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Preface

Functions are used to describe natural processes and forms. By means of finite or
infinite operations, we may build many types of ‘derived’ functions such as the sum
of two functions, the composition of two functions, the derivative function of a given
function, the power series functions, etc.

Yet a large number of natural processes and forms are not explicitly given by
nature. Instead, they are ‘implicitly defined’ by the laws of nature. Therefore
we have functional equations (or more generally relations) involving our unknown
functions and their derived functions.

When we are given one such functional equation as a mathematical model, it
is important to try to find some or all solutions, since they may be used for pre-
diction, estimation and control, or for suggestion of alternate formulation of the
original physical model. In this book, we are interested in finding solutions that are
‘polynomials of infinite order’, or more precisely, power series functions.

There are many reasons for trying to find such solutions. First of all, it is
sometimes ‘obvious’ from experimental observations that we are facing with natural
processes and forms that can be described by ‘smooth’ functions such as power series
functions. Second, power series functions are basically ‘generated by’ sequences of
numbers, therefore, they can easily be manipulated, either directly, or indirectly
through manipulations of sequences. Indeed, finding power series solutions are not
more complicated than solving recurrence relations or difference equations. Solving
the latter equations may also be difficult, but in most cases, we can ‘calculate’ them
by means of modern digital devices equipped with numerical or symbolic packages!
Third, once formal power series solutions are found, we are left with the convergence
or stability problem. This is a more complicated problem which is not completely
solved. Fortunately, there are now several standard techniques which have been
proven useful.

In this book, basic tools that can be used to handle power series functions and
analytic functions will be given. They are then applied to functional equations in
which derived functions such as the derivatives, iterates and compositions of the un-
known functions are involved. Although there are numerous functional equations in
the literature, our main objective is to show by introductory examples how analytic
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solutions can be derived in relatively easy manners.

To accomplish our objective, we keep in mind that this book should be suitable
for the senior and first graduate students as well as anyone who is interested in a
quick introduction to the frontier of related research. Only basic second year ad-
vanced engineering mathematics such as the theory of a complex variable and the
theory of ordinary differential equations are required, and a large body of seem-
ingly unrelated knowledge in the literature is presented in an integrated and unified
manner.

A synopsis of the contents of the various chapters follows.

e The book begins with an elementary example in Calculus for motivation.
Basic definitions, symbols and results are then introduced which will be
used throughout the book.

e In Chapter 2, various types of sequences are introduced. Common opera-
tions among sequences are then presented. In particular, scalar, term by
term, convolution and composition products and their properties are dis-
cussed in detail. Algebraic derivation is also introduced.

e Power series functions are treated as generating functions of sequences and
their relations are fully discussed. Stability properties are discussed and
Cauchy’s majorant method is introduced. The Siegel’s lemma is an impor-
tant tool in deriving majornats.

e In Chapter 4, the basic implicit function theorem for analytic functions is
proved by Newton’s binomial expansion theorem. Schréder and Poincaré
type implicit functions together with several others are discussed. Applica-
tion of the implicit theorems for finding power series solutions of polynomial
or rational type functional equations are illustrated.

e In Chapter 5 analytic solutions for several classic ordinary differential equa-
tions or systems are derived. The Cauchy-Kowalewski existence theorem
for partial differential equations is treated as an application. Then several
selected functional differential equations are discussed and their analytic
solutions found.

e In Chapter 6 analytic solutions for functional equations involving iter-
ates of the unknown functions (or more general composition with other
known functions) are treated. These equations are distinguished by whether
derivatives of the unknown functions are involved. The last section is con-
cerned with the existence of power solutions.

Some of the material in this book is based on classical theory of analytic func-
tions, and some on theory of functional equations. However, a large number of
material is based on recent research works that have been carried out by us and a
number of friends and graduate students during the last ten years.

Our thanks go to J. G. Si, X. P. Wang, T. T. Lu and J. J. Lin for their hard
works and comments. We would also like to remark that without the indirect help
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of many other people, this book would never have appeared.

We tried our best to eliminate any errors. If there are any that have escaped our
attention, your comments will be much appreciated. We have also tried our best
to rewrite all the material that we draw from various sources and cite them in our
notes sections. We beg your pardon if there are still similarities left unattended or
if there are any original sources which we have missed.

Sui Sun Cheng and Wenrong Li
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Chapter 1

Prologue

1.1 An Example

As an elementary but motivating example, let y(¢) be the cash at hand of a corpo-
ration at time ¢t > 0. Suppose the corporation invests its cash into a project which
guarantees a positive interest rate r so that

dy
—= = t>0. 1.1
L ry, t >0 (1.1)

What is the cash at hand of the corporation at any time ¢ > 0 given that y(0) = 17
One way to solve this problem in elementary analysis is to assume that y = y(t)
is a “power series function” of the form

y(t) = ap + art + ast® + azt® + - -,
then we have
ap =y(0) = 1.
By formally operating the power series y(t) term by term, we further have
y'(t) = ay + 2ast + 3azt> +-- -,

and

ry(t) = rag + rait +rast> +--- .
In view of (1.1), we see that

a1 + 2ast + 3ast> + - - = rag + rayt + rast> + -+ .

By comparing coefficients on both sides, we may proceed formally and write

a1 =7, 2a2 =rai, 3az =ras, ...,

This yields

7"2 T3 rh
ay =r, GQZ?, agzm, .oy an—m,...,
so that
2 r3
y(t) =1+ rt 4+ =2+ =3+, (1.2)

2! 3!
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which is a “formal power series function”.

In order that the formal solution (1.2) is a true solution, we need either to
show that y(t) is meaningful on [0, c0) and that the operations employed above are
legitimate, or, we may show that y(¢) is equal to some previously known function
and show that this function satisfies (1.1) and y(0) = 1 directly. If these can be
done, then a power series solution exists and is given by (1.2).

Such solutions often reveal important quantitative as well as qualitative infor-
mation which can help us understand the complex behavior of the physical systems
represented by these equations.

In this book, we intend to provide some elementary properties of power series
functions and its applications to finding solutions of equations involving unknown
functions and/or their associated functions such as their iterates and derivatives.

1.2 Basic Definitions

Basic concepts from real and complex analysis and the theory of linear algebra will
be assumed in this book. For the sake of completeness, we will, however, briefly
go through some of these concepts and their related information. We will also
introduce here some common notations and conventions which will be used in this
book.

First of all, sums and products of a set of numbers are common. However, empty
sums or products may be encountered. In such cases, we will adopt the convention
that an empty sum is taken to be zero, while an empty product will be taken as
one.

The union of two sets A and B will be denoted by AU B or A + B, their
intersection by ANB or A-B, their difference by A\ B, and their Cartesian product by
AxB. The notations A2, A3, ..., stand for the Cartesian products Ax A, AxAxA, ...,
respectively. It is also natural to set A' = A. The number of elements in a set
will be denoted by |9 .

The set of real numbers will be denoted by R, the set of all complex numbers
by C, the set of integers by Z, the set of positive integers by Z*, and the set of
nonnegative integers by IN. We will also use F to denote either R or C.

It is often convenient to extend the real number system by the addition of
two elements, oo (which may also be written as +00) and —oo. This enlarged set
[—00, 00] is called the set of extended real numbers. In addition to the usual oper-
ations involving the real numbers, we will also require —oo < z < 0o,  + 00 = 0,
x—o00=—oo0and x/oo =0 forx € R; x-00 =00 and - —0o0 = —oo for z > 0; and

00+ 00 =00, —00—00=—00, 00-(+0o0) = %00, —o0-(+o0)=Foo, 0-00=0.

In the sequel, the equation



Prologue 3

will be met where v € [0, c0]. The solution u will be taken as oo if v = 0 and as 0 if
v = 00.

The imaginary number /—1 in C will be denoted by i. The symbols 0! and 0°
will be taken as 1. Given a complex number z and an integer n, the n-th power of
z is defined by 20 =1, 2"t = 2"z if n >0 and 27" = (271" if 2 # 0 and n > 0.

Recall also that for any complex number z = = + iy where x,y € R, its real
part is R(z) = x, its imaginary part is J(z) = y, its conjugate is z* = x — iy and
its modulus or absolute value is |z| = (22 + y2)1/2. We have |z +w| < |z| + |w],
|zw| = |z| |w| and (zw)* = z*w* for any z,w € C.

Given a nonzero z = x + iy € C, if we let 6 be the angle measured from the
positive x-axis to the line segment joining the origin and the point (z,y), then we
see that

z = |z|(cos@ +isin®).

We define an argument of the nonzero z to be any angle ¢ € R (which may or may
not lie inside [0,27)) for which

z = |z| (cost 4 isint),

and we write argz = t. A concrete choice of arg z is made by defining arg, z to be
that number ¢¢, called the principal argument, in the range (—m, 7] such that

z = |z| (costy + isinty) .
We may then write
arg,(zw) = arg, z + argy w (mod 27).

It is also easy to show that for any z # 0, given any positive integer n, there
are exactly n distinct complex numbers zg, 21, ..., 2,—1 such that z] = z for each
1=0,1,...,n — 1. The numbers zg, 21, ..., 2,—1 are called the n-th roots of z. The
geometric picture of the n-th roots is very simple: they lie on the circle centered
at the origin of radius |z|1/ " and are equally spaced on this circle with one of the
roots having polar angle % argg 2.

Given a real or complex number «, and any real or complex valued functions f
and g, we define —f, af, f-g, and f + g by (—f)(z) = —f(2), (@f)(z) = af(2),
(f-9)(z) = f(2)g(2) and (f + g)(2) = f(2) + g(z) as usual, while |f]| is defined by
|f1(2) = |f(z)|. If no confusion is caused, the product f - g is also denoted by fg.

The zeroth power of a function, denoted by f°, is defined by f°(z) = 1, while
the n-th power, denoted by f", is defined by f™(z) = (f(z))™.

The composition of f and g is denoted by f o g. The iterates of f are formally
defined by fl%(z2) = z, fll(2) = f(2), fB(2) = f(f(2)),..., and f[" is called the
n-th iterate of f. Note that fI" may not be defined if the range of f[*~1 does not
lie inside the domain of f.

The n-th derivative of a function is defined by

F2) = f(z) = 1im LEFW =)

w—0 w
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and f®)(z) = (f*=1)(2) for k > 2. As is customary, we will also define f(9)(z) =
f(2).
Example 1.1. Recall that the identity function f : F — F defined by f(¢) = ¢ for
each t € F is a polynomial function, so is any constant function g : F — F defined
by g(t) = ¢ € F. Any finite addition or multiplication of polynomial functions is
also a polynomial function. For instance,

p(t) = co + c1t + cot? + -+ emt™, co, ..., Cm € F,

is a polynomial. In case a polynomial is obtained by finite addition or multiplication
of the identity function and nonnegative (positive) constant functions, it is called a
polynomial with nonnegative (positive) coefficients.

Example 1.2. The previous example defines polynomials with real or complex
independent variable. Polynomials with a function as the independent variable can
also be defined. More specifically, let f be a complex valued function. Given a
polynomial p(t), formally ‘replacing’ each ¢ by the i-th power f¢ of f will result in
a polynomial in f, which is denoted by p(f). For instance, given
p(t) = co + c1t + cot? + -+ emt™, co, ..., Cm € F,
we have
p(f) :Cofo+01f1+02f2+"'+cmfm7 C0; -3 Cm € F.
Note that p(f) is a function such that
p(f)(2) = cof°(2) +erf(2) +eaf?(2) + -+ emf™(2)
=co+erf(2) + e (F(2) 4o+ em (F(2)
Another way to generate polynomials in f is to formally replace each t* by the i-th
iterate I of f, resulting in p[f]. For instance, let p be the same polynomial above,
then
plf) = cof O +erfM 4+ e f™ co, e € F.
As an example, let M be an n by n complex matrix, and f(u) = Mu where u € C™,
then fl%u = u, fI¥(u) = M*u for k = 1,2, ...,m. Hence
plf] = col + 1M + coM? + - + ¢, M™.
Example 1.3. Polynomials in several real or complex variables can also be de-
fined in similar manners. More specifically, for each ¢ = 1, ..., s, let the projection
function f; : F* — F be defined by f;(t1,t2,...,tx) = t;. Projection functions and
constant functions are polynomials. Any finite addition or multiplication of poly-
nomial functions is also a polynomial function. For instance,
p(t1,t2) = coo + crots + corts + 2ot + cratits + coats + - + comty’

is a polynomial in (t1,t2).
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Example 1.4. The quotient of two polynomials is a rational function and is defined
whenever its denominator is not zero. Any finite linear combination, products or
quotients of rational functions are also rational functions.

Example 1.5. The exponential function exp of a complex variable is defined by
exp(z) = e”(cosy + isiny)
for each z = x+iy € C. The value exp(z) is also written as e?. Note that e* = exp(z)

for € R and e¥ = cosy + isiny for y € R. Furthermore, the function exp is 27i-
periodic and maps the strip {z € C| — 7 < J(z) < 7} one-to-one onto C\{0}.

Example 1.6. The logarithm function of a real variable is

1
In(z) = / —dt, x>0,
1 t

and the exponential function exp of a real variable is defined to be the inverse
function of log. Thus y = exp(x) if x = In(y). If z is a nonzero complex number,
then there exist complex numbers w such that e” = z. We define log z to be any
number w such that e = z. Therefore

logz=1In|z| +iargz, z #0.
Note that one such w is the complex number w = In (|z|) +iarg,(z) and any other
such w must have the form

In (|z]) +iargy(z) + 2mni, n € Z.

The complex number In (|z|) + iargy(z) will be called the principal logarithm of z
and denoted by log,(z). Thus the function log, defined on {z € C| — 7 < J(z) < 7}
is the inverse of exp.

Example 1.7. If z,w € C and z # 0, we define
LW — ewlogo(z).

Note that if n € Z, then 20 = % = 1 and 2"t = e(+1)10go(2) — gnlog(z)glogo(2) —
z"z so that our definition here is compatible with the definition of the n-th power
of z. Also, since

(M) = (e% 1og0(z)>" =€) =2 2 £0,neZ",
21/7 is an n-th root of z.

Example 1.8. Some elementary functions are defined in terms of the exponential
function:

: _i iz _ —iz _l iz —iz
smz-2i{e e },6082—2{6 +e },

sinh z = % {ez — e*’z} , coshz = % {ez —&—e*’z}.

Note that when z is real, these functions coincide with the usual definitions of cosine,
sine, hyperbolic sine and hyperbolic cosine. Basic properties of these functions can
be found in standard text books.
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A (univariate) sequence is a function defined over a set S of (usually consec-
utive) integers, and can be denoted by {ur}res or {u(k)}res. When S is finite
and, say, equals {1,2,...,n}, a sequence is also denoted by {u1, ..., up}. Bivariate or
multivariate sequences are functions defined on subsets Q of Z2 or Z" respectively.
There are many different ways to denote bivariate or double sequences. One way is
to denote a bivariate sequence by {u; ;}. However, we may also denote it by {u;;}
if no confusion is caused. Another way is by {ugj)} In general, when the inde-
pendent variables have different interpretations, the latter notation is employed.
For instance, ul(»t) may represent the temperature of a mass placed at the integral
position ¢ and in the time period t. For multivariate sequences, it is cumbersome
to denote them by writing {u; ; .
device. First, an element in a subset of Q C Z*" has the form v = (v1,va, ..., Uk).
Therefore, we may write {u,}veq for a multivariate sequence, and v is naturally
called a multi-index. When v is treated as a multi-index, it will be convenient to
use the standard notation |v|; = vy +v2 + -+ + vy, and v! = vilva! -~ vl |v|; is
usually called the order of v.

It will be necessary to list the components of a sequence in a linear order. For
this purpose, we will order the multi-indices in a linear fashion. We say that a
mapping ¥ : N — Q C Z" is an ordering for  if ¥ is one to one and onto. For
example, let @ = N x N, a well known ordering for €2 is the mapping ¥ defined by

\iJ(O) = (070)’ \ij(l) = (170)’ @(2) = (07 1)’ @(3) = (270)a

T(4) = (1,1), ¥(5) = (0,2), ... (1.3)

%t For this reason, we may employ the following

In terms of an ordering V¥ for €2, a rearrangement or enumeration of a multivari-
ate sequence { fu},cq is the sequence {g;};.n such that g; = fo(;).

