series of g. But by

Example 4.8, Q(z) is a solution of the implicit relation

F (z,Q) ≡ Q− |η| z − MQ2

1 −Q
= 0,

and is analytic on a neighborhood of the origin. Thus g(z) is analytic there as well.

This completes the proof.

In the above result, we assume that |β| 6= 1. Next, we deal with the case when

|β| = 1.

Theorem 6.2. Suppose |bs| < 1 and the equation z2−rz−bs = 0 has a nonzero root

β which is a Siegel number. Then (6.12) has a solution g(z) which is analytic on a

neighborhood of the origin and satisfies the conditions g(0) = 0 and g ′(0) = η 6= 0.

Proof. As in the proof of the previous Theorem 6.1, we may assume that (6.14)

and (6.15) hold, and there is a formal solution g(z) of (6.12) given by (6.17) with

g1 = η and

(β2n − rβn − bs)gn = βn
n∑

m=2

pmg
〈m〉
n + b

n∑

m=2

hmg
〈m〉
n , n ≥ 2.
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Since β2 − rβ − bs = 0, we have

β − r =
bs

β
,

and

β2n − rβn − bs =
(
β2n − β2

)
− r (βn − β) = β

(
βn−1 − 1

)
(βn + β − r) .

Thus,

β
(
βn−1 − 1

)
(βn + β − r) gn = βn

n∑

m=2

pmg
〈m〉
n + b

n∑

m=2

hmg
〈m〉
n , n ≥ 2.

Note that

1

|βn + β − r| =
1

|βn + bs/β| =
1

|βn+1 + bs| ≤
1

1 − |bs| .

If we now define a sequence {wn}n∈N
by w0 = 0, w1 = |η| and

wn = M
∣∣βn−1 − 1

∣∣−1
n∑

m=2

w〈m〉
n , n ≥ 2,

where

M =
1 + |b|
1 − |bs| > 0, n ≥ 2,

then it is not difficult to show by induction that

|gn| ≤ wn, n ≥ 2.

In other words, W (z) = w1z + w2z
2 + · · · is a majorant series of g. We now need

to show that W (z) has a positive radius of convergence. To see this, note that

Example 4.8 asserts that the implicit relation

F (z,Q) ≡ Q− |η| z − MQ2

1 −Q
= 0, M > 0,

defines an analytic function

Q(z) =

∞∑

n=0

qnz
n,

with q0 = Q(0) = 0, q1 = Q′(0) = |η| > 0, and

qn = M

n∑

m=2

q〈m〉
n , n ≥ 2.

Since Cauchy’s Estimation (Theorem 3.26) asserts that there is a positive number

A such that

qn ≤ An, n ≥ 1,
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we see from Theorem 3.32 that

wn ≤ An
(
25δ+1

)n−1
n−2δ, n ≥ 1,

which shows that W (z) has a positive radius of convergence. The proof is complete.

We remark that once existence is guaranteed, it may be possible to expand

(6.11) in series form and seek the desired solution instead of first finding a solution

of (6.12). As an example, consider the functional equation

f(z + f(z)) = sz, s 6= 0. (6.21)

If z2 − z− s = 0 has a nonzero root β, then writing f(z) = f1z+ f2z
2 + · · · , we see

that

f1(1 + f1) = s,

f1f2 + f2(1 + f1)
2 = 0,

f1f3 + (1 + bf1)f3 = 0,

... = ...

The conditions in Theorem 6.1 or Theorem 6.2 assure that there is at least one

nontrivial solution to the above system of equations. Indeed, one solution of the

above system is {f1, f2, f3, ...} = {β, 0, 0, ...} , and the corresponding f(z) = βz is

an analytic solution of (6.21).

6.1.2 Equations Involving Several Iterates

A natural extension of the problem of the existence of iterative roots of (6.10) is to

find a function f such that a linear combination of its iterates is equal to a given

function F :

λ1f(z) + λ2f
[2](z) + · · · + λnf

[n](z) = F (z), (6.22)

where λ1, ..., λn are complex numbers, not all zero (see [186]).

Theorem 6.3. Suppose the power series function F (z) = ĉ(z), where c0 = 0 and

c1 = s, is analytic on some B(0; r1). Suppose further that α is a root of the equation

λ1z + λ2z
2 + · · · + λnz

n = s (6.23)

and there is some positive number β such that for m ≥ 2,
∣∣λ1α

m + λ2α
2m + · · · + λnα

nm − s
∣∣ ≥ β.

Then (6.22) has a solution which is analytic on some disk B(0; r).

Proof. We first look for an analytic solution of the form

φ(z) = b̂z = ηz +

∞∑

m=1

bmz
m, η 6= 0, (6.24)
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for the equation

λ1φ(αz) + λ2φ(α2z) + · · · + λnφ(αnz) = F (φ(z)) (6.25)

in a neighborhood of the origin. In view of the assumptions on F, the Cauchy’s

Estimation (Theorem 3.26) asserts the existence of some positive number p such

that

|cm| ≤ pm−1, m = 2, 3, ... .

Introducing transformations ψ(z) = p(z/p) and G(z) = pF (z/p), we may obtain

from (6.25) that

λ1ψ(αz) + λ2ψ(α2z) + · · · + λnψ(αnz) = G(ψ(z)),

which is again an equation of the form (6.25). Here G is of the form

G(z) =

∞∑

m=1

dmz
m = sz +

∞∑

m=2

cm
pm−1

zm,

but

|dm| =

∣∣∣∣
cm
pm−1

∣∣∣∣ ≤ 1, m = 2, 3, ... .

Consequently, we may assume that |cm| ≤ 1 for m ≥ 2.

By substituting (6.24) into (6.25), and comparing coefficients, we see that

λ1α · b+ λ2α
2 · b+ · · · + λnα

n · b = c ◦ b.
Hence

(λ1α+ λ2α
2 + · · · + λnα

n − s)b1 = 0

and

(λ1α
m + λ2α

2m + · · · + λnα
nm − s)bm =

m∑

t=2

ctb
〈t〉
m , m ≥ 2. (6.26)

Since α is a root of (6.23), we may choose b1 = η, and then bm can be uniquely

determined by the recurrence relation (6.26) for m ≥ 2. This shows that (6.25) has

a formal solution of the form (6.24) for any given η which is not zero.

Note that by Example 4.8, the implicit relation

W (z,Q) ≡ Q− |η| z − 1

β

Q2

1 −Q
= 0

has a solution

Q(z) =

∞∑

n=0

qnz
n

which is analytic near 0 and the sequence q = {qn}n∈N
satisfies q0 = 0, q1 = |η| > 0

and

qn =
1

β

n∑

i=2

q〈i〉n , n ≥ 2.
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Note that |b1| = |η| ≤ q1. Assume by induction that |bk| ≤ qk for k = 1, 2, ...,m− 1,

then

β |bm| ≤
∣∣λ1α

m + λ2α
2m + · · · + λnα

nm − s
∣∣ |bm|

≤
m∑

t=2

|ct| |b|〈t〉m ≤
m∑

t=2

|b|〈t〉m ≤
m∑

t=2

q〈t〉m ≤ βqm.

Thus |bm| ≤ qm for m ≥ 2, which shows that Q(z) is a majorant of φ(z). We have

thus shown that φ(z) is an analytic solution of (6.25) on some B(0; r2). Since φ(0) =

0 and φ′(0) = η 6= 0, the inverse function φ−1 is also analytic in a neighborhood

B(0; r) where r ≤ r2. Let

f(z) = φ(αφ−1(z)), |z| < r.

Then f is analytic near 0 and is a solution of (6.22):

λ1f(z) + λ2f
[2](z) + · · · + λnf

[n](z)

= λ1φ(αφ−1(z)) + λ2φ(α2φ−1(z)) + · · · + λnφ(αnφ−1(z))

= F (z).

The proof is complete.

As a corollary, we may obtain the following result.

Theorem 6.4. Suppose F (0) = 0, F ′(0) = s where |s| >
(
1 +

√
5
)
/2 and F is

analytic in a neighborhood of the origin. Then there is an function f analytic on

some B(0; δ) such that f [n](z) = F (z) for n ≥ 2 and z ∈ B(0; δ).

Indeed, if we let α be a root of αn = s, then for m ≥ 2,

|αnm − s| = |sm − s| ≥ |s|
(
|s|m−1 − 1

)
=

1 +
√

5

2



(

1 +
√

5

2

)m−1

− 1


 ≥ 1.

In view of Theorem 6.3, the equation f [n](z) = F (z) has a solution which is analytic

near 0.

Theorem 6.5. Suppose F is a function analytic on some disk B(β; δ), F (β) = 0

and F ′(β) = λ1α+ λ2α
2 + · · · + λnα

n 6= 0 where |α| < 1. Suppose further that

n∑

k=1

λk = 0 and |α|
n∑

k=1

|λk| < 1,

and there is an integer m such that

F ′(β) = λ1α
m + λ2α

2m + · · · + λnα
nm.

Then (6.22) has analytic solutions near β.
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Proof. Since F (β) = 0 and F ′(β) 6= 0, the inverse function F−1 of F is analytic

in a neighborhood of the origin and is of the form

F−1(z) = ĉ(z) = β +
∞∑

m=1

cmz
m. (6.27)

In terms of F−1, we may obtain from (6.25) the equation

φ(z) = F−1

(
n∑

k=1

λkφ(αkz)

)
. (6.28)

We first look for solutions of (6.28) of the form

φ(z) = b̂(z) =

∞∑

m=0

bmz
m. (6.29)

Substituting (6.29) and (6.27) into (6.28), we obtain

b = c ◦
(

n∑

k=1

λkb · αk
)

= c ◦ d,

where

d =

{(
n∑

k=1

λkα
kj

)
bj

}

j∈N

.

Since

d0 =

n∑

k=1

λk = 0,

we see that

b =

{
j∑

i=0

cid
〈i〉
j

}

j∈N

.

These lead us to

b0 = β,

{
1 − c1(λ1α+ λ2α

2 + · · · + λnα
n)
}
b1 = 0 (6.30)

and
{
1 − c1(λ1α

m + λ2α
2m + · · · + λnα

nm
}
bm

=
∑

l1+l2+···+lt=m;t=2,3,...,m

ct

t∏

i=1

(
n∑

k=1

λkα
kli

)
bl1bl2 · · · blt (6.31)

for m ≥ 2. Since

c1 = (F−1)′(0) =
1

F ′(F−1(0))
=

1

F ′(β)
=

1

λ1α+ λ2α2 + · · · + λnαn
,
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thus

1− c1(λ1α+ λ2α
2 + · · · + λnα

n) = 0.

In view of (6.30), we may choose b1 = η 6= 0. Furthermore, since |α| < 1, there

exists a positive integer K such that for m > K,
∣∣c1(λ1α

m + λ2α
2m + · · · + λnα

nm)
∣∣ < 1 − γ, γ ∈ (0, 1).

Thus, for m > K,
∣∣{1 − c1(λ1α

m + λ2α
2m + · · · + λnα

nm)
}∣∣

> 1 −
∣∣{1 − c1(λ1α

m + λ2α
2m + · · · + λnα

nm)
}∣∣ > γ. (6.32)

If 1− c1(λ1α
m +λ2α

2m + · · ·+λnα
nm) 6= 0 for m = 2, 3, ...,K, then we see that

b0 = β and b1 = η 6= 0 and that b2, b3, ... can be determined from (6.31) in a unique

manner to obtain

φ(z) = β + ηz +
∞∑

m=2

bmz
m, η 6= 0.

If 1 − c1(λ1α
m + λ2α

2m + · · · + λnα
nm) = 0 for some m, then in view of

(6.32), there can only be a finite number of such integers, say, m1,m2, ...,mr ∈
{2, 3, ...,K}. Thus, we may choose bmi

= ηmi
for i = 1, ..., r, and bm = ηm for

m ∈ {2, 3, ...,K}\{m1,m2, ...,mr} so as to satisfy the equation

∑

l1+l2+···+lt=m;t=2,3,...,m

(F−1)(t)(0)

t!

t∏

i=1

(
n∑

k=1

λkα
kli

)
ηl1ηl2 · · · ηlt = 0, (6.33)

and then determine bK+1, bK+2, ... by (6.31) in a unique manner to obtain

φ(z) = β + ηz +

r∑

j=1

ηmj
zmj +

K∑

m=2;m6=m1,m2,...,mr

ηmz
m +

∞∑

m=K+1

bmz
m,

where η 6= 0 and ηm1 , ηm2 , ..., ηmr
are arbitrary complex numbers.

We now need to prove that (6.29) is convergent in a neighborhood of the origin.

First in view of (6.27), we see from Cauchy’s Estimation (Theorem 3.26)) that there

is some number p > 0 such that

|cm| ≤ pm−1, m = 2, 3, ... .

Introducing transformations ψ(z) = p−1φ(z/p) and G(z) = p−1F (z/p), we may

then see from (6.28) that

ψ(z) = G−1

(
n∑

k=1

λkψ(αkz)

)
,

which is of the same form as (6.28) but

G−1(z) = pF−1(z/p) =

∞∑

m=0

dmz
m = pβ +

1

F ′(β)
z +

∞∑

m=2

cm
pm−1

zm
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and

|dm| =

∣∣∣∣
cm
pm−1

∣∣∣∣ ≤ 1, m = 2, 3, ... .

Therefore, we may assume without loss of generality that |cm| ≤ 1 for m ≥ 2.

Consider the sequence u = {um}m∈N
defined by u0 = 0,

um = |η| , m = 1,

um = |ηm| , 2 ≤ m ≤ K,

and

um =
1

γ

m∑

t=2

u〈t〉m , m ≥ K + 1.

Clearly, |bm| = um for m = 1, 2, ...,K. Furthermore, in view of (6.31), (6.32) and

our assumptions on λ1, ..., λn,

γ |bK+1| ≤
∣∣∣1 − c

(
λ1α

K+1 + λ2α
2(N+1) + · · · + λnα

n(N+1)
)∣∣∣ |bK+1|

≤
∑

l1+l2+···+lt=m;t=2,3,...,m

|ct|
t∏

i=1

(
n∑

k=1

|λk| |α|kli
)
|bl1bl2 · · · blt |

≤
m∑

t=2

(
|α|

t∑

k=1

|λk |
)t

|b|〈t〉m

≤
m∑

t=2

u〈t〉m

= γuK+1.

By induction, we may then easily show that |bm| ≤ um for m ≥ 1. In other words,

the power series function u(z) =
∑∞
m=0 umz

m is a majorant of the power series

function
∑∞

m=1 bmz
m. We assert further that u(z) is convergent in a neighborhood

of the origin. To see this, note that Example 4.8 asserts that u(z) is a solution of

the implicit relation

W (z, u) ≡ u− |η| z −
K∑

m=2

|ηm| zm − 1

γ

uK+1

1− u
= 0,

and is analytic near 0. Thus we may conclude that φ(z) = β +
∑∞

m=1 bmz
m is

analytic on a neighborhood of the origin. Since φ(0) = β and φ′(0) = η 6= 0, its

inverse φ−1(z) is analytic in a neighborhood of β. If we let

f(z) = φ(αφ−1(z)),

then we may easily verified that f is an analytic solution of (6.22) in a neighborhood

of β. The proof is complete.
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Example 6.1. Consider the equation

f [2](z) − f(z) − z = 0. (6.34)

Let F (z) = z. Then F is analytic in C, F (0) = 0 and F ′(0) = 1. Since α =(
1 +

√
5
)
/2 is a root of the equation z2 − z − 1 = 0 and for m ≥ 2,

∣∣∣∣∣∣

(
1 +

√
5

2

)2m

−
(

1 +
√

5

2

)m
− 1

∣∣∣∣∣∣
≥
(

1 +
√

5

2

)m ∣∣∣∣∣

(
1 +

√
5

2

)m
− 1

∣∣∣∣∣− 1

≥
(

1 +
√

5

2

)m
− 1

≥ 1,

if we take β = 1, then the conditions in Theorem 6.5 are satisfied. Thus (6.34) has

an analytic solution of the form

f(z) = φ

(
1 +

√
5

2
φ−1(z)

)
,

where φ(z) is an analytic solution of

φ



(

1 +
√

5

2

)2

z


− φ

(
1 +

√
5

2
z

)
= φ(z). (6.35)

Let

φ(z) =
∞∑

m=1

bmz
m. (6.36)

After substituting into (6.35), we obtain

∞∑

m=1

bm

(
1 +

√
5

2

)2m

zm −
∞∑

m=1

bm

(
1 +

√
5

2

)m
zm =

∞∑

m=1

bmz
m,

and




(
1 +

√
5

2

)2m

−
(

1 +
√

5

2

)m
− 1



 bm = 0, m ∈ Z+.

If we take b1 = η 6= 0, then bm = 0 form ≥ 2, so that φ(z) = ηz. Since φ−1(z) = z/η,

we see that

f(z) =
1 +

√
5

2
z.
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Example 6.2. Consider the equation

f [2](z) = λf(z) + (1 − λ)(z − β), 0 < λ < 1, β ∈ C, (6.37)

which can be written as
1

1 − λ
f2(z) − λ

1 − λ
f(z) = z − β. (6.38)

Let λ1 = −λ/(1−λ), λ2 = 1/(1−λ) and F (z) = z−β. Then λ1 +λ2 = 0, F (β) = 0,

F ′(β) = 1 and α =
(
λ−

√
λ2 + 4(1 − λ)

)
/2 is a root of the equation

1

1 − λ
z2 − λ

1 − λ
z − 1 = 0.

Furthermore,

|α| =

√
λ2 + 4(1 − λ) − λ

2
<
λ+ 2(1 − λ) − λ

2
= 1 − λ < 1,

and

|α| (|λ1| + |λ2|) =

√
λ2 + 4(1 − λ) − λ

2

(
λ

1 − λ
+

1

1 − λ

)

=

√
λ2 + 4(1 − λ) − λ

2

1 + λ

1 − λ

<
1 − λ

2

1 + λ

1 − λ
=

1 + λ

2
< 1.

Let

φ(z) = β +

∞∑

m=1

bmz
m

be an analytic solution of
1

1 − λ
φ(α2z) − λ

1 − λ
φ(αz) = φ(z) − β.

Then {
1

1 − λ
α2m − λ

1 − λ
αm − 1

}
bm = 0, m ∈ Z+.

Since
1

1 − λ
α2 − λ

1 − λ
α− 1 = 0,

and
1

1 − λ
α2m − λ

1 − λ
αm − 1 6= 0

for m ≥ 2, if we take b1 = η 6= 0, then bm = 0 for m ≥ 2. Thus φ(z) = β + ηz and

φ−1(z) = (z − β)/η. This shows that

f(z) = φ

(
λ−

√
λ2 + 4(λ− 1)

2
φ−1(z)

)
= β +

λ−
√
λ2 + 4(λ− 1)

2
(z − β)

is an analytic solution of (6.38). In particular, when β = 0, we see that

f(z) =
λ−

√
λ2 + 4(λ− 1)

2
z

is an analytic solution of

f [2](z) = λf(z) + (1 − λ)f(z), λ ∈ (0, 1).



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

190 Analytic Solutions of Functional Equations

6.1.3 Equations of Invariant Curves

If we take f(x, y) = x + y and g(x, y) = y in (6.1), then it reduces to the Euler

equation

φ(x + φ(x)) = φ(x).

If we take f(x, y) = x+ y and g(x, y) = ψ(y), then (6.1) reduces to the functional

equation

φ (x+ φ (x)) = ψ (φ (x)) . (6.39)

If we take f(x, y) = y and

g(x, y) = 2y − x− 1

2
(h(x) + h(y)) ,

then (6.1) reduces to the functional equation

φ(φ(x)) = 2h(x) − x− 1

2
(h(φ(x)) + h(x)) . (6.40)

6.1.3.1 Equation I

In this section, we prove a theorem concerning the existence of analytic solutions

of equation (6.39) in the complex field. More specifically, we consider the equation

[176]

φ (z + φ (z)) = ψ (φ (x)) , (6.41)

where φ (z) is the unknown function and ψ (z) is a given complex-valued function

of a complex variable.

Suppose ψ (z) is analytic on a neighborhood of zero, ψ (0) = 0 and ψ′ (0) = α.

Consider the following three cases (i) |α| ≥ 1+
√

5
2 ; (ii) 0 < |α| < 1; and (iii) α is a

Siegel number.

Theorem 6.6. Assume that one of the condition (i)-(iii) is fulfilled. Then equation

(6.41) has a solution which is analytic on a neighborhood of zero.

Observe that, if f (z) is an analytic solution of the equation

f
(
α2z

)
− f (αz) = ψ (f (αz) − f (z)) (6.42)

and f ′ (0) 6= 0, then the formula

φ (z) = f
(
αf−1 (z)

)
− z

defines an analytic function satisfying equation (6.41) on a neighborhood of the

origin. Thus our Theorem follows immediately from the following.

Theorem 6.7. Assume that one of the conditions (i)-(iii) is fulfilled. For any

η ∈ C in the cases (i) and (ii), and for η = 1 in the case (iii), equation (6.42) has

a solution f (z) which is analytic on a neighborhood of zero and f (0) = 0 as well

as f ′ (0) = η.
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Proof. Fix an η ∈ C. If η = 0 then the zero function satisfies the assertion. So

assume that η 6= 0 and, in addition, η = 1 in the case (iii). Let

ψ (z) = ĉ(z) =

∞∑

n=0

cnz
n, (6.43)

where c0 = 0 and c1 = α. Since ψ (z) is analytic on a neighborhood of zero, by

Cauchy’s Estimation (Theorem 3.26), there exists a positive number β such that

|cn| ≤ βn−1 for n ≥ 2. Observe that (6.42) is invariant with respect to the trans-

formations f (z) = f̃ (βz) /β and ψ (z) = ψ̃ (βz) /β. Consequently, in the sequel we

may assume that

|cn| ≤ 1, n ∈ Z+. (6.44)

Let

f (z) = b̂(z) =
∞∑

n=0

bnz
n, b0 = 0, (6.45)

be the expansion of a formal solution f (z) of equation (6.42). Inserting (6.43) and

(6.45) into (6.42), we see that

α2 · b− α · b = c ◦ (α · b− b) .

Thus
(
α2 − (1 + c1)α+ c1

)
b1 = 0, (6.46)

and

(
α2n − (1 + c1)α

n + c1
)
bn =

∑

l1+···+lt=n;t=2,3,...,n

ct

t∏

k=1

(
αlk−1

)
blk , (6.47)

for n ≥ 2.

Since c1 = α, α2 − (1 + c1)α + c1 = 0 so that we may choose b1 = η in (6.46).

Let a1 = b1 and let

(αn − α) an =

n∑

t=2

cta
〈t〉
n , n ≥ 2.

Then in view of (6.47), an = (αn − 1) bn for n ≥ 2.

Clearly, the sequence {an}n∈Z+ is uniquely determined. We shall prove the

convergence of the series
∑∞

n=1 anz
n for each z in a neighborhood of the origin.

In case (ii) where 0 < |α| < 1, for any γ ∈ (0, |α|) , it is easy to find a positive

integer q such that |α|n ≤ |α| − γ for every n ≥ q. In case (i) or (iii), we choose

q = γ = 1. Note that Example 4.8 asserts that a solution ω(z) of the implicit

relation

R (z, ω) ≡ ω − |η| z −
q∑

n=2

|an| zn − 1

γ

ωq+1

1 − ω
= 0
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exists which is analytic on a neighborhood of the origin and

ω(z) =

∞∑

n=0

unz
n

where u = {un}n∈N
is determined by u0 = 0, u1 = |η| , uk = |ak| for k = 2, ..., q,

and

un =
1

γ

n∑

k=q+1

u〈k〉n , n ≥ q + 1. (6.48)

If case (i) holds, then |αn − α| ≥ |α|n−|α| ≥ |α|2 −|α| ≥ 1 for n ≥ 2. If case (ii)

holds, then
∣∣α2 − α

∣∣ ≥ |α| − |α|2 > γ for n ≥ q + 1. Hence, using induction and the

inequality (6.44), we infer that |an| ≤ un for n ∈ Z+. Thus the series
∑∞
n=1 anz

n

and, consequently, the series
∑∞
n=1 bnz

n is convergent in a neighborhood of zero.

Now consider the case (iii). Since the series
∑∞

n=1 unz
n converges in a neigh-

borhood of the origin, by Cauchy’s Estimation (Theorem 3.26), there is a positive

A such that un ≤ An for n ∈ Z+. By Theorem 3.32, we see that there are positive

numbers δ and N such that |an| ≤MAnNn−1n−2δ for n ∈ Z+, and hence

|bn| = |αn − α|−1 |an| ≤ (2 (n− 1))δ AnNn−1n−2δ, n ∈ Z+.

Thus the series
∑∞
n=1 bnz

n converges for each z in a neighborhood of the origin.

This completes the proof.

6.1.3.2 Equation II

In this section, we consider the equation (6.40) in the complex domain, that is,

ψ (ψ (z)) = 2ψ (z) − z − 1

2
(h (ψ (z)) + h (z)) , z ∈ C, (6.49)

where ψ is unknown and h is a given function which is analytic in a neighborhood

of 0 ∈ C such that h (0) = 0 and its derivative h′ (0) = ξ 6= 0 (see [195]).

The existence of analytic solutions for (6.49) is accomplished by transforming

the equation to another functional equation without iteration

φ
(
λ2z
)

= 2φ (λz) − φ (z) − 1

2
(h (φ (λz)) + h (φ (z))) , z ∈ C, (6.50)

called the auxiliary equation of (6.49), where λ 6= 0 satisfies the algebraic equation

2λ2 − (4 − ξ)λ+ 2 + ξ = 0, (6.51)

and by constructing analytic solutions for (6.50).

Theorem 6.8. Assume that 0 < |λ| 6= 1. Then for any τ ∈ C, the auxiliary equation

(6.50) has a solution φ (z) which is analytic on a neighborhood of the origin and

φ (0) = 0 as well as φ′ (0) = τ.
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Proof. Clearly, if τ = 0, (6.50) has a trivial solution. Assume τ 6= 0. By our

assumption on h, we may let

h (z) = â(z) =

∞∑

n=0

anz
n, (6.52)

where a0 = 0 and a1 = ξ. Since h is analytic in a neighborhood of the origin,

by Cauchy’s Estimation (Theorem 3.26), there exists a constant ρ > 0 such that

|an| ≤ ρn−1 for n ≥ 2. By means of the transformations φ̃ (z) = ρφ
(
ρ−1z

)
and

h̃ (z) = ρh
(
ρ−1z

)
, in view of (6.50), we see φ̃ (z) satisfies

φ̃
(
λ2z
)

= 2φ̃ (λz) − φ̃ (z) − 1

2

(
h̃
(
φ̃ (λz)

)
+ h̃

(
φ̃ (z)

))
, z ∈ C,

which is of the same form as (6.50) but

g̃ (z) = ρh
(
ρ−1z

)
= ξz +

∞∑

n=2

anρ
1−nzn,

where obviously the coefficient
∣∣anρ1−n∣∣ ≤ 1 for n ≥ 2. Thus, we may assume

without loss of generality that

|an| ≤ 1, n ≥ 2. (6.53)

Let

φ (z) = b̂(z) =

∞∑

n=0

bnz
n, (6.54)

where b0 = 0, be a formal solution of (6.50). Substituting it into (6.50), we have

λ2 · b = 2λ · b− b− 1

2
a ◦ (λ · b) − 1

2
a ◦ b. (6.55)

Hence

(
λ2n − 2λn + 1

)
bn = −1

2
(λn + 1)

n∑

k=1

akb
〈k〉
n , n ∈ Z+. (6.56)

In other words,
(
λ2 − 2λ+ 1 +

1

2
(λ+ 1) ξ

)
b1 = 0,

and
(
λ2n − 2λn + 1 +

1

2
(λn + 1) ξ

)
bn = −1

2
(λn + 1)

n∑

k=2

akb
〈k〉
n , n ≥ 2. (6.57)

In view of (6.51), ξ = −2 (λ− 1)
2
/ (λ+ 1) . Hence the coefficient of b1 is zero, and

(6.57) is reduced to

bn = − (λ+ 1) (λn + 1)

2 (λn − λ) (λn+1 + λn + λ− 3)

n∑

k=2

akb
〈k〉
n , n ≥ 2. (6.58)
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Consequently, we may choose b1 = τ 6= 0 and then determine the sequence {bn}∞n=2

by (6.58) recursively.

In what follows we prove the convergence of series (6.54) for each z in a neigh-

borhood of the origin. In view of our assumption that 0 < |λ| 6= 1,

lim
n→∞

(λ+ 1) (λn + 1)

2 (λn − λ) (λn+1 + λn + λ− 3)
=

{
λ+1

λ(3−λ) , 0 < |λ| < 1,

0, |λ| > 1.

Hence there exists M > 0 such that
∣∣∣∣

(λ+ 1) (λn + 1)

2 (λn − λ) (λn+1 + λn + λ− 3)

∣∣∣∣ ≤M, n ≥ 2. (6.59)

From (6.58) and (6.53) we see that

|bn| ≤M

n∑

k=2

|b|〈k〉n , n ≥ 2. (6.60)

Next, note that Example 4.8 asserts that

W − |τ | z −M
W 2

1 −W
= 0 (6.61)

has a solution W (z) which is analytic on a neighborhood of the origin and

W (z) =

∞∑

n=0

Bnz
n, (6.62)

where B0 = 0, B1 = |τ | and

Bn = M

n∑

k=2

B〈k〉
n , n ≥ 2.

Furthermore,

|bn| ≤ Bn, n ∈ Z+. (6.63)

In fact |b1| = |τ | = B1. For inductive proof we assume that |bj | ≤ Bj for j ≤ n− 1.

Then

|bn| ≤M

n∑

k=2

|b|〈k〉n ≤M

n∑

k=2

B〈k〉
n = Bn

as required. In other words, φ(z) is majorized by the analytic function W (z). The

proof is complete.

Theorem 6.9. Assume that λ is a Siegel number. Then for any τ ∈ C with 0 <

|τ | ≤ 1, the auxiliary equation (6.50) has an analytic solution φ (z) in a neighborhood

of the origin such that φ (0) = 0 and φ′ (0) = τ.
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Proof. As in the proof of the previous Theorem, we seek a power series solution

of (6.50) of the form (6.54). Choosing b1 = τ as before and using the same arguments

as above we can uniquely determine the sequence b = {bn}n∈N
. Note that the Siegel

number λ is equal to exp (2πiθ) for some irrational number θ. Thus

|λ− 3| = |cos (2πθ) + i sin (2πθ) − 3| ≥ 3 − cos (2πθ) ≥ 2,

that is, N := |λ− 3| − 2 > 0. From (6.58),

|bn| ≤
(|λ| + 1) (|λ|n + 1)

2 |λ| |λn−1 − 1|
(
|λ− 3| − |λ|n+1 − |λ|n

) ×
n∑

k=2

|b|〈k〉n

≤ 2

|λn−1 − 1| (|λ− 3| − 2)

n∑

k=2

|b|〈k〉n

≤ 2

N

∣∣λn−1 − 1
∣∣−1

n∑

k=2

|b|〈k〉n (6.64)

for n ≥ 2. Clearly, the sequence b is majorized by the sequence u = {un}n∈N
defined

by u0 = 0, u1 = |τ | and

un =
2

N

∣∣λn−1 − 1
∣∣−1

n∑

k=2

u〈k〉n , n ≥ 2.

Therefore it suffices now to show that u has a positive radius of convergence. To

this end, note that Example 4.8 asserts that the equation

V − z − 2

N

V 2

1 − V
= 0 (6.65)

has a solution V (z) which is analytic on a neighborhood of the origin and

V (z) =

∞∑

n=0

Cnz
n,

where C0 = 0, C1 = 1 and

Cn =
2

N

n∑

k=2

C〈k〉
n , n ≥ 2.

Furthermore, the Cauchy’s Estimation (Theorem 3.26) shows that there is some

T > 0 such that |Vn| ≤ Tn for n ∈ N. Thus by Theorem 3.32, we see that the

radius of convergence of u is positive. The proof is complete.

Theorem 6.10. Assume that 0 < |λ| 6= 1 or λ is a Siegel number. Then Eq. (6.49)

has an analytic solution of the form ψ (x) = φ
(
λφ−1 (z)

)
in a neighborhood of the

origin, where φ (z) is an analytic solution of the auxiliary equation (6.50).
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Proof. By Theorems 6.8 and 6.9, we can find an analytic solution φ (z) of the

auxiliary equation (6.50) in the form of (6.54) such that φ (0) = 0 and φ′ (0) = τ 6= 0.

Clearly the inverse φ−1 (z) exists and is analytic in a neighborhood of the origin.

Let

ψ (x) = φ
(
λφ−1 (z)

)
, (6.66)

which is also analytic on a neighborhood of the origin. From (6.50), it is easy to

see that

ψ (ψ (z)) = φ
(
λφ−1

(
φ
(
λφ−1 (z)

)))
= φ

(
λ2φ−1 (z)

)

= 2φ
(
λφ−1 (z)

)
− φ

(
φ−1 (z)

)
− 1

2

(
h
(
φ
(
λφ−1 (z)

))
+ h

(
φ
(
φ−1 (z)

)))

= 2ψ (z) − z − 1

2
(h (ψ (z))h (z)) ,

that is, the function ψ in (6.66), defined on a neighborhood of the origin, satisfies

(6.49).

Example 6.3. Let

h (z) = 2 (1 − ez) = −
∞∑

n=1

2

n!
zn. (6.67)

The algebraic equation corresponding to (6.51) is

2λ(λ − 3) = 0, (6.68)

which has a nonzero root λ1 = 3. By Theorem 6.8, the auxiliary equation

φ (9z) = 2φ (3z) − φ (z) − 1

2
(h (φ (3z)) + h (φ (z))) (6.69)

has a solution of the form (6.54) where b1 = τ 6= 0 is arbitrary and b2, b3, .... are

determined by (6.58) recursively, i.e.,

bn =
3n + 1

(3n−1 − 1) 3n+1

n∑

k=2

(
1

k!

)
b〈k〉n , n ≥ 2. (6.70)

In particular,

b2 =
φn (0)

2!
=

5

54
τ2,

b3 =
φ′′′ (0)

3!
=

33 + 1

(32 − 1) 34

(
b1b2 +

b31
6

)
=

72

2 · 37
τ3,

etc. Since φ (0) = 0, φ′ (0) = τ 6= 0 and the inverse φ−1 (z) is analytic near the

origin, we can calculate

(
φ−1

)′
(0) =

1

φ′ (φ−1 (0))
=

1

φ′ (0)
=

1

τ
,
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(
φ−1

)′′
(0) = −φ

′′ (φ−1 (0)
) (
φ−1

)′
(0)

(φ′ (φ−1 (0)))
2 = −φ

′′ (0)
(
φ−1

)′
(0)

(φ′ (0))
2 = − 5

27τ
,

(
φ−1

)′′′
(0)

= −

{
φ′′′
(
φ−1 (0)

) ((
φ−1

)′
(0)
)2

+ φ′′
(
φ−1 (0)φ−1 (0)

) (
φ−1

)′′
(0)

}(
φ′
(
φ−1 (0)

))2

(φ−1 (φ−1 (0)))
4

+
φ′′
(
φ−1 (0)

) (
φ−1

)′
(0) · 2φ′

(
φ−1 (0)

)
φ′′
(
φ−1 (0)

) (
φ−1

)′
(0)

(φ′ (φ−1 (0)))
4

=
26

36τ
,

etc. Furthermore,

ψ (0) = φ
(
3φ−1 (0)

)
= φ (0) = 0,

ψ′ (0) = φ′
(
3φ−1 (0)

)
· 3
(
φ−1

)′
(0) = 3φ′ (0)

(
φ−1

)′
(0) = 3τ

1

τ
= 3,

ψ′′ (0) = 9φ′′
(
3φ−1 (0)

) ((
φ−1

)′
(0)
)2

+ 3φ′
(
3φ−1 (0)

) (
φ−1

)′′
(0) =

10

9
,

ψ′′′ (0) = 27φ′′′
(
3φ−1 (0)

) ((
φ−1

)′
(0)
)3

+ 18φ′′
(
3φ−1 (0)

) (
φ−1

)′
(0)
(
φ−1

)′′
(0)

+9φ′′
(
3φ−1 (0)

) (
φ−1

)′
(0)
(
φ−1

)′′
(0) + 3φ′

(
3φ−1 (0)

) (
φ−1

)′′′
(0)

=
28

27
,

etc. Thus near 0, Eq. (6.49) with h in (6.67) has an analytic solution of the form

ψ (z) = 3z +
5

9
z2 +

17

81
z3 + · · · . (6.71)

We remark that if h (x) in (6.49) is an analytic function near 0 with real coef-

ficients, and if a1 = ξ satisfies ξ < 0 or ξ ≥ 16, then by Theorem 6.8, Eq. (6.49)

has an analytic real solution. Indeed, the equation 2λ2 − (4 − ξ) λ+ 2 + ξ = 0 now

has real roots λ1 and λ2. Clearly by (6.58) where λ = λ1 or λ2, we can define a real

sequence {bn}∞n=2 and obtain a solution φ (z) of (6.50) with real coefficients. Since φ

and its inverse are real valued functions, the function ψ (x) = φ
(
λjφ

−1 (z)
)
, where

j = 1 or 2, is also a real function and Theorem 6.8 implies its analyticity.

6.2 Equations with First Order Derivatives

The existence of solutions of differential equations of the form

x′(t) = f(t, x(t))
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is of fundamental importance in the theory of ordinary differential equations. There

are, however, plenty of differential equations that are useful in modeling natural

processes, but cannot be written in the above form. For instance, Cooke in [41]

describes a model of infection, a prey-predator model, a respiration model and a

model in electrodynamics, all of them call for equations of the form

x′(t) = x(t− x(t))

or

x′(t) + ax(t− rx(t))) = 0.

Earlier Driver in [50] investigated an equation of the form

y′(t) = f (t, y(t), y(g(t, y(t))), y′(g(t, y(t))))

which is related to the Dirac equation of classical electrodynamics without radiation

effect.

As a further example, consider a sequence of curves in the plane that can be

described by a sequence of functions x0(t), x1(t), x2(t), ... . Suppose the slope of

each function xk(t) is related to its value at some u, that is

x′k(t) = Lxk(u),

for some real number L and u is calculated at xk−1(t), that is,

u = xk−1(t).

The question then arise as what are {x0(t), x1(t), x2(t), ...} . Such a family of func-

tions is naturally called a solution of the above relations. Such a problem can

be quite difficult, but one approach is to find a family of functions such that

xk(t) = xk+1(t) for all large k (usually called a stationary solution). Then we

are led to

x′(t) = Lx(x(t)).

6.2.1 Equation I

Consider the following differential equation [185]

x′ (z) = x[m] (z) (6.72)

where m is a positive integer greater than or equal to 2, and x[m] (z), as defined

before, denotes the m-th iterate of the function x (z). We will find its solutions

which are analytic over a neighborhood of a complex number α which is a Siegel

number or satisfies 0 < |α| < 1.

To this end, we first seek a formal power series solution for the following equation

y′ (αz) =
1

α
y′ (z) y (αmz) , (6.73)
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subject to the initial condition

y (0) = α (6.74)

Then we show that such a power series solution is majorized by a convergent power

series. Finally, we show that

x (z) = y
(
αy−1 (z)

)
(6.75)

is an analytic solution of (6.72) in a neighborhood of α.

Theorem 6.11. Suppose 0 < |α| < 1. Then for each complex number η 6= 0,

equation (6.73) has a solution of the form

y (z) =

∞∑

n=0

bnz
n (6.76)

which is analytic on a neighborhood of the origin and satisfies b0 = α and b1 = η.

Proof. Assume (6.73) has an analytic solution of the form y(z) = b̂(z), where

b = {bn} ∈ lN satisfies b0 = α and b1 = η. Substituting (6.76) into (6.73), we see

that

α ·Db =
1

α
(Db) ∗ (αm · b) .

Hence the sequence b can be determined by

(
αn+1 − α

)
(n+ 1) bn+1 =

n−1∑

k=0

(k + 1)αm(n−k)bk+1bn−k, n ∈ Z+, (6.77)

in a unique manner. Furthermore, there is some M > 0 such that
∣∣∣∣

(k + 1)αm(n−k)

(n+ 1)(αn+1 − α)

∣∣∣∣ ≤
1

|αn − 1| ≤
1

M
, n ≥ 2, 0 ≤ k ≤ n− 1.

Thus if we define a sequence {Bn}∞n=0 by B0 = α, B1 = |η| and Bn+1 =

M−1Bn+1Bn−k for n ∈ Z+, then in view of (6.77),

|bn| ≤ Bn, n ∈ Z+,

that is, b is majorized by the sequence {Bn}n∈N
. Therefore our proof will be com-

plete if we can show that the radius of convergence of {Bn}n∈N
is positive. To this

end, note that the equation

G2(z) −MG(z) −M |η| z = 0,

being a special case of (4.10), has a solution

G(z) =

∞∑

n=0

gnz
n

which is analytic on a neighborhood of the origin and the sequence g = {gn}n∈N
is

given by g0 = 0, g1 = |η| and

gn+1 = M−1gn+1gn−k, n ≥ 1.
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Since B0 = g0 and B1 = g1, it is clear that {Bn}n∈N
= g so that {Bn}n∈N

has a

positive radius of convergence. The proof is complete.

Theorem 6.12. Suppose α is a Siegel number. If η = 1, then equation (6.73) has

a solution of the form (6.76) which is analytic on a neighborhood of the origin and

satisfies b0 = α and b1 = 1.

Proof. As in the previous proof, assume the existence of an analytic solution

of the form (6.76) with b0 = α and b1 = 1. Then (6.77) holds again, so that

|bn+1| ≤
1

|αn − 1|

n−1∑

k=0

|bk+1| |bn−k| , n ∈ Z+. (6.78)

Note that the equation

G2 (z) −G (z) + z = 0

being a special case of (4.10), has a solution G(z) which is analytic on a neighbor-

hood of the origin and

G(z) =

∞∑

n=0

Cnz
n

where the sequence C = {Cn}n∈N
is defined by C0 = 0, C1 = 1 and

Cn = C〈2〉
n , n ≥ 2.

As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (Theorem 3.31)

to conclude that the sequence b has a positive radius of convergence. The proof is

complete.

We now state and prove our main result in this section.

Theorem 6.13. Suppose 0 < |α| < 1 or α is a Siegel number. Then equation

(6.72) has a solution x(z) which is analytic on a neighborhood of α. Furthermore,

x(z) is of the form

x(z) = y
(
αy−1(z)

)
,

where y(z) is a solution of (6.73) that is analytic at 0 and satisfies y(0) = α.

Proof. It suffices to show that the power series function y(z) generated by

the sequence b defined by b0 = α, b1 = η 6= 0, and (6.77) satisfies (6.72). Indeed,

since y′ (0) = η 6= 0, the function y−1 (z) is analytic in a neighborhood of the point

y (0) = α. If we now define x (z) by means of (6.75), then

x′ (z) = αy′
(
αy−1 (z)

) (
y−1

)′
(z)

= αy′
(
αy−1 (z)

) 1

y′ (y−1 (z))

= y
(
αmy−1 (z)

)
= x[m] (z) ,
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as required. The proof is complete.

We remark that in the above proof, since

y
(
αy−1 (α)

)
= y (α · 0) = α,

α is a fixed point of the solution x (z).

We now show how to explicitly construct an analytic solution of (6.72) by means

of (6.77). Let α be a complex number which either satisfies 0 < |α| < 1 or is a

Siegel number. By means of the previous Theorem, equation (6.73) has an ana-

lytic solution of the form y(z) = b̂(z), where b0 = α, b1 = η 6= 0, and {bn}∞n=2 is

determined by (6.77). It is not difficult to calculate the coefficients bn by means of

(6.77), indeed the first few terms are as follows:

b2 =
y′′ (0)

2
=

αm−1η2

2 (α− 1)
,

b3 =
y′′′ (0)

3!
=
α2(m−1) (αm + 2) η3

3! (α2 − 1) (α− 1)
,

b4 =
y(4) (0)

4!
=
α3m−3

[(
α2m + 3

)
(αm + 2) (α− 1) + 3αm

(
α2 − 1

)]
η4

4! (α3 − 1) (α2 − 1) (α− 1)2
.

Furthermroe, since y−1 (z) is analytic in a neighborhood of the point y (0) = α, it

can also be determined once its derivatives at α have been determined
(
y−1

)′
(α) =

1

y′ (y−1 (α))
=

1

y′ (0)
=

1

η
,

(
y−1

)′′
(α) = −y

′′ (y−1 (α)
) (
y−1

)′
(α)

(y′ (y−1 (α)))
2 = −y

′′ (0)
(
y−1

)′
(α)

(y′ (0))
2 = − αm−1

(α− 1) η
,

(
y−1

)′′′
(α)

= −

{
y′′′
(
y−1 (α)

) [(
y−1

)′
(α)
]2

+ y′′
(
y−1 (α)

) (
y−1

)′′
(α)

}[
y′
(
y−1 (α)

)]2

[y′ (y−1 (α))]
4

+
y′′
(
y−1 (α)

) (
y−1

)′
(α) · 2 · y′

(
y−1 (α)

)
y′′
(
y−1 (α)

) (
y−1

)′
(α)

[y′ (y−1 (α))]
4

= −
[
y′′′ (0) η−2 − η′′ (0)αm−1/ (α− 1) η

]
η2 − η′′ (0) η−1 · 2 · ηy′′ (0) η−1

[y′ (0)]
4

=
α2(m−1) (3α− αm + 1)

(α− 1)
2
(α+ 1) η

,

etc. Finally, we determine a solution x (z) of (6.72) by finding its derivatives at α:

x (α) = y
(
αy−1 (α)

)
= y (α · 0) = α,

x′ (α) = y′
(
αy−1 (α)

)
· α
(
y−1

)′
(α) = αy′ (0)

(
y−1

)′
(α) = αη · 1

η
= α,
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x′′ (α) = α2y′′
(
αy−1 (α)

) [(
y−1

)′
(α)
]2

+ αy′
(
αy−1 (α)

) (
y−1

)′′
(α) = αm,

x′′′ (α) = y′′′
(
αy−1 (α)

) [
α
(
y−1

)′
(α)
]3

+ y′′
(
αy−1 (α)

)
· 2α

(
y−1

)′
(α) · 2

(
y−1

)′′
(α)

+y′′
(
αy−1 (α)

)
· α
(
y−1

)′
(α) · α

(
y−1

)′′
(α) + y′

(
αy−1 (α)

)
· α
(
y−1

)′′′
(α)

=
α2m−1 (αm − 1)

α− 1
= α2m−1

(
αm−1 + · · · + α+ 1

)
,

etc. Thus, the desired solution of (6.72) is

x (z) = α+ α (z − α) +
αm

2!
(z − α)2 +

α2m−1 (αm − 1)

3! (α− 1)
(z − α)3 + · · · (6.79)

We remark that a simple program can be used to generate other terms in (6.79).

For instance, by means of the following Mathematica program:

num = 4;

b[0] = α;

b[1] = η;

Do[b[n+ 1] = Sum[(k + 1) ∗ αˆ(m ∗ (n− k) ∗ b[k + 1] ∗ b[n− k], {k, 0, n− 1}]/
((αˆ(n+ 1) − α) ∗ (n+ 1), {n, 1, num}]
y(0) = α;

iy[x ] := InverseFunction[y][x]

Do[Derivative[n][y][0] = b[n] ∗ n!, {n, 1, num}]
Do[a[n] = Simplify[Dy[α ∗ iy[x]], {x, n}]/.InverseFunction[y][x] → 0], {n, 1, num}];
Do[Print[

′′
a[′′, i,′′ ] =′′, a[i]], {i, 1, num}];

we may obtain

a[1] = α

a[2] = αm

a[3] =
α−1+2m(−1 + αm)

−1 + α

α[4] =
α−2+3m(−1 + αm)(−1 − 3α+ 3αm + α2m)

(−1 + α)2(1 + α)

so that α[i] = x(i)(α). By changing the value of num, we may obtain any a[num] as

desired.