The notation I will denote the set of all real or complex sequences defined
on Q. In particular, IN denotes the set of all real or complex sequences of the form
{fi}pen - We will call fi the k-th term of the sequence f. There are several common
sequences in [V which will be useful. First, for each m € N, 1™ e [N denotes the
Dirac sequence defined by

ﬁ<m>= 1 k=m
k 0 k#m’

and H(™) ¢ [N denotes the jump (or Heaviside) sequence defined by

m)y JO 0Zk<m
H, _{1 k>m

Let a € F, the sequence {a,0,0,...} will be denoted by @ and is called a scalar
sequence, and the geometric sequence {1, , a2, a?, ...} will be denoted by a. Thus
z, = 2" for n € N. The sequence {0, 0, ...} can be denoted by 0 (but it is also com-
monly denoted by 0), and {1,0,0, ...} can be denoted by T or A(*’. The ‘summation’
sequence {1,1,1,...} will be denoted by & which is equal to H(®), and the ‘difference’
sequence {1,—1,0,0,...} by . The sequence {1/0!,1/1!,1/2!,1/3!,1/4!,...} will be
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denoted by w. It is also convenient to write % instead of A{1) and this practice will
be assumed for similar situations in the sequel.
For any z € F, the sequence |z]| € [N is defined by

lz] ={1,2,2(z = 1),2(z = 1)(z — 2), ...} .
Thus |z], =1 and
2], =2(z—1)(2—2) - (z =m+1), me Z".

Note that |n|, = nl, [0]; = 0! = 1, and 0 = [n], ., = [n],,, = -
for n € N. Therefore, the sequence {1,-3,3,—1,0,0,...} can be written as
{(-=1)* 3], /k!}ren, and the sequence {1,2,3,...} as {|k + 1], }ren.

For any z € F, the binomial sequence C*) € IN is defined by

. 1 2z 2z(z—1) z(z—1)(z—2
C():LZJ'w:{a’ﬂ’ (2! )’ ( 3)!( )7.“}

so that C{* =1 and

(z=1)---(z=m—1)
m!

C’,(,f)zz ,meN,zeC.
In particular, for i, j € N such that j <1, C’J(-i) is the usual binomial coefficient.

A real function (including a real sequence, a real matrix, etc.) f is said to be
nonnegative if f(x) > 0 for each z in its domain of definition. In such a case, we
write f > 0. Similarly, given two real functions with a common domain of definition
Q, we say that f is less than or equal to g if f(z) < g(x) for each z € Q. The
corresponding notation is f < g. Other monotonicity concepts for real functions
(such as f < g, f >0, etc.) are similarly defined.

The product set F*, where  is a positive integer, is assumed to be equipped
with the usual vector operations and the usual Euclidean topology. In particular,
the distance between two points w = (w1, ..., wx) and z = (21, ..., 2, ) in F* is defined
by

1/2
|w—z\:{|w1—2’1|2—|—---+\w,§—z,§|2} .
If r >0 and ¢ = (¢, ..., ) € F*, we will set

B(er)={z€F*| |z—¢| <1}

B(e;r)={z€F"| |z—c| <7},
and
Be;r)y={z€F*|0<|z—c|<T}.

They are usually called the open ball, the closed ball and the punctured ball respec-
tively with center at ¢ and radius r. It is well known that the set of all open balls
can be used to generate the Euclidean topology for F*. In particular, a subset €2 of



8 Analytic Solutions of Functional Equations

F* is said to be open if every point in €2 is the center of an open ball lying inside
Q.

Besides the open balls, polycylinders are also natural in future considerations.
By a polycylinder of polyradius p = (p1, p2, -, pPx), Where p1, ..., px > 0, and poly-
center w = (w1, wa, ..., wx) € FF we mean the set

{(z1,..,20) € FT| |25 —wj| < pj, 1 <j<k}.

We remark that the boundary of the above polycylinder is described by the set of
inequalities

|z —w;| < pjy 1<j <k,

whereby at least one equality must hold. Thus for k = 2, the boundary consists of
those (21, 22) for which

|21 —wi] = p1, |22 —da| < pa,
and those for which
|21 —wi| < p1, |22 — da| = pa.

A subset Q of F” is said to be a domain if it is nonempty, open and pathwise
connected (i.e., a nonempty open set such that any two points of which can be
joined by a path lying in the set). We remark that a path in  from w to z is a
continuous function 7 from a real interval [s,t] into Q with y(s) = w and ~(t) = z.
In this case, w and z are the initial and final points of the path.

In terms of the distance d and the open balls, we can then define as usual
limits and continuity for complex-valued functions f = f(z1, 22, ..., 2,) defined on
a domain 2 or a more general subset of F*, we can also define partial derivatives,
etc. More precisely, the limit

T f(Cl, e, Ci_1,Ci + h, Citlyens C,i) — f(Cl, ey CK)
b h ’

if it exists, is called the i-th partial derivative of f at (c1,...,¢x) and is denoted by
af(cl, veey CK)
8zi '
Higher partial derivatives of the form
o 9v2 ovx
02 9202 Dz

are defined in recursive manners. Multi-indices can also be used to simplify such

fler, o cn)

notations. Such simplifications are convenient and can be seen in our later sections.
We will need to define integrals for functions f : F — F. One such integral is

the Cauchy (line) integral
[ 1@z
r
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where I' is a well behaved path. In this book, it suffices to consider paths I' that
are representable by ‘piecewise smooth’ functions 7 : [a,b] — F, that is, there are
points tg,t1,...,t, with a = ¢ty < t; < --- < t, = b such that 4’ is continuous on
each [tx, txy1] for E = 0,...,n—1. Then by the standard theory of Riemann-Stieltjes
integral, when f is continuous on the image I'([0,1]) C F,

1
/F f(2)dz = / SO (1)t

In case T is the straight line segment joining the point u = v(a) to v = v(b), we will

/Ff(z)dz = /uv f(z)dz.

Note that when F = R, the above line integral is compatible with the usual
Riemann integral of a real function.

Recall that € is a metric space if there is a metric d :  x Q — [0, 00) which
satisfies (i) for every pair of z,y € Q, d(z,y) = 0 if, and only if, x = y, (ii) d(z,y) =
d(y,z) for x,y € Q, and (iil) d(x, z) < d(x,y) + d(y,z) for x,y,z € Q. Q is said to
be complete if every Cauchy sequence in 2 converges to a point in Q. T : Q — Q
is a contraction if there is number A in [0,1) such that d(Tz, Ty) < Ad(z,y) for all
x,y € .

A large number of metric spaces are normed linear spaces, that is, linear spaces
whose metrics are induced by norms. Recall that a norm ||| on a linear space
Q2 is a function that maps  into [0,00) such that (i) for every x € Q, |jz|]| = 0
if, and only if, x = 0, (ii) ||jaz| = |a|||z|| for any scalar o and = € Q, and (iii)
Iz +y|| < |lz|| + ||ly|| for z,y € Q. When a normed linear space is also a complete
metric space, it is called a Banach space.

also write

A well known result for mappings defined on complete metric spaces is the
Banach contraction mapping theorem: If ) is a nonempty complete metric space
and T : Q) — Q a contraction mapping, then T has a fixed point in (2.

1.3 Notes

There are several standard reference books on functional equations, see for exam-
ples, the books by Aczel [1], Aczel and Dhombres [2], Kuczma [104], Kuczma and
Choczewshi [107], and the survey papers by Cheng [29], Kuczma [102], Li and Si
[126], Zhang et al. [232]. In this book, we also treat differential equations as func-
tional equations. The corresponding references are too many to list. The books
by Bellman and Cooke [16], Coddington and Levinson [40], Driver [52], Friedrichs
[66], Hale [73], Hille [78], Kamke [92], Sansone [167], etc., are related to some of our
discussions.

There are also several text books which emphasize on analytic functions, see for
examples, Balser [13], Krantz and Parks [99], Krantz [100], Smith [211], Sneddon
[212], Valiron [216].
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In this book, we do not use sophisticated mathematics beyond the usual material
taught in courses such as Advanced Engineering mathematics. The reader may also
consult text books in real and complex analysis such as Apostol [5], Fichtenholz
[62, 63], Kaplan [94], Watson [223], Whittaker and Watson [224], etc.

We have introduced univariate sequences and discussed some of their properties.
Further properties will be discussed in later chapters. A summary of their properties
can be found in the Appendix.



Chapter 2

Sequences

2.1 Lebesgue Summable Sequences

Note that a power series appears to be a ‘sum’ of infinitely many terms. For this
reason, we need to introduce means to deal with infinite sums.

Let © be a (finite or infinite) subset of Z* where k is a positive integer. Each
member in the set [* of all functions defined on  is then a multiply indexed
sequence of the form {fx| k € Q}. Such a sequence will be denoted by f or {fx} or
{fr}req instead of {fix|k € Q} if no confusion is caused.

For any o € C and f = {fr},9 = {gx} in [}, we define —f, af, |f| and f + g
respectively by {—fx}, {afr}, {|fx|} and {fx + gx} as usual. The termwise product
f - g is defined to be {frgr}. The products f - f, f- f - f,... will be denoted by
12, f3,... respectively. We define f' = f and f° = {1}. The sequence f? is called
the p-th termwise (product) power of f. If fi # 0 for all k, then there is a unique
sequence z € [® such that = - f = {1}. This unique sequence will be denoted by
=

For any f,g € 19, if f < gi for all k € , then we write f < g. The notation
f < g is similarly defined.

Any sequence with zero values only will be denoted by 0. The sequence in [N
whose i-th term is 1 and the other terms are 0 will be called the Dirac delta sequence
and denoted by A",

For a given real sequence f = {fx}, we can always write it in the form f* — f~
for some nonnegative sequences f* and f~. Indeed, the positive part f+ is given
by (|f| + f)/2, and the negative part by (|f| — f)/2. A sequence f = {fi} is said
to have finite support if the number of nonzero terms of f is finite. The set ®(f)
of k € Q for which f;, # 0 will be called the support of f. When {f()},cn is a
sequence of sequences in [}, we say that {f)},;cn converges (pointwise) to f € 1
if

lim f9 = i, keq.
j—»OO
Note that for any nonnegative sequence f = {fr} € I}, we can always find a

11
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sequence {g(j)} jen of nonnegative sequences in I* such that
0<gW<ygW< <y

and g\ converges pointwise to f as j — oo. For instance, if f € IN, we may pick
J
g9 =3 fih™, jeN.
k=0

The concept of a Lebesgue summable sequence will be needed in order to define
a convergent series. This will be done in steps.
First of all, for a sequence f with finite support, we define its sum by the number

Zfz Z Tk
Q ke®(f)

For a nonnegative sequence f = {fx} in I}, we define its sum by
sup » g,
Q

where the supremum is taken over all sequences g with finite support such that

0 < g < f, and denoted by
Zf or ka~
Q keQ

If the supremum on the right hand side is finite, we say that f is (Lebesgue)
summable and denote this fact by

Z f < oo.

Q

Occasionally, it is convenient to allow the right hand side to be infinite and in such

a case, we write
E f = o0.
Q

Note that it easily follows from the definition that a finite linear combination
of nonnegative Lebesgue summable sequences is Lebesgue summable and its sum
is equal to the corresponding linear combination of the separate sums, that is, for
nonnegative o, 3 € R and nonnegative f, g € I,

daf+Bg)=ad f+B> g,
Q Q Q
and that if 0 < f < g, then

0<> f<> g (2.1)
Q Q

We remark that the above definition of the sum of a nonnegative sequence in [
can be simplified to

j
S f=1lim > fi; (2.2)
N Jmee k=0
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in 1% to
J
Z = sup ka— hm Z frs (2.3)

Z 7J€Z k—fm

and in [N*N to

IENTH I 2
NxN =0 j=0

To see this, for f € IV, since
J
> fe=2_h
k=0 N

where h = {fo,..., f;,0,0, ...} is a sequence with finite support, we have

kzi: Zh<2f

Conversely, for any g such that 0 < g < f and ®(g) is finite, since ®(g) C {0, ...,m}
for some m, we see that 0 < g < u < f, where u = {fo, ..., fm,0,0,...}, and

Zg<2u—2fk Jim ka

For f € 1% or f € IN*N (2.3) or (2.4) are similarly proved.
We pause here to recall that for a sequence f = {fx}ren in I, the sequence

{Zi:o fk}jeN is called the partial sum sequence generated by f. The limit L =

lim;_, Ei:o fr, if it exists, is usually called the sum of the ‘series’ Y7~ fx. For
this reason, the (finite or infinite) limits on the right hand side of (2.2) and (2.3)
will also be denoted by the conventional notations, that is,

J 0o
lm > fi= fi= 1
I =0 k=0 N

and

m};g}w Z fe= k_z_jm fe= Zf
respectively. Limits of partial sum sequences will be discussed in details in the next
section.

We remark also that our definition of a sum of infinite sequence is a special case
of the Lebesgue integral for measurable functions. Thus standard results from the
theory of Lebesgue integrals can be applied. In particular, Lebesgue’s monotone
convergence theorem holds.
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Theorem 2.1 (Lebesgue Monotone Convergence Theorem). Let g € [

and let {f(j)}jeN be a sequence of nonnegative sequences f9) € 1% such that
0< V<V < <00, keQ,
and
Jm f) =g, ke Q,
then
lim Zf(j) — Zg_
T 0
Indeed, since
0D W< U< g,
Q Q Q
thus
jli,r{}o%:fm € [0, oc]
and

lim » /9 <3y
T Q

To see the converse, let u be a sequence with finite support that satisfies 0 < u < g.
Let ¢ be a constant in (0, 1). Since f9) — g, we have fU) > cu for all large j. Hence

Zf(j) > Zcuchu
Q Q Q
for all large j. Since ¢ and w are arbitrary, we must have
lim Zf(j) > supZu = Zg.
7T Q Q
The proof is complete.

As a corollary, if {g(j)}jeN is a sequence of nonnegative sequences in [** such
that

Zg,(fj) < oo, ke,

7=0
then
0 1 ‘ 2
0> g <> g <N gl <<, ke,
7=0 7=0 7=0
and
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Hence the Lebesgue monotone convergence theorem leads us to
o0 n n o0
(€0 QU W\ _ g ) _ j
D20 = m > 9D gl p=lim > > g =3 > g
ken | j=0 keQ | j=0 j=0 Q j=0 Q

where we have used the linearity of the Lebesgue sum in the second equality.
As another corollary, we have Fatou’s lemma: If {f (”)}neN is a sequence of
nonnegative sequences in [** such that

liminf £ < oo, k € Q,
then
Zlim inf f™ < lim infz )
Q

To see this, let A(™) = {h,(gm)} be defined by h(m =inf,>pm ;”) for each k € Q

and m > 0. Then 0 < h\” < h“) <o <™ < ™ for cach k € Q and m > 0,
and

lim h( ™ = hmmff ke,

m—00

i = =
- T
Q
= lim 1nfz R(™) < liminf Z flm

m—00 m—00

so that

We have mentioned that any discrete set €2 in Z"* can be linearly ordered. Note
however, that for each linear ordering, the corresponding sum of a sequence defined
over 2 may be different from the one that arises from another linear ordering.
Fubini’s theorem states, however, that such cannot be the case. We will state
Fubini’s theorem for 0 = N x N, the general case being similar. Recall first that
{gr}en is called an enumeration or rearrangement of the sequence {f,}, g, if there
is a linear ordering ¥ : N — 2 such that gr = fy()-

Theorem 2.2 (Fubini Theorem). Suppose {gi}ren is any enumeration of the
nonnegative doubly indexed sequence {fij}ijen. Then {grp}ren 1is Lebesgue
summable if, and only if,

wa<oof0rzeN andz wa < 00; (2.6)

=0 | j=0

moreover, if {gk}keN is Lebesgue summable, then

Sg=> 3> fijy- (2.7)
N

i=0 | j=0
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For a proof, let us first assume that (2.6) holds. Let M be any integer and choose
integers I and J so large that g1, ..., g occur among {f;;| 0 <i < 1,0 <j < J}
Then

M I J oo
RUED ) IIED DR 5 DI
m=0 =0 j=0 1=0 7=0

This shows that g is Lebesgue summable.