6.2.2 Equation II

Next, we will be concerned with a more general class of equation of the form [181]

x′ (z) = c1x (z) + c2x
[2] (z) + · · · + cmx

[m] (z) , c1 + · · · + cm 6= 0. (6.80)

where c1, ..., cm are complex numbers, and x[k] (z) denotes the k-th iterate of the

function x (z) . We will construct analytic solutions for our equation in a neighbor-

hood of a complex number of the form α/(c1 + · · · + cm) where α either satisfies

0 < |α| < 1 or is a Siegel number.
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We first seek a formal power series solution for the following initial value problem

y′ (αz) =
1

α
y′ (z)

m∑

i=1

ciy
(
αiz
)
, (6.81)

y (0) =
α

c1 + · · · + cm
. (6.82)

For the sake of convenience, we will set

C = c1 + · · · + cm.

Theorem 6.14. Suppose 0 < |α| < 1. Then for any complex number η 6= 0,

equation (6.81) has a solution of the form

y (z) =
α

C
+ ηz +

∞∑

n=2

bnz
n (6.83)

which is analytic on a neighborhood of the origin.

Proof. We seek a solution of (6.81) in a power series of the form y(z) = b̂(z)

where b0 = α/C and b1 = η. Substituting (6.83) into (6.81), we see that

α ·Db =
1

α
(Db) ∗

(
m∑

i=1

ciα
i · b
)
.

Hence the sequence {bn}∞n=2 is successively determined by the condition

(
αn+1 − α

)
(n+ 1) bn+1 =

n−1∑

k=0

(k + 1)

m∑

i=1

ciα
i(n−k)bk+1bn−k, n ∈ Z+. (6.84)

in a unique manner. Since 0 < |α| < 1, there exists a positive number N such that

for n > N,

|α|n+1 < |α| − γ

for some γ satisfying 0 < γ < |α| . From (6.76), we see that

γ |bn+1| ≤
(
|α| − |α|n+1

)
|bn+1| ≤

∣∣∣∣∣
m∑

i=1

ci

∣∣∣∣∣
n−1∑

k=0

|bk+1| |bn−k| .

Note that Example 4.14 asserts that the polynomial equation

G2 − γ

|C|G+
γ

|C| |η| z +
N∑

n=2

(
γ

|C| |ηn| −
n−1∑

k=1

|ηk| |ηn−k|
)
zn = 0

has a solution G(z) which is analytic on a neighborhood of the origin and

G(z) =

∞∑

n=0

Bnz
n
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where {Bn}n∈N is defined by B0 = 0, B1 = |η| ,

Bn = |ηn| ≡ |bn| , n = 2, ..., N,

and

Bn+1 = γ−1

∣∣∣∣∣
m∑

i=1

ci

∣∣∣∣∣
n−1∑

k=0

Bk+1Bn−k, n ≥ N.

It is easy to show by induction that bn ≤ Bn for n ≥ 1, and hence the radius of

convergence of b is positive. The proof is complete.

Theorem 6.15. Suppose α is a Siegel number. If η = 1, equation (6.81) has an

analytic solution of the form (6.83) in a neighborhood of the origin.

The proof is similar to the that of Theorem 6.12 and hence will be sketched

as follows. We first seek a power series solution of the form (6.83) where b0 =

α/ (c1 + · · · + cm) and b1 = 1. This leads to (6.84) again so that

|bn+1| =
1

|αn − 1|

n−1∑

k=0

|bk+1| |bn−k| , n ≥ 1.

To show that the formal solution converges in a neighborhood of the origin, note

that the polynomial equation

|C|G2 (z) + z = G (z) ,

being a special case of (4.10), has a solution G(z) which is analytic on a neighbor-

hood of the origin and G(z) = v̂(z), where the sequence v = {vn}n∈N
is defined by

v0 = 0, v1 = 1 and

vn+1 = |C| v〈2〉n , n ≥ 2.

As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (Theorem 3.31) to

conclude that the radius of convergence of b is positive.

Theorem 6.16. Suppose 0 < |α| < 1 or α is a Siegel number. Then equation

(6.80) has an analytic solution of the form

x (z) =
α

C
+ α

(
z − α

C

)
+

1

2!

(
m∑

i=1

ciα
i

)(
z − α

C

)2

+
1

3!

(
m∑

i=1

ciα
i−1

)(
m∑

i=1

ciα
i
(
αi−1 + αi−2 + · · · + 1

)
)(

z − α

C

)3

+

∞∑

n=4

1

n!
λn

(
z − α

C

)n
(6.85)

in a neighborhood of α/C, where λ4, λ5, ... are constants.
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Proof. By the previous two results, (6.81) has an analytic solution of the form

(6.83) in a neighborhood of the origin. If we pick b1 = η 6= 0, then since y′ (0) 6= 0,

the function y−1 (z) is analytic in a neighborhood of the point b0 = y (0) = α/C. If

we now define x (z) by means of

x (z) = y
(
αy−1 (z)

)
,

then

x
(α
C

)
= y (0) =

α

C
,

and

x′ (z) = αy′
(
αy−1 (z)

)
·
(
y−1

)′
(z)

= αy′
(
αy−1 (z)

)
· 1

y′ (y−1 (z))

=
m∑

i=1

ciy
(
αiy−1 (z)

)
=

m∑

i=1

cix
[i] (z) .

This shows that (6.80) has an analytic solution of the form

x (z) =
α

C
+

∞∑

n=1

λn

(
z − α

C

)n

in a neighborhood of the number α/C.

To find out the first few terms of the coefficient sequence {λn}∞n=1 , we follow

the above approach. First we calculate from (6.84) that

b2 =
y′′ (0)

2!
=

η2

2! (α− 1)

m∑

i=1

ciα
i−1,

b3 =
y′′′ (0)

3!
=

η3

3! (α2 − 1) (α− 1)

(
m∑

i=1

ciα
i−1

)(
m∑

i=1

ci
(
α2i−1 + 2αi−1

)
)
,

etc. Next, we determine y−1 (z) by calculating the first few terms of the its deriva-

tives at b0 :

(
y−1

)′
(b0) =

1

η
,

(
y−1

)′′
(b0) = − 1

(α− 1) η

m∑

i=1

ciα
i−1,

(
y−1

)′′′
(b0) =

1

(α− 1)
2
(α+ 1) η

(
m∑

i=1

ciα
i−1

)(
m∑

i=1

ciα
i−1
(
3α− αi + 1

)
)
,

etc. Finally, we determine the first few derivatives of x (z) at b0 :

x (b0) = y
(
αy−1 (b0)

)
= y (α · 0) = b0,
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x′ (b0) = α,

x′′ (b0) =

m∑

i=1

ciα
i,

x′′′ (b0) =

(
m∑

i=1

ciα
i−1

)(
m∑

i=1

ciα
i
(
αi−1 + αi−2 + · · · + 1

)
)
,

etc. The proof is complete.

As a final check of our derivation, note that the unique solution of

x′ (z) = cx (z) , c 6= 0,

x
(α
c

)
=
α

c
,

where α is arbitrary, is

x (z) =
α

c
ec(z−

α
c ) =

α

c
+ α

(
z − α

c

)
+
cα

2!

(
z − α

c

)2

+
c2α

3!

(
z − α

c

)3

+ · · ·

which coincides with the formula (6.85) when c2 = c3 = · · · = cm = 0.

6.2.3 Equation III

We consider a class of functional differential equation of the form [180]

x′(z) = x(az + bx(z)). (6.86)

When a = 0 and b = 1, equation (6.86) reduces to the iterative functional differential

equation x′(z) = x(x(z)). When b = 0 and |a| ≤ 1, equation (6.86) reduces to the

functional differential equation x′(z) = x(az).

When a 6= 1 and b 6= 0, we will construct analytic solutions for our equations

in a neighborhood of the complex number (β − a)/(1 − a), where β either satisfies

0 < |β| < 1 or is a Siegel number.

We first seek a formal power series solution for the following initial value problem

y′(βz) =
1

β
y′(z)

{
y
(
β2z

)
− ay (βz) + a

}
, (6.87)

y(0) =
β − a

1 − a
. (6.88)

Then we show that such a power series solution is majorized by a convergent power

series. Then we show that

x(z) =
1

b
y(βy−1(z)) − a

b
z (6.89)

is an analytic solution of (6.86) in a neighborhood of (β − a)/(1 − a). Finally, we

make use of a partial difference equation to show how to explicitly construct such

a solution.
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Theorem 6.17. Suppose 0 < |β| < 1 holds. Then for any nontrivial complex

number η, equation (6.87) has a solution of the form

y(z) =
β − a

1 − a
+ ηz +

∞∑

n=2

bnz
n (6.90)

which is analytic on a neighborhood of the origin. Furthermore, there exists a posi-

tive constant M such that for z in this neighborhood,

|y(z)| ≤
∣∣∣∣
β − a

1− a

∣∣∣∣+
1

2M
.

Proof. We seek a solution of (6.87) in a power series of the form y(z) = b̂(z)

where b0 = (β − a)/(1− a) and b1 = η. Substituting (6.90) into (6.87), we see that

β ·Db =
1

β
(Db) ∗

[
β2 · b− aβ · b+ a

]
.

Hence the sequence {bn}∞n=2 is successively determined by the condition

(
βn+1 − β

)
(n+1)bn+1 =

n−1∑

k=0

(k+1)
(
β2(n−k) − aβn−k

)
bk+1bn−k, n ∈ Z+, (6.91)

in a unique manner. Furthermore, since 0 ≤ k ≤ n− 1, we see that
∣∣∣∣
β2(n−k) − aβn−k

βn+1 − β

∣∣∣∣ ≤
1 + |a|
|βn − 1| ≤M, n ≥ 2 (6.92)

for some positive number M.

Note that the equation

G2(z) − 1

M
G(z) +

1

M
|η| z = 0,

being a special case of (4.10), has a solution

G(z) =

∞∑

n=0

Bnz
n

which is analytic on a neighborhood of the origin and b0 = 0, b1 = |η| , and

Bn+1 = M

n−1∑

k=0

Bk+1Bn−k, n ∈ Z+.

Since it is easily checked that

|bn| ≤ Bn

for n ∈ Z+. We see that the sequence b has a positive radius of convergence.

Next, recall that the solution G(z) can be written as

G(z) =
1

2M

{
1 −

√
1 − 4M |η| z

}
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which converges for |z| ≤ 1/(4M |η|). Since for |z| ≤ 1/(4M |η|),

1

G (|z|) =
2M

1 −
√

1 − 4M |η| |z|
=

1 +
√

1 − 4M |η| |z|
2 |η| |z| ≥ 1

2 |η| |z| ,

or

G(|z|) ≤ 2 |η| |z| ≤ 2 |η| 1

4M |η| =
1

2M
,

thus

|y(z)| ≤
∣∣∣∣
β − a

1− a

∣∣∣∣+
∞∑

n=1

|bn| |z|n ≤
∣∣∣∣
β − a

1 − a

∣∣∣∣+
∞∑

n=1

Bn |z|n

=

∣∣∣∣
β − a

1− a

∣∣∣∣+G (|z|) ≤
∣∣∣∣
β − a

1 − a

∣∣∣∣+
1

2M

as required. The proof is complete.

Theorem 6.18. Suppose β is a Siegel number. Then equation (6.87) has an ana-

lytic solution of the form

y(z) =
β − a

1 − a
+ z +

∞∑

n=2

bnz
n (6.93)

in a neighborhood of the origin, and there exists a positive constant δ such that

|y(z)| ≤
∣∣∣∣
β − a

1− a

∣∣∣∣+
1

25δ+1

∞∑

n=1

1

n2δ
.

Proof. As in the previous proof, we seek a power series solution of the form

(6.93). Then defining b0 = (β − a)/(1− a) and b1 = 1, (6.91) and (6.92) again hold

so that

|bn+1| ≤
1 + |a|
|βn − 1|

n−1∑

k=0

|bk+1| |bn−k| (6.94)

for n ∈ Z+. Note that the equation

(1 + |a|)G2(z) + z = G(z),

being a special case of (4.10), has a solution

G(z) =
∞∑

n=0

Cnz
n =

1

2(1 + |a|)
{
1 −

√
1 − 4(1 + |a|)z

}

which is analytic on B(0; 1/(4(1 + |a|))) and C0 = 0, C1 = 1 and

Cn+1 = (1 + |a|)
n−1∑

k=0

Ck+1Cn−k, n ∈ Z+.
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In view of the Cauchy Estimation (Theorem 3.26), there is some r > 0 such that

|Cn| ≤ rn for n ≥ 1. As in the proof of Theorem 3.32, we may apply Siegel’s Lemma

(Theorem 3.31) to conclude that there is δ > 0 such that

|bn| ≤ rn
(
25δ+1

)n−1
n−2δ, n ∈ Z+,

which shows that the series (6.90) converges for |z| <
(
r25δ+1

)−1
.

Finally, when |z| ≤ (r25δ+1)−1, we have

|y(z)| ≤
∣∣∣∣
β − a

1 − a

∣∣∣∣+
∞∑

n=1

|bn| |z|n ≤
∣∣∣∣
β − a

1− a

∣∣∣∣+
∞∑

n=1

Cndn |z|n

≤
∣∣∣∣
β − a

1 − a

∣∣∣∣+
∞∑

n=1

rn
(
25δ+1

)n−1
n−2δ |z|n

≤
∣∣∣∣
β − a

1 − a

∣∣∣∣+
∞∑

n=1

rn
(
25δ+1

)n−1
n−2δ(r25δ+1)−n

=

∣∣∣∣
β − a

1 − a

∣∣∣∣+
1

25δ+1

∞∑

n=1

1

n2δ

as required. The proof is complete.

Theorem 6.19. Suppose 0 < |β| < 1 or β is a Siegel number. Then equation (6.86)

has an analytic solution x(z) of the form (6.89) in a neighborhood of (β−a)/(1−a),
where y(z) is an analytic solution of equation (6.87). Furthermore, when 0 < |β| < 1

holds, there is a positive constant M such that

|x(z)| ≤ 1

|b|

(∣∣∣∣
β − a

1 − a

∣∣∣∣+
1

2M

)
+
∣∣∣a
b

∣∣∣ |z|

in a neighborhood of (β − a)/(1 − a); and when β is a Siegel number, there is a

positive number δ such that

|x(z)| ≤ 1

|b|

(∣∣∣∣
β − a

1− a

∣∣∣∣+
1

Q

∞∑

n=1

1

n2δ

)
+
∣∣∣a
b

∣∣∣ |z| , Q = 25δ+1,

in a neighborhood of (β − a)/(1 − a).

Proof. In view of the previous two results, we may find a sequence {bn}∞n=2

such that the function y(z) of the form by (6.93) is an analytic solution of (6.87) in

a neighborhood of the origin. Since y′(0) = 1, the function y−1(z) is analytic in a

neighborhood of the point y(0) = (β − a)/(1 − a). If we now define x(z) by means

of (6.89), then

x′(z) =
1

b
· βy′

(
βy−1(z)

)
·
(
y−1

)′
(z) − a

b
=
β

b
y′
(
βy−1(z)

)
· 1

y′ (y−1(z))
− a

b

=
1

b

{
y
(
β2y−1(z)

)
− ay

(
βy−1(z)

)
+ a
}
− a

b

=
1

b

{
y
(
β2y−1(z)

)
− ay

(
βy−1(z)

)}
,
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and

x (az + bx(z)) = x

(
az + b

[
1

b
y
(
βy−1(z)

)
− a

b
z

])
= x

(
y
(
βy−1(z)

))

=
1

b
y
(
βy−1

(
y
(
βy−1(z)

)))
− a

b
y
(
βy−1(z)

)

=
1

b

{
y
(
β2y−1(z)

)
− ay

(
βy−1 (z)

)}

as required.

Next, if 0 < |β| < 1, then

|x(z)| =
1

|b|
∣∣y
(
βy−1(z)

)
− az

∣∣ ≤ 1

|b|
(∣∣y
(
βy−1(z)

)∣∣+ |a| |z|
)

≤ 1

|b|

(∣∣∣∣
β − a

1 − a

∣∣∣∣+
1

2M

)
+
∣∣∣a
b

∣∣∣ |z| ;

and if β is a Siegel number, then

|x(z)| =
1

b

∣∣y
(
βy−1(z)

)
− az

∣∣ ≤ 1

|b|
(∣∣y
(
βy−1(z)

)∣∣+ |a| |z|
)

≤ 1

|b|

(∣∣∣∣
β − a

1 − a

∣∣∣∣+
1

Q

∞∑

n=1

1

n2δ

)
+
∣∣∣a
b

∣∣∣ |z| .

The proof is complete.

We now show how to explicitly construct an analytic solution of (6.86) by means

of (6.89). Since

x(z) =
1

b
y
(
βy−1(z)

)
− a

b
z,

thus

x

(
β − a

1 − a

)
=

1

b
y(0) − a

b

β − a

1 − a
=

1

b

β − a

1− a
− a

b

β − a

1 − a
=
β − a

b
.

Furthermore,

x′
(
β − a

1 − a

)
= x

(
a · β − a

1 − a
+ bx

(
β − a

1 − a

))

= x

(
a · β − a

1 − a
+ b · β − a

b

)
= x

(
β − a

1 − a

)
=
β − a

b
.

By calculating the derivatives of both sides of (6.86), we obtain successively

x′′(z) = x′(az + bx(z)) (a+ bx′(z)) ,

x′′′(z) = x′′ (az + bx(z)) (a+ bx′(z))
2

+ x′(az + bx(z)) (bx′′(z)) ,

so that

x′′
(
β − a

1 − a

)
= x′

(
a · β − a

1− a
+ bx

(
β − a

1 − a

))(
a+ bx′

(
β − a

1 − a

))

= βx′
(
β − a

1 − a

)
=
β(β − a)

b
,
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x′′′
(
β − a

1 − a

)
= x′′

(
β − a

1 − a

)
β2 + x′

(
β − a

1 − a

)
· bx′′

(
β − a

1 − a

)

=
1

b

[
β(β − a)

(
β2 + β − a

)]
.

It seems from the above calculations that the higher derivatives x(m)(z) at z =

ξ ≡ (β− a)/(1− a) can be determined uniquely in similar manners. To see this, let

us denote the derivative
(
x(i)(az + bx(z))

)(j)
at z = ξ by λij , where i, j ≥ 0. Note

that the two derivatives x(k)(z) and x(k)(az + bx(z)) are equal at the point z = ξ

since aξ + bx(ξ) = ξ. In other words,

x(k)(ξ) = λk0.

Furthermore, in view of (6.86), we see that x(k+1)(z) = (x(az + bx(z)))(k) which

implies

λk+1,0 = λ0,k.

Finally, since

(
x(i)(az + bx(z))

)(j+1)

=
(
x(i+1)(az + bx(z)) · (a+ bx′(z))

)(j)

=

j∑

k=0

(
j

k

)
(a+ bx′(z))

(k)
(
x(i+1)(az + bx(z))

)(j−k)
,

we see also that

λi,j+1 =

j∑

k=0

(
j

k

)
λi+1,j−k · (a+ bx′(z))

(k)
∣∣∣
z=ξ

= βλi+1,j + b

j∑

k=1

(
j

k

)
λi+1,j−kλ0,k

for i, j ∈ N, where we have used the fact that λk+1,0 = λ0,k in obtaining the last

equality. Clearly, if we have obtained the derivatives x(0)(ξ) = λ00, ..., x
(m)(ξ) =

λm0 = λ0,m−1, then by means of the above partial difference equation, we can

successively calculate

λm−1,1, λm−2,1, λm−2,2, ..., λ11, λ12, ..., λ1,m−1, λ0m

in a unique manner. In particular, λ0m = λm+1,0 is the desired derivative x(m+1)(ξ).

This shows that

x(z) =
β − a

b
+

1

b
(β − a)

(
z − β − a

1 − a

)
+
β(β − a)

2!b

(
z − β − a

1 − a

)2

+
β(β − a)(β2 + β − a)

3!b

(
z − β − a

1 − a

)3

+

∞∑

i=4

λi,0
i!

(
z − β − a

1− a

)i
.
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6.2.4 Equation IV

Consider the equation [140]

x′ (z) =
1

x (x (z))
. (6.95)

If x−1 (z) exists, and is substituted into both sides of (6.95), then by

x′ (z) =
1

(x−1)
′
(x(z))

we have
(
x−1

)′
(x(z)) = x(x (z)). (6.96)

Furthermore, from

d

dz

(
x−1

)′
(x(z)) = (x−1)′′(x(z))x′(z) = x′(x(z))x′(z),

we see that

(x−1)′′(x(z)) = x′(x(z)).

By induction, we see that

(x−1)(r) ◦ x = x(r−1) ◦ x (6.97)

for r ≥ 2.

Consider an analytic solution of (6.95) which has a fixed point ζ 6= 0. Such a

solution will be denoted by xζ (z) so that

xζ (ζ) = ζ. (6.98)

If such a solution exists, then by (6.95),

x′ζ (ζ) =
1

ζ
. (6.99)

In view of (6.98) and (6.99), we may then let

xζ (z) =
∞∑

n=0

Pn (ζ) (z − ζ)n , (6.100)

where P0 (ζ) = ζ and P1 (ζ) = 1/ζ.

To determine the remaining Pn (ζ), recall the n-th derivative of the composite

function h ◦ g is, by Theorem 2.16, given by

(h ◦ g)(n)
=

n∑

r=1

h(r) ◦ g · n!

r!

∑

n,r

g(p1) · · · g(pr)

p1! · · · pr!
(6.101)

where, throughout this section,
∑

n,r is taken over P1+ · · ·+Pr = n and P1, ..., Pr ∈

Z+. In (6.101) let h = x−1
ζ and g = xζ . Since

(
x−1
ζ ◦ xζ

)(n)

= 0 for n ≥ 2 and since

(6.97) holds, if we evaluate both sides of the resulting equation at ζ, one obtains

0 =

n∑

r=1

1

r
Pr−1 (ζ) ·

∑

n,r

Pp1 (ζ) · · ·Ppr
(ζ) . (6.102)
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In (6.102), Pn (ζ) occurs only in the second summation when r = 1. Solving for

Pn (ζ) yields the recursion formula

Pn (ζ) = −1

ζ

n∑

r=2

1

r
Pr−1 (ζ) ·

∑

n,r

Pp1 (ζ) · · ·Ppr
(ζ) . (6.103)

We now note that for real ζ > 0, Ps (ζ) = (−1)s−1 |Ps (ζ)| for s ≥ 1. Indeed,

since P1(ζ) = 1/ζ, our assertion is true for s = 1. Assume our assertion is true for

s = 1, 2, ..., n− 1. Then in view of (6.103), since (P1 − 1) + · · · + (Pr − 1) = n− r,

one obtains

Pn (ζ) =
(−1)

n−1

ζ

n∑

r=2

1

r
|Pr−1 (ζ)| ·

∑

n,r

|Pp1 (ζ)| · · · |Ppr
(ζ)| . (6.104)

Since all terms on the right are positive except for the factor (−1)
n−1

, our conclusion

follows.

Next, note that if ζ > 0 and xk(z) in (6.100) converges for x ∈ (ζ −Rζ , ζ +Rζ),

then for any ζ ′ ≥ ζ, it converges for x ∈ (ζ ′−Rζ′ , ζ ′+Rζ′) where Rζ′ ≥ Rζ . Indeed,

since P1 (ζ) = 1/ζ, if ζ ′ ≥ ζ, then |P1 (ζ ′)| ≤ |P1 (ζ)| . Assume |Ps (ζ ′)| ≤ |Ps (ζ)|
for s = 1, 2, ..., n− 1. Then in view of (6.104), xζ′(z) � xζ(z) for any real ζ ′ ≥ ζ.