Conversely, assume that g is Lebesgue summable. Let J be an integer and, for
a fixed i € N, choose the integer M so large that f;1, ..., fij occur among g1, ..., gas.
Then

J M 00
Z Z gk < Z Ghks
=0 k=0 k=0
which implies
o0
Z fij < o0, 1€ N.
§=0

Now let {w(")}neN be a sequence of nonnegative sequences in (NXN each of which
has finite support and 0 < w(® < w® < ... < f as well as lim,_o wk = fj for
k € N. For each n € N, let v(™ be the correspondlng enumeration of w(™ . Then
since

Z“”)—ZZ“’

=0 j=0
and since
o oo
an)<2fw<oo i €N,
=0 7=0

we may apply Lebesgue’s monotone convergence theorem to obtain

o=t e = i S5 i) =3 i Yol =323
N i=0 j=0 i=0 j=0

which shows that (2.6) and (2.7) hold.

Let us denote by [§? the subset of all sequences f € I** for which |f| is Lebesgue
summable. Let us also denote by li} the set of all sequences f € [*? for which

1/p
I1f1l, = {Z Ifl”} < 00, p € (0,00).
Q

The number [|f||, is called the lg—norm of f, while the infinity norm of f is

1£lloo = max {|ful}.
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The set of all sequences f € I for which ||f|., < oo will be denoted by ‘L.
Let f € I$2. We define its sum by

Zf:Zu+—Zu_+in+—in_,
Q Q Q Q Q

where f = u + iv, and u™,v",u~, v~ are the positive parts and negative parts
defined before. Note that each of the four sums on the right hand side exists since
0<wut,vt u",v” <|f].

If f is a real multivariate sequence (which may or may not be in [{?), we define

SF=D =Y
Q Q Q
provided that at least one of the sums on the right hand side is finite. The left side
is then a number in the extended real number system [—oo, o0].
Note that it easily follows from the definition of [§! that the sum of a finite linear

combination of Lebesgue summable sequences in I$ is equal to the corresponding
linear combination of the separate sums, and that for any f € I$,

IEDMIiE (2.8)
Q Q

Lebesgue’s dominated convergence theorem also holds.

its sum by

Theorem 2.3 (Lebesgue Dominated Convergence Theorem). Suppose
{f(”)}neN is a sequence of complex sequences in 1 such that f=1lim, f(") 9.
If there is g € ISt such that |f(")| < g forn €N, then f €%,

Jim Y- ‘f(”) - f‘ —0, (2.9)
Q
and
lim Y fM=3"f (2.10)
nee Q Q

Indeed, since |f| < g, and since ’f(") — f’ < 2g, by Fatou’s lemma, we see that

229 = Zhﬂl{%f (29— ‘f(n) - fD < hnrr_l}gfz (29_ ‘f(n) _ fD
Q Q o

= ZQg—limsup <Z ‘f(") —f‘) .
Q Q

n—oo

Thus
lim Z‘f(") —f‘ zlimsupz ‘f(") —f‘ =0.
Q et g

Finally, (2.10) follows from (2.9) in view of (2.8).
There is also a useful Fubini’s theorem for {-sequences.
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Theorem 2.4. Suppose {gr}ken s any enumeration of the doubly indexed sequence
{fijYijen. Then {gr} € IN if, and only if,

o 00 00
Z|fij| < oo fori €N, and Z Z|f13| < 00
7=0 i=0 | j=0
moreover, if {gi} € 1N, then
oo oo
9= (2 Fu
N i=0 | j=0

The proof is not difficult and follows from breaking f into real, complex, positive
and negative parts and then applying Fubini’s theorem for nonnegative sequences.

Example 2.1. If f € [N and g € IV, then the bivariate sequence h = {fig;}
belongs to lll\IXN and > nunP=D.Nf NG

Example 2.2. If a,b € F and |a| + |b| < 1, then from

i,j€EN

XZC',EH)CLI’CZJ”Jc =(a+b)" neN,
k=0

we see that

o0 n _ 1
M af B s <o
> e

n=0 k=0
Thus
0o oo . o 0o 00 . L © n . L 1
kZ:OnZ:%Cé )k k:;kzzocé ) kb k:;kz:oc’g ) aFb kzl_a_b'

2.2 Relatively Summable Sequences

In the previous section, we use suprema to define sums of sequences. Sums of
sequences defined by limits of their partial sum sequences are also studied quite
extensively. For this reason, we will recall some of the related information in this
section. We say that a sequence {f;} in IV (which is not necessarily nonnegative)
is summable if the limit

lim " fi (2.11)
k=0

exists, otherwise we say that f is not summable or the infinite series » .- fr
diverges. In case it is summable, the corresponding limit s is called its sum and we
write

Z fr=s.
k=0
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In case f is nonnegative and its infinite series diverges, we will also write

Z fr = oo.
k=0

Recall that for a nonnegative sequence f = {fx} in [, its Lebesgue sum and the
limit of partial sum sequence is equal:

Y f=D fu=lim D fi
N k=0 k=0

For multivariate sequences, we may generalize the above concept as follows. Let
Q be a subset of Z" where x is a positive integer and let ¥ : N — ) be an ordering
for Q. Let f = {fu},cq . we call

0; = Z Jw @
=0

the (generalized) partial sum of index ¢ relative to W. If

i

lim o; = lim E fui) = s,
i—00 i—00 £ 0
j=

then we say that the sequence f is summable relative to the ordering ¥ and we say
that s is the sum relative to ¥. We also say that f is relatively summable if f is
summable relative to some ordering ¥ when the specific form of the mapping ¥ is
not important.

By means of standard analytic arguments, it is easily shown that if f = {f,}
and g = {g,} have sums s and ¢ relative to ¥ respectively, then the sum of af + g
relative to ¥ is as + Bt. In particular, f is summable relative to ¥ if, and only if,
its real part and its imaginary part are summable relative to ¥. Furthermore, for a
nonnegative sequence f = {fu},cq € 19, if we take u®) to be the sequence which is
equal to the values of f when restricted to ¥ ({0, 1, ..., k}) and equal to 0 otherwise,
then 0 < v@ < M < ... < f and limg_ o u®) = f- By Lebesgue’s monotone
convergence theorem,

k
D f=lim Y u® = lim Y fu
Q Q i=0

for any ordering ¥ of . In particular, for any sequence f = {f,} € I** and any
ordering ¥ of 2,

k
D_If1=lim > | fu]-
Q =0

In case limg_ o Ef:o |f\p(i)| exists for any W, we say that f is absolutely
summable (relative to ¥). Note that a sequence in ¥ is absolutely summable
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relative to any W if, and only if, it belongs to I{!. Furthermore, if f € I{?, then
POV DU SUSEE) SN oIS
Q Q Q Q Q
k k k k
_ . + _ . —_ . . + s . —
=i ZO U ZO Uy 1 lm 2% Uy 1 ZO Vu )

k
= lim. ;f\y(m

where f = u + iv, that is, if f is absolutely summable, then its sum is independent
of the ordering V.

Theorem 2.5. If f = {f,},cq s summable relative to an ordering ¥ for 2, then
f is bounded.

Indeed, since

i+1 %

Ozili%lo Zf‘l’(j)_zf‘l’(j) :ililgof\p(iy
=0

§=0
thus [fyu)| < M for i greater than some integer I. Thus |fy@| <
max { |f\1,(0)| S |f\1,(1)| ,M} as required.

In the special case when ¥ : N — N is the identity mapping, the sum of f € IV
relative to U is the limit (2.11) defined above. For the sake of convenience, we will
say that f € IN is summable if it is summable relative to the identity mapping.

There is a large collection of summability criteria such as the root test, integral
test, etc., discussed in elementary analysis texts.

Example 2.3. If f = {fi},9 = {gx} €N are summable and their sums are f and
g respectively, then

m n o0 o0
Clim (DY fit Y g | = fit Y g
’ i=0 j=0 i=0 j=0

Conversely, if lim, n— oo (E?io fi+ Z?:o gj) exists, then f and g are summable.

Example 2.4 (Dirichlet Test). Let {>}_qar},  be a bounded sequence and
{bn},en be a decreasing sequence tending to 0. Then {anb,}, o 45 summable.

Example 2.5 (Abel Test). Let {an}, N
and convergent sequence. Then {anby}, o is summable.

be summable and {b,}, .y @ monotonic
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2.3 Uniformly Summable Sequences

We first recall the concept of uniformly convergent sequence and series of functions
in elementary analysis. Given a sequence of real functions uo(z), u1(z), ..., defined
on a set X, if u(z) = limy,_ oo un(z) for every x € X, and if given any ¢ > 0, there
is an integer I > 0 such that n > I implies
lun(z) —u(z)] < e

for all z € X, then the sequence is said to converge to f uniformly on X. In
particular, if u,(z) = fo(x) + -+ + fn(z) for each n € N and z € X, and if the
sequence {u,(x)} is uniformly convergent to u(x) on X, then we say that the series
oo fi(z) converges uniformly on X to the function u(z). There are a large of
number of properties of uniformly convergent sequence of functions and uniformly
convergent functional series.

By means of the generalized partial sums introduced in the last section, we can
carry some of these properties to functional series with multiple indices. Let A be
a nonempty set in F* and let f*) e 2 for each A € A. We now have a family
{f(/\)},\e/\ of sequences in 2. Since f&* = {fy)} , we may also look at our

veEQ

family as a sequence of functions f, = f,(A\) defined on A. For this reason, we will
write f(\) instead of f(N) if no confusion is caused. For each A € A, if f()\) is
summable relative to an ordering ¥ of €2, then we may define a function f: A—F
such that

FO)=>"fah(N).
j=0

Given an ordering ¥ for €, if for every € > 0, there is I € N such that ¢ > I implies

S fun) - T < (2.12)
§=0

for all X € A, then we say that the family {f(\)},c, is uniformly summable in A
with respect to ¥, and its sum function is f(\).

Note that when A is a subset of F*, = N and V¥ is the identity mapping on
N, then (2.12) reduces to

<e.

J
D)= FO)
n=0
Therefore in this case, we are back to the usual uniform convergence of a functional
series.

Theorem 2.6 (Cauchy’s Test). Let ¥ be an ordering for Q. The family
{f(M)}rea of sequences in 19 is uniformly summable on A relative to ¥ if, and
only if, for every e > 0, there is I € N such that m,n > I implies

D feyN) =Y feyV)| <& A€ (2.13)
j=0 j=0
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Indeed, suppose {f(A)},c, is uniformly summable in A relative to ¥ with sum

function f(A). Then

Zf‘l’(j)(/\) - f(/\) ) fop(j)()\) — f()\) < %
7=0 j=0

for all large m and n. Thus (2.13) hold for all large m and n in view of the triangle
inequality. Conversely, if (2.13) hold for all large m and n, then by Cauchy’s con-

vergence theorem for real sequences, {Z;:o fg,(j)()\)} converges to some f(\)
ieN

for each A € A. If we now replace ¢ in (2.13) by ¢’ € (0,¢), fix m in (2.13) and take
limits on both sides as n — 0o, we see that

ey —Zf\p(j)(A) < <e AEA
=0

as required.

Theorem 2.7 (Weierstrass Test). Let U be an ordering for Q. Let {M,}
a sequence of nonnegative numbers such that

ne be

0<|fn V)| <M, neQ, A€ A.

Then the family {f(X)} cp of sequences in 12 is uniformly summable on A relative
to W if {Mp}, ., is summable relative to V.

Indeed,
n+p n n—+p
> fainyN) =Y feyV| €Y M)
=0 §=0 j=n-+1

for all A € A and any p € Z". Since {My,}, ., is summable relative to ¥, in view of
Cauchy’s convergence criterion for real sequences, the right hand side can be made
arbitrary small by requiring large n. Our previous theorem then yields our proof.

Theorem 2.8. Assume that the family {f(\)}\cp of sequences in 12 is uniformly

summable on A relative to the ordering ¥ with sum function f(\). Let p be an
accumulation point of A. Suppose each function fn, = fn(N\) satisfies

lim f,(A) =c¢n, n€Q.
A=

Then {c,} is summable relative to U and its sum C is given by

C = lim f(\).

A—
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To see the proof, note that taking limits on both sides of (2.13) as A — u, we
see that

Z ZC\I;(J <e.

j=0

By Cauchy’s convergence criteria, we see that {c,} is summable relative to . Next,
note that

’ ‘ Zf\vy) N = e |+ 1FO) =D fagy V] +(C =D cay)
j=0 j=0 =0

If 7 is sufficiently large, the last two terms can be made arbitrary small and inde-
pendent of A, while if X is sufficiently close to p, the first term on the right hand
side can be made arbitrary small. The proof is complete.

As an immediate consequence, assume that the family {f(A)},c, of sequence
in {*? is uniformly summable on A relative to the ordering ¥ and each function
frn = fn(X\) is continuous at a point u € A, then the corresponding sum function f
is also continuous at .

Theorem 2.9. Let A = B(a;6) C F. Let f be the sum function of the family
{f(N\)}yen of real sequences in IN uniformly summable in A relative to an ordering
U for N, where each fr(\) is continuous at each point A in A. Then the sequence
{J; fj(/\)d)\}jeN, where T is the straight line segment from a to z € B(a;d), is
summable relative to U and

/F Fydx = ; /F Fug) (VA

To see this, assume without loss of generality that ¥ is the 1dent1ty mapping
on N. Since f is continuous by the previous Theorem, its integral fr A)dA exists.
Furthermore,

F) =S | < 2% A € Bla: o),
§=0

for all sufficiently large n, thus
/ FNd — Z/ fiNdA <25 sup [F(N) =D fiN)| <«
T =0 r AEB(a;d) 7=0
for all large n.

Theorem 2.10. Let A = B(a;8). Let {f(A)},cp be a family of real sequences in
It such that each fn, = fu(\) has a finite derivative f! in A. Suppose {f.(c)} is
summable for ¢ € A relative to an ordering V and the family { f'(X)}ycp is uniformly
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summable in A relative to W. Then {f(A\)},cp is uniformly summable in A relative

to ¥ to f(\) and

Af(2) g
d}\z = ;f\p(j)(z), z €A

To see the sketch of the proof, choose two distinct points A, 4 € B(a; ). Without
loss of any generality, we will also assume that ¥ is the identity mapping for IN. Let

fn (N =Fn(p)
) ={ o AR (2.14)
fo(m) A=p
Then the family
{9(M)}rea

is uniformly summable in A. Indeed, given any € > 0, there is a number N such
that

n+m

> AW

k=n-+1

<e, NEA

for all n > N and m € Z" by the uniform summability of {f; (A)},c, - Let

n+m

U= >, frV)

k=n+1

where n and m are temporarily fixed. Then

n+m . _ ntm
> DL T T < e - | Y | <e
k=ntl k=n+1

for all A € A\{u}, where ¢ is between X and p, and

n+m n+m
Soaw| =1 K| <e
k=n+1 k=n+1

This shows that {g(A)} ¢4 is uniformly summable in A.

Now take p = ¢ in (2.14), the corresponding family {g(A\)} is uniformly
summable. Thus {g(A)(X — ¢)} is also uniformly summable since |A — ¢| is bounded
on A. In turn, we see that {g(A\)(A —¢)+ f(c)} = {f(N\)} is uniformly summable.
Finally,

FC) _ g, FOFC) 5 O = 0C) 5
A—z = "

d\ A—z A—z A—z
n=0

as desired.
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2.4 Properties of Univariate Sequences

2.4.1 Common Sequences

As before, let IN be the set of all real or complex sequences of the form f = { fi }ren-
We will call fj the k-th term of the sequence f. Note that the first k terms of f are
fo, .-, f—1 respectively.

Let m be a nonnegative integer. Recall that A" € IN denotes the Dirac
sequence defined by

h<m>— 1 k=m
o0 k#m

Besides the Dirac sequences, there are a number of common sequences in (N which
deserve special notations. First of all, let o be a complex number, the sequence
{,0,0,...} is denoted by @ and is called a scalar sequence. In particular, the se-
quences {0,0,...} and {1,0,...} is denoted by 0 (or 0 if no confusion is caused)
and 1 respectively. The sequence {1,1,1,...} is denoted by o, and the sequence
{1,-1,0,0,...} by 8. The sequence {1/0!,1/1!,1/2!,1/3!,1/4!, ...} is called the ezpo-
nential sequence and is denoted by w. For m € N, H(™) is the jump (or Heaviside)
sequence defined by

m) JO 0<k<m
H; _{1 k>m

Note that we have also used A(? to denote T and H®) for o. It is also convenient
to write f instead of A(!) and this practice will be assumed for similar situations in
the sequel.

The sequence {f1 — fo, f2 — fi,...} obtained by taking the difference of the
consecutive components of the sequence { fi} will be denoted by A f and is called the
first difference of f. The higher differences A™ f, m = 2,3, ..., are defined recursively
by A™f=A (Am_lf). Thus

(Af)k = fes1 = frs
(A%F)k = frr2 = 2fke1 + i,
(A% f) = fres = 3frve+ 3fre1 — fr,
etc., for k € N. We also define A°f = f and Alf = Af.

Example 2.6. The following is the well known telescoping property for the differ-
ence operations: for f € IV,

b

D Ak = for1 = fa 0<a<h.

k=a

The sequence {fm, fm+1,...} obtained by ‘deleting’ the first m terms of
the sequence {fo,..., fms fm+1,...} will be denoted by E™f, and the sequence
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{0,...,0, fo, f1,..} obtained by ‘adding’ m zeros to the front of the terms of f by
E~™f. The more precise definitions of E™ f and E~"™ f are respectively

E™f ={fm+k}tren

and

—m _ f7m+k kZm
(& f)k—{ e ke

These definitions require m > 1. However, it is natural to define E°f = f and
Ef = E'f. Note that we have

EME"™f = f meZ",

but for m € ZT, E-™E™f is not equal to f in general. The sequence E™ f will be
called a translated or shifted sequence of f.

Example 2.7. It is easy to see that E™(f +g) = E™f+ E™g, E(Ef) = E*f, and
Af = Ef — f holds for any f € [N. Thus,

Af=E(Bf~f)—(Bf - f)=E*f-2Ef +,

Af=FE3f—3E*f+3Ef—f,
etc.

For any number A € F, where A = 0 is allowed, the geometric sequence {A"}, -,
where A € C, is denoted by A. By means of this notation, we see that )\, = A" for
n € N. The product sequence A - f = {A*} - {fi} = {A\*fi} is called an attenuated
sequence of f. It is easily seen that 0- f = fo, L- f=f, A-p- f=Au- f and

2.4.2 Convolution Products

For any f = {fx} and g = {gx} in [N, we define the convolution product f * g, by
k
(f*9k=>_ fuigi, keN.
i=0

Example 2.8. Forany f = {fi,} in IN, T+« f = f, 0« f =0, a*xB=af, a* f =
(al) * f = a(T* f) = af and hx f = E~'f. The last equality means that the
product i * f is equal to translating f ‘one unit’ to the right.

It is also easy to verify that for any f = {fr}, g = {gr} and h = {hy} in IV,

fx(g+h)=f*xg+ fxh
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We will also denote the products f  f, f % f* f,... by £, 3 respectively.
If no confusion is caused, the k-th term of the sequence f?) will be written as f,gp )
instead of ( f <p>) . - Note that

= > Forfos -+ funs k€N (2.15)

v+ Fvp=Fk;v1,...,v,EN

Although p is implicitly defined to be greater than 1, the same formula holds for
p = 1. Thus we will define f{) = f. For the sake of convenience, we will also define
£ =T. The sequence f) is called the p-th convolution (power) product of f.

Example 2.9. Recall i = {0,1,0,0,...}. We have A = {1,0,0..}, r» =
{0,0,1,0,..} = hx h, h®® = hx h = h, etc.

Example 2.10. Let f,g € IN. Then
(f+g)* ZO(k)f“ (k=1) k€ N.

Theorem 2.11 (Merten’s Theorem). If f = {fi} € [N and g = {gx} € IN is
summable, then f x g is summable and

S (50) (S0).

Proof. Let hy, = (f % g)n, Fn = > p_o fe and G, = Y1, gk for n € N. Let
Yonf=a YnIfl =7 and 3.2 gr = 8. Then

p n p
Zhn kagn k—Zkagn k—kang kaprk
m= k=0

n=0 0 k=0 k=0 n=k

p
fiB=> fe(B—Gpi) = pﬁ—ka(ﬂ—Gp—k)-

0 k=0 k=0

|
NE

3
Il

I
NE

a~
Il

To conclude our proof, it suffices now to show that
p
plggo kz_ofk (8= Gp-r) =0.

To see this, note first that lim, (6 — G,) = 0. Thus we may choose M > 0 such
that |8 — G| < M for n € N. Given € > 0, choose P in N sufficiently large so that
n > P implies |8 — G,,| < ¢/(2v) and

oo

9

n=P+41
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Then for p > 2P, we have

p

P
<Y ARB = Gpkl+ D 1fal18— Gpil

k=0 k=P+1

P P
Q%ZmuM ST 1A

k=P+1

;2 fl+M S A
k=0

k=P+1

> e (B=Gpi)
k=0

IN

IN

E

€
2 2
This proves

p (e’
lim Zhn = lim F,= (Z f) <Z gk> .
p4»a>n:0 poe N k=0

As an immediate corollary, if f = {fx}, g = {gx} € I, then fx g €[N, and
Sreo- () (o)
N N N

Indeed, let h, f *g)n for n € N. Since

> |l < i i <Z|fk|i|gk|7

k=0 k=0

and since {>__, |hx|} is nondecreasing, thus Y ;- |hx| < co. We have thus shown
that f * g € [N. Furthermore,

Sreo-30an- (£1) (L) - (0] (S0).

k=0 k=0 N N

Several elementary facts related to the convolution product of sequences will be

useful later. First of all, we may easily show that for any two sequences f = {fx}

and g = {gx} in IN, f*g—g*f Furthermore, if f * g = 0, thenf—Oorg—O

Indeed, suppose that fo = -+ = fru-1 =0, fr, #0, 90 = -+ = gn—1 = 0 and
gn # 0. Then we have

(f*g)ern = f09m+n + +fmgn + +fm+n90 = fmgn 7é 0.

This shows that f*g # 0. It is also easily verified that under the above addition and
convolution product, IN is a commutative ring with no zero divisor, i.e. f*g =0
implies f = 0 or g = 0, and the additive and multiplicative identities are 0 and 1
respectively.

Theorem 2.12. Let f = {fx}, g = {gx} be sequences in IN. If go # 0, then there
is a unique sequence x = {xy} € IN such that g x = f.
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Indeed, we simply note that the infinite linear system

gozo = fo,
goT1 + g1%0 = fi,
goT2 + G121 + g2 = fo,

can be solved successively in the following unique manner: xzo = fo/g0, 21 = (f1 —

gl.SCo)/go7 e .
In case g = {gx} satisfies go # 0, the quotient f/g will denote the (unique)

solution sequence of the equation
g*xx = f.
One important question is how to find the explicit form of a quotient f/g. The

algorithm just stated is one way to calculate f/g. However, it may also be found by
other means.

Example 2.11. Let f = {fi} € IN. If fo = 0, then the first n terms of the
convolution product f () are equal to zero. Indeed, let

f<1> - f - {07f17f27f3a }a
then

f<2> = {anvffu2f1f2u2f1f3+f22"°'}7
f<3> = {0a070vffa3f12f27'“}7
f<4> = {anvovovffa~'~}v

and then by induction we may show that the first n terms of the sequence £ are
equal to zero. Furthermore, since

= 3 Forfos e fop = 3 fiu o fus

vyt v =iv1,..., 0, EN Lt Hlp=il1,.. Iy €ZT

for each k € {0, ...,n}, the term fém involves fi, ..., fn_1 only and can be expressed
as

Y = P(f1, ey fao1), n>2,0 <k <mn,

where P is an (n — 1)-variate polynomial with positive coefficients. Hence the
conditions fo = 0, f; = p and the iteration formula

fo=F (£, f7) n 22,

will define f in a unique manner. For example, if F'(ug, us, ..., un) = ug+us+- - -+,
then

n

fn :Zf;ﬁﬂ n>2,

=2

will yield fo = f32 = f2, fs = £ + (¥ = 2fifo+ [E =213 + 13, ...
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Example 2.12. Let f = {fx} € IN. If fo = f1 = 0, then the first 2n terms of the
convolution product f{™ are equal to zero.

Example 2.13. In case g = {g;} satisfies gg # 0, then (f/g)™ = ™ /g™ for
n € N.

Example 2.14. Let f, g,p,q € [N such that go # 0 and go # 0. Then
fxp _ f

g%q g

p
* —
q
since
I p
(g*q)* =x== fxp.
9 4q

Theorem 2.13. Let f = {fx}, g ={gx} €IN. Then A-(fxg) = (A- f) *(A-g) for
re C.

Indeed,

k k
A (fxg) = {ijgk_j} = {ZAjfjA’“jgk_j} =QA-NrQ-g).
j=0 J=0
Example 2.15. Let f = {f} € ™.

k k
A-H® = {ZfiAifkiAki} = {)\kaifki} =X [

i=0 i=0
Similarly, we may show by induction that

A-H" =2 f" neN.

Example 2.16. Note that

ox{fr} = {Zfz},

k
oxo=0? = {Zl}z{“ﬂ—&-ljl}7
i=0
and in general,

lk+n—1], _
O'<n> = - -n= L n . .
{ D) }, eN (2.16)

Example 2.17. Note that § = {1,-1,0,0,...} = T—h. Also, § = {1,-2,1,0,...},
and in general,

6 = {(—1)’6%}7 nezt.



Sequences 31

Example 2.18. Let f be a sequence in IN, Af its first difference, and fy the
sequence {fo,0,0,...}. Then it is easily checked that

S+ f=Af+fo—0%(Af)=fo+hx(Af). (2.17)
Example 2.19. As an immediate application of (2.17), let f = {Qk}keN. Since
Af =1,
f=80xf—T14+0x%f,

from which we obtain

1 1
2k} = === =.
{2} 26—1 2x6-1
Similarly, the same principle leads to
1
k

= —. 2.18
=252 a+1 (2.18)

Substituting o = 1/(1 — ) into the above formula, we obtain

;ﬁ:{(liﬂ)kﬂ},ﬁ#l. (2.19)

Now in view of Theorem 2.13,

{ck} {ck} ca)—ca—{c lk+1],},

we see that
1
————={ - k+1],}. 2.2
By induction, it is not difficult to see that for any scalar 8 # 1, the following
extension of formula (2.16) holds

1 flk+n—1],
w—ﬁww‘{ (D)

Recall that § + A = 1. By means of this simple relation, some of the previous
formulas can also be expressed in terms of the ‘translation operator’ i. For instance,
(2.18) can be written as

(1- ﬂ)_k_”} ,neZt. (2.21)

1
ky _
{o’} = T-axh
Similarly, (2.19) and (2.21) are equivalent to
{r* V=5 770 (2.22)
and
1 k+n—1],_,
R { CES , 1 #0, neZT, (2.23)
or
1 k+n—1],, 4
_ - n . neZt. 2.24
T —~h)™ { (n— 1) 7} " (224)
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2.4.3 Algebraic Derivatives and Integrals
Given a sequence f = {f,}32, € IN, we define the algebraic derivative of f by
Df ={(k+1)fes1)}iZo-

The higher algebraic derivatives D™ f are defined recursively by D" f = D(D"~!f).
Thus we have

D{fo, f1, f2, .} = {f1,2f2, 33, ...},
and
Df ={(k+1)--(k+n)frin}
for n € Z*. For instance, for any complex number «, Da = 0, and we have
Dlo={(k+1)(k+2)---(k+n)}

forn € Z+.
It can easily be verified that for a, 3 € C and f, g € IN,

D(af + Bg) = aDf + 3Dy,
D(fxg)=f*Dg+g*Df,

D(f-g)=(Df)-Eg = (Ef)- Dy
and
D f :g*Df—f*Dg
g g(2 ’
where we recall that f/g is only defined when the zeroth term of ¢ is not 0. For
instance, the last equality can be seen from

g*m:f:>D(g*x):Df:>g*D<§)—&-g*Dg:Df,

so that
g*g*D(i>—|—f>kDg:g*Df.
g

Algebraic derivatives of some common sequences can easily be found. More
complicated derivatives can be obtained by employing the following list of useful
formulae:

hxDf = {kfi}, (2.25)
DR™ = ph"=Y neZt, (2.26)

D& = —pgnl e 2, (2.27)
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Df"™ = D(f" 1« f) = f"V «Df + f DFTY
= :ﬁ*f<”_1> xDf, necZt,
D" (R 5 {fi}) = B {4 k), i} m = 1,
and finally
B s D fi} = {lk+n—m], frtn-m}, n>m>0.
To see that (2.29) holds, let f = {fx}, then

D (h<m> * f) = K™ « Df + f « DR™
= mm Y s (s Df +mf)
= " s {(k 4+ m) i}

Similarly,

33

(2.28)

(2.29)

(2.30)

D (D (h<m> * f)) =Y« D{(k+m)fr} + {(k+m)fr} * (m — 1)R™=2)
= KOs k(o m)fi} B s (= DL m)fe)

= B2 s (e m) (k4 m— 1) fi )

The general formula is then obtained by induction.

It is interesting to note that if D¢ = 0, then ¢ is a scalar sequence.

The

algebraic derivatives may also be used to derive identities involving sequences in

IN. For instance, the equalities /i 02 = {k} and D{k} = {(k + 1)} imply
{(k+1)?}=Dh*0?)=h*Do® + 02 =2h% 03 4 6@,

The same principle leads to

{((k+13y=D (h*D (h*o<2>>) 7

{((k+1)*} =D (m D (h* D(h * o—<2>))) ,
etc., and

{(k+1)°} =60 x 6™ 4+ 6hx o + 0,

{(k+1)*} = 248 x 0 + 36h2 x o + 14h % 0@ 4 62,
etc.
Example 2.20. The equation
Da=ra, reR,
can be solved by writing
(k+ 1)agy1 = rag, k€ N,

which yields a1 = rag, as = rai /2 = r%ag/2, ...,

CTO R reN
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As in calculus, we may define the concept of a primitive of a sequence. Let ¢ be
a sequence, if there is a sequence 1 such that Dy = ¢, then 9 is called the primitive
of ¢. In particular, given ¢ = {¢o, @1, P2, ...}, the primitive

fom o on )

172737477
is called the algebraic integral of ¢ and is denoted by

v=[o
(/¢ h*{k+1}%N

and clearly, for any &,¢ € [N and any o, 8 € F,

Jaga=a[ces [

2.4.4 Composition Products

Hence

Let f = {fu}p,en and g = {gn}neN be sequences in IN. Recall that ¢‘© = T,

¢ =gand ¢ =g *.9< ) for i > 2 If no confusion is caused, we will write the
n-th term of ¢ by 97@ instead of (¢‘"),,. If

k
klln;;fl Zfz < oo, n €N,

then the sequence {Z;’io flvgfp} N is called the composition product of f and g
ne
and denoted by f o g. For example,

foh=".

The products fo f, fo fof,.., will be denoted by f, I3l . respectively. We
also define f! = f and fl% = h. The sequence f?! is called the p-th composition
(product) power of f.