Let w1 =
(
1 +

√
5
)
/2, w2 =

(
1 −

√
5
)
/2. It may be verified that

xw1 (z) =

(
1 +

√
5

2

)(3−
√

5)/2

· z(−1+
√

5)/2

and

xw2 (z) =

(
1 −

√
5

2

)(3+
√

5)/2

· z(−1−
√

5)/2

are analytic solutions of (6.95) and (6.96) such that xw1 (w1) = w1 and xw2 (w2) =

w2. The binomial expansion of xw1 about w1 will converge for |z − w1| < w1. If the

coefficients in this expansion are denoted by An, then by Theorem 3.8, it follows

that Pn (w1) = An. Hence for any ζ ≥ w1, xζ(z) defined by (6.100) converges for

z ∈ (ζ −Rζ , ζ +Rζ), where Rζ ≥ Rw1 = w1.

Theorem 6.20. Let w1 =
(
1 +

√
5
)
/2 and let ζ ∈ C such that |ζ| ≥ w1. Then the

function xζ(z) defined by (6.100) converges for z ∈ B(ζ;w1).

Indeed, note that (−1)n−1 Pn (ζ) = ζs
∑
r an,rζ

r where an,r > 0 for n ≥ 1. This

observation follows from P1 (ζ) = ζ−1 · 1 and induction using (6.103). Thus if ζ is

complex, then |Pn (ζ)| ≤ |Pn (|ζ|)| .
We remark that if xζ(z) defined by (6.100) converges about z = ζ, then x−1

ζ

exists and is analytic about ζ. Let x−1
ζ (z) =

∑∞
n=0Qn (ζ) (z − ζ)

n
where by (6.100),

Q0 (ζ) = Q1 (ζ) = ζ. We may show that Qs (ζ) = s−1Ps−1 (ζ). For s = 1, this

follows from comparison of (6.100) and Q1 (ζ). To prove the general case, assume
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our assertion is true for s = 1, ..., n− 1. Apply (6.102) to x−1
n · xζ and evaluate at

ζ, then

0 =

n∑

r=1

Qr (ζ)
∑

n,r

Pp1 (ζ) · · ·Ppr
(ζ) .

Isolating Qn (ζ) yields, since P1 (ζ) = 1/ζ,

Qn (ζ) = −ζn
n−1∑

r=1

Qr (ζ)
∑

n,r

Pp1 (ζ) · · ·Ppr
(ζ) .

Substituting Qr (ζ) = Pr−1 (ζ) /r, one obtains in view of (6.103), that

Qn (ζ) = −ζn
{
−ζPn (ζ) − 1

n
Pn−1 (ζ)

1

ζn
+ ζPn (ζ)

}
=

1

n
Pn−1 (ζ) .

Example 6.4. For example, the equation

g′ (z) =
a

g (g (z)) − b

has as solutions

gaζ+b = axζ

(
z − b

a

)
+ b.

where gaζ+b (aζ + b) = aζ + b.

6.2.5 First Order Neutral Equation

We will be concerned with analytic solutions of a iterative functional differential

equation related to a state dependent functional differential equation of the form

αz + βx′(z) = x(az + bx′(z)), (6.105)

where α, β, a, b are complex numbers.

In case α = a = 0, β = 1 and b = 1, we obtain the functional differential equation

x′(z) = x(x′(z)). (6.106)

In case b = 0, a 6= 0 and β 6= 0, equation (6.105) changes into the functional

differential equation

αz + βx′(z) = x(az), (6.107)

and in case b = 0, a 6= 0 and β = 0, into the functional equation

αz = x(az). (6.108)

A distinctive feature of the equation (6.105) when b 6= 0 is that the argument of the

unknown function is dependent on the state derivative, and this is the case we will

emphasize.

It is easy to find some of the analytic solutions of (6.105) in various special cases.

For instance, equation (6.106) has the solution x(z) = pz − p2 + p for any constant
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p, while (6.108) has the solution x(z) = αz/a. In order to find an analytic solution

x = x(z) of (6.107), we formally assume that

x(z) = ĉ(z) =

∞∑

n=0

cnz
n.

Then in view of (6.107), we will obtain

α~ + βDc = a · c.

Hence

βc1 = c0, α+ 2βc2 = ac1,

and

β(n+ 1)cn+1 = ancn, n ≥ 2.

This leads to

x(z) = c0 +
c0
β
z +

ac0 − αβ

2β2
z2 + (ac0 − αβ)

∞∑

n=3

1

n!βn
a(n−2)(n+1)/2zn.

As can be verified easily, when 0 < |a| ≤ 1, it is an entire solution of (6.107).

We now assume that b 6= 0. In order to construct analytic solutions of (6.105)

in a systematic manner, we first let

y(z) = az + bx′(z). (6.109)

Then for any number z0, we have

x(z) = x(z0) +
1

b

∫ z

z0

(y(s) − as)ds, (6.110)

and

x(y(z)) = x(z0) +
1

b

∫ y(z)

z0

(y(s) − as)ds.

Therefore, in view of (6.105), we have

x(az + bx′(z)) = x(y(z)) = x(z0) +
1

b

∫ y(z)

z0

(y(s) − as)ds

= αz +
β

b
(y(z) − az),

or

bx(z0) +

∫ y(z)

z0

(y(s) − as)ds = βy(z) + (bα− aβ)z. (6.111)

In case z0 is a fixed point of y(z), i.e., y(z0) = z0, we see that

bx(z0) +

∫ y(z0)

z0

(y(s) − as)ds = βy(z0) + (bα− aβ)z0,



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

216 Analytic Solutions of Functional Equations

or

x(z0) =
1

b
(bα+ (1 − a)β) z0. (6.112)

Furthermore, differentiating both sides of the equation (6.111) with respect to z,

we obtain an iterative functional differential equation

{y(y(z)) − ay(z) − β} y′(z) = bα− aβ. (6.113)

There are two cases to consider: (i) bα − aβ = 0; and (ii) bα − aβ 6= 0. If the

first case holds, then we try to find analytic solutions of the equations

y′(z) = 0 (6.114)

or

y(y(z)) − ay(z) − β = 0. (6.115)

If the latter case holds, we try to find analytic solutions of the simultaneous equa-

tions

y′(z) = bα− aβ (6.116)

and

y(y(z)) − ay(z) − β − 1 = 0, (6.117)

or, to find analytic solutions of the single equation (6.113). Once analytic solutions

y(z) and their fixed points are found, then analytic solutions of our original equation

(6.105) are easily calculated from (6.110) and (6.112).

The solutions of (6.114) are of the form y(z) = c. Since z = c is the fixed point

of y(z), thus from (6.110) and (6.112), we see that when bα− aβ = 0 and b 6= 0,

x(z) =
β

b
c+

1

b

{
ac2

2
− c2 + cz − az2

2

}

is an entire solution of (6.105).

We are now left with the simultaneous equations (6.116) and (6.117), as well as

equations (6.113) and (6.115). Sufficient conditions and methods for constructing

some of their analytic solutions will be given below under the assumption that b 6= 0.

Analytic solutions of the simultaneous equations (6.116) and (6.117) are easily

found. We have the following result.

Theorem 6.21. Suppose bα − aβ 6= 0. Then the simultaneous equations (6.116)

and (6.117) has a solution if, and only if, bα − aβ = a. In case bα − aβ = a, the

function y(z) = az + β + 1 is a solution.

Proof. Suppose y(z) is a solution of (6.116) and (6.117), then in view of (6.116),

y(z) = (bα− aβ)z + C. Substituting it into (6.117), we see that
{
(bα− aβ)2 − a(bα− aβ)

}
z + {bα− aβ + 1 − a}C − β − 1 = 0,
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or, equivalently, that

(bα− aβ)2 = a(bα− aβ),

(bα− aβ + 1 − a)C = β + 1.

The above simultaneous equation has a solution if, and only if, bα − aβ = a and

C = β + 1. The proof is complete.

We remark that the unique fixed point of y(z) = az + β + 1 is (β + 1)/(1 − a).

Therefore, in addition to the conditions bα− aβ = a 6= 0 and b 6= 0, the additional

condition a 6= 1 is needed for constructing the analytic solution

x(z) = x

(
β + 1

1− a

)
+
β + 1

b

(
z − β + 1

1 − a

)
=
β + 1

b

(
a+ β

1− a
+ z − β + 1

1 − a

)

of (6.105) from (6.110) and (6.112).

It is easy to see that if y(z) is an analytic solution of (6.115) with a fixed point

z0, then z0 = β/(1 − a), provided a 6= 1. It is also easy to see that

y(z) =
β

1 − a
, a 6= 1, (6.118)

and

y(z) = az + β (6.119)

are solutions of (6.115). Indeed, these are the only analytic solutions defined in a

neighborhood of the fixed point z0 = β/(1 − a) when a 6= 0.

Theorem 6.22. Suppose a 6= 0, 1. Then the only analytic solutions of (6.115)

defined in a neighborhood of the point z0 = β/(1 − a) are those defined by (6.118)

or (6.119).

Proof. Let y(z) be an analytic solution of (6.115) such that y(z0) = z0. In view

of (6.115), we see that

y′(y(z))y′(z) − ay′(z) = 0,

so that

(y′(z0))
2 − ay′(z0) = 0.

Thus either y′(z0) = 0 or y′(z0) = a. Differentiating (6.115) twice, we arrive at

y′′(y(z))(y′(z))2 + y′(y(z))y′′(z) − ay′′(z) = 0,

so that

y′′(z0)
[
(y′(z0))

2 + y′(z0) − a
]

= 0.

If y′(z0) = 0, then y′′(z0) = 0; while if y′(z0) = a 6= 0, then y′′(z0) = 0 also. We

assert that y(n)(z0) = 0 for all n ≥ 3. To see this, let

λij(z) =
(
y(i) (y(z))

)(j)

.
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Since

(y(y(z)))
(n+1)

= (y′ (y(z)) y′(z))
(n)

=

n∑

k=0

C
(n)
k (y′ (y(z)))

(k)
(y′(z))

(n−k)
,

thus

λ0,n+1(z0) = y′(z0)y
(n+1)(z0) + 0 + · · · + 0 + λ1n(z0)y

′(z0).

But since

(y′(y(z)))
(n)

= (y′′ (y(z)) y′(z))
(n−1)

=

n−1∑

k=0

C
(n−1)
k (y′′ (y(z)))

(k)
(y′(z))

(n−1−k)
,

we see that

λ1n(z0) = 0 + · · · + 0 + λ2,n−1(z0)y
′(z0) = λ2,n−1(z0)y

′(z0).

By induction, it is easy to see that

λ1n(z0) = λ2,n−1(z0)y
′(z0) = λ3,n−2(z0)(y

′(z0))
2 = · · · = y(n+1)(z0)(y

′(z0))
n.

Thus we have

y(n+1)(z0)
[
(y′(z0))

n+1 + y′(z0) − a
]

= 0,

which shows that y(n+1)(z0) = 0 for n ≥ 2. The proof is complete.

We may now make use of the solutions just found to construct analytic solutions

of (6.105) by means of (6.110) and (6.112). Doing so, under the assumptions that

a 6= 0, a 6= 1, bα − aβ = 0 and b 6= 0, we see that the solution (6.118) leads to the

entire solution

x(z) =
β2

b(1 − a)
+

1

b

{
a

2

(
β

1 − a

)2

−
(

β

1 − a

)2

+
βz

1 − a
− az2

2

}
,

while the solution (6.119) leads to the entire solution

x(z) =
β2

b(1 − a)
+
β

b

{
z − β

1 − a

}

of (6.105).

To find analytic solutions of (6.113), we first seek an analytic solution g(z) of

the auxiliary equation

µg′(µz)
{
g
(
µ2z
)
− ag(µz) − β

}
= g′(z)(bα− aβ) (6.120)

satisfying the condition

g(0) = s,

where s is to be specified and µ either satisfies 0 < |µ| < 1 or is a Siegel number.

Then we show that (6.113) has an analytic solution of the form

y(z) = g
(
µg−1(z)

)
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in a neighborhood of the number s.

Theorem 6.23. Suppose that 0 < |µ| < 1 and that bα − aβ 6= 0. Suppose further

that when a = 1, we have β 6= 0 and µ = (aβ − bα)/β. Then for any nontrivial

complex number η, equation (6.120) has an analytic solution of the form

g(z) = s+ ηz +
∞∑

n=2

cnz
n, (6.121)

where s is arbitrary when a = 1, and

s =
βµ+ bα− aβ

(1 − a)µ

otherwise.

Proof. We seek a solution of (6.120) in a power series of the form

g(z) = ĉ(z) =
∞∑

n=0

cnz
n. (6.122)

By letting c0 = s and then substituting the subsequent power series into (6.120),

we see that

µµ · c ∗
[
µ2 · c− aµ · c− β

]
= (bα− aβ)Dc.

Hence

[βµ+ bα− aβ − (1 − a)µs] c1 = 0,

and

(aβ − bα)(µn − 1)(n+ 1)cn+1 =
n−1∑

k=0

(k + 1)
(
µ2n−k+1 − aµn+1

)
ck+1cn−k, n ∈ Z+.

(6.123)

In view of the definition of s, we see that βµ + bα − aβ − (1 − a)µs = 0 so that

we can choose c1 to be η. Once c0 and c1 are determined, the other terms of the

sequence {cn} can be determined successively from (6.123) in a unique manner.

We need to show that the subsequent power series (6.122) converges in a neigh-

borhood of the origin. First of all, note that
∣∣∣∣∣
(k + 1)

(
µ2n−k+1 − aµn+1

)

(aβ − bα)(n+ 1) (µn − 1)

∣∣∣∣∣ ≤M, n ≥ 2,

for some positive number M. Next recall that the equation,

G2(z) =
1

M
G(z) − 1

M
|η| z,

as a special case of (4.10), has a solution

G(z) =
1

2M

{
1 −

√
1 − 4M |η| z

}
=

∞∑

n=0

Bnz
n
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on B(0; 1/ |4Mη|) where the sequence B = {Bn}n∈N
satisfies B0 = 0, B1 = |η| =

|c1| and

Bn+1 = M
n−1∑

k=0

Bk+1Bn−k, n ∈ Z+.

Then in view of (6.123),

|cn| ≤ Bn, n ∈ Z+,

which implies that the power series (6.122) is also convergent for z < 1/(4M |η|).
The proof is complete.

Theorem 6.24. Suppose that µ is a Siegel number and that bα− aβ 6= 0. Suppose

further that when a = 1, we have β 6= 0 and µ = (aβ−bα)/β. Then equation (6.120)

has an analytic solution of the form

g(z) = s+ z +

∞∑

n=2

cnz
n, (6.124)

where s is the same number defined in the previous Theorem 6.23.

Proof. As in the previous proof, we seek a power series solution of the form

(6.122). Then defining c0 = s and c1 = 1, (6.123) holds again so that

|cn+1| ≤
1 + |a|

|aβ − bα| |µ
n − 1|−1

n−1∑

k=0

|ck+1| |cn−k| , n ∈ Z+.

Recall that the equation

1 + |a|
|aβ − bα|G

2(z) + z = G(z),

as a special case of (4.10), has a solution

G(z) =
|aβ − bα|
2(1 + |a|)

{
1 −

√
1 − 4(1 + |a|)

|aβ − bα| z
}

=

∞∑

n=0

vnz
n

which is analytic on B(0; |aβ − bα| /(4 + 4 |a|)) and the sequence {vn}n∈N
satisfies

v0 = 0, v1 = 1 and

vn+1 =
1 + |a|

|aβ − bα|

n−1∑

k=0

vk+1vn−k, n ∈ Z+.

In view of the Cauchy Estimation (Theorem 3.26), there is some r > 0 such that

vn ≤ rn for n ∈ Z+. Thus by Theorem 3.32, we may then easily see that there is

δ > 0 such that

|cn| ≤ rn
(
25δ+1

)n−1
n−2δ, n ∈ Z+.
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This shows that the power series (6.124) converges on a neighborhood of the origin.

The proof is complete.

Theorem 6.25. Suppose that 0 < |µ| < 1 or µ is a Siegel number, and that bα −
aβ 6= 0. Suppose further that when a = 1, we have β 6= 0 and µ = (aβ−bα)/β. Then

(6.113) has an analytic solution of the form y(z) = g(µg−1(z)) in a neighborhood

of the number s, where s is defined in Theorem 6.23, and g is an analytic solution

of the equation (6.120).

Proof. In view of the previous two results, the equation (6.120) has an analytic

solution g(z) in the neighborhood of the origin and g(0) = s as well as g′(0) 6= 0.

Thus the inverse function g−1(z) is analytic in a neighborhood of the point s, and

hence the composite function y(z) = g(µg−1(z)) is also analytic in a neighborhood

of the point s. Finally, note that

{y(y(z)) − ay(z) − β} y′(z)

=
{
g
(
µ2g−1(z)

)
− ag

(
µg−1(z)

)
− β

} µg′
(
µg−1(z)

)

g′ (g−1(z))
= bα− aβ.

This shows that the composite function y(z) is a solution of (6.113) as desired. The

proof is complete.

We remark that since g(0) = s, the point s is thus a fixed point of y(z).

In the above, we have shown that under the conditions that

(i) if a = 1, then β 6= 0 and βµ = aβ − bα,

(ii) if a = 1, then s is arbitrary, and

(iii) if a 6= 1, then s = (βµ + bα − aβ)/(1 − a)µ, where 0 < |µ| < 1 or µ is a

Siegel number,

then equation (6.113) has an analytic solution y(z) = g(µg−1(z)) in a neighborhood

of the number s, where g is an analytic solution of (6.120). Since the function g(z)

in (6.122) can be determined by (6.123), it is possible to calculate, at least in theory,

the explicit form of y(z) and then under the additional condition that

(iv) b 6= 0 and bα− aβ 6= 0,

an explicit analytic solution of (6.105) in a neighborhood of the fixed point s of

y(z) by means of (6.110) and (6.112). However, knowing that an analytic solution

of (6.105) exists, we can take an alternate route as follows. Assume that x(z) is of

the form

x(z) = x(s) + x′(s)(z − s) +
x′′(s)

2
(z − s) + · · ·

=
(bα+ (1 − a)β)s

b
+ x′(s)(z − s) +

x′′(s)

2
(z − s) + · · · ,

we need to determine the derivatives x(n)(s) for n ∈ Z+. First of all, in view of

(6.109), we have

x′(s) =
1

b
(y(s) − as) =

(1 − a)s

b
.
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Next by differentiating (6.105), we see that

α+ βx′′(z) = x′(az + bx′(z)) · (a+ bx′′(z)),

so that

α+ βx′′(s) = x′(s)(a+ bx′′(s)),

and

x′′(s) =
ax′(s) − α

β − bx′(s)
=
a(1 − a)s− bα

bβ − b(1− a)s
=
µ− a

b
,

where the denominator β−bx′(s) cannot be zero in view of our assumptions (i)-(iv).

Similarly, if we differentiate (6.105) twice, we arrive at

βx′′′(z) = bx′(az + bx′(z))x′′′(z) + x′′(az + bx′(z)) · (a+ bx′′(z))2,

so that

x′′′(s) =
x′′(s)(a+ bx′′(s))2

β − bx′(s)
=

µ3(µ− a)

b(aβ − bα)
.

In general, we can show that x(n+1)(s), where n ≥ 3, depends only on the lower

derivatives at z = s. To see this, note that

(x(az + bx′(z))
(n)

= (x′(az + bx′(z)) · (a+ bx′′(z)))
(n−1)

= bx′(az + bx′(z))x(n+1)(z)

+

n−1∑

k=1

C
(n−1)
k (x′(az + bx′(z))(k)(a+ bx′′(z))(n−1−k).

Thus differentiating (6.105) n times at z = s, we will end up with

βx(n+1)(s) = bx′(s)x(n+1)(s) + F (x(s), x′(s), ..., x(n)(s)),

where F (x(s), ..., x(n)(s)) stands for terms involving the lower derivatives

x(s), ..., x(n)(s). This shows that

x(n+1)(s) =
F (x(s), ..., x(n)(s))

β − bx′(s)
for n ≥ 2. By means of this formula, it is then easy to write out the explicit form

of our solution x(z) :

x(z) =
(bα+ (1 − a)β)s

b
+

(1 − a)s

b
(z − s) +

µ− a

2!b
(z − s)2

+
µ3(µ− a)

3!b(aβ − bα)
(z − s)3 +

µ5(µ− a)(µ2 + 3µ− 3a)

4!b(aβ − bα)2
(z − a)4 + · · ·

6.3 Equations with Second Order Derivatives

Iterative functional equations involving the second and higher derivatives of the

unknown function are not studied as much as the ones involving the first order

derivatives. Indeed, an earlier study of such an equation by Petuhov [151] which

appeared back in 1965. In this section, we will be concerned with four such equations

that allow analytic solutions.
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6.3.1 Equation I

We first consider the following equation [119]

x′′ (z) =

m∑

j=0

pjx
[j] (z) , (6.125)

wherem is a positive integer greater than or equal to 2 and p0, p1, ..., pm are complex

numbers such that
∑m

i=0 |pi| 6= 0.We will look for analytic solutions of (6.125) which

satisfy the condition

x (α) = α, x′ (α) = α, (6.126)

or the condition

x (0) = 0, x′ (0) = α. (6.127)

where 0 < |α| < 1 or α is a Siegel number.

In order to seek analytic solutions of (6.125), we first consider a related equation

of the form

α2y′′ (αz) y′ (z) − αy′ (αz) y′′ (z) = (y′ (z))
3
m∑

j=0

pjy
(
αjz
)
, (6.128)

under the condition

y (0) = α, y′ (0) = η, (6.129)

or the condition

y (0) = 0, y′ (0) = η. (6.130)

Theorem 6.26. Suppose 0 < |α| < 1. Then for any η 6= 0, equation (6.128) has a

solution y(z) of the form

y (z) =

∞∑

n=0

bnz
n, b0 = α, b1 = η, (6.131)

which is analytic near 0 (and satisfies (6.129)), where {bn}∞n=2 is defined by the

recurrence relation

(n+ 2)
(
αn+2 − α

)
bn+2

=
n∑

k=0

n−k∑

i=0

(i+ 1) (k + 1)

n− k + 1




m∑

j=0

pjα
j(n−k−i)


 bk+1bi+1bn−k−i (6.132)

for n ∈ N.

Proof. Note that equation (6.128) may be written in the form

αy′′ (αz) y′ (z) − y′ (αz) y′′ (z)

(y′ (z))2
=

1

α
y′ (z)

m∑

j=0

pjy
(
αjz
)
,



December 18, 2007 15:40 World Scientific Book - 9.75in x 6.5in ws-book975x65

224 Analytic Solutions of Functional Equations

or
(
y′ (αz)

y′ (z)

)′
=

1

α
y′ (z)

m∑

j=0

pjy
(
αjz

)
.

Since we have assumed that y′(0) = η 6= 0, by integration, we obtain

y′ (αz) = y′ (z) +
1

α
y′ (z)

∫ z

0

y′ (s)
m∑

j=0

pjy
(
αjs
)
ds. (6.133)

Let

y (z) = b̂(z) =

∞∑

n=0

bnz
n

be a formal solution of (6.133). Then in view of (6.133), we see that

α ·Db = Db+
1

α
(Db) ∗



m∑

j=0

pj

∫
(Db) ∗

(
αj · b

)

 .

Since

(Db) ∗
(
αj · b

)
= {(n+ 1)bn+1}n∈N

∗
{
αjnbn

}
n∈N

=

{
n∑

i=0

(i+ 1)bi+1α
j(n−i)bn−i

}

k∈N

,

we see that

Db ∗
∫

(Db) ∗
(
αj · b

)

= ~ ∗ {(n+ 1)bn}n∈N
∗
{
pj

1

n+ 1

n∑

i=0

(i+ 1)bi+1α
j(n−i)bn−i

}

n∈N

= ~ ∗
{

n∑

t=0

(t+ 1)btpj
1

n− t+ 1

n−t∑

i=0

(i+ 1)bi+1α
j(n−t−i)bn−t−i

}

n∈N

.