Example 2.21. Let @ = {1/n!}, and € be a scalar sequence. Since Eéi> =
and & = 0 for i € N and n € Z71, we see that
(woc)0—1+c+%c +- e°
and
(wo?d),=0,n€eZ".
Thus

wWoe=eC.
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Example 2.22. Let a = {an},cn 0 = {bn},en € [N such that by = 0. Then aob
is well defined. Indeed, in view of Example 2.11, bﬁf ) =0 for i > n. Thus

. =0
Zaz Z‘“b( {Zn ne ZZ 1

% 10’1

Example 2.23. Let g = Egn} € IV such that gy = 0. Recall the Heavidside se-
quence H™ defined by Him) =0fori=0,1,..,m—1, and Hgm) =1 for i > m.
Then

n

(H<m) o g) — i H™ gl =3 "H™g{) neN.

Hence,

0 n=0,1,..,m—1"
If we recall the convention that empty sums are equal to 0, then we may write
g = {3 rp L {5 mmeo b - {Somo k- {30 .
=0 i=m i=m

Example 2.24. Let @ = {%}neN and g = {gn},en - For fixed n € N, let M,, =
maxo<i<n |gi| . Since

J J
2 . .
’g;» >’ = E 9igj—i| < E l9i| lgj—i| < MJQ(J +1), 5=0,...,m,
we have
7 n
3 2 . .
‘%“‘: N 99| < >‘|gj—i|SMf(J+1)2,J=0’-~-,n7
=0 =0

and by induction,
k . 1.
o] < MG+ =0
Thus by the ratio test,

(@)l = |z gl
=0

1 1 1
1
{eMn(n—H) _ 1}
n+1

In other words, w o g is a well defined sequence. It is also useful to note that

1
il PACY)
ETRLL

g§?>

+

_|_..

g%

2!

< 00.

1 1
(@og)o =14 1790 + 506 + -~ = e
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The same principle leads to the following result.

Theorem 2.14. Let f = {fn},cn € IN be a sequence such that \ - f is absolutely
summable for any . Then for any g € IN, f o g is well defined.

Theorem 2.15. Let g = {gn},cn € [N such that go = 0 and g1 # 0. Then the
equation x o g = h has a unique solution = € IN.

To see the proof, recall that gﬁm =g # 0 and gflm> = 0 for m > n. The equation

x o g = h is thus equivalent to the infinite system

(0 9)o = wogy) =0,

rog) = xog§0> + f19§1> =1,

(zoyg)
(w0 g)2 =209y + 195" +2295” =0,
(xog)s = 1‘09§O> + mlg§1> + ng§2> + x39§3> =0,
from which we may obtain g = 0, 1 = 1/g1, 22 = —mlg§1>/g%7... in a unique

manner.

The unique solution in the above result is denoted by g{~!l.

For g € IN, we will call w o g the exponential of g. Two reasons for naming it in
such a manner are

(wof)*(wog)=wol(f+g), (2.31)
and
D(wo f)=(wo f)xDf (2.32)

for any f,g € IN. To show these, we first recall that a sequence {f(j)}jeN of
sequences in [N is said to converge (pointwise) to f € IN if

lim Y = f, k€ N.
Jj—oo

Clearly, if {fW};en and {g\)};en are two sequences of sequences which converge
to f and g respectively, then

Jim (fm +g<j>> — {4y,

lim (fm .gu)) — [
j—o0
and
lim f9 % g) = fxg.
j—oo
We may also define the infinite sum of a sequence {f (j)}jeN of sequences as the

limiting sequence of the partial sum sequence {E?:o fu )}

if(j) = lim Zn:f(j)_
=0 "0

neN.
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If such a limiting sequence exists, we say that the series Z;O:O 1) converges. Note
that 3372 f (@) converges if, and only if,

if(j) _ i { ’(Lj)}neN _ iﬁj) ’
; ; =

J=0 j=0 neN

that is, the k-th term of the series is obtained by ‘adding’ all the k-th terms of the
individual sequences.

In case the composition product fog of f,g € [N is defined, we may now easily
see from the previous observation that

fog={Zfig§f>} => fig"
i=0 neN =0

If the infinite sums Z;’O:O £ and Z;’O:O g of two respective sequences
{f(J)}jeN and {g(J)}jeN of sequences in I converge, then it is also easy to see
that

o0

i (af(j) _|_ﬂg(j)> — aZf(j) +ﬂ§:g(j)’ a,B€C,
=0

=0 =0

ipf(j) - D if(j) ,
j=0

Jj=0
and

;/fm:/ Z%f(j)

J=

and for any g € IV,

if(j).g: if(j) g

=0 =0
and

Zf(j) *g = Zf(j)

=0 =0

We first show the validity of (2.32):

00 e’} (k—l>*
D(wo f) = (Zk‘f%k):ZD<%f<k>>:Zkfk7'Df:(wof)*Df.
k=0 ’ ’

k=1

To show (2.31), we need the following result.
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Example 2.25. Consider the equation
Dg = M(Dh) * g,

where ) is a fixed number different from 0, h is a given sequence in [N and g is a
sequence in IN to be sought. Then g = w o (\h) is such a solution since

Dg = D(w o (Ah)) = (w o (Ah)) * D(AR) = A(Dh) * g.
We assert that any other solution must be a constant multiple of @ o (Ah). To see
this, let g be another solution and consider the ratio g/(w o (Ah)) which is defined
since (w o (Ah))p is not zero by Theorem 2.12. Note that
g _ (wo(Ah))* Dg — g D(w o (Ah))
(w ° (Ah)> - (@ o (AR))2)
~ (mo () # Dg — g+ (ADh) + (= 0 (M)
(@ o (AR)2)
(w o (Ah)) * (Dg — A(Dh) * g)
- (@ o (Ah))2

= O’
thus,

g =
@ o (Ah) =5

for some scalar sequence 3, or,
g =L (wo (Ah)).
We now show the validity of (2.31). First note that
qg=(wo f)x(woyg)
satisfies the equation
Dq = (D(f +9)) *q,
since
Dg=(wo f)*D(@og)+ (D(wo [))*(wog)
= (wo f)={(Dg)*(wog)} + {(Df)* (wo f)}*(woyg)
=q*xDg+qxDf
=qx*D(f +g).
By the uniqueness in the previous example, we see that
(@o f)x(wog)=pB(wo(f+9))
for some constant 3. But since
(@o f)*(wog))y=elt = (wo(f+9)),
we see that § = 1.
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As an interesting consequence, note that

(k) > gk
(Zf ) ( %>=<wof>*<wog>

<k flm o glk=—m)
NCE =t
As another interesting consequence, we have the following result which will be
useful in the calculation of the higher derivatives of composite functions.
Example 2.26. Consider the equation
(Ew) - (DB) = A[(Ew) - (Dg)] * (w - B), (2.33)

where ) is a fixed number different from 0, g is a given sequence in [N and B is a
sequence in [N to be sought (recall also that {px}-{qr} = {prqr}). Note that (2.33)
can be written as

D(w-B)=AD(w-g)*(w-B).
By our previous Example, we see that
w-B=fx(wo(\w-g))
for some scalar sequence 3. Thus,
B=w"'(Bx(@o(\w-g)).
The previous facts are useful in finding the n-th derivative of a composite func-

tion. For the sake of convenience, we will use D} f(¢) to denote the n-th derivative
f0(t) for n € N.

Theorem 2.16 (Formula of Faa di Bruno). If f (t) and g (t) are functions for
which all the necessary derivatives are defined, then for n € Z™T,

D} f(g(t) = Z—: > D £ (1) |uey() (Di;lg'(t)> (Di’;g' (t)> :
' Jitetie=nij1, -,k €LT ' :
Proof. Let us write i (t) = f(g(¢)) and
hn = DR (t),
gn =Dig(1),
fo =Dy f (W) |u= g(t
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for n € N. Then
h1 = Dih (t) = Dy f () lu=g(n D9 (t) = fr01,
and similarly
hy = figs + fag7
hs = figs + f239192 + f3g}.
It is easily established by induction that h, has the form

hn = filnk (g1, s gn) (2.34)
k=1

where I, x (91, ..., gn) does not depend on any of the functions f;. Now, since we
wish only to determine I, x (g1, ...,9n), We are free to choose f (t) arbitrarily. Let
us take f (t) = e where ) is an arbitrary constant different from 0. Then

fr = DEF () [umgry = N k€ N, (2.35)

and
hy, =DreM® neN. (2.36)

Substituting (2.35) and (2.36) into (2.34) and multiplying by e *®) gives

e MODrer®) = i Al g (G1s s Gn) -

k=1
If we set B, (t) = e DreM®) for n € N, then By(t) = 1 and
By, (t) = e MODI gy (8) M

n—1
n—1 e
—2e 037 (" g Dy
k=0

Y (" o 0Bk ) (2:37)
k=0

for n € Z*, where we have used Leibniz’s formula for the second equality. Now we
may think of ¢ as being fixed and define sequences B = {By,},,cny and g = {gn},en
where B, (t) = B,, and g, (t) = g,, for n € N.
Equation (2.37) now becomes
(Bw) - (DB) = A[(Ew) - (D)) * (= - B) (2.38)
In view of Example 2.26, all its solutions are of the form
B=w""[cx[wo(\w-g)]]

where ¢ may depend on the fixed ¢. In order to determine ¢, we recall that Bo(t) = 1
and so

1=DBy(t)=c (w_l)o [wo (Aw - g)], = ce*Do = cer,
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which implies ¢ = e~*9. Thus in view of the previous Example,
B=w!.|e29« [@TJO(/\w-g)]]
=w ' [(@o (A7) * (wo (Mw-g))| = {wo [\w-g— 7o)}
Since (wg — Jo)o = 0, by Theorem 2.12 and (2.15),

e A VI (YR (™Y

k=1 Jitetie=nid1,.. ik €2
n k
— A 91 i
. . X . 1- k-
k=1 " jit-+jp=nij1,....jr€ZF J J

for n > 1. By equating coefficients of A\¥, where k& > 1, in the two expressions for
B,, gives

n! . .
(g g) =T Y (Z) (L), nez
. o . J1: Jk-
Jid ik =n51,. 0k €ZT

This is the desired formula and the proof is complete.
We remark that (see Roman [164])

B2 ) ) S (1)

Jitetie=n5g1,. 0k €ZT

N (9_n>’“"
n! ’

where the last sum is over all k1, ..., k,, for which ky +---+ k,, = k and k1 + 2ks +
-+ nk, =n.

Example 2.27. Take

1 oo
o) = —— = 3o e (141

and
flz) = l—rm—l er x—1)7, |r(x—1)] < 1.
Then
Ho() = 1—1(:1)15 = 1-(r1+1)t_ 1—(:+1)t
= i(l +r) — i(l + )ttt
n=0 =0

=1+ Zr(l + )
n=1
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for |(r 4+ 1)t| < 1. Thus g (0) = j!, f*)(g(0)) = k!r* and
d" f(9(0))

i =nlr(l +r)" !

-y mf(g(o)) (9(11)!(0) )k (9(2!( O)>kn

n!

_ ek

=2 AT
where k = k1 + - - - + k, and the sum is taken over all kq, ..., k,, for which ki + 2k; +
-+ + nk, = n. Consequently,

k!
Z — = kF=r@ )" neZt.
kilka!- - ky,!
ki42ko+--4+nkn=n;k1,....kn, €N

2.5 Properties of Bivariate Sequences

Let {N*N be the set of all complex bivariate sequences of the form f = {f;;}i jen.
Such a bivariate sequence f is a function defined on the set of all nonnegative lattice
points N x N and it is natural to view a bivariate sequence as an infinite matrix of
the form

fOO fOl

We will also write {f;;} instead of {f;;}: jen if no confusion is caused. The number
fi; will be called the (7,7)-th component of the bivariate sequence f, while the
sequences { fio, fi1, ...} and {fo;, f1;,...} will be called its i-th row and j-th column.

For any complex number a and f = {f;;},9 = {gi;} € (NN, we define —f, af,
[ -gand f+ g respectively by {—fi;}, {afi;}, {fijg:;} and {fi; + gi;} as usual.

There are some common sequences in [N*N which deserve special notations.
First of all, let a be a complex number, the sequence whose (0,0)-th component is
« and others are zero will be denoted by @ and is called a scalar bivariate sequence.
In particular, the sequence with all zero components will be denoted by 0. The
bivariate sequence whose (1, 0)-th component is 1 and others are zero will be denoted
by fi,, while the sequence whose (0,1)-th component is 1 and others are zero will
be denoted by A, :

he =

o = O
o O O
o O O
o O O

1
0
0

o O O

while the bivariate Sequencés O, 0y, 0, and Oy are defined l;y

Oy — )

— =
o O O
o O O

[1 1 1.7
000 ..
000 ..
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respectively. Note that 6, + A, =1 and d, + h, = 1.

The bivariate sequence { fiym.jin}ijez Will be denoted by E;”E{]{ fij}, where
m,n € N. The sequence E"E} f is called a translated sequence of f. For the sake of
convenience, EQE} f and EJ'E, f are also denoted by EJ' f and E}" f respectively.

For any complex numbers A and p, the sequence { A7 fi;} is called an attenuated
bivariate sequence of f and is denoted by (X, )- f. It is easily seen that (0,0)-f = foo,

) f=fand Q) ((p1)- ) = Qpopr) - f.

For any f = {fij},g9 = {gi;} € IN*N, we define the convolution product f * g,
by

i J
(f *g)l] = Zz.fuvgifmjfva 7/7] Z 0.

u=0v=0

We may evaluate the components of A = f % g in an orderly manner as follows:

hoo = foogoo; hio = fiogoo + foogio, hor = forg00 + foogor;

hao = f20900 + f10910 + foog20, P11 = fi1900 + for910 + fiogo1 + foogii,--- -

For the sake of convenience, we will also use the simpler notation fg for the product
f*g. Note that fxf, f*(f*f),..., will also be written as £, f$3 .. respectively.

For example, 0 f = 0, Ixf = f, a*x8 = af, and ax* f = (al) x f =
a(l* f) = af. More complicated examples can also be given. First of all, h§m>
(or h§m>) is a bivariate sequence whose (m, 0)-th component (respectively (0, m)-th
component) is 1 and others are zero, while h§m> * h§,n> is a bivariate sequence whose
(m,n)-th component is 1 and others are zero. It is also interesting to note that

W™ % by % {fi;} = {gi;} where

gij = fifm,jfn lZm,jZn
* 0 otherwise

For instance, the matrix representation of the bivariate sequence K h§,1> «{ fij}
is

00 0 0 ..
00 0 0 ..
0 foo fo1 fo2 - |,
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while fo1h$2 * hY

oo oo
oW o o
8
oo oo

There are several elementary facts related to the convolution product of bivariate
sequences. First of all, we may show that for any bivariate sequences f = {f;},

g = {gij} and h = {h;;}, we have fxg = g* f and f*(gxh) = (f *g) * h.
Indeed, these are due to the fact that the convolution product of sequences of a
single integral variable are commutative and associative:

T T
E TrYi—k = E Ti—kYk,
k=0 k=0

and

m—1

m
Z <Zx1yk z) Zm—k —szzyk ifm—k — ZI'L yjzm—i—j-
k=0

1=0 k=1 1=0 7=0

Next, we show that when f # 0 and g # 0, then f * g # 0. Indeed, suppose the
components of f and g are ordered by the mapping ¥ defined by (1.3). Then we
may assume without loss of generality that

foo=fio=for == fogin-1 =0, fmn #0,

and

oo = g10 = go1 = "+ = Ge+1,0—1 = 0, gst # 0,
where U1 (m,n) < ¥~(s,t). Since when s +t > m +n,

(fg)m+s7n+t - fOOgm+s,n+t + -+ fmngst + -4+ fm+s,n+t900 - fmngst 7& 0.
we see that f % g # 0.

Theorem 2.17. Let f = {fi;} and g = {gi;} be bivariate sequences in IN*N_ If
goo # 0, then there is a unique bivariate sequence x = {x;;} such that g+ x = f.