Hence b1 is arbitrary and

(n+ 2)
(
αn+2 − α

)
bn+2

=

n∑

k=0

n−k∑

i=0

(i+ 1) (k + 1)

n− k + 1




m∑

j=0

pjα
j(n−k−i)


 bk+1bi+1bn−k−i (6.134)

for n ∈ N. If we set b0 = α and b1 = y′ (0) = η 6= 0, then by (6.134), we may

determine {bn}∞n=0 uniquely in a recursive manner.

We need to show that y(z) defined by (6.131) has a positive radius of conver-

gence. To this end, note that∣∣∣∣∣∣
(i+ 1) (k + 1)

(n+ 2) (n− k + 1) (αn+2 − α)




m∑

j=0

pjα
j(n−k−i)



∣∣∣∣∣∣
<

1

|α| − |α|n+2




m∑

j=0

|pj |


 ,
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for 0 ≤ k ≤ n and 0 ≤ i ≤ n− k. Furthermore, since

lim
n→∞

1

|α| − |α|n+2 =
1

|α| ,

there is M > 0 such that
∣∣∣∣∣∣

(i+ 1) (k + 1)

(n+ 2) (n− k + 1) (αn+2 − α)




m∑

j=0

pjα
j(n−k−i)



∣∣∣∣∣∣
≤M (6.135)

for n ≥ 0.

Note that Example 4.15 asserts that the equation

MH3(z) − 2M |α|H2(z) +
(
M |α|2 − 1

)
H(z) + |η| z + |α| = 0

has a solution

H(z) =

∞∑

n=0

hnz
n

which is analytic on a neighborhood of the origin and the sequence h = {hn}n∈N
is

determined by h0 = |α| , h1 = |η| and

hn+2 = M

n∑

k=0

(
n−k∑

i=0

hk+1hi+1hn−k−i

)
, n ∈ N. (6.136)

In view of (6.132), (6.135) and (6.136), we may show by induction that

|bn| ≤ hn, n ≥ 0. (6.137)

Therefore, y (z) � H(z) so that y(z) is analytic on a neighborhood of the origin.

The proof is complete.

Theorem 6.27. Suppose 0 < |α| < 1. Then for any η 6= 0, equation (6.128) has a

solution y(z) of the form

y (z) =

∞∑

n=0

bnz
n, b0 = 0, b1 = η, (6.138)

which is analytic near 0 (and satisfies (6.130)) and {bn}∞n=2 is determined by

(n+ 2)
(
αn+2 − α

)
bn+2

=

n∑

k=1

n−k+1∑

i=1

k · i
n− k + 2






m∑

j=0

pjα
j(n−k−i+2)


 bkbibn−k−i+2


 (6.139)

for n ∈ N and b2m = 0 for m ∈ Z+.
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Proof. Let

y(z) =

∞∑

n=0

bnz
n

be a formal solution of (6.133). As in the previous proof, we may see that b1 is

arbitrary, 2b2α = 2b2 and

(n+ 2)
(
αn+2 − α

)
bn+2 =

n∑

k=1

n−k+1∑

i=1

k · i
n− k + 2




m∑

j=0

Pjα
j(n−k−i+2)


 bkbibn−k−i+2

(6.140)

for n ≥ 1. If we set b0 = 0 and b1 = η 6= 0, then 2b2α = 2b2 implies b2 = 0. By

induction, we may then infer from (6.140) that b2m = 0 for m ≥ 1.

We now show that the formal solution y(z) has a positive radius of convergence.

To this end, note that Example 4.15 asserts that the equation

MH3(z) −H(z) + |η| z = 0

has a solution

H(z) =
∞∑

n=0

hnz
n

which is analytic on a neighborhood of the origin and the sequence {hn}n∈N
is

determined by h0 = 0, h1 = |η| , h2 = 0 and

hn+2 = M

n∑

k=1

n−k+1∑

i=1

hkhihn−k−i+2, n ∈ Z+.

for n ≥ 1. By induction, it is easy to see that

|bn| ≤ hn, n ≥ 1.

Thus y(z) also has a positive radius of convergence. The proof is complete.

Theorem 6.28. Suppose α is a Siegel number. Suppose further that 0 <∑m
j=0 |pj | ≤ 1. Then for 0 < |η| ≤ 1, equation (6.128) has a solution y(z) of

the form (6.131) which is analytic near 0 (and satisfies (6.129)), where {bn}∞n=2 is

determined by (6.132).

Proof. As in the previous proof, equation (6.128) has a formal solution y(z) of

the form (6.131). We need to show that y(z) has a positive radius of convergence.

To the end, let us consider

ψ (z) =
∞∑

n=0

unz
n, (6.141)

where u0 = 1, u1 = 1,

un+2 = sn+1

n∑

k=0

n−k∑

i=0

uk+1ui+1un−k−i,
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for n ≥ 0. Since 0 <
∑m
j=0 |Pj | ≤ 1, we may show that

|bn| ≤ un, n ≥ 0. (6.142)

Indeed, |b0| = |α| = 1 = u0 and |b1| = |η| ≤ 1 = u1. Assume by induction that

|bj | ≤ uj for j = 2, 3, ..., n+ 1. Then from (6.132) and the fact that
∣∣∣∣∣∣

(i+ 1) (k + 1)

(n+ 2) (n− k + 1)

m∑

j=0

pjα
j(n−k−i)

∣∣∣∣∣∣
≤

m∑

j=0

|pj | ≤ 1,

for 0 ≤ k ≤ n and 0 ≤ i ≤ n− k, we see that

|bn+2| ≤ sn+1

n∑

k=0

n−k∑

i=0

uk+1ui+1un−k−i,

as desired. In other words, we have shown that y(z) � ψ(z). Therefore we only

need to show that ψ(z) has a positive radius of convergence. To this end, note that

Example 4.15 asserts that the equation

ϕ3(z) − 2ϕ2(z) + z + 1 = 0 (6.143)

has a solution

ϕ (z) =
∞∑

n=0

vnz
n (6.144)

which is analytic on a neighborhood of the origin and the sequence {vn}n∈N
satisfies

v0 = 1, v1 = 1 and

vn+2 =

n∑

k=0

n−k∑

j=0

vk+1vj+1vn−k−j , , n ∈ N. (6.145)

In view of the Cauchy Estimation (Theorem 3.26), there is r > 0 such that vn ≤
rn for n ∈ Z+. As in the proof of Theorem 3.32, we may apply Seigel’s Lemma

(Theorem 3.31) to conclude that there is some δ > 0 such that

un ≤ rn
(
25δ+1

)n−1
n−2δ, n ≥ 2.

The proof is complete.

Theorem 6.29. Suppose α is a Siegel number. Suppose further that 0 < |η| ≤ 1.

Then (6.128) has a solution y(z) of the form (6.138) which is analytic near 0 (and

satisfies (6.130)) where {bn}∞n=2 is determined by (6.139) for n ∈ N and b2m = 0

for m ∈ Z+.

Proof. As in the previous proof, equation (6.128) has a formal solution of

the form (6.138). We will show that the formal solution has a positive radius of

convergence. Consider

ψ(z) =

∞∑

n=1

unz
n
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where u1 = 1, u2 = 0 and

un+2 = sn+1

n∑

k=0

n−k∑

i=0

uk+1ui+1un−k−i, n ∈ Z+.

It is easy to see that u2m = 0 for m ∈ Z+, and that

|bn| ≤ un, n ≥ 1. (6.146)

In other words, y(z) � ψ(z). It suffices to show that ψ(z) converges on a neighbor-

hood of the origin. To this end, note that Example 4.15 asserts that the equation

ϕ3(z) − ϕ(z) + z = 0 (6.147)

has a solution

ϕ (z) =

∞∑

n=1

vnz
n

which is analytic on a neighborhood of the origin and the sequence {vn}n∈N
satisfies

v0 = 0, v1 = 1, v2 = 0 and

vn+2 =
n∑

k=0

n−k∑

i=0

vk+1vi+1vn−k−i, n ∈ Z+.

In view of the Cauchy Estimation (Theorem 3.26), there is some r > 0 such that

vn ≤ rn for n ∈ Z+. As in the proof of Theorem 3.32, we may apply Seigel’s Lemma

(Theorem 3.31) to conclude that there is some δ > 0 such that

un ≤ rn
(
25δ+1

)n−1
n−2δ, n ≥ 2.

The proof is complete.

Theorem 6.30. Suppose 0 < |α| < 1. Then equation (6.125) has a solution x(z)

which is analytic near 0 and satisfies (6.126).

Proof. By Theorem 6.26, for any η 6= 0, equation (6.128) has a solution y(z)

which is analytic near 0 and satisfies (6.129). This solution is of the form (6.131)

where {bn}∞n=2 is defined by the recurrence relation (6.132). Since y′(0) = η 6= 0,

thus by the Analytic Inverse Function Theorem 4.2, the inverse function y−1(z) is

analytic in a neighborhood of the origin. Let

x (z) = y
(
αy−1 (z)

)
. (6.148)

Then

x′ (z) =
αy′

(
αy−1 (z)

)

y′ (y−1 (z))
,

and

x[j] (z) = y
(
αjy−1 (z)

)
, j = 1, 2, ...,m.
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Thus,

x′′ (z) =
1

[y′ (y−1 (z))]
3

{
α2y′′

(
αy−1 (z)

)
· y′
(
y−1 (z)

)
− αy′

(
αy−1 (z)

)
y′′
(
y−1 (z)

)}

=

m∑

j=0

pjy
(
αjy−1 (z)

)

=
m∑

j=0

pjx
[j] (z) .

Furthermore, note that y−1 (α) = 0, y′ (0) = η 6= 0 and

x (α) = y
(
αy−1 (α)

)
= y (0) = α,

x′ (α) =
αy′

(
αy−1 (α)

)

y′ (y−1 (α))
=
αη

η
= α.

These show that x(z) is an analytic solution of (6.125). The proof is complete.

Theorem 6.31. Suppose 0 < |α| < 1. Then equation (6.125) has a solution which

is of the form

x (z) = y
(
αy−1 (z)

)

and is analytic in a neighborhood of the origin and satisfies (6.127), where y(z) is

an analytic solution (6.138) of (6.128) under the additional conditions η 6= 0 and

(6.130).

The proof is similar to that above. Note that y−1(0) = 0, y′(0) = η 6= 0 imply

x (0) = y
(
αy−1 (0)

)
= y (0) = 0,

x′ (0) = αy′
(
αy−1 (0)

)
/y′
(
y−1 (0)

)
=
αη

η
= α.

Theorem 6.32. Suppose α is a Siegel number. Suppose further that 0 <∑m
j=0 |pj | ≤ 1. Then equation (6.125) has a solution of the form

x (z) = y
(
αy−1 (z)

)
,

which is analytic in a neighborhood of α and satisfies (6.126), where y(z) is an

analytic solution (6.131) of (6.128) under the additional conditions 0 < |η| < 1 and

(6.129).

Theorem 6.33. Suppose α is a Siegel number. Suppose further that 0 <∑m
j=0 |pj | ≤ 1. Then equation (6.125) has a solution of the form

x (z) = y
(
αy−1 (z)

)
,

which is analytic in a neighborhood of the origin and satisfies (6.127), where y(z) is

an analytic solution (6.138) of (6.128) under the additional conditions 0 < |η| < 1

and (6.130).
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Example 6.5. Consider the equation

x′′ (z) = px(x(z)), z ∈ C, (6.149)

under the condition

x (0) = 0, x′ (0) = α (6.150)

where p is a nonzero complex number. If 0 < |α| < 1, or, α is a Siegel number and

0 < |p| ≤ 1, then Theorem 6.31 or Theorem 6.33 assert that (6.149) has a solution

which is analytic on a neighborhood of the origin and satisfies (6.150). We may let

x (z) = ĉ(z),

where c0 = 0 and c1 = α. Substituting it into (6.149), we see that c2 = 0 and

(n+ 2) (n+ 1) cn+2 = p
n∑

m=2

cmc
〈m〉
n , n ∈ Z+. (6.151)

We remark that c2k = 0 for k ≥ 1, as can be easily checked by induction, so that

x(z) is an odd function.

6.3.2 Equation II

We will be concerned with a class of iterative functional differential equation of the

form [189]

x′′(z) = x(az + bx(z)). (6.152)

When a = 0 and b = 1, equation (6.152) reduces to the second-order iterative

functional differential equation

x′′(z) = x(x(z)).

When b = 0, equation (6.152) changes into

x′′(z) = x(az). (6.153)

In order to find an analytic solution x = x(z) of (6.153), we formally assume that

x(z) = ĉ(z) =

∞∑

n=0

cnz
n.

Then in view of (6.153), we may obtain

D2c = a · c.

Hence

2c2 = c0, 3 · 2c3 = ac1

and

(n+ 2)(n+ 1)cn+2 = ancn, n = 2, 3, ... .
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This leads to

x(z) = c0 + c1z +
c0
2!
z2 +

c1a

3!
z3 + c0

∞∑

k=0

ak(k−1)

(2k)!
z2k + c1

∞∑

k=2

ak
2

(2k + 1)!
z2k+1

which, as can be verified by means of the ratio test, is an entire solution of (6.153)

when |a| ≤ 1.

We now assume that b 6= 0. To find analytic solutions of (6.152), we first seek

an analytic solution y(z) of the auxiliary equation

α2y′′(αz)y′(z) = αy′(αz)y′′(z) + (y′(z))3[y(α2z) − ay(αz)] (6.154)

satisfying the initial value conditions

y(0) = γ, y′(0) = η 6= 0, (6.155)

where γ, η are complex numbers, and α is either Siegel number or it satisfies 0 <

|α| < 1.

Then we show that (6.152) has an analytic solution of the form

x(z) =
1

b

(
y(αy−1(z)) − az

)
(6.156)

in a neighborhood of the number γ.

Theorem 6.34. Suppose 0 < |α| < 1. Then for any given complex numbers γ and

η 6= 0, equation (6.154) has a solution of the form

y(z) = b̂(z) =
∞∑

n=0

bnz
n, b0 = γ, b1 = η, (6.157)

which is analytic on a neighborhood of the origin.

Proof. If y(z) given by (6.157) is such a solution, then we may rewrite (6.154)

in the form

αy′′(αz)y′(z) − αy′(αz)y′′(z)

(y′(z))2
= y′(z)[y(α2z) − ay(αz)],

or

α

(
y′(αz)

y′(z)

)′
= y′(z)[y(α2z) − ay(αz)].

Since y′(0) = η 6= 0, we see further that

y′(αz) = y′(z)

[
1 +

1

α

∫ z

0

y′(s)
(
y(α2s) − ay(αs)

)
ds

]
. (6.158)

Substituting (6.157) into (6.158), we see that

α ·Db = Db+
1

α
(Db) ∗

∫
(Db) ∗

(
α2 · b− aα · b

)
.
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Hence the sequence {bn}∞n=2 is successively determined by the condition

(αn+2 − α)(n+ 2)bn+2

=

n∑

k=0

n−k∑

j=0

(k + 1)(j + 1)(α2(n−k−j) − aαn−k−j)

n− k + 1
bk+1bj+1bn−k−j , (6.159)

for n ≥ 0 in a unique manner.

It suffices now to show that the power series just determined converges in a

neighborhood of the origin. First of all, note that
∣∣∣∣
(k + 1)(j + 1)(α2(n−k−j) − aαn−k−j)

(n+ 2)(n− k + 1)(αn+2 − α)

∣∣∣∣ ≤
1 + |a|

|α| − |α|n+2
≤M

for some positive number M. Thus if we define a sequence {Bn}n∈N by B0 =

|γ|, B1 = |η| and

Bn+2 = M
n∑

k=0

n−k∑

j=0

Bk+1Bj+1Bn−k−j , n ∈ N,

then in view of (6.159),

|bn| ≤ Bn, n ∈ N,

so that {Bn}n∈N is a majorant of {bn}n∈N
. Next, note that Example 4.15 asserts

that the equation

G3(z) − 2|γ|G2(z) −
(

1

M
− |γ|2

)
G(z) +

1

M
(|η|z + |γ|) = 0. (6.160)

has a solution

G(z) =
∞∑

n=0

gnz
n (6.161)

which is analytic on a neighborhood of the origin and g0 = |γ| , g1 = |η| and

Bn+2 = M

n∑

k=0

n−k∑

j=0

Bk+1Bj+1Bn−k−j , n ∈ N.

Therefore, Bn = gn for n ∈ N and hence {Bn}n∈N has a positive radius of conver-

gence. The proof is complete.

We remark that if γ = 0 in (6.155), then by induction, it is not difficult to see

from (6.159) that

b2k = 0, k ∈ Z+.

This shows that the desired solution (6.157) is an odd function.

Theorem 6.35. Suppose α is a Siegel number. Then given any complex number γ

and η that satisfies 0 < |η| ≤ 1, equation (6.154) has a solution of the form (6.157)

which is analytic on a neighborhood of the origin and satisfies b0 = γ and b1 = η.
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Proof. As in the previous proof, we seek a power series solution of the form

(6.157) with b0 = γ and b1 = η. (6.159) holds again so that

|bn+2| ≤
1 + |a|

|αn+1 − 1|

n∑

k=0

n−k∑

j=0

|bk+1||bj+1||bn−k−j |, n ∈ N. (6.162)

Note that Example 4.15 asserts that

G3(z) − 2|γ|G2(z) −
(

1

1 + |a| − |γ|2
)
G(z) +

1

1 + |a| (z + |γ|) = 0. (6.163)

has a solution

G(z) =

∞∑

n=0

Cnz
n, (6.164)

which is analytic on a neighborhood of the origin and C0 = |γ| , C1 = 1 and

Cn+2 = (1 + |a|)
n∑

k=0

n−k∑

j=0

Ck+1Cj+1Cn−k−j , n ∈ N. (6.165)

In view of the Cauchy Estimation (Theorem 3.26), there exists a positive constant

r such that

Cn < rn (6.166)

for n ∈ Z+. As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (The-

orem 3.31) to deduce a positive δ such that

|bn| ≤ rn(25δ+1)n−1n−2δ , n ∈ Z+.

This shows that {bn}n∈N
has a positive radius of convergence. The proof is com-

plete.

Theorem 6.36. Suppose 0 < |α| < 1 or α is a Siegel number. Then equation

(6.152) has an analytic solution of the form (6.156) near γ, where y(z) is an analytic

solution of the initial value problem (6.154) and (6.155).

Proof. In view of the previous two results, we may find a sequence {bn}∞n=2

such that the function y(z) of the form (6.157) is an analytic solution of (6.154) in

a neighborhood of the origin. Since y′(0) = η 6= 0, the function y−1(z) is analytic

in a neighborhood of the y(0) = γ. If we now define x(z) by means of (6.156), then

x′(z) =
α

b
· y

′(αy−1(z))

y′(y−1(z))
− a

b
,

x′′(z) =
α

b
· αy

′′(αg−1(z))y′(y−1(z)) − y′(αy−1(z))y′′(y−1(z))

(y′(y−1(z)))3

=
1

b

[
y(α2y−1(z)) − ay(αy−1(z))

]
,
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and

x(az + bx(z)) = x

{
az + b

[
1

b
(y(αy−1(z)) − az)

]}

= x(yαy−1(z))) =
1

b

[
y(αy−1(y(αy−1(z)))) − ay(αy−1(z))

]

=
1

b

[
y(α2y−1(z)) − ay(αy−1(z)

]

as required.

We now show how to explicitly construct an analytic solution of (6.152) by

means of (6.156) in a neighborhood of γ. Since

x(z) =
1

b

(
y(αy−1(z)) − az

)
,

thus

x(γ) =
1

b

(
y(αy−1(γ)) − aγ

)
=

(1 − a)γ

b
.

Furthermore,

x′(z) =
α

b
· y

′(αy−1(z))

y′(y−1(z))
− a

b
,

x′′(z) = x(az + bx(z)),

thus

x′(γ) =
α− a

b
and

x′′(γ) =
(1 − a)γ

b
.

By calculating the derivatives of both sides of (6.152), we obtain

x′′′(z) = x′(az + bx(z))(a+ bx′(z)),

x(4)(z) = x′′(az + bx(z))(a+ bx′(z))2 + x′(az + bx(z))bx′′(z),

so that

x′′′(γ) =
α(α− a)

b
and

x(4)(γ) =
1

b
(1 − a)(α2 + α− a)γ.

In general, we can use the Formula of Faa di Bruno to calculate

Γk := x(k+2)(γ)

for k ≥ 1. By means of this formula, it is then easy to write out the explicit form

of our solution x(z):

x(z) =
(1 − a)γ

b
+
α− a

b
(z − γ) +

(1 − a)γ

2!b
(z − γ)2

+
α(α− a)

3!b
(z − γ)3 +

(1 − a)(α2 + α− a)γ

4!b
(z − γ)4

+

∞∑

k=3

Γk
(k + 2)!

(z − γ)k+2.
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6.3.3 Equation III

Consider the iterative functional differential equation [187]

x′′ (z) = x (az + bx′ (z)) , (6.167)

where a and b 6= 0 are complex numbers. To find analytic solutions of (6.167), we

formally let

y (z) = az + bx′ (z) . (6.168)

Then

y′(z) − a = bx′′(z),

and for any number z0, we have

x (z) = x (z0) +
1

b

z∫

z0

(y (s) − as) ds. (6.169)

Thus

x′′(z) = x (y (z)) = x (z0) +
1

b

y(z)∫

z0

(y (s) − as) ds,

or

1

b
(y′ (z) − a) = x (z0) +

1

b

y(z)∫

z0

(y (s) − as) ds. (6.170)

If z0 is a fixed point of y (z) , i.e., y (z0) = z0, then substituting z0 into the above

equality, we see that

x (z0) =
1

b
(y′ (z0) − a) . (6.171)

Furthermore, differentiating both sides of (6.170) with respect to z, we obtain

y′′ (z) = [y (y (z)) − ay (z)] y′ (z) . (6.172)

Next, we first seek an analytic solution g (z) of the auxiliary equation

αg′′ (αz) g′ (z) = g′ (αz) g′′ (z) + (g′ (z))
2
g′ (αz)

[
g
(
α2z

)
− ag (αz)

]
(6.173)

satisfying the initial value conditions

g (0) = µ, g′ (0) = η 6= 0, (6.174)

where µ, η are complex numbers, and α is either a Siegel number of it satisfies

0 < |α| < 1. Then we show that (6.172) has an analytic solution of the form

g (z) g
(
αg−1 (z)

)
(6.175)

in a neighborhood of µ.

Theorem 6.37. Suppose 0 < |α| < 1. Then given any complex numbers µ and

η 6= 0, equation (6.173) has a solution of the form

g (z) = b̂(z) =
∞∑

n=0

bnz
n, b0 = µ, b1 = η, (6.176)

which is analytic near 0.
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Proof. Rewrite (6.173) in the form

αg′′ (αz) g′ (z) − g′ (αz) g′′ (z)

(g′ (z))2
= g′ (αz)

[
g
(
α2z

)
− ag (αz)

]
,

or (
g′ (αz)

g′ (z)

)′
= g′ (αz)

[
g
(
α2z

)
− ag (αz)

]
.

Therefore, if g′ (0) = η 6= 0, we have

g′ (αz) = g′ (z)


1 +

z∫

0

g′ (αs)
(
g
(
α2s
)
− ag (αs)

)
ds


 . (6.177)

By substituting (6.176) into (6.177), we see that

α ·Db = Db+ (Db) ∗
∫

(α ·Db) ∗
(
α2 · b− aα · b

)
.