The proof is elementary. We write the component equations of g x x = f in the
following orderly manner:
gooToo = foo,
gooZ10 + g10Too = f10,
gooZo1 + go1Zoo = fo1,
900Z20 + g10T10 + g20T00 = f20,

90011 + g10%o1 + Go1T10 + g11Too = fi1,
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and so on, and then obtain Too = foo/go(), T10 = (f10 — gloxoo)/goo, ceey SuCCGSSiVGly
in a unique manner.

In case g = {gi;} satisfies goo # 0, the quotient f/g will denote the solution
sequence of the equation

gxx=f.

One important question is how to find the explicit form of a quotient f/g. We
remark that although we have mentioned an algorithm to calculate f/g, as we will
see below, it may also be found by other means.

Example 2.28. Let f = {fi;} € I™N_If foo = 0, then for all (i,j) €
{(i,j) e N?*|i+j<n—1}, we have fl'(]m = 0, where n € Z%'. Indeed, let
Qi = {(i,5) € N?| i+ j =k} for k € N. Assume by induction that f/” = 0 for
(i,7) € Qr_1 where k is a positive integer. Then for (i,7) € Qo + -+ + Qr_1,

i g i
fi(.;c+1> = Z Zf'éf}fi—u,j—v = Z ZO . fi—’u.,j—v =0.

u=0v=0 u=0v=0
For (i,7) € Q, let S =1{0,1,...,i} x {0,1,..., 5}, then
k k
Iy = 3 e+ 1 o =0,
(u,v)€S\{(4,5)}
For instance, when fyo = 0, the matrix representation of f* is of the form

000 % ...
00 . ..
0. ...

Theorem 2.18. Let f = {fi;},g = {gij} be bivariate sequences in IN*N. Then
() (Fx9) = () £) + (o) - 9) Jor A e C.

Indeed,
(/\7,U') : (f * g) = {Z ZAlﬂjfuvgi—u,j—v}
u=0v=0
i j . . .
= {Z Z )\uﬂjfuv)\liuﬂjivgifmjfv }
u=0v=0

= (- £) * (o) - 9)-

Theorem 2.19. Let f = {fi;},g = {gi;} be bivariate sequences in 17 ™. Then
Frgell™N and Ygun f+9= (Cnun ) (Cnxn 9) -




46 Analytic Solutions of Functional Equations

To see the proof, we first assume that f,g > 0. Note that

ii (iifuvgi—w—v> = iiﬁjii% <> X0

i=0 j=0 \u=0v=0 i=0j=0  i=0 j=0 NxN NxN

Thus for any w € IV*N such that 0 < w < f * g and the support of u is finite, we
have

m n
2.2 wy< ) I g
i=0 j=0 NxN NxN

for all sufficiently large m and n. Taking the supremum on the left hand side, we see
that fxg € TN and Y non f*9 < (Cnxn f) Cnxn 9) - Next, let u,v € N
such that u,v have finite supports and 0 < u < f and 0 < v < g. We may
assume that the supports ®(u) and ®(v) are {(i,5)| ¢ =0,1,...,a;5 = 0,1,..., 8} and
{(4,5)]i=0,1,...,v;5=0,1,...,5}. Let E be the set {(i,5)| i, =0,1,...,a8v0}.
Since it can easily be checked by listing all the terms of u * v that

OSZuZUSZf*g.

NxN NxN NxN

Thus (P nen f) (Ensn9) < Sonxn [ * g For f and g which are not necessary
nonnegative, the routine procedure of breaking f and g into real and imaginary

parts and/or positive and negative parts will then lead to a proof.

Given a bivariate sequence f = { f;;}, we denote the sequences {(i+1) fi11,;} and
{(G+1)fij+1} by Do f and D, f respectively and call them the (partial) algebraic
derivatives of f. The higher algebraic and mixed derivatives are defined recursively.
Thus we have

D,a=Dya=0, a€C,
and
DDy f={[(i+1)-- (i +m)[(G+1) (G +n)lfivmjint = DyD7 f
for m,n € Z*. It is easily verified that for any «, 3 € C, and f, g € IN*N,
Dy(af +B9) = aDyf + BDyg, Dy(af +Bg) = aDyf + BDyg,

Dy(f*g)=fxDyg+g*Dyof, Dy(fxg)=f*Dyg+g*D,f,

and

D (i) _9*Dof —f*Dug (j) _9*Dyf—f*Dyg
“\g g(2 T\ g g(2 ’
where we have assumed that ggo # 0 in the quotient f/g.
Algebraic derivatives of some common operators can easily be found. More
complicated derivatives can be obtained by employing the following list of useful

formulas:

D,hy = Dyh, =0,
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he x Do{ fij} = {ifij}
D hS™ = mh{mY m e ZF
D£¢<M> — Dm(¢(m—l>¢)
= ¢! V4 Dyg o+ ¢ Dypgt™ Y
=m¢™ Y « Do, m e ZF,

Dp(h{™ # {fis}) = i s {lm + 1, fi}, m>n>1,
and finally
Bm s D fiiy ={li+n—m], fli+n—m,j)}, n>m>0.

Example 2.29. Let us calculate

1
De (T —3he) * (1 —3h,)
Since
1 3D,h _
Dot = T an@ "
and
DL 3Dha 3
“(1—-3hy) (1—3h)2  (1I—3h)2"
thus

D = 1 * D 1 + x D
“T-3h,)*(1-3h,) 1-3h, “1-3h, 1-3h, "1-3h

3
-~ (T—3hy) * (1 —3he)®"

We conclude this section by remarking that iterated algebraic integrals can be
introduced. They are just the primitives of partial algebraic derivatives and thus
their properties follow from those of algebraic integrals defined in a previous Section.

2.6 Notes

Most of the material in this Chapter are well known and can be found in standard
analysis text books such as Apostol [5], Cheng [28], Krantz and Parks [99], Smith
[211], Fichtenholz [62], Balser [13], Kaplan [94], etc. Some of the terminologies used
here, however, are slightly different. For instance, instead of the term ‘series’, we
use ‘sum’; instead of the term ‘sequence of functions’, we use ‘family of sequences’,
ete.
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We have employed limits of generalized partial sums relative to an ordering for
the definition of sums of multiple sequences. This is the usual approach in the theory
of several complex variables (see e.g. Krantz [100]). There are other definitions for
partial sums of multiple sequences as well (see e.g. Sheffer [169, 170], Wilansky
[225]). For instance, the double series

> fi

is said to converge to s in the sense of Pringsheim if the limit

m n
o DD fi

i=0 j=0
exists and equals s. It is possible to develope results based on Pringsheim’s concept
for bivariate power series functions similar to those described in our previous sec-
tions. However, as pointed out by Sheffer [169], there are some technical difficulties
which have to be circumvented due to the fact that Pringsheim’s summability does
not imply boundedness of {f;;}.

Algebraic properties of multiple sequences have also been reported quite exten-
sively. Indeed, some concepts and results in Sections 2.1, 2.4 and 2.5 are taken
from Cheng [28]. There are, however, unpublished material in this Chapter. For
the sake of convenience, we collect some of the properties of univariate sequences
in our Appendix.

There are now active research into functional equations where the unknown
functions are sequences. Some of these equations are called recurrence relations,
some ordinary or partial difference equations. The former equations are called since
their recursive structures are more important, while the latter are called since the
concept of rate of changes is more important. In this book, as we shall see, a large
number of recurrence relations arising from seeking analytic solutions will be solved.
The introduction of algebraic operations and/or limiting operations will enable us
to handle the recurrence relations in less cumbersome manners.

The concept of composition product is new. This concept is related to compo-
sition of analytic functions. Composition of analytic functions has been studied as
abstract mappings, see e.g. Cowen [44].

The formula of Faa di Bruno is well known and is proved in several manners
(see e.g. Jordan [90], Roman [164], McKiernan [139]). The one we present in
this Chapter is new (and part of the arguments are provided by J. J. Lin). It is
based on the idea of Roman [164], but no knowledge of umbral algebra is required.
The formula of Faa di Bruno will play important roles in manipulating functional
equations with composition of known or unknown analytic functions.



Chapter 3

Power Series Functions

3.1 Univariate Power Series Functions

Let a = {an},cn € IN. Let A be a subset of F such that the attenuated sequence
A - a is summable for each A € A, that is, such that the limit

lim Z (A-a), = Z:ak/\l~C
" =0 k=0
exists for each A € A, then we may define a function @ : A — C by

o0
a\) => aAt, AeA (3.1)
k=0
If A is a priori unknown, we will take A as the set of all A € F such that A -a is
summable. This function, which is completely determined by a, is called the power
series function in A generated by a, or the generating function of a. The function
g(z) defined by g(z) = a(z—c) for z € c+A = {c+ z| z € A} is called the generating
function of a about (or with center at) c.
Since properties of power series functions with nonzero centers can easily be
deduced from power series functions with center 0, we will therefore concentrate
our attention to the latter functions.

Example 3.1. Let f be a complex function defined on a domain © of F which has
derivatives of any order at the point ¢ € ©. Let

1w } .
a {k!f @f

The power series function a(z — ¢) is called the Taylor series function with center ¢
generated by f.

Theorem 3.1 (Abel’s Lemma). Let a = {ax}ren € IN. If the attenuated se-
quence A - a, where X # 0, is summable relative to an ordering ¥ for N, then p - a
is absolutely summable for |u| < |\|. If A- a is not summable at A = « # 0 relative
to some ordering for N, then A - a is also not summable for all || > || relative to
any ordering for N.

49
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Indeed, if A - @ is summable relative to an ordering W, then in view of Theorem
2.5, {axA\*} is bounded, say by M. Hence for k € N,

5 <5l
= <M= .
()<l
Thus when |u| < |A|, the comparison test for series yields

> lal < MY 5] < o0

k=0 k=0

as desired. The second assertion of our Theorem follows from the first.

| =

k/\k
aklu)\k ‘ = |a’k/\k|

Suppose we have a sequence a = {ax}ren € [N. Let T be the union of {0} and
the set of all nonnegative numbers A such that A - a is summable relative to some
ordering for N. Since 0 € I, the (extended) real number

p(a) =supl

belongs to [0, co]. The number p(a) is called the radius of convergence of the sequence
a or of the power series function @ generated by it. Note that by definition, if w - a
is summable for each w that satisfies |w| < |¢|, then p(a) > |¢|.

Theorem 3.2. With each a = {ar}en € N, there is associated an extended
number p(a) € [0,00] such that A - a is absolutely summable for |\| < p(a) and not
summable for |\ > p(a) relative to any ordering for N. Furthermore, the family
{A - a} is uniformly and absolutely summable for || < r where r < p(a).

The first assertion of the above Theorem follows from Theorem 3.1. The second
assertion means the sequence {|agA*|}, o is uniformly summable for [A| < r, and
follows from Weierstrass test for uniform convergence.

In the rest of this section, a = {ax} and b = {bs} are sequences in IN, p(a)
and p(b) respectively are their radii of convergence, and a(A) and b(A) are the
corresponding power series generated by them respectively.

Theorem 3.3. The radius of convergence p(a) is given by
—— = limsup |ak|1/]C
p(a) k—o0
B s 1k _ P 1k _
where p(a) = +oo if limsupy,_, o |ak|’" =0 and p(a) = 0 if limsup;,_o lax| " =
+o00.

The above Theorem (due to Cauchy and Hadamard) follows from the root test
in elementary analysis.

Example 3.2. Let a = {a},cn € (V. Then p(a) = p(Da) = p([a) = p(lal),
where Da is the algebraic derivative of a, [ a is the algebraic integral of a, and |af
is the sequence {|ax|},cn -
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The fact that p(|a]) = p(a) is clear from the previous result, that p(Da) = p(a)
from

limsup |(Da),|"™ = limsup |[na,|"/™ = lim sup |a,|*/™

n—oo n—oo n—oo

and that p ([ a) = p(a) from

1/n
= limsup |a, |*/™.

n—oo

lim sup

n—oo

Qn

1
+1
In case each term ay in the sequence a € [N is not zero, the ratio test for series

also yields

Qan

lim inf
n—oo

< p(a) < limsup

Apt1 n—oo | Gn+1

Theorem 3.4. Let a,b € IN. For any o, 3 € F,

plaa + Bb), pla+b) > min (p(a), p(b)).

Furthermore,
(aa + Bb)(N) = a@(A) + Fb(A) = &a(\) + Fb(A)
and
axb()) =a(\)b(\)
for [N < min (p(a), p(b))

To see that p(a *x b) > min (p(a), p(b)), it suffices to show that A - (a x b) =
(A-a)*(A-Db) is summable for |A| < min (p(a), p(b)) . But this is true in view of
Theorem 2.13. Furthermore, for |u| < min (p(a),p(b)), since - a and p - b are
absolutely summable, by Merten’s Theorem 2.11 and Theorem 2.13,

a/*\b(u)=ZE-(a*b)=Z(H-a)*(H-b)= (Zﬁ-a> <Zﬁ'b)'
N N N N

The other assertions in the above result are proved in similar manners.
As an interesting consequence, we see that

al () =@ (), A < p(a), (3.2
for m = 2,3, ... . Recall that a‘! = a, hence (3.2) is also valid for m = 1. Further-
more, since a'?) is defined to be T, and (@)°(\) = 1, we see that (3.2) is valid for
m = 0.

The following follows from Theorem 2.8.

Theorem 3.5. The power series function a(\) generated by a is continuous for
Al < pla):
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Example 3.3 (Abel’s Limit Theorem). If a is a real sequence and if A - a is
summable at A = p(a) > 0 (or A = —p(a) < 0), then a(N), as a function of real
variable, is continuous at p(a) from the left (respectively continuous at —p(a) from
the right).

Proof. Without loss of generality, we will assume that p(a) = 1 and show that
if

oo
w = E a; < 00,
i=0

then

lim a(z) = lim Zazx —Zal

r—1- rz—1—

First of all, it can easily be proved from

1—zntt 9 "
=l4+z+2°+ -4z
1—=
that
:in7 —-l<ax<l1
i=0
Since
L a(x) i( ) l<z<l1
= k —
o izoa a);x T
where o = {1,1,1,...}, thus
a(x) — (1—2 Z{J*a —wlr', —1<z<l1.
=0

By assumption, there exists an integer I such that ¢ > I implies

(o *a); Zaj iaj <§.
J=0

Therefore,
I-1 , 0
la(z) —w| < (l—m)Z{(U*a)i —wlaz'|+ = |(1 —x)le
=0 i=1

3
< (1 — T P — —

for 0 < x < 1. If we take x sufficiently close to 1, then the right hand side can be
made arbitrary small which is what we need. The proof is complete.
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Theorem 3.6 (Representation Theorem). Let a(\) be the power series func-
tion generated by a sequence a € IN with p(a) > 0. Then for each monzero
w € B(0; p(a)), there exists B > 0 such that B(u; 8) C B(0;p(a)) and

Zi?:%m%nk)u—m“amxeBmw» (3.3)
k=0

Proof. Choose 3 > 0 such that 5+ |u| < p(a). Then B(u; /) is contained in
B(0;p(a)), and A - a is absolutely summable for each A € B(u;3). Since for each
A€ B(u; ),

ian Zan)\ w4 )" ZanZC")A )k =k,
n=0 n=0 =

by Fubini’s Theorem 2.4, we may interchange the order of summation and obtain

S anh = 303 OO - )t <
n=0

k=0n=~k

Since C,i") = 0 for n < k, we see that (3.3) holds. The proof is complete.

Theorem 3.7. Let a € IN with p(a) € (0,00] and b = Da be the algebraic derivative
of a. Then p(b) = p(a). Furthermore,

—

@ (1) = Da(p) = b(y)
for |ul < p(a).

Proof. We have already seen that p(b) = p(a). Let 11 € B(0; p(a)). Then by the
representation theorem, there exists 8 > 0 such that B(u; 3) C B(0;p(a)) and for
A€ B(u; B),

) _ 1S 35 it

k=1n=~k

o0

= Znanu’“l + <Z CManp ’“) (A=
n=1

k=2

By taking limits on both sides as A — p and invoking Theorem 3.2, we see that

Znanﬂ -1 3)

as required. The proof is complete.

We remark that by repeated application of the above theorem, we see that

o0

am) =Dma(\) = 3 (nfi'm)'

aﬂ)\nfm

n=m
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for |A| < p(a). If we put A = 0 in the above formula, we see that
a"™(0) = mla,,, me Z+. (3.4)

As an interesting consequence, if

Zanz—c Zb z—c)" (3.5)

for z in a neighborhood of ¢, then a,, = b,, for n € N.

Theorem 3.8 (Unique Representation Theorem). If two power series func-
tions Y 0" g an(z— )™ and Y. " bp(z — )™ are defined in a neighborhood of ¢ and
(3.5) holds, then a, = by, for n € N.

Theorem 3.9. Let a € IN with p(a) € (0,00]. Let b be the algebraic integral [ a of
a. Then p(b) = p(a). Furthermore, for z € B(0; p(a)),

—

/O ’ A(N)dA = / a(z) = b(z).

Indeed, by Theorem 2.9,

/Oza()\)dA:/ Zaj)\JdA Z/ a; N d = Z zJ“ b(z)

as required.
Recall from Theorem 2.12 that for any sequence a = {ax} € I which satisfies
ag # 0, there exists a unique b = {b;,} € [* such that

axb=1{1,0,0,...}.
The unique solution b has been denoted by 1/a.

Theorem 3.10 (Inversion Theorem). Let a = {ak},cn € N with p(a) > 0 and
ao # 0. Let b =1/a. Then p(b) > 0. Furthermore,

aNbN) = 1 (3.6)
for |A] < min (p(a), p(b)) -

Proof. Since limy—o > -, [a,A\"| = 0, we may choose v > 0 such that

oo
S Jan] 7" < lagl
n=1

We assert that

bl < lao| "' 77", n € N. (3.7)



Power Series Functions 55

Indeed, recall
aobo = 1,
a1bg + agby = 0,

ambo + am_1b1 + - -+ + agb,, =0,

thus |bo| = |ao|™" < lao| ™" 470, Assume by induction that (3.7) holds for n =
0,...,m — 1, then

laobm| < |a1bm—1| + |agbm—2| + - - + |ambol

—(m—1) —(m—2) -0

+ o Jam| ao Tty
= laol " v~ {Jas|y + laz] ¥ + - + |am| y™}

< lao| "ty ™ |aol

< la|]aol "y + laz| ao| "t

—m

=7
as desired. Thus for any |\| <7,

Z|b||A| < Jaol” Z('J) <.

Thus p(b) > v > 0. Fmally, an application of Theorem 3.4 yields (3.6). The proof
is complete.

We remark that in case a € [N such that p(a) € (0, 0], ag # 0 for z € B(0; p(a)),
then the above result asserts that

for z € B(0;min(p(a), p(1/a)).

Theorem 3.11 (Substitution Theorem). Let a = {ar},cn 0= {bx}ren e se-
quences in IN with positive p(a) and p(b) respectively. For any X € B(0; p(b)) such
that Y07 o |bnA™] < p(a), we have

a(b(\) =aob(h) =3 A-(aob) <oo
N

where we recall that aob is the composition product defined by (aob), = E;’io aibﬁf>

for n € N.

Proof. Since |A| < p(b), we see that b()) is defined and ‘7)\(/\)‘ <3 o 1oAY <
p(a). Therefore, G(b())) and [a] (|Z|(|A|)) (where we recall [a]()) and [b|()) are the

power series functions generated by |a| and |b| respectively) are defined and

n=0 k=0

n=0
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in view of (3.2). By changing the order of summation, we see that the last sum can
formally be written as

i i arb{F A
n=0k=0
or

Z(a ob), A"

n=0
Since 5@ =T and

(n) E
b, = b, by, - - - by,
vitve+- v =kv1,..., v, €ZT

< Z |bv1||bv2|"'|bvn|

vitve+- v =k;v1,..., 0, €ZT
for n > 1, we see that

ZZ anby™ A’“‘ <y |an| (Z !bk/\’“o —Jal (Jl(1AD) < oo

n=0 k=0 =

By Fubini’s Theorem 2.4, we see that the change of the order of summation is legal.
The proof is complete.

We remark that the series ) A - (aob) is the power series which arises by
substituting w = b(/\) into a(w) and then formally expand the resulting expression
and rearranging terms in increasing powers of .

3.2 Univariate Analytic Functions

A function f with domain an open set © C F and range F is said to be analytic at
c if there is a sequence a € [N and a ball B(c;y) contained in © such that
A) = Zu%l < 00, A€ B(g7).
N
Note that, in view of Abel’s Lemma (Theorem 3.1), f is analytic at ¢ if, and only
if, there is a sequence b € I[N, an ordering ¥ for N and a ball B(c;d) contained in
O such that

qu, A—¢)?9) <00, A€ B(gd).

For the same reason, f is analytlc at c if, and only if, there is a sequence b € [N
and a ball B(c; §) contained in © such that

Zb I <00, X € B(¢9).
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The function f is said to be analytic on or over © if it is analytic at each ¢ € ©.
The set of all analytic functions f : @ C F — F will be denoted by H(0O). Analytic
functions are plenty as can be seen from the following result.

Theorem 3.12. Let a = {artren € [N with positive radius of convergence
p(a). Then the corresponding power series function a(X\) generated by it belongs

to H (B(0; p(a)).

Indeed, a(\) = Yy A-a < oo for A in some B(0;8) contained in B(0; p(a))
and thus a()) is analytic at 0. For any pu € B(0; p(a)) which is distinct from 0, by
Theorem 3.6, there exists § > 0 such that B(u;8) C B(0;p(a)) and (3.3) holds.
Thus @()) is analytic at p.

There are several important properties of analytic functions which we shall need
in the sequel and follow from the results in the previous section. In the following,
O, ©; and O3 denote open subsets of F.

Theorem 3.13. If f € H(O), then its derived function also belongs to H(©). If in
addition © = B(w;§), then its primitive function g(z) = [ f(u)du also belongs to
H(O).

If f = f(2) is analytic at ¢, then its definition asserts that f is the power series
function @ generated by some sequence a € [™N:

FE) =3 an(z = )"
n=0

By Theorem 3.7, we see that f has derivatives of any order and hence

1y 1.
anzma()zm()(c),neN.
That is
— 1 n n
=30 =0

for z in a neighborhood of c¢. As a consequence, we have the following result.

Theorem 3.14. If f,g € H(O©), then af + g € H(®) for any o, € C and
f-g€ H(O).

Theorem 3.15. If f € H(©) and f(\) #0 for A € ©, then 1/f € H(O).
The above result follows from the Inversion Theorem 3.10.

Theorem 3.16. If f is analytic at ¢ and g is analytic at f(c), then go f is analytic
at z = c.

Example 3.4. Polynomials (of one variable) are analytic everywhere, and rational
functions f(z) are analytic for all z which are not roots of the denominator.
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Example 3.5. The power series
l+z+22 42"+

is convergent for each z € B(0;1) as can be seen by the ratio test. Furthermore,

since
1— Zn+1
1—|—Z+-~-—|—Zn=7
1—2
for z # 1, by taking limits on both sides, we see that the rational function f(z) =
(1 —2)"" is analytic on B(0;1) and

1 o0
= Zz", z € B(0;1).
n=0

1—z
By substituting w = —z into the above equality, we see further that

1

Tow > (=DM, w e B(0;1).
n=0

Theorem 3.17 (Unique Continuation Theorem). Let f,g € H(O) where O is
connected. If there is a sequence {p“i}ieN contained in © such that lim; .o u; =
wE O, uw# p; fori € N and f(u;) = g(p;) fori € N, then f(A) = g(\) for A € ©.

Proof. It suffices to assume that g is the trivial function. We first note that
there is some a € IN and § > 0 such that

FO) = ai(A—p), A€ B(p;6) CO.

i=0
If a # 0, then there is some I € N such that ag =a; =---=a;_1 =0but ar #0
(where the case a_; is taken to be vacuously true). Thus,

FO) =X =wq\), A€ B(u;6),

where

q(\) = (al + Z a;(A —u)i_1> , A€ B(u;9).

i=I+1
Thus, in view of the fact that f(ux) = 0 for all large k, we see that

0= (ur — m)a(pr)
for all large k, so that g(ux) = 0 for all large k. By continuity, ¢(u) = 0, which
is contrary to the fact that ¢(u) = a; # 0. We conclude that f(\) = 0 for A €
B(p;6) € ©.

Next, let w be any point in © and distinct from p, by connectedness, we may
join p to w by a path h defined on [0,1] and h(t) € © for ¢t € [0,1]. By what we
have just shown, the composite function f o h is identically zero on [0, o] for some
a € (0,1]. We assert that f(w) = f(h(1)) = 0. To see this, let

S ={B € (0,1 F(h(t) =0 for t € [0, 4]}



Power Series Functions 59

Since o € S, thus ' = sup S exists and ' < 1. By continuity, we see further that
f(R(B")) = 0. We assert that 8/ = 1. Suppose not, by what we have shown above,
F(N) is identically zero for A € B(h(8'),8") € © where & is some positive number.
Thus 3’ + ¢ € S which is contrary to the definition of 3’. The proof is complete.

As an immediate corollary, we have the following results.

Theorem 3.18. If f € H(0) and f*)(c) = 0 for k € N and some ¢ € O, then
f(A) =0 for all A € B.

In particular, if the power series functions a(\) and E()\) generated by a,b € [N
(are defined and) satisfy a(\) = 3()\) in a neighborhood of 0 (or any neighborhood
in ©), then a = b. That is, the Uniquenss Representation Theorem 3.8 holds.

As another interesting consequence, let g be an analytic extension of the function
f € H(®), that is, g € H(O) where © C © and g(z) = f(z) for z € O. If there
are two analytic extensions g; € H(©1) and g, € H(O5) of f, then g1(z) = ga(2)
for z € (:)1 N ég. Hence the union g1 U g5 is a well defined function over (:jl U éz
and belongs to H (él U ég) . By similar reasoning, given an analytic function f €

H(O), the following
U {g : g is an analytic extension of f on an open set containing ©}

is a well defined analytic function. It will be called the analytic continuation of f.

Example 3.6. The Newton binomial expansion formula asserts that
(1+az)*= ZOfLa)x”, z € R, |z| <1,
n=0

where we recall that CS*) is the extended binomial coefficient defined by C’é”‘) =1
for o € C, and i = ala—=1)---(a—n+1)/n! for n € Z* and o € C. This
formula can be proved in several manners. One proof is obtained by observing that
f(z) =1+ 2)* for x € (—1,1) satisfies f(0) =1 and

(1+2)f'(@) = af(x), |2 <1.

Assume that

flz) = Z anx”
n=0

is an analytic solution of the above equation. Then ag = f(0) = 1 and by Theorem
3.18 (or by the Unique Representation Theorem 3.8),

(n+ 1ap41 + na, = aa,, n € N.

The above recurrence is easily solved and

1
an:—'a(a—l)---(a—n+1), nez’.
n!
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The solution is a true solution by checking (by means of the root test) that
o0
3 e < oo
n=0

for |x| < 1.

Example 3.7. By the Newton binomial expansion formula in the previous Example
3.6,
1+ x)1/2 = ZCT(LI/2)$H7 z€R, x| <1

n=0

Since (14 2)'/2(1 + x)Y/2 = 1 + x, we see that

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
{OV2, 0,000} [, o, o).} = {Zc,g / >c,§_/k)}
k=0 neN
={1,1,0,0,..}.

The power series

i 617(11/2)2717
n=0

as can be seen from the ratio test, is convergent for complex z € B(0;1). According
to what we have just shown,

(Sems) (Fewm) orve
n=0

n=0
thus this power series is a square root of the complex number 1 4 2z when |z| < 1.
We will write

Vitz=(1+2)"Y2= ZC’,(Ll/Q)z", z € B(0;1).
n=0

As a consequence, we see that the function f(z) = (1+2)'/? is analytic over B(0;1).

Example 3.8. (See pp. 83-87 of [63]) The sine and cosine functions can be intro-
duced as analytic solutions. To see this, we introduce two real power series functions
formally defined by

0 x2n
Cx)=>_ (-1)" ;
s (2n)!
and
oo x2n+1
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By means of the ratio test, we can easily check that both series converge for every
x € R. Therefore they are infinitely differentiable functions defined on R. We may
list several additional properties: (1) by direct term by term multiplications that
the two basic formulas

Clz +y) = C(2)Cly) — S(2)S(y), (3-8)

S(z+y) = S(x)C(y) + C(z)S(y), (3.9)

are valid for all real x and y; (2) C (x) is a even function, while S (z) is an odd
function, that is, C' (—z) = C (x) and S (—z) = =S (x), (3) C (0) = 1 and S (0) =0,
(4) replacing y by —x in (3.8) and invoking the properties just described, we get

C?(2) + 5% () =1, (3.10)
(5) by differentiating the functions C(z) and S(x) term by term, we easily find that
C'(x) =-S5 (z), S'(z) =C(z), (3.11)
(6) we have C(2) < 0 since
22 24 26 28 22n 22n+2
N=1_" 42 (2 _Z2)_..._ —
¢® STRMT (6! 8!) ((zn)! (2n+2)!)+ :
1— 2 + 2_4 — _1
20 4 3

and
22n 22n+2 22n 2 . 2
_ = 1—
@) (En+2)!  (2n) [ n+1)(2n+2)

for n > 3, (7) the function

—C’@):S(m):x(l—%)+§—?(1—6L27)+~~

is obviously positive in (0, 2], so that the derivative C’ (x) = —S () is negative in
(0,2). Therefore C (z) has exactly one root in (0,2). Let 7’'/2 denote the point at
which C' (x) vanishes. Thus

i i
o(3)=0s(5)=1

where the second formula follows from (3.10), if we note that S (x) is positive in
the interval (0,2). Furthermore, setting first x = y = 7n'/2 and then z = y = 7’ in
formulas (3.8) and (3.9), we get

C(r"y=-1, S(x')=0, C(27") =1, S(2r') = 0.
Hence, holding z fixed in (3.8) and (3.9), we get
Cla+n)=-C(x), S(x+n)=-5() (3.12)

>0
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if y=n"and
Cx+2n)=C(x), S(z+2r") =8 (x)

if y = 27/, i.e., the functions C (x) and S (z) are periodic, with period 27’. Further-
more, S(z) > 0 for 0 < z < 7n'/2. Changing = to —t in the second of the formulas
(3.12), we get

S(r'—t)=-S(-t)=S5(t),

from which it follows that S (t) > 0 for '/2 < t < 7’. Thus the function C(¢),
with derivative —S(t), is strictly decreasing over the interval (0,7’), and hence is
one-to-one on [0,7']. We now show that C(z) = cosz and S(z) = sinx for z € R.
To this end, we consider the curve specified by the parametric equations

z=C(t), y=S5(t), 0<t<2n.

Since C2(t) + S2(t) = 1, every point of this curve satisfies the equation 22+ y? = 1,
and hence lies on the circle of radius 1 with center at the origin. Since C(t) is
one-to-one on [0, 7], there is a one-to-one correspondence between the points of the
upper half of our circle and values of the parameter ¢ in the interval [0,7]. By
similar arguments, there is a one-to-one correspondence between the points of the
lower half of our circle and values of the parameter ¢ in the interval [7/,27']. We
now calculate the length s(¢) of the arc joining the point (1,0) and the point P on
the unit circle with parameter ¢. By a familiar formula of calculus,

¢ ¢
s(t) = / Jie P + 18 @)Pdt = / dt =, (3.13)
0 0
where (3.10) and (3.11) are used. It follows from (3.13) that ¢ is just the angle
subtending our arc, expressed in radians. But then
C(0)=x=cosf, S()=y=sind,

as desired. By the same token, (3.13) shows that the length of the unit circle is just
27’, so that our number 7’ can be identified with the number .