Hence the sequence {bn}∞n=2 is successively determined by the condition
(
αn+1 − 1

)
(n+ 2) bn+2

=

n∑

k=0

n−k∑

j=0

(k + 1) (j + 1)
(
α2(n−k)−j − aαn−k

)

n− k + 1
bk+1bj+1bn−k−j , (6.178)

for n ∈ N in a unique manner. We need to show that the resulting power series

(6.176) converges in a neighborhood of the origin. First of all, note that∣∣∣∣∣
(k + 1) (j + 1)

(
α2(n−k)−j − aαn−k

)

(n+ 2) (n− k + 1) (αn+1 − 1)

∣∣∣∣∣ ≤
1 + |α|

|αn+1 − 1| ≤M

for some positive number M.

Next note that Example 4.15 asserts the implicit equation

G3 (z) − 2 |µ|G2 (z) −
(

1

M
− |µ|2

)
G (z) +

1

M
(|η| z + |µ|) = 0 (6.179)

has a solution of the form

G (z) =

∞∑

n=0

Bnz
n, B0 = |µ| , B1 = |η| , (6.180)

which is analytic near 0 and {Bn}∞n=2 is determined by

Bn+2 = M
n∑

k=0

n−k∑

j=0

Bk+1Bj+1Bn−k−j , n ∈ N.

In view of (6.178),

|bn| ≤ Bn, n ∈ N,

which shows that the sequence {bn} is majorized by {Bn} . Thus {bn} has a positive

radius of convergence. The proof is complete.

Theorem 6.38. Suppose α is a Siegel number. Then if 0 < |η| ≤ 1, equation

(6.173) has a solution of the form (6.176) which is analytic near 0.
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Proof. As in the previous proof, we seek a power series solution of the form

(6.176). Set b0 = µ and b1 = η. Then (6.178) again holds so that

|bn+2| ≤
1 + |a|

|αn+1 − 1|

n∑

k=0

n−k∑

j=0

|bk+1| · |bj+1| · |bn−k−j | , n ∈ N. (6.181)

Next note that Example 4.15 asserts that the implicit relation

ω3 − 2 |µ|ω2 −
(

1

1 + |a| − |µ|2
)
ω +

1

1 + |a| (z + |µ|) = 0 (6.182)

has a solution of the form

ω (z) = |µ| + z +

∞∑

n=2

Cnz
n, (6.183)

which is analytic near 0 and

Cn+2 = (1 + |a|)
n∑

k=0

n−k∑

j=0

Ck+1Cj+1Cn−k−j , n ∈ N. (6.184)

Thus there is a positive constant T such that

Cn < Tn, n ∈ Z+. (6.185)

Now by induction, we may prove that

|bn| ≤ Cndn, n ∈ Z+.

where the sequence d = {dn}∞n=0 is defined in Siegel’s Lemma (Theorem 3.31). In

fact,

|b1| = |η| ≤ 1 = C1d1,

|b2| = (1 + |a|) |α− 1|−1 |b1| · |b1| · |b0|
≤ (1 + |a|) |α− 1|−1 C1d1 · C1d1 · C0

≤ C2 |α− 1|−1
Υ2(d)

= C2d2.
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Assume that the above inequality holds for n = 1, ...,m. Then

|bm+1| ≤ (1 + |a|) |αm − 1|−1
m−1∑

k=0

m−1−k∑

j=0

|bk+1| · |bj+1| · |bm−1−k−j |

= (1 + |a|) |αm − 1|−1

(
m−1∑

k=0

|bk+1| · |bm−k| · |b0|

+

m−2∑

k=0

m−2−k∑

j=0

|bk+1| · |bj+1| · |bm−1−k−j |
)

≤ (1 + |a|) |αm − 1|−1

(
m−1∑

k=0

Ck+1dk+1Cm−kdm−kC0

+
m−2∑

k=0

m−2−k∑

j=0

Ck+1dk+1Cj+1dj+1Cm−1−k−jdm−1−k−j

)

≤ (1 + |a|) |αm − 1|−1 Υm+1(d)

×



m−1∑

k=0

Ck+1Cm−kC0 +
m−2∑

k=0

m−2−k∑

j=0

Ck+1Cj+1Cm−1−k−j




= Cm+1dm+1.

as desired. In view of (6.185) and Siegel’s Lemma (Theorem 3.31), we finally see

that there is δ > 0 such that

|bn| ≤ Tn
(
25δ+1

)n−1
n−2δ, n ∈ Z+,

which shows that the power series (6.176) converges for

|z| < 1

T25δ+1
.

The proof is complete.

Theorem 6.39. Suppose 0 < |α| < 1 or α is a Siegel number. Then equation

(6.172) has an analytic solution of the form (6.175) in a neighborhood of the number

µ, where g (z) is an analytic solution of (6.173).

Proof. In view of Theorems (6.37) and 6.38, we may find a sequence {bn}∞n=2

such that the function g (z) of the form (6.176) is an analytic solution of (6.173) in

a neighborhood of the origin. Since g′ (0) = η 6= 0, the function g−1 (z) is analytic

in a neighborhood of g (0) = µ. If we now define y (z) by means of (6.175), then

y′ (z) = αg′
(
αg−1 (z)

) (
g−1 (z)

)′
=
αg′

(
αg−1 (z)

)

g′ (g−1 (z))
,

y′′ (z) =
α2g′′

(
αg−1 (z)

)
− αg′

(
αg−1 (z)

)
g′′
(
g−1 (z)

)
· 1
g′(g−1(z))

(g′ (g−1 (z)))
2

=
αg′

(
αg−1 (z)

) [
g
(
α2g−1 (z)

)
− ag

(
αg−1 (z)

)]

g′ (g−1 (z))
,
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and

[y (y (z)) − ay (z)] y′ (z) =
[
g
(
α2g−1 (z)

)
− ag

(
αg−1 (z)

)] αg′
(
αg−1 (z)

)

g′ (g−1 (z))

=
αg′

(
αg−1 (z)

) [
g
(
α2g−1 (z)

)
− ag

(
αg−1 (z)

)]

g′ (g−1 (z))

as required. The proof is complete.

Knowing that an analytic solution of (6.167) exists, we may assume that x (z)

is of the form

x (z) = x (µ) + x′ (µ) (z − µ) +
x′′ (µ)

2!
(z − u) + · · · ;

we need to determine the derivatives x(n) (µ) , n ∈ N. First of all, in view of (6.171)

and (6.168), we have

x (µ) =
1

b
(y′ (µ) − a) =

1

b

(
αg′

(
αg−1 (µ)

)

g′ (g−1 (µ))
− a

)
=
α− a

b

and

x′ (µ) =
1

b
(y (µ) − aµ) =

(1 − a)µ

b
,

respectively. Furthermore,

x′′ (µ) = x (aµ+ bx′ (µ)) = x

(
aµ+ b

(1 − a)µ

b

)
= x (µ) =

α− a

b
.

Next by calculating the derivatives of both sides of (6.167), we obtain successively

x′′′ (z) = x′ (az + bx′ (z)) (a+ bx′′ (z)) ,

x(4) (z) = x′′ (az + bx′ (z)) (a+ bx′′ (z))
2

+ x′ (az + bx′ (z)) (bx′′ (z)) ,

so that

x′′′ (µ) = x′ (aµ+ bx′ (µ)) (a+ bx′′ (µ)) ,

x(4) (µ) = x′′ (µ)α2 + x′ (µ) [αµ (1 − a)]

=
α

b

[
(α− a)α+ ((1 − a)µ)2

]
.

In general, we can use the Formula of Faa di Bruno to find (x (az + bx′ (z)))(m)
and

then calculate

Γm := x(m+2) (µ)

for m ∈ Z+. It is then easy to write out the explicit form of our solution x (z) :

x (z) =
α− a

b
+

(1 − a)µ

b
(z − µ) +

α− a

2!b
(z − µ)

2
+
αµ (1 − a)

3!b
(z − µ)

3

+
α

4!b

[
(α− a)α+ ((1 − a)µ)2

]
(z − µ)4

+

∞∑

m=3

Γm
(m+ 2)!

(z − µ)
m+2

.
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6.3.4 Equation IV

In this section, we consider a class of iterative functional differential equations of

the form [188]

x′′
(
x[r] (z)

)
= c0z + c1x (z) + · · · + cmx

[m] (z) , (6.186)

where r and m are nonnegative integers, c0, c1, ..., cm are complex constants,∑m
i=0 |ci| 6= 0, and x[i] denotes the i-th iterate of x. When r = 0, c2 6= 0 and

ci = 0 (0 ≤ i ≤ m, i 6= 2) , Eq. (6.186) reduces to the second-order iterative func-

tional differential equation x′′ (z) = c2x (x (z)) which has been discussed before.

To find analytic solution of (6.186), we first seek the analytic solution y (z) of

the companion equation

α2y′′
(
αr+1z

)
y′ (αrz) = αy′

(
αr+1z

)
y′ (αrz) + [y′ (αrz)]

3

[
m∑

i=0

ciy
(
αiz
)
]
, (6.187)

satisfying the initial value conditions

y (0) = µ, y′ (0) = η 6= 0, (6.188)

where µ, η are complex numbers, and α satisfies |α| > 1 or 0 < |α| < 1 or is a Siegel

number. Then we show that (6.186) has an analytic solution of the form

x (z) = y
(
αy−1 (z)

)
, (6.189)

in a neighborhood of the number u. Finally, we make use of (6.189) to show how to

derive an explicit power series solution. First of all, suppose (6.187) has a solution

of the form

y (z) =

∞∑

n=0

bnz
n, (6.190)

which is analytic on a neighborhood of the origin and b0 = µ and b1 = η 6= 0. Then

we may rewrite (6.187) as

α2y′′
(
αr+1z

)
y′ (αrz) − αy′

(
αr+1z

)
y′ (αrz)

[y′ (αrz)]2
= y′ (αrz)

[
m∑

i=0

ciy
(
αiz
)
]

or (
y′
(
αr+1z

)

y′ (αrz)

)′

= αr−1y′ (αrz)

[
m∑

i=0

ciy
(
αiz
)
]
.

Since y′ (0) = η 6= 0, we have

y′
(
αr+1z

)
= y′ (αrz)

[
1 + αr−1

∫ z

0

y′ (αrs)
m∑

i=0

ciy
(
αis
)
ds

]
. (6.191)

By substituting (6.190) into (6.191), we see that

αrn+1
(
αn+1 − 1

)
(n+ 2) bn+2

=

n∑

k=0

n−k∑

j=0

(k + 1) (j + 1)αr(k+j)
∑m
i=0 ciα

i(n−k−j)

n− k + 1
bk+1bj+1bn−k−j (6.192)
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for n ≥ 1. So for b0 = µ and b1 = η, the sequence {bn}∞n=2 is successively determined

by (6.192) in a unique manner. It suffices now to show that the power series just

derived is analytic at 0. To this end, we show that such a power series solution is

majorized by a convergent power series.

Theorem 6.40. Suppose α is a Siegel number. Then for any given complex num-

bers µ and η that satisfies 0 < |η| ≤ 1, Eq. (6.187) has a solution of the form

y (z) =
∞∑

n=0

bnz
n, b0 = µ, b1 = η,

which is analytic near 0.

Proof. From (6.192), it follows that
∣∣∣∣
(k + 1) (j + 1)αr(k+j)

∑m
i=0 ciα

i(n−k−j)

(n+ 2) (n− k + 1)αrn+1 (αn+1 − 1)

∣∣∣∣ ≤
∑m
i=0 |ci|

|αn+1 − 1| , n ∈ N.

Thus

|bn+2| ≤
∑m

i=0 |ci|
|αn+1 − 1|

n∑

k=0

n−k∑

j=0

|bk+1| |bj+1| |bn−k−j | , n ∈ N. (6.193)

Note that Example 4.15 asserts that

G3 (z) − 2 |µ|G2 (z) +

(
1∑m

i=0 |ci|
− |µ|2

)
G (z) − 1∑m

i=0 |ci|
(C1z + |µ|) = 0

has a solution

G(z) =

∞∑

n=0

Cnz
n

which is analytic on a neighborhood of the origin and C0 = |µ| , C1 = 1 and

Cn+2 =

(
m∑

i=0

|ci|
)

n∑

k=0

n−k∑

j=0

Ck+1Cj+1Cn−k−j , n ∈ N, (6.194)

In view of the Cauchy’s Estimation (Theorem 3.26), there exists a positive constant

r such that

Cn < rn, n ∈ Z+. (6.195)

As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (Theorem 3.31) to

deduce a δ > 0 such that

|bn| ≤ rn
(
25δ+1

)n−1
n−2δ, n ∈ Z+,

so that {bn}n∈N
has a positive radius of convergence. The proof is complete.

Theorem 6.41. Suppose |α| > 1 and r ≥ m. Then for any given complex numbers

µ and η 6= 0, Eq. (6.187) has a solution of the form (6.190) which is analytic on a

neighborhood of the origin and b0 = µ as well as b1 = η.
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Proof. First of all, for r ≥ m and 0 ≤ k + j ≤ n, we have
∣∣∣∣
(k + 1) (j + 1)αr(k+i)

∑m
i=0 ciα

i(n−k−j)

(n+ 2) (n− k + 1)αrn+1 (αn+1 − 1)

∣∣∣∣ =

∣∣∣∣
(k + 1) (j + 1)

∑m
i=0 ciα

i(n−k−j)

(n+ 2) (n− k + 1)α (αn+1 − 1)

∣∣∣∣

≤
∑m

i=0 |ci|
|αn+1 − 1| ≤M

for n ∈ N, where M is some positive number. Note that Example 4.15 asserts that

G3 (z) − 2 |µ|G2 (z) +

(
1

M
− |µ|2

)
G (z) − 1

M
(|η| z + |µ|) = 0 (6.196)

has a solution

G (z) =
∞∑

n=0

Dnz
n

which is analytic on a neighborhood of the origin and D0 = |u| , D1 = |η| , as well

as

Dn+2 = M
n∑

k=0

n−k∑

j=0

Dk+1Dj+1Dn−k−j , n ∈ N. (6.197)

Clearly, in view of (6.192)

|bn| ≤ Dn, n ∈ N.

Therefor the sequence {bn}n∈N
has a positive radius of convergence. The proof is

complete.

Theorem 6.42. Suppose 0 < |α| < 1. Suppose further that 0 < r ≤ m and c0 =

0, ..., cr−1 = 0, or, r = 0. Then for any given complex numbers µ and η 6= 0, (6.187)

has a solution of the form (6.190) which is analytic on a neighborhood of the origin

and satisfies b0 = µ and b1 = η.

The proof is similar to that of the previous Theorem and hence skipped.

Consider the following three hypotheses:

(i) α is a Siegel number;

(ii) |α| > 1 and r ≥ m;

(iii) 0 < |α| < 1, 0 < r ≤ m and c0 = 0, ..., cr−1 = 0;

(iv) 0 < |α| < 1 and r = 0.

Theorem 6.43. Suppose one of the above conditions (i)-(iv) is fulfilled. Then for

any given complex number µ, Eq. (6.186) has a solution x (z) which is analytic on

a neighborhood of µ and satisfies the conditions x (µ) = µ and x′ (µ) = α. This

solution has the form x (z) = y
(
αy−1 (z)

)
, where y (z) is an analytic solution of

the initial value problem (6.187),(6.188).
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Proof. In view of Theorems 6.40, 6.41 and 6.42, we may find a sequence {bn}∞n=2

such that the function y (z) of the form (6.190) is an analytic solution of (6.187) in

a neighborhood of the origin. Since y′ (0) = η 6= 0, the function y−1 (z) is analytic

in a neighborhood of the y (0) = µ. If we now define x (z) by means of (6.189), then

x′′
(
x[r] (z)

)
=
α2y′′

(
αr+1y−1 (z)

)
y′
(
αry−1 (z)

)
− αy′

(
αr+1y−1 (z)

)
y′′
(
αry−1 (z)

)

[y′ (αry−1 (z))]
3

=

m∑

i=0

ciy
(
αiy−1 (z)

)
=

m∑

i=0

cix
[i] (z) ,

as required. The proof is complete.

We may now construct an analytic solution of (6.186) by means of (6.189) in a

neighborhood of µ. Since

x (µ) = y
(
αy−1 (µ)

)
= y (α · 0) = µ,

we may assume that x (z) is of the form

x (z) = µ+ x′ (µ) (z − µ) +
x′′ (µ)

2!
(z − µ)

2
+
x′′′ (µ)

3!
(z − µ)

3
+ · · · .

We need to determine the derivatives x(n) (µ) for n ∈ Z+. First of all, in view of

(6.189), we have

x′ (z) =
αy′

(
αy−1 (z)

)

y′ (y−1 (z))
.

Thus

x′ (µ) =
αy′

(
αy−1 (µ)

)

y′ (y−1 (µ))
=
αy′ (0)

y′ (0)
= α,

and

x′′
(
x[r] (µ)

)
= c0µ+ c1x (µ) + · · · + cmx

[m] (µ) =

(
m∑

i=0

ci

)
µ..

Next, by calculating the derivatives of both side of (6.186), we obtain

x′′′
(
x[r] (z)

)
x′
(
x[r−1] (z)

)
· · ·x′ (x (z))x′ (z) =

m∑

i=0

cix
′
(
x[i−1] (z)

)
· · ·x′ (x (z))x′ (z)

so that

x′′′ (µ) [x′ (µ)]
r

=
m∑

i=0

ci [x
′ (µ)]

i

and

x′′′ (µ) =

∑m
i=0 ci [x

′ (µ)]
i

[x′ (µ)]
r =

∑m
i=0 ciα

i

αr
=

m∑

i=0

ciα
i−r.
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In general, we can show by induction that

(
x′′
(
x[r] (z)

))(n−2)

=

((
x[r] (z)

)′)n−2

x(n)
(
x[r] (z)

)

+

n−3∑

k=1

Pk,n−2

((
x[r] (z)

)′
, ...,

(
x[r] (z)

)(n−2)
)
x(k+2)

(
x[r] (z)

)

for n ≥ 3, and
(
x[j] (z)

)(l)

= Qjl (x10 (z) , ..., x1,j−1 (z) ; ...;x10 (z) , ..., xl,j−1 (z)) ,

respectively, where xij (z) = x(i)
(
x[j] (z)

)
and Pjk and Qjl are some polynomials

with nonnegative coefficients.

Moreover, if we write

βjl = Qlj

(
x′ (µ) , ..., x′ (µ) ; ...;x(j) (µ) , ..., x(j) (µ)

)
,

then differentiating (6.186) n− 2 times at z = u, we will end up with

(x′ (u))
r(n−2)

x(n) (µ) +

n−3∑

k=1

Pk,n−2 (βr1, ..., βr,n−2) x
(k+2) (µ) =

m∑

i=0

ciβi,n−2, n ≥ 3.

This shows that

x(n) (µ) =
1

αr(n−2)

[
m∑

i=0

ciβi,n−2 −
n−3∑

k=1

Pk,n−2 (βr1, ..., βr,n−2)x
(k+2) (µ)

]

for n ≥ 3. By means of this formula, we may then write

x (z) = µ+ α (z − µ) +
µ
∑m

i=0 ci
2!

(z − µ)2 +

∑m
i=0 ciα

i−t

3!
(z − µ)3 + · · · .

6.4 Equations with Higher Order Derivatives

In some iterative functional differential equations, solutions in the form of elemen-

tary functions may exist. In this section, we show how power function solutions of

the form

x(z) = λzµ (6.198)

can be computed. We first illustrate this by considering an equation of the form

x(n)(z) = azj
(
x[m](z)

)k
, (6.199)

where k,m, n are positive integers, j is a nonnegative integer, a is a complex number,

x(n)(z) is the n-th derivative of x(z) and x[m](z) is the m-th iterate of x(z). We

assume m ≥ 2 and a 6= 0 to avoid trivial cases.

In the following discussions, recall the notation (in the first Chapter)

bµcn = µ(µ− 1) · · · (µ− n+ 1).
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Substituting (6.198) into (6.199), we obtain

λ bµcn zµ−n = aλk(1+µ+···+µm−1)zkµ
m+j .

This prompts us to consider the equations

λ bµcn = aλk(1+µ+···+µm−1), (6.200)

and

kµm + j = µ− n. (6.201)

First of all, we assert that the polynomial

f(z) = kzm − z + n+ j

does not have any real roots if m is even, and has exactly one real root if m is odd.

Indeed, for even m and real z, by solving

f ′(z) = kmzm−1 − 1 = 0,

we see that the minimum of f occurs at the root ρ = 1/ m−1
√
km ∈ (0, 1). Hence

f(z) ≥ f(ρ) = ρ

(
1

m
− 1

)
+ n+ j >

(
1

m
− 1

)
+ n+ j > 0

for all real z. If m is odd, then f ′ has two zeros ±ρ. Since

min
z≥−ρ

f(z) = min{f(ρ), f(−ρ)} = f(ρ) > 0,

f does not have any real roots greater than or equal to −ρ. Furthermore, since

f(−ρ) and f(−∞) have opposite signs, f has at least one real root in (−∞,−ρ).
Finally, since f ′(z) > 0 for all z < −ρ, f is increasing in (−∞,−ρ). So f has

exactly one real root which is negative. As a consequence, the roots of f in either

case cannot be 0, 1, ..., nor n− 1.

Next, we assert that f(z) has simple roots only. Suppose not, let r be a double

root of f , then it is a root of f ′ and

f(z) − z

m
f ′(z) =

1 −m

m
z + n+ j. (6.202)

Hence (6.202) implies that r = m(n + j)/(m − 1) is real and positive, which is

impossible by our previous assertion.

Let µ1, ..., µm be the roots of (6.201). In view of the above results, µ1, ..., µm are

pairwise distinct and each one of them is different from 0, 1, ..., or n−1. Furthermore,

in view of (6.200) and (6.201), we have

λ bµicn = aλk(1−µ
m
i )/(1−µi) = aλ(k+n+j−µi)/(1−µi)

for i = 1, ...,m, from which we obtain

λi =

[bµicn
a

](1−µi)/(k+n+j−1)

, i = 1, ...,m. (6.203)
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In other words, we have found m distinct solutions of the form:

xi(z) = λiz
µi , i = 1, 2, ...,m, (6.204)

where µ1, ..., µm are roots of (6.201) and λ1, ..., λm are defined by (6.203).

To summarize, there exist m distinct (single valued and analytic) power func-

tions of the form (6.204) which are solutions of (6.199) defined on C\(−∞, 0].

We remark that each solution xi(z) = λiz
µi has a nontrivial fixed point αi.

Indeed, from λiα
µi

i = αi, we find

αi = λ
1/(1−µi)
i = (bµicn)1/(k+n+j−1) 6= 0. (6.205)

In terms of the fixed point αi, we may therefore write xi(z) in the form

xi(z) = α1−µi

i zµi . (6.206)

As a corollary, let µ1, ..., µm be the roots of (6.201), and α1, ..., αm given by

(6.205). Then in a neighborhood of each point αi, i = 1, ...,m, equation (6.199) has

an analytic solution of the form

xi(z) = αi + µi(z − αi) +
µi(µi − 1)

2!αi
(z − αi)

2 + · · ·

+
bµicn
n!αn−1

i

(z − αi)
n + · · · .

Indeed, in view of (6.206),

xi(z) = α1−µi

i zµi = αi

(
1 +

z − αi
αi

)µi

= αi

[
1 +

µi
1!

(
z − αi
αi

)
+
µi(µi − 1)

2!

(
z − αi
αi

)2

+ · · ·
]

as required.

Example 6.6. Consider the equation

x′(z) = x(x(z)).

Then (6.201) is reduced to

µ2 − µ+ 1 = 0,

which has roots µ± = (1 ±
√

3i)/2. And from (6.200), we find λ− = µ
1/µ−

− ≈
2.145− 1.238i, λ+ = µ

1/µ+

+ ≈ 2.145 + 1.238i. Since |µ±| = 1 and µ6
± = 1, α± = µ±

are roots of unity.
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6.4.1 Equation I

In this section, we prove the existence of power solutions for the more general

equation
(
x(n1) (p1z)

)N1

· · ·
(
x(na) (paz)

)Na

= Azj
(
x[m1] (q1z)

)M1

· · ·
(
x[mb] (qbz)

)Mb

(6.207)

where a, b, N1, . . . , Na, M1, . . . ,Mb and n1, ..., na, m1, ...,mb are positive integers

such that n1 > n2 > · · · > na and m1 > m2 > · · · > mb. The number j is

a nonnegative integer and A, p1, . . . , pa, q1, . . . , qb are nonzero complex numbers.

Note that by taking a = b = 1, N1 = 1, M1 = k and p1 = q1 = 1 in (6.207), we

obtain (6.199).

Theorem 6.44. Put s (N, a) = N1 + · · · + Na, s (M, b) = M1 + · · · + Mb and

s (Nn, a) = N1n1 + · · · + Nana. Let µ1, . . . , µm, where 1 ≤ m ≤ m1, be distinct

roots of the polynomial

f (z) = M1z
m1 + · · · +Mbz

mb − s (N, a) z + s (Nn, a) + j. (6.208)

If s (N, a) ≤ s (M, b), then (6.207) has m distinct, single-valued, nonzero, analytic

power solutions of the form

xi (z) = λiz
µi , i = 1, 2, . . . ,m; z ∈ C\(−∞, 0],

where

λi =

[ ∏a
l=1 p

Nlµi

l

A
∏b
l=1 q

Mlµ
ml
i

l

(
bµicna

)s(N,a)

×(bµi − nacna−1−na
)s(N,a−1) · · · (bµi − n2cn1−n2

)s(N,1)

]Bi

(6.209)

and

Bi =
1 − µi

s(M, b) + s(Nn, a) − s(N, a) + j
.

Proof. Substituting x (z) = λzµ into (6.207), we obtain

QµAλ
czr = Pµλ

s(N,a)
(
bµcna

)s(N,a)

×(bµ− nacna−1−na
)s(N,a−1) · · · (bµ− n2cn1−n2

)s(N,1)zs(N,a)µ−s(Nn,a)

where

c =

b∑

l=1

Ml(1 + µ+ · · · + µml−1),

r =

b∑

l=1

Mlµ
ml + j,
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Pµ =

a∏

l=1

pNlµ
l ,

and

Qµ =

b∏

l=1

qMlµ
ml

l .

This leads to two requirements

QµAλ
c = Pµλ

s(N,a)
(
bµcna

)s(N,a)

×(bµ− nacna−1−na
)s(N,a−1) · · · (bµ− n2cn1−n2

)s(N,1) (6.210)

and

s (N, a)µ− s (Nn, a) =

b∑

l=1

Mlµ
ml + j, (6.211)

or

f(µ) = 0.

Note that the polynomial f(z) does not have any nonnegative real roots if s (N, a) ≤
s (M, b). Indeed, f (0) = s (Nn, a) + j > 0. For real z ≥ 1, from s (N, a) ≤ s (M, b),

we get s (N, a) z ≤ s (M, b) z ≤M1z
m1+· · ·+Mbz

mb and so f (z) ≥ s (Nn, a)+j > 0.

For real z ∈ (0, 1), we have f (z) > 0 − s (N, a) + s (Nn, a) + j ≥ 0. Thus none of

µ1, . . . , µm is a nonnegative real number. Substitute µ = µi into (6.210), we may

then solve for λ = λi 6= 0 and conclude that λiz
µi is a desired solution. The proof

is complete.

We remark that if the condition s (N, a) ≤ s (M, b) fails to hold, the theorem is

not true as can be seen from the following example.

Example 6.7. Consider the equation
(
x(3) (z)

)(
x(1) (z)

)3

= x[1] (z) .

Here s (N, 2) = 4 > s (M, 1) = 1, f (z) = z − 4z + 6 has a unique root µ = 2 with

λ = 0, yielding only the trivial power function solution.

In certain cases, the number of solutions can be strengthened to m1 as follows:

In addition to the hypotheses in Theorem 1, suppose m1, . . . ,mb are all even, or,

m1 is odd but m2,, . . . ,mb are even. Then there exist m1 distinct, single-valued,

nonzero, analytic power function solutions.

Indeed, in the proof above, we already have f (z) > 0 for each z ≥ 0. If

m1, . . . ,mb are even, then Descartes’ rule of sign (see e.g. page 171 in Barbeau

[14]), tells us that f (z) has no negative real root, while if m1 is odd but m2, . . . ,mb

are even, then f (z) has at most one negative real root. In either case, f (z) cannot
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have repeated roots, other roots being complex conjugates. Hence, all m1 roots of

f (z) are distinct.

Observe that each solution xi(z) = λiz
µi has a nontrivial fixed point αi of the

form

αi = λ
1

1−µi

i = λ
1

s(M,b)+s(Nn,a)−s(N,a)+j

i 6= 0,

thus we may write each solution xi(z) as

xi(z) = α1−µi

i zµi .

Expanding such solution about its fixed point, we immediately get the following

consequence: Let µ1, . . . , µm be the distinct roots of (6.211), and

αi = λ
1

1−µi

i , i = 1, 2, ...,m,

where λi is defined by (6.209). Then in a neighborhood of each point αi, the iterative

functional differential equation (6.207) has an analytic solution of the form

xi(z) = αi +
bµic1

1!
(z − αi) +

bµic2
2!αi

(z − αi)
2 + · · · + bµicn

n!αn−1
i

(z − αi)
n + · · · .

6.4.2 Equation II

The following equation

x′(z) =
1

x[2](z)
(6.212)

has been discussed earlier. Nontrivial power function solutions can also be found for

(6.212). Indeed, let us seek solutions of the form x(z) = λzµ where λ 6= 0. Setting

it into (6.212), we obtain

λµzµ−1 = λ−(1+µ)z−µ
2

.

We are led to the equations

µλ2+µ = 1, (6.213)

and

µ2 + µ− 1 = 0. (6.214)

Since the two distinct roots µ+ and µ− are

µ± =
−1±

√
5

2
,

we can then solve from (6.213) to find

λ± = µ
(µ±−1)/(2−µ±−µm

± )
± = µ

µ±−1
± , (6.215)

and two corresponding distinct solutions of (6.212) of the form

x±(z) = λ±z
µ± . (6.216)
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On the other hand, we may try to find power solutions of the form x(z) = λzµ,

where λ 6= 0, for the iterative functional differential equation

x′(z) = Ax(z), A 6= 0. (6.217)

Substituting x(z) = λzµ into (6.217), we see that λµzµ−1 = Aλzµ, so that

µ = µ− 1,

λµ = Aλ.

But then µ cannot exist as expected.

The above approach prompts us to consider more general iterative functional

differential equations. Let

N := (N1, N2, ..., Na), M := (M1,M2, ...,Mb), T := (T1, T2, ..., Tc)

be vectors with nonnegative integer components. Let

n := (n1, n2, ..., na), m := (m1,m2, ...,mb), t := (t1, t2, ..., tc)

be vectors with nonnegative integer components such that

n1 > n2 > · · · > na, m1 > m2 > · · · > mb, t1 > t2 > · · · > tc.

Recall that the 1-norm of a vector v = (v1, v2, ..., vk) is denoted by |v|1 , that is,

|v|1 =
∑k

i=1 |vi| . In this section, for the sake of convenience, we will use |v| instead

of |v|1 and use

|v|j :=

j∑

i=1

|vi|

for the 1-norm of the subvector (v1, v2, ..., vj) of v. The inner product of two vectors

u = (u1, ..., uk) and v = (v1, ..., vk) is

u•v = u1v1 + · · · + ukvk.

Consider iterative functional differential equations of the form [31]

(
x(n1) (p1z)

)N1

· · ·
(
x(na) (paz)

)Na

= A

(
x[t1] (r1z)

)T1 · · ·
(
x[tc] (rcz)

)Tc

(
x[m1] (q1z)

)M1 · · ·
(
x[mb] (qbz)

)Mb

(6.218)

where A, p1, . . . , pa, r1, . . . , rc, q1, . . . , qb are nonzero complex numbers.

In order that (6.218) is a true differential equation, it is natural to assume

N•n > 0 (so that |N | > 0 and some niNi > 0). We will make such an assumption for

the moment and comment on the other cases later. We remark that if |T | = |M | = 0,

the right hand side of (6.218) becomes A. The resulting equation does not contain

any iterates of the unknown function and perhaps it is not appropriate to call it an

iterative functional equation. We will, however, consider such a possibility as well.
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We will seek nontrivial power function solutions of (6.218). By substituting

x(z) = λzµ, where λ 6= 0, into (6.218), we obtain

AFµλ
Eµzr+f

= PµQµλ
|N |+Cµ

(
bµcna

)|N |a

×(bµ− nacna−1−na
)|N |a−1 · · · (bµ− n2cn1−n2

)|N |1z|N |µ−N•n, (6.219)

where

Pµ :=
a∏

l=1

pNlµ
l , Qµ :=

b∏

l=1

qMlµ
ml

l , Fµ :=
c∏

l=1

rTlµ
tl

l ,

Cµ :=

b∑

l=1

Ml(1 + µ+ · · · + µml−1), Eµ :=

c∑

l=1

Tl(1 + µ+ · · · + µtl−1),

and

r := −
b∑

l=1

Mlµ
ml , f :=

c∑

l=1

Tlµ
tl ,

This leads to two requirements

AFµ = PµQµλ
|N |+Cµ−Eµ

(
bµcna

)|N |a

×(bµ− nacna−1−na
)|N |a−1 · · · (bµ− n2cn1−n2

)|N |1 (6.220)

and

|N |µ−N•n =

c∑

l=1

Tlµ
tl −

b∑

l=1

Mlµ
ml . (6.221)

Let

Φ(µ) :=

b∑

l=1

Mlµ
ml −

c∑

l=1

Tlµ
tl + |N |µ−N•n, (6.222)

which may be called a ‘characteristic polynomial’ of (6.218). First of all, it is

possible that Φ(µ) is a constant polynomial. Indeed, this is true only if

|N |µ+Mbµ
mb + Tcµ

tc = 0.

In such a case, the only possible root of Φ is 0. However, substituting x(z) = λz0 = λ

into (6.218), we obtain λ|T | = 0, which shows that the only possible power function

solution is trivial. In general, Φ(µ) may be a nonconstant polynomial.

Theorem 6.45. Suppose Φ is not a constant polynomial and µ is a root which does

not belong to the set {0, 1, . . . ,max {1, n1 − 1}}. Suppose further that |T |+ |M | > 0

and

|N | + Cµ −Eµ 6= 0. (6.223)
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Then (6.218) has at least one single-valued, nontrivial, analytic power solution of

the form

x (z) = λzµ, z ∈ C\(−∞, 0],

where

λ|N |+Cµ−Eµ =
AFµ
PµQµ

1
(
bµcna

)|N |a (bµ− nacna−1−na
)|N |a−1 · · · (bµ− n2cn1−n2

)|N |1
.

(6.224)

Indeed, if Φ is not a constant polynomial with root

µ /∈ {0, 1, . . . ,max {1, n1 − 1}} , then
(
bµicna

)|N |a (bµi − nacna−1−na
)|N |a−1 · · · (bµi − n2cn1−n2

)|N |1 6= 0. (6.225)

We may thus substitute µ into (6.220), solve for λ as given by (6.224), show λ is

well defined and then check directly that λzµ is a desired solution.

Observe that for the above arguments to hold, three points should be noted:

1. the exponent of λ|N |+Cµ−Eµ in (6.220) must be non-zero,

2. the condition that Φ(µ) does indeed determine the values of µ, which is

equivalent to Φ(µ) being non-constant, and

3. the condition (6.225) must hold, which is true if

µ /∈ {0, 1, . . . ,max {1, n1 − 1}}.

The restriction µ /∈ {0, 1, . . . ,max {1, n1 − 1}}, however, can sometimes be re-

laxed as shown in the following examples.

Example 6.8. Consider the iterative functional differential equation

x′(z) =
x(z)

x[2](z)
.

Here N = (N1) = (1), T = (T1) = (1), M = (M1) = (1), and n = (n1) = (1), t =

(t1) = (1), m = (m1) = (2). Hence (6.220) becomes

λ1+µµ = 1 (6.226)

and

Φ(µ) = µ2 − 1,

which has roots µ± = ±1. Since

|N | + Cµ+ −Eµ+ = 1 6= 0,

in view of Theorem 6.45, we see that our equation has a nontrivial solution. In

fact, if we substitute λ = λ+ into (6.226), we see that λ = 1 or −1, and we can find

solutions x(z) = z and x(z) = −z. On the other hand,

|N | + Cµ− −Eµ− = 0,

thus our Theorem 6.45 does not guarantee a nontrivial solution. Indeed, substitut-

ing µ = µ− into (6.226), we see that −1 = 1, which is impossible.
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Example 6.9. If Φ(µ) has a root at µ = 1, then for (6.225) to hold under the

condition |N |a > 0, there are only two possibilities:

1. a = 1, n1 = 1, N1 > 0 and (6.218) takes the form

(
x(1)(p1z)

)N1

= A

(
x[t1] (r1z)

)T1 · · ·
(
x[tc] (rcz)

)Tc

(
x[m1] (q1z)

)M1 · · ·
(
x[mb] (qbz)

)Mb
,

which has the solution x(z) = λz1 where

λN1+M•m−T•t =
A
∏c
l=1 r

Tl

l

pN1
1

∏b
l=1 q

Ml

l (µ)N1
1

,

or

2. N1 = · · · = Na−1 = 0, Na > 0, na = 1 and (6.218) takes the form

(
x(1)(paz)

)Na

= A

(
x[t1] (r1z)

)T1 · · ·
(
x[tc] (rcz)

)Tc

(
x[m1] (q1z)

)M1 · · ·
(
x[mb] (qbz)

)Mb
,

which has the solution x(z) = λ̃z1 where

λ̃Na+M•m−T•t =
A
∏c
l=1 r

Tl

l

pNa
a
∏b
l=1 q

Ml

l (µ)Na

1

.

Example 6.10. In (6.218), let mb > 0, t = (t1) = (0) and T = (T1) = (j) where

j ≥ 0. Then we are considering
(
x(n1) (p1z)

)N1

· · ·
(
x(na) (paz)

)Na

= A
zj

(
x[m1] (q1z)

)M1 · · ·
(
x[mb] (qbz)

)Mb
.

(6.227)

If |M | > N•n− |N | + j, then the characteristic polynomial

Φ(µ) =

b∑

l=1

Mlµ
ml − j + |N |µ−N•n

does not have any roots in {0} ∪ [1,∞) (since Φ(0) = −N•n− j ≤ −N•n < 0, and

since Φ(µ) ≥ |M |−j+ |N |−N•n > 0 for µ ≥ 1). Thus, under the conditions stated

above, Theorem 6.45 asserts the existence of nontrivial power function solutions for

(6.227).

If, in addition, all m1,m2, ...,mb are even, or all odd, then (6.227) will have at

least m1 distinct nontrivial solutions. Indeed, we have already shown that Φ(µ) > 0

for µ ≥ 1. If m1,m2, ...,mb are even, then Descarte’s rule of sign (see, e.g. page

171 of [14]), tells us that Φ(µ) has at most one negative real root and at most one

positive real root in (0, 1), while if m1,m2, ...,mb are all odd, then Φ(µ) has no

negative real root and at most one positive real root. In either cases, Φ(µ) cannot

have repeated roots, other roots being complex conjugates. Hence all m1 roots of

Φ(µ) are distinct and they yield at least m1 distinct nontrivial solutions.
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Example 6.11. In (6.218), let |T | = 0, mb = 0 and Mb = k ≥ 0. Then we are

considering
(
x(n1) (p1z)

)N1

· · ·
(
x(na) (paz)

)Na

= A
1

zk
(
x[m1] (q1z)

)M1 · · ·
(
x[mb−1] (qb−1z)

)Mb−1
.

(6.228)

As in the previous example, if
∣∣∣
∑b−1
l=1 Ml

∣∣∣ > N•n − |N | − k and if N•n − k 6= 0,

then the corresponding characteristic polynomial

Φ(µ) =

b−1∑

l=1

Mlµ
ml + k + |N |µ−N•n

does not have any roots in {0}∪ [1,∞). Thus Theorem 6.45 will imply the existence

of nontrivial power function solutions for (6.228). Furthermore, a statement similar

to that in Example 6.10 can also be made when m1, ...,mb−1 are all even, or, all

odd.

Example 6.12. Consider an iterative functional differential equation of the form
(
x(n1) (p1z)

)N1

· · ·
(
x(na) (paz)

)Na

= Azj
(
x[t1] (q1z)

)T1

· · ·
(
x[tb] (qbz)

)Tb

where a, b,N1, . . . , Na, T1, . . . , Tb and n1, . . . , na, t1, . . . , tb are positive integers such

that n1 > n2 > · · · > na, t1 > t2 > · · · > tb. The number j is an integer

and A, p1, . . . , pa, q1, . . . , qb are nonzero complex numbers. By reasons explained in

Example 6.10, if |N | ≤ |T | , N•n+ j 6= 0 and

Φ(µ) =

b∑

l=1

Tlµ
tl − |N |µ+N•n+ j (6.229)

has a root µ, then Theorem 6.45 asserts the existence of at least one nontrivial

solution of the form x(z) = λzµ in C\(−∞, 0].

The case |T | = |M | = 0 is treated in our next result.

Theorem 6.46. Suppose |T | = |M | = 0 and N•n
|N | /∈ {0, 1, . . . ,max {1, n1 − 1}}.

Then (6.218) has at least one single-valued, nonzero, analytic power solutions of

the form

x (z) = λzµ, z ∈ C\(−∞, 0],

where

µ =
N•n
|N |

and

λ|N | =
A

Pµ

1
(
bµcna

)|N |a (bµ− nacna−1−na
)|N |a−1 · · · (bµ− n2cn1−n2

)|N |1
. (6.230)
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Indeed, since |T | = |M | = 0, thus Qµ = Fµ = 1, Cµ = Eµ = 0,

Φ(µ) = |N |µ−N•n,
and (6.219) becomes

Pµλ
|N | (bµcna

)|N |a (bµ− nacna−1−na
)|N |a−1 · · · (bµ− n2cn1−n2

)|N |1 = A. (6.231)

Since Φ now has the unique root µ = N•n/ |N | , and since it does not belong to

{0, 1, . . . ,max {1, n1 − 1}}, thus λ is a well defined root of the equation (6.231) and

we may check directly that λzµ is a desired solution.

Again, we may find |N | distinct roots of (6.231) and they yield |N | distinct

solutions of (6.218).

As in Example 6.9, the restriction µ /∈ {0, 1, . . . ,max {1, n1 − 1}} in Theorem

6.46 can also be relaxed.

Example 6.13. If Φ(µ) has a root at µ = 1, then for (6.225) to hold under the

condition |N |a > 0, there are only two possibilities:

1. a = 1, n1 = 1, N1 > 0 and (6.218) takes the form
(
x(1)(p1z)

)N1

= A,

which has the solution x(z) = λz1 where

λN1 =
A

pNl

l (bµc1)N1

,

or

2. N1 = · · · = Na−1 = 0, Na > 0, na = 1 and (6.218) takes the form
(
x(1)(paz)

)Na

= A,

which has the solution x(z) = λ̃z1 where

λ̃Na =
A

pNa
a (bµc1)Na

.

We have assumed that N•n > 0. The reason is that otherwise (6.218) reduces

to

1 = A

(
x[t1] (r1z)

)T1 · · ·
(
x[tc] (rcz)

)Tc

(
x[m1] (q1z)

)M1 · · ·
(
x[mb] (qbz)

)Mb
, (6.232)

or to

(x(p1z))
N1 = A

(
x[t1] (r1z)

)T1 · · ·
(
x[tc] (rcz)

)Tc

(
x[m1] (q1z)

)M1 · · ·
(
x[mb] (qbz)

)Mb
. (6.233)

Since derivatives are missing in both cases, it is not appropriate to call them differ-

ential equations.

However, we may try to find solutions of the form x(z) = λzµ anyway.
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For instance, suppose |N | = 0 and Φ is not a constant polynomial with a root

µ. Note that Φ(µ) is then given by

Φ(µ) =

b∑

l=1

Mlµ
ml −

c∑

l=1

Tlµ
tl ,

and (6.219) becomes

Qµλ
Cµ−Eµ = AFµ.

Substituting the root µ into (6.234), we obtain

λCµ−Eµ =
AFµ
Qµ

. (6.234)

Thus if |T | ≥ 0 and if Cµ − Eµ 6= 0, then we may find a solution λ from (6.234)

which yields a nontrivial solution of (6.232).

As for equation (6.233), the development leading to Theorems 6.45 and 6.46 still

apply.

Theorem 6.47. Suppose

Φ(µ) = N1µ+

b∑

l=1

Mlµ
ml −

c∑

l=1

Tlµ
tl

is not a constant polynomial and µ is a root. Suppose further that |T | ≥ 0 and

N1 + Cµ −Eµ 6= 0.

Then (6.218) has at least one single-valued, nontrivial, analytic power solution of

the form

x (z) = λzµ, z ∈ C\(−∞, 0],

where

λN1+Cµ−Eµ =
AFµ

pN1µ
1 Qµ

.

We remark that if |T | = |M | = 0, then equation (6.233) becomes

(x(p1z))
N1 = A.

Assuming x(z) = λzµ where λ 6= 0, we easily find that µ = 0 and λN1 = A. Thus,

x(z) = A1/N1 is a solution.
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6.5 Notes

Equation (6.11) and the corresponding Theorems 6.1 and 6.2 are in Li and Cheng

[120]. Equation (6.22) and the corresponding Theorems 6.3, 6.4 and 6.5 are in Si

[186]. Besides equations (6.11) and (6.22), there are several other Babbage type

equations which have been studied. See for exampe Bessis et al. [17], Pfeiffer [156],

Issacs [83], Wagner [219], Myberg [144], Sarkovskii [168], Rice [162], Rice et al.

[163], Si [175], Mai and Liu [133], Si and Zhang [196], Liu [129, 130], Liu and Mai

[131]. In particular, Sarkovski in [168] considered the equation

x (f (x (t))) = g (x (t)) ,

where x(t) is the unknown function; Rice in [162] considered the iterative square

roots of Chebysev polynomials; Rice et al. [163] show that a quadratic polynomial

does not allow iterative square roots.

The invariant curve equation (6.41) and the corresponding existence theorems

are contained in Si [176], while equation (6.49) and the corresponding results are in

Si and Zhang [195]. For other invariant curve equations, the readers may consult

Nitecki [148], Anosov [4], Brydak [20, 21], Dhombres [46, 47], Ng and Zhang [147],

Si et al. [194], Li et al. [124].

Equation (6.72) and the corresponding existence results are contained in Si et al.

[185]; equation (6.80) and the corresponding existence results are contained in Si and

Cheng [181]; equation (6.86) and the corresponding existence results are contained

in Si and Cheng [180]; equation (6.95) and the corresponding existence results are

contained in McKiernan [140]; and equation (6.105) and the corresponding existence

results are contained in Si et al. [192]. Two other equations similar to equation

(6.80) are studied recently by Wang and Si [222] and Xu et al. [229].

The equation (6.95) (studied by McKiernan [140]) is associated with

the asymptotic behavior of Golomb’s sequence {F (n)}∞n=1 : 1, 2, 2, 3, 3, 4,

4, 4, 5, 5, 5, 6, 6, 6, 6, ... . Golomb’s self-describing sequence is a monotone non-

decreasing sequence of positive integers with the property that for each n ≥ 1,

F (n) is equal to the number of (not necessarily consecutive) occurences of the inte-

ger n in the sequence. Golomb’s sequence is proposed by Golomb in Problem 5407

in [70] who asked for an asymptotic formula for the sequence. Marcus [134] showed

that as n → ∞, the n-th term of the Golomb’s sequence tends to the solution of

(6.95). That is F (n) ∼ x (n) (n→ ∞) where x is a positive solution of (6.95). He

also gave x+ (z) = ϕ2−ϕzϕ−1, where ϕ =
(√

5 + 1
)
/2 is the golden number, as a

positive solution to (6.95). The asymptotic behavior of Golomb’s sequence is also

studied in Petermann [152, 153] and Petermann and Remy [155, 154]. Two other

similar equations are studied recently by Si and Zhang [197] and Si et al. [202].

For additional motivation and results related to iterative differential equations

of the form

x′(t) = f (t, x(t), x (α (t, x(t))) , x′ (β (t, x(t)))) ,
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the readers may consult Driver [49–51, 53, 54], Dunkel [56], Eder [58], Grimm [71],

Gusarenko [72], Hsing [80], Hoag [79], Jackiewicz [86, 87], Oberg [149], Shi and Li

[171, 172], Tavernini [215], Wang [217], Wu [226, 227], Xiang [228].

Equation (6.125) and the corresponding existence results are contained in Li

[119]; equation (6.152) and the corresponding existence results are contained in Si

and Wang [189]; equation (6.167) and the corresponding existence results are con-

tained in Si and Wang [187]; and equation (6.186) and the corresponding existence

results are contained in Si and Wang [188]. Other equations involving second order

derivatives of the unknown function can be found in Si and Wang [190], Si and

Zhang [199], Liu and Li [128] and Li and Liu [123].

Power functions solutions for iterative functional equations were noted by T. T.

Lu in a note to one of the authors (Cheng) before [122] was written. Since then

several papers [121, 214, 31] were written, all based on similar ideas. In particular,

equation (6.218) and the corresponding results are contained in Cheng et al. [31].

The same idea is also applied by Si and Zhang [199] to obtain power functions

solutions of

x′′(z) = σ
(
x[m]

)τ
+ γzβ

where σ, γ, τ, β ∈ C\{0} and m ∈ Z+. It is expected similar solutions can be found

for several other iterative functional equations.
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Appendix A

Univariate Sequences and Properties

We summarize some of the notations and facts related to basic univariate sequences

and their associated operations.

The set of real numbers is denoted by R, the set of all complex numbers by C, the

set of integers by Z, the set of positive integers by Z+, and the set of nonnegative

integers by N. The imaginary unit is denoted by i. lN is the set of all (real or

complex) sequences of the form {fk}k∈N
= {f0, f1, f2, ...}. Therefore, sequences

a, b, ... in lN are assumed to have the form {ak}k∈eN , {bk}k∈N
, ..., respectively.

A.1 Common Sequences

• Let α ∈ C, the sequence {α, 0, 0, ...} is denoted by α and is called a scalar

sequence.

• The sequences {0, 0, ...} and {1, 0, ...} is denoted by 0 and 1 respectively.

• For any number λ ∈ C, the geometric sequence {λn}n∈N
, where λ ∈ C, is

denoted by λ.

• −1 = {+1,−1,+1,−1, ...} , 1 = {1, 1, 1, ...} which is also denoted by σ.

• i = {1, i,−1,−i, 1, i,−1,−i, ...} and −i = {1,−i,−1, i, 1,−i,−1, i, ...} .
• The arithmetic sequence {0, 1, 2, 3, ...} is denoted by η.

• The difference sequence {1,−1, 0, 0, ...} is denoted by δ.

• The exponential sequence {1/0!, 1/1!, 1/2!, 1/3!, 1/4!, ...} is denoted by $.

• The Dirac sequence ~〈m〉 ∈ lN, where m ∈ N, is defined by

~
〈m〉
k =

{
1 k = m

0 k 6= m
.

The sequence ~〈1〉 is also written as ~.

• The jump (or Heaviside) sequence H(m), where m ∈ N, is defined by

H
(m)
k =

{
0 0 ≤ k < m

1 k ≥ m
.

259
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• The factorial sequence bzc ∈ lN, where z ∈ C, is defined by

bzc = {1, z, z(z − 1), z(z − 1)(z − 2), ...} .
Thus bzc0 = 1 and

bzcm = z(z − 1)(z − 2) · · · (z −m+ 1), m ∈ Z+.

Note that b0c0 = 0! = 1, bncn = n! and 0 = bncn+1 = bncn+2 = · · · for

n ∈ N.

• The sequence dze ∈ lN, where z ∈ C\{−1,−2,−3, ...}, is defined by

dze =

{
1,

1

z + 1
,

1

(z + 1)(z + 2)
, ...

}
.

Thus dze0 = 1 and

dzem =
1

(z + 1)(z + 2) · · · (z +m)
, m ∈ Z+.

Note that the fraction 1/(z+1)(z+2) · · · (z+m), when m ∈ Z+, is defined

if z 6= −1,−2, ...,−m.
• The binomial sequence C(z) ∈ lN, for any z ∈ C, is defined by

C(z) =

{
1

0!
,
z

1!
,
z(z − 1)

2!
,
z(z − 1)(z − 2)

3!
, ...

}
,

so that C
(z)
0 = 1 and

C(z)
m =

z(z − 1) · · · (z −m− 1)

m!
, m ∈ N, z ∈ C.

In particular, for i, j ∈ N such that j ≤ i, C
(i)
j is the usual binomial

coefficient.

A.2 Sums and Products

• Let f, g ∈ lN. Their (termwise) sum is

f + g = {f0 + g0, f1 + g1, f2 + g2, ...} .
• Let α ∈ C and f ∈ lN. The α multiple of f is

αf = {αf0, αf1, α2f2, ..., } .
• Let f, g ∈ lN. The termwise product of f and g is

f · g = {f0g0, f1g1, f2g2, ...}k∈N
.

The products f · f, f · f · f, ... will be denoted by f 2, f3, ... respectively. We

define f1 = f and f0 = σ. The sequence fp is called the p-th termwise

(product) power of f. The k-th term of the sequence f p is (fp)k , which is

written as fpk .
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• Let f, g ∈ lN. The convolution product of f and g is

(f ∗ g)k =

k∑

i=0

fk−igi, k ∈ N.

The products f ∗f, f ∗f ∗f, ... will be denoted by f 〈2〉, f 〈3〉, ... respectively.

We define f 〈1〉 = f and f 〈0〉 = 1. The sequence f 〈p〉 is called the p-th

convolution (product) power of f. The k-th term of the sequence f 〈p〉 is(
f 〈p〉)

k
, which is written as f

〈p〉
k .

• Let f, g ∈ lN. If

lim
k→∞

k∑

i=0

fig
〈i〉
n =

∞∑

i=0

fig
〈i〉
n <∞, n ∈ N,

then the the composition product of f and g is

f ◦ g =

{ ∞∑

i=0

fig
〈i〉
n

}

n∈N

.

The products f ◦f, f ◦f ◦f, ..., will be denoted by f [2], f [3], ..., respectively.

We also define f [1] = f and f [0] = ~. The sequence f [p] is called the p-th

composition (product) power of f.

A.3 Quotients

• Let f, g ∈ lN. If g0 6= 0, then there is a unique sequence x = {xk} ∈ lN

such that g ∗ x = f. This sequence is also denoted by the quotient f/g.

• Let g ∈ lN. If g0 = 0 and g1 6= 0, then there is a unique sequence x ∈ lN

such that x ◦ g = ~. This sequence is also denoted by g[−1].

• Let g ∈ lN. If gi 6= 0 for i ∈ N, then there is a unique sequence x ∈ lN such

that x · g = 1. This sequence is also denoted by g−1.

A.4 Algebraic Derivatives and Integrals

• Given a sequence f ∈ lN, we define the algebraic derivative of f by

Df = {(k + 1)fk+1)}∞k=0.

The higher algebraic derivatives Dnf are defined recursively by Dnf =

D(Dn−1f). Thus we have

D{f0, f1, f2, ...} = {f1, 2f2, 3f3, ...},
and

Dnf = {(k + 1) · · · (k + n)fk+n}
for n ∈ Z+. It is natural to define D0f = f and D1f = Df.
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• Let φ be a sequence. If there is a sequence ψ such that Dψ = φ, then ψ

is called the primitive of φ. In particular, given φ = {φ0, φ1, φ2, ...}, the

primitive
{

0,
φ0

1
,
φ1

2
,
φ2

3
,
φ3

4
, ...

}

is called the algebraic integral of φ and is denoted by
∫
φ. Hence

∫
φ = ~ ∗

{
φk
k + 1

}

k∈N

.

A.5 Tranformations

• Given f ∈ lN, the first difference of f is ∆f = {f1 − f0, f2 − f1, ...}. The

higher differences ∆mf, m = 2, 3, ..., are defined recursively by ∆mf =

∆
(
∆m−1f

)
. Furthermore, ∆0f = f and ∆1f = ∆f.

• The shifted sequences Emf and E−mf, where m ≥ 1, are respectively

Emf = {fm+k}k∈N
,

and

(E−mf)k =

{
f−m+k k ≥ m

0 1 ≤ k ≤ m
.

We also define E0f = f and Ef = E1f. Note that ~〈m〉 ∗ f = E−mf for

m ∈ N.

• Given f ∈ lN, the partial sum sequence generated from f is
{

k∑

i=0

fi

}

k∈N

= σ ∗ f.

• Given f ∈ lN, the absolute sequence of f is

|f | = {|f0| , |f1| , |f2| , ...} .

• Given f ∈ lN, the positive and negative parts of f are

f+ =
1

2
(|f | + f)

and

f− =
1

2
(|f | − f) .

Similarly, other transformations can be obtained by termwise operation, e.g.

ln f = {ln fk}k∈N

provided the transformed sequence is in lN.
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A.6 Limiting Operations

• For each j ∈ N, let f (j) ∈ lN. The sequence {f (j)}j∈N (of sequences in lN)

is said to converge (pointwise) to the limit sequence f ∈ lN if

lim
j→∞

f
(j)
k = fk ∈ C, k ∈ N.

• The infinite sum of a sequence {f (j)}j∈N of sequences is the limit sequence

of the partial sum sequence
{∑n

j=0 f
(j)
}
n∈N

:

∞∑

j=0

f (j) = lim
n→∞

n∑

j=0

f (j).

If such a limiting sequence exists, we say that the series
∑∞

j=0 f
(j) converges.

Note that
∑∞

j=0 f
(j) converges if, and only if,

∑∞
j=0 f

(j)
n converges for each

n ∈ N; furthermore,

∞∑

j=0

f (j) =

∞∑

j=0

{
f (j)
n

}
n∈N

=





∞∑

j=0

f (j)
n




n∈N

,

that is, the k-th term of the series is obtained by ‘adding’ all the k-th terms

of the individual sequences.

A.7 Operational Rules

• Equipped with the termwise addition and the convolution product, lN is a

commutative ring with no zero divisor, i.e. f ∗g = 0 implies f = 0 or g = 0,

and the additive and multiplicative identities are 0 and 1 respectively.

• For any f, g ∈ lN,

(f + g)〈k〉 =

k∑

i=0

C
(k)
i f 〈i〉 ∗ g〈k−i〉, k ∈ N.

• Let f, g ∈ lN and λ, µ ∈ C. Then f ·g = g ·f, λ ·µ = λµ, 0 ·f = f0, 1 ·f = f,

and λ · (f + g) = λ · f + λ · g.
• Let f = {fk} ∈ lN. If f0 = 0, then the first n, where n ≥ 1, terms of

the n-th convolution power f 〈n〉 are equal to zero, that is, f
〈n〉
k = 0 for

k = 0, 1, ..., n− 1; and f
〈n〉
n = fn1 . Furthermore, since

f
〈n〉
i =

∑

v1+···+vn=i;v1,...,vn∈N

fv1fv2 · · · fvn
=

∑

l1+···+ln=i;l1,...,ln∈Z+

fl1 · · · fln ,

for each j ∈ {0, ..., k}, the term f
〈j〉
k involves f1, ..., fk−1 only and can be

expressed as

f
〈j〉
k = P (f1, ..., fk−1), k ≥ 2, 0 ≤ j ≤ k,
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where P depends on j and k and is a (n−1)-variate polynomial with positive

coefficients. Hence the conditions f0 = 0, f1 = µ and the iteration formula

fk = F
(
f
〈2〉
k , ..., f

〈k〉
k

)
, k ≥ 2,

will define f in a unique manner.

• Let f ∈ lN. If f0 = f1 = 0, then the first 2n terms of the convolution

product f 〈n〉 are equal to zero.

• Let f, g ∈ lN. Then λ · (f ∗g) = (λ · f)∗ (λ ·g) for λ ∈ C. Hence (f · λ)〈m〉
=

λ · f 〈m〉, m ∈ N.

• Let f, g, p, q ∈ lN such that g0 6= 0 and q0 6= 0. Then

f ∗ p
g ∗ q =

f

g
∗ p
q
.

• Let f, g ∈ lN such that g0 6= 0. Then (f/g)〈n〉 = f 〈n〉/g〈n〉 for n ∈ N.

• For α, β ∈ C and f, g ∈ lN,

D(αf + βg) = αDf + βDg,

D(f ∗ g) = f ∗Dg + g ∗Df,

D(f · g) = (Df) · Eg = (Ef) ·Dg
and

D

(
f

g

)
=
g ∗Df − f ∗Dg

g〈2〉
,

where we recall that f/g is only defined when the zeroth term of g is not 0.

• For f ∈ lN,

Dnf = {(k + 1) · · · (k + n)fk+n}, n ∈ Z+.

~ ∗Df = {kfk},

~〈m〉 ∗Dnf = {bk + n−mcn fk+n−m} , n ≥ m ≥ 0,

Df 〈n〉 = f 〈n−1〉 ∗Df + f ∗Df 〈n−1〉 = · · · = n ∗ f 〈n−1〉 ∗Df, n ∈ Z+,

Dn
(

~〈m〉 ∗ f
)

= ~〈m−n〉 ∗ {bm+ kcn fk} , m ≥ n ≥ 1.

• If Dφ = 0, then φ is a scalar sequence.

• For any f, g ∈ lN and any α, β ∈ C,
∫

(αf + βg) = α

∫
f + β

∫
g.

• Let f be a sequence in lN, ∆f its first difference, and f0 the sequence

{f0, 0, 0, ...}. Then it is easily checked that δ ∗ f = ∆f + f0 − δ ∗ (∆f) =

f0 + ~ ∗ (∆f).
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• Let a, b ∈ lN such that b0 = 0. Then b
〈i〉
n = 0 for n ∈ {0, ..., i}. Thus

∞∑

i=0

aib
〈i〉
n =

n∑

i=0

aib
〈i〉
n =

{
a0 n = 0∑n

i=1 aib
〈i〉
n n ≥ 1

.

• Let g ∈ LN such that g0 = 0. Then

H(m) ◦ g =

{
n∑

i=m

g〈i〉n

}

n∈N

.

• If {f (j)}j∈N and {g(j)}j∈N are two sequences of sequences which converge

to f and g respectively, then

lim
j→∞

(
αf (j) + βg(j)

)
= αf + βg, α, β ∈ C,

lim
j→∞

(
f (j) · g(j)

)
= f · g,

lim
j→∞

f (j) ∗ g(j) = f ∗ g,

lim
j→∞

Df (j) = D

(
lim
j→∞

f (j)

)

and

lim
j→∞

∫
f (j) =

∫
lim
j→∞

f (j).

• If the composition product f ◦ g of f, g ∈ lN is defined, then

f ◦ g =

{ ∞∑

i=0

fig
〈i〉
n

}

n∈N

=

∞∑

i=0

fig
〈i〉.

• If the infinite sums
∑∞
j=0 f

(j) and
∑∞

j=0 g
(j) of two respective sequences

{f (j)}j∈N and
{
g(j)
}
j∈N

of sequences in lN converge, then
∞∑

j=0

(
αf (j) + βg(j)

)
= α

∞∑

j=0

f (j) + β

∞∑

j=0

g(j), α, β ∈ C,

∞∑

j=0

Df (j) = D




∞∑

j=0

f (j)


 ,

and
∞∑

j=0

∫
f (j) =

∫ 


∞∑

j=0

f (j)


 .

• If the infinite sum
∑∞

j=0 f
(j) of the sequence {f (j)}j∈N of sequences in lN

converge, then for any g ∈ lN ,
∞∑

j=0

f (j) · g =




∞∑

j=0

f (j)


 · g

and
∞∑

j=0

f (j) ∗ g =




∞∑

j=0

f (j)


 ∗ g.
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A.8 Knowledge Base

• ~〈0〉 = {1, 0, 0, ...}, ~〈1〉 = {0, 1, 0, 0, ...} , ~〈2〉 = {0, 0, 1, 0, 0, ...} = ~ ∗ ~,

~〈3〉 = {0, 0, 0, 1, 0, 0, ...} = ~ ∗ ~ ∗ ~, etc.

• 1
2 (i + −i) = {1, 0,−1, 0, 1, 0,−1, 0, ...} .

• 1
2 (i−−i) = {0, i,0,−i,0, i,0,−i, ...} .

• 1
2 (1 + −1) = {1, 0, 1, 0, 1, 0, 1, 0, ...} .

• 1
2 (1 −−1) = {0, 1, 0, 1, 0, 1, 0, 1, ...} .

• σ〈2〉 =
{∑k

i=0 1
}

= {k + 1}k∈N
= {bk + 1c1}k∈N

.

• σ〈n〉 =
{ bk+n−1cn−1

(n−1)!

}
k∈N

for n ∈ N.

• δ〈2〉 = {1,−2, 1, 0, ...}.
• δ〈n〉 = {(−1)k bnck /k!}k∈N for n ∈ Z+.

• For α ∈ C, Dα = 0.

• D~〈n〉 = n~〈n−1〉 for n ∈ Z+.

• Dδ〈n〉 = −nδ〈n−1〉 for n ∈ Z+.

• Dnσ = {(k + 1)(k + 2) · · · (k + n)}k∈N
for n ∈ Z+.

• For any α ∈ C,

α =
1

α ∗ δ − α+ 1
=

1

1 − α ∗ ~
.

• For any β 6= 1,

1

δ − β
=

{(
1

1 − β

)k+1
}
.

• For any c ∈ C,

(c)
〈2〉

= (c · σ) ∗ (c · σ) = c · σ2 =
{
ck bk + 1c1

}
k∈N

.

• For any β 6= 1,

1

(δ − β)〈n〉
=

{bk + n− 1cn−1

(n− 1)!
(1 − β)

−k−n
}

k∈N

, n ∈ Z+.

• For any γ 6= 0,

1

(γ − ~)〈n〉
=

{bk + n− 1cn−1

(n− 1)!
γ−k−n

}
, γ 6= 0, n ∈ Z+.

• For any γ 6= 1,

1

(1 − γ~)〈n〉
=

{bk + n− 1cn−1

(n− 1)!
γk
}
, n ∈ Z+.

• η ={k}k∈N = ~ ∗ σ〈2〉.
• Dη = {(k + 1)2}k∈N implies

{(k + 1)2} = D(~ ∗ σ〈2〉) = ~ ∗Dσ〈2〉 + σ〈2〉 = 2~ ∗ σ〈3〉 + σ〈2〉,

{(k + 1)3} = D
(
~ ∗D

(
~ ∗ σ〈2〉

))
= 6~〈2〉 ∗ σ〈4〉 + 6~ ∗ σ〈3〉 + σ〈2〉,

etc.
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• Since c
〈i〉
0 = ci and c

〈i〉
n = 0 for i ∈N and n ∈ Z+, we see that

($ ◦ c)0 = 1 + c+
1

2!
c2 + · · · = ec

and

($ ◦ c)n = 0, n ∈ Z+.

A.9 Analytic Functions

Let a ∈ lN with positive (or infinite) radius of convergence

ρ (a) =
1

lim supk→∞ |ak|1/k
.

Then the function â defined by

â(λ) =

∞∑

k=0

akλ
k = lim

n→∞

n∑

k=0

(λ · a)k , |λ| < ρ (a) ,

is called the power series function generated by a. A function f = f(λ) is said to

be analytic at 0 if it is (equal to) a power series function (near 0) generated by a

sequence with positive radius of convergence. A function g is said to be analytic at

c if it is the ‘translation’ of an analytic function at 0.

Some analytic functions that are analytic at 0 and generated by common se-

quences are:

• α̂(λ) = α, α ∈ C.

• σ̂(λ) = 1 + λ+ λ2 + λ3 + · · · = 1
1−λ .

• δ̂(λ) = 1 − λ.

• $̂(λ) = 1 + λ+ 1
2!λ

2 + 1
3!λ

3 + · · · = eλ.

• ~̂〈m〉(λ) = λm for m ∈ N.

• Ĥ(m)(λ) = λm +λm+1 +λm+2 + · · · = λm
(
1 + λ+ λ2 + · · ·

)
= λm/(1−λ)

for m ∈ N.

• Ĉ(n)(λ) = 1 + n
1!λ+ n(n−1)

2! λ2 + · · · + λn = (1 + λ)n for n ∈ N.

• Let a = 1
2 (i + −i) . Then â ·$(z) = cos z.

• Let a = 1
2 (i−−i) . Then â ·$(z) = sin z.

• Let a = 1
2 (1 + −1) . Then â ·$(z) = cosh z.

• Let a = 1
2 (1 −−1) . Then â ·$(z) = sinh z.

A.10 Operations for Analytic Functions

Analytic functions can be combined, decomposed, or transformed.
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• Let â and b̂ be analytic at 0. For any α, β ∈ C, the linear combination

αâ+βb̂ and the product âb̂ are analytic at 0. Furthermore, for λ sufficiently

near to 0,
(
αâ+ βb̂

)
(λ) = ̂(αa + βb)(λ).

• Let â and b̂ be analytic at 0. Then the product function âb̂ is analytic at

0. Furthermore, for λ sufficiently near to 0,
(
âb̂
)

(λ) = â(λ)b̂(λ) = â ∗ b(λ)

• Let â be analytic at 0. Then âm, wherem ∈ N, is analytic at 0. Furthermore,

for λ sufficiently near to 0,

âm(λ) = â〈m〉(λ).

• Let â be analytic at 0. Then â(m), where m ∈ N, is analytic at 0. Further-

more, for λ sufficiently near to 0,

â(m)(λ) = D̂ma(λ)

• Let â be analytic at 0. Then the Cauchy integral
∫ λ
0 â(w)dw, as a function

of λ, is analytic at 0. Furthermore, for λ sufficiently near to 0,

∫ λ

0

â(w)dw =

∫̂
a.

• Let â be analytic at 0 and a0 6= 0. Then the quotient function 1/â, is

analytic at 0. Furthermore, for λ sufficiently near to 0,

(1/â)(λ) = 1̂/a(λ).

• Let â be analytic at 0 such that â(0) = 0 and â′(0) 6= 0. Then its inverse

function â−1 is analytic at 0. Furthermore, for λ sufficiently near to 0,

â−1(λ) = â[−1](λ).

• Let â and b̂ be analytic at 0 and
∑∞
n=0 |bnλn| < ρ(a) for |λ| < ρ(b). Then

the composite function â ◦ b̂ is analytic at 0. Furthermore, for λ sufficiently

near to 0,

â(̂b(λ)) = â ◦ b(λ).

where we recall that a ◦ b is the composition product defined by (a ◦ b)n =∑∞
i=0 aib

〈i〉
n for n ∈N.

• Let â be analytic at 0 and β ∈ C. Then for λ sufficiently near to 0,

â(βλ) = β̂ · a(λ).
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• Let â be analytic at 0. Then for nonzero µ sufficiently near 0, the sequence

b =

{ ∞∑

n=0

C
(n)
k anµ

n−k
}

k∈N

is well defined and for λ sufficiently near 0,

â(λ) = b̂(λ− µ).

• Let â and b̂ be analytic at 0 such that â(λ) = b̂(λ) for all λ in an open ball

sufficiently near 0, then a = b.

In case each term ak in the sequence a ∈ lN is not zero, the ratio test for series

also yields

lim inf
n→∞

∣∣∣∣
an
an+1

∣∣∣∣ ≤ ρ(a) ≤ lim sup
n→∞

∣∣∣∣
an
an+1

∣∣∣∣ .

We remark that the series λ · (a ◦ b) is the power series which arises by substi-

tuting w = b̂(λ) into â(w) and then formally expand the resulting expression and

rearranging terms in increasing powers of λ.
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