We recall from Example 1.5 that the exponential function f(z) = e* is defined
by
e® =e"(cosy +isiny), z =z + iy.
In that example, we have implicitly assumed the existence of the sine and cosine

functions. Now that we know the power series expansion of the sine and cosine
functions, we may see further that for each z € C:

z _ - 2"
e —ngzom, z € C.
and
cosz = 1 (e +e7) = ;O (—1)" G ze€C
2 (2n)!’ ’
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1 . . oo Z2n+1
: _ iz _ —iz) —1)" C
sinz = 3 (e e ) ng:o( ) e z € C,
2n+1

blnhz——{e —e_z} Zm, z € C,

1 ; . e Z2n
coshz:§{e +e }:ngom7 ze€C

Example 3.9. Let ¢ = ¢(2) be analytic over B(&; o) such that 1(®)(¢) =0 for i =
0,1,2,....,m — 1 and ¥("™(2) is continuous on B(£; o). Then by Taylor’s expansion,

z=om /O (1= &)™ 1™ (¢ 4 t(z — €))dt,

so that

m

a m
s () < s [o™(z)]
z€B(&0) M 2eB(g:o0)

3.3 Bivariate Power Series Functions

Let us first recall the concept of multi-indices and their uses as shorthand notations.
Since we will be concerned with bivariate sequences in IN*N, we will concentrate on
bi-indices. A bi-index is an element of N2 of the form v = (v1,v2). The notations v!
and |v|; stand for v;!vy! and v1 4 vo respectively. Furthermore, for p = (w, 2) € F2
and a = {ai;}; ;on
P’ = (w,2)" = (w,2) ") = w2

pl” = |(w, 2)] ") =

Plo) = (W, 2) [(v1,02)] = W]o1) Z 0]

= |w]™ |2["

cP = cw?) — (W, 2) | (w1v2)]
(v2,v2) (v1,v2)!
vl Hlvi,v2)[y uituz

p*  O(w,z)vr)  Qw oz

pra=(wz2) a={azwz}.

If w = (u1,u2) and v = (v1,vy) are bi-indices, we will also write u < v if u; < vy
and us < vo; and write u < v if u; < v and ug < vs.

Let a = {ai}, jen € NN, Let A be the set (or part of the set) of all p =
(w,z) € F? such that the attenuated sequence {w'z7a;;} is absolutely summable.
Then we may define a function @ : A — C by

alp) =a(w,2) = Y ap’ = Z aijw'z?, p=(w,z) € A.

vENXN 4,j=0



64 Analytic Solutions of Functional Equations

This function, which is completely determined by a, is called a (bivariate) power
series function in p generated by a. In practice, for any ¢ € F2, the function g(p)
defined by a(p — ¢) is also called a power series function in p = (w, z) about (or
with center at) q.

Example 3.10. Let f = f(w, z) be a function defined on a domain © of F2 which
has partial derivatives of any order at the point (¢, d) € ©. Let

1 0" f(c,d)
a = —_— .
iljl Qwrdzl ijEN

The power series function a(w — ¢,z — d) is called the Taylor series function with
center (c,d) generated by f.

Example 3.11. In view of Example 2.1, the double sequence {wizj }l jeN is abso-
lutely summable if |w| < 1 and |z| < 1. Thus,

oo o0

hw, z) = ZZw%ﬂ lw| <1,|z] < 1,

i=0 j=0
is a power series function.
For p = (w,z) € F?, we will call the set
S(p) = {(aw, Bz) € F?| |a| < 1,|6] < 1}
the silhouette of p.

Theorem 3.19. Let a € IN*N_ [f the attenuated sequence (A, 1) - a is summable
relative to an ordering for N x N, then the family {(w,z) - a} is absolutely and
uniformly summable on compact subsets of the silhouette S(\, ).

Indeed, suppose A # 0 and p # 0. Since {a;;\‘u?} is bounded, say, by M > 0,
and since |w| < p1 |A| and |z| < pg || for some p1, p2 € (0,1), hence
’aijwizj‘ < Mpip%7 i,7 € N,
for any (w, z) € &(A, u). Since the double sequence {pﬁp%}( NN is absolutely
i,j)ENX
summable, the family {aijwizj }(i,j) eNxN IS absolutely and uniformly summable.
The case where A = 0 or i = 0 is similarly proved.

If (\, ) - a is absolutely summable, then {‘aij)\i,uj’} is bounded. Thus, the

above arguments also show that for (w,z) € &(A, p), there is some M > 0 such
that

laij] < ——, 4,j €N
jwl" |z’
Let B(a) be the set of (w,z) € F? such that (w, z) - a is summable relative to
some ordering ¥ (which may depend on (w, z)) for N x N. The interior D(a) of
B (a) is called the domain of convergence for the power series function generated by
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a. It is known that when ®(a) is nonempty, it is a complete Reinhart domain with
center (0,0) and logarithmically convex subset of F2. Here a subset S C F? is said
to be logarithmically convex if

{(In|w|,In|z|)| (w,z) € S;w #0,z # 0}
is a convex subset of R?, and is called complete Reinhart domain with center (0, 0)

if S is open and connected and (w, z) € S implies (p1w, p2z) € S for all p1,p2 € F
satisfying |p1], [p2| < 1.

Theorem 3.20. Suppose D(a) is nonempty. Then D(a) is a complete Reinhart
domain of F2 with center (0,0). Furthermore, the family {w, -z, - a} is absolutely
and uniformly summable on each closed dicyclinder of the form

{(21,22) € F?| |z1]| < p1, |22 < pa}

contained in D(a).

Proof. Since D(a) is nonempty, there exists some point (u,v) in ®(a) with
nontrivial components. By the previous Theorem 3.19, the silhoutte &(u,v) is
contained in ®(a). Therefore (u,v) can be joined to (0, 0) by a straight line segment
completely contained in ®(a). If (w,0) belongs to ®(a) where w # 0, then some
ball with center (w,0) and contained in ®(a) will contain some point (u,v) with
nontrivial components. Therefore, we can join (w,0) to (u,v) by a straight line
segment completely contained in D(a). As a consequence, any two points in D(a)
can be joined by a broken line completely contained in ®(a). This shows that ©(a) is
connected. Next note that for any (w, z) € D(a), (w(l+¢€),z(14¢€)) € D(a) for some
positive number e. Since (p1w(1+¢), p2z(1+¢)) € D(a) for all p1, p2 € F satisfying
lp1], [p2] < 1, thus (p3w, psz) € D(a) for all ps, py € F satisfying |p3], [pa| < 1. This
shows that ®(a) is a complete Reinhardt domain. Furthermore, the same reasoning
shows that the family {(w, z) - a} is absolutely and uniformly summable on each
closed polycyclinder of the form

{(21,22) € F?| |z1] < p1, |22] < p2}
contained in D (a). The proof is complete.

We remark that when D(a) is nonempty, it is also a logarithmically convex
subset of F2. The proof is not difficult and make use of the fact that a'=*b* < a+b
whenever a,b > 0 and 0 < ¢ < 1. Since we have no need of this result in the sequel,
we refer to pages 181-182 in Kaplan [94] for a proof. It is also remarkable that every
logarithmically convex complete Reinhardt domain with center (0,0) is the domain
of convergence of the power series function generated by a double sequence.

There are several properties of power series functions generated by double se-
quences in {N*N which are similar to those for power series functions generated by
sequences in IN. In particular, we can show the following.

(i) If a,b € IN*N such that @ and b are defined in a neighborhood of (0,0),
then for a,3 € F?, aa + 53 is also defined in a neighborhood of (0,0) and
(aa/—&-\ﬂb)(w, z) = aa(w, z) + ﬂi)\(w, z) for any (w, z) in this neighborhood.
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(ii) If a, b € IN*N such that @ and b are defined in a neighborhood of (0, 0), then
a+b is also defined in a neighborhood of (0,0) and a/*\b(w7 2) = a(w, 2)b(w, z) for
any (w, z) in this neighborhood.

(iii) Let @ be the power series function generated by a double sequence a €
IN*N and D(a) is nonempty. Then for each (A, u) € D(a), there exists a ball
B((\ 1);7) € D(a) and

2)= Y big(w—=N)'(z—p) < oo, (w,2) € B((A p);7)

NxN

for some {bi;}; ;en INXN,

Indeed, as in the proof of Theorem 3.6, we may write

Z Z Q™ 2" = Z Z A (W — A+ X)) (2 — p+ )"
m=0n=0 m=0n=0
3D DI (= AN SO e —
m=0n=0 1=0 =0

= i ii 4 {amnofm)/\m—icj(n)un—j} (w— /\)i(Z—,u)j.

When B((A, 1);) is chosen properly, the last sum, by Fubini’s theorem, can be
rearranged into the form

oo o0 X0

Zbuw N (z—p)? ZZZZ{CLW” ™ ym= ZC(n) e 7}(10 N (z—p).

NxN =0 j=0 m=in=j

This result may be called the representation theorem in the sequel for bivariate
power series functions.

(iv) Let @ = a(w, z) be the power series function generated by a double sequence
a € IN*N and D(a) is nonempty. Then the domains of convergence of the power
series functions generated by the partial algebraic derivatives D a and Dya are
equal to ©(a) and

da — da —

— A\ ) = Dga(\ 1), — (A w) = Dya(A p),
B0 b 1) a(A,p); 5~ (A 1) = Dya(A, p)
for (A, ) € D(a).

(v) Let a € IN*N with nonempty D(a). If ago # 0, then D(1/a) is also nonemty
and

—

a(w, 2)1/a(w,z) =1

in a neighborhood of (0, 0).
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3.4 Bivariate Analytic Functions

A function f with domain an open set © C F? and range F is said to be analytic
at ¢ = (\, p) if there is a sequence a € IN*N and a ball B(g;7) contained in © such
that
flw,z) = Z (w—Az—p) a<oo, (wz) € B(g).
NxN
The function f is said to be analytic on © if it is analytic at each ¢ € ©. The set of
all analytic functions f : © C F2 — F will be denoted by H(O).

Theorem 3.21. Let a € IN*N such that the domain of convergence ®(a) of the
power series a generated by a is nonempty. Then a is analytic on D(a).

Since the family {(w,z) -a} is uniformly and absolutely summable on each
closed dicylinder of the form

{(21,22) € F?| |z1| < p1, |22 < p2}
in the domain of convergence ®(a) of a power series a of two variables generated by
a double sequence a, and since every point of ®(a) can be included in the interior
of such a polycylinder, we may conclude that @ is continuous everywhere in D(a).
There are several other properties of analytic functions which can be proved in
manners similar to those for analytic functions in one variables.

Theorem 3.22. Let U,V be open subsets of F2. If f : U — F and g : V —
F are analytic, then f + g, f - g are analytic on U NV, and f/g is analytic on
Unvn{peV|gp) #0}.

Theorem 3.23. Let f € H(O). Then f is continuous and has continuous and
analytic partial derivatives of all orders in ©.

We remark that if f = f(w, z) is analytic at (c,d), then its definition asserts
that f is the power series function @ generated by some double sequence a € [NXN,
By the above results, we see that

ii 1 61+chd)(w_c)i(z_d)j7 i,7 € N,

1K
== ilj! Owidzi
for (w, z) in a neighborhood of (¢, d).

Theorem 3.24. Let f,g € H(©) where O is connected. If there is a sequence
{(A\i, i) }ien contained in © such that lim; o (Ni, 1) = (A, 1) € ©, (A, 1) # (i, p14)
forie N and f(Ni, i) = g(Ni, i) for i € N, then f(w, z) = g(w, z) for (w,z) € O.

Theorem 3.25 (Substitution Theorem). If fi and fo are analytic on some
neighborhood of (\,u) € F? and g is analytic on some neighborhood of
(f1(A, 1), fa(A ), then the composite function g(f1(w,z), fa(w, 2)) is analytic on
a neighborhood of (A, ).
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3.5 Multivariate Power Series and Analytic Functions

Multiple sequences, multivariate power series functions and analytic functions are
only slightly more complicated than the double sequences, bivariate power series
functions and analytic functions. We will therefore be brief in the following discus-
sions.

First of all, k is positive integer greater than or equal to 2. Elements in F* is
denoted by w = (w1, ..., wx), 2 = (21, ..., 2x), etc. The element (0, ...,0) in F* is
denoted by 0 as usual. A multi-index v is an element in N* of the form (vy, ..., v).
The notations v! and |v|; stand for vi!va!---v,! and v1 +va + - - - + v,; respectively.
The multi-index e is defined by egi) =1 and ey) = 0 for j # i. Multiple sequences
are denoted by f = {fu},enx» 9 = {9ov}pens » €tc. Let o € F, the multiple sequence
whose (0, ...,0)-th component is o and others are zero will be denoted by @ and is
called a scalar multiple sequence. For w € F* and a = {a, }yen=,

v

_ U1 ’Uz"' Vi
w’ = wy' wy W,

K

[w|” = w1 Jwa] ™ - - - Jwe |,

Wiy = (W1) [0y | (W2) vy~ (We) [,

ow) — W]
v - ’U! )
vl v g2 v Guitvatev,

owv  Owi' dwy? dwyt  Ow]'Owy? - - - dwyr’
v
w-a = {a,w’}pen-.
If u=(uy,...,us) and v = (vy,...,v,) are multi-indices, we will also write u < v if
UL < VL eeny Uy < Vg and write u < v if ug < vy, .yt < vg.
For a = {ay},cnw » we define the partial difference

D@ = Qppo) — Oy, =1, K,
and the mixed partial difference
Ata = (A1)"(Ag)" -+ (Ax)" a,
where u = (u1, ..., u,) is a multi-index. We also define attenuated sequences by

z-a={av2"} e s

where z € F*.
The convolution product of two multiple sequences f,g € IN" is the multiple

sequence {hy}, .+ defined by

hw: Z fugv
ut+v=w

The convolution product f  f will be denoted by f(2). The notation f(™ is defined
recursively by f* f{"=1 for n = 2,3, ... . For the sake of convenience, f{ =T, and

Fo =
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By means of arguments similar to those we have seen for bivariate sequences, we
can show that if f,g € IN", then fxg €N, and Y e F5 9= e f) Cne 9) -
We may also show that if g(g,,...,0) # 0, then there exists a unique multiple sequence
x such that x * g = f. This unique sequence will be denoted by f/g.

The partial algebraic derivatives of a multiple sequence a are defined by

Dia = {(vi + 1) fpre fpenn s 0= 1,2, K,
and the mixed partial algebraic derivatives by
D“a=D}'D3?--- Di=a,

where v is a multi-index. Properties of these algebraic derivatives are similar to
those for the bivariate sequences.

Let a = {a,},cn« €V . Let A be the set (or part of the set) of all A € F* such
that the attenuated sequence )\ - a is absolutely summable. Then we may define a
function @ : A — C by

a\) = ) a\’, AeA

veNF

This function, which is completely determined by a, is called a (multivariate) power
series function in A generated by a. In practice, for any p € F*, the function g(\)
defined by a(A — p) is also called a power series function in A about (or with center
at) u.

Let B(a) be the set of A € F* such that A - a is summable relative to some
ordering ¥ (which may depend on \) for N*. The interior D(a) of B(a) is called
the domain of convergence for the power series function generated by a. It is known
that when D(a) is nonempty, it is a complete Reinhart domain with center 0 € F*
and logarithmically convex subset of F”, where logarithmically convex subsets and
complete Reinhart domain are defined in manners similar to those for subsets of
F2.

We can also show the following;:

(i) When D(a) is nonempty, D(a) is a complete Reinhart domain of F? with
center 0. Furthermore, the family {w - a} is absolutely and uniformly summable on
each closed polycyclinder of the form

{w = (w17 "'7wf€) € FH| |w1| < P1y e |wn| < pn}

contained in D(a).

(i) If a,b € IN" such that @ and b are defined in a neighborhood of 0, then
for o, B € F*, au + b is also defined in a neighborhood of 0 and (ca + ﬁb)( ) =

od(z) + Bb(2) for any z in this neighborhood.

(iii) If a,b € IN" such that @ and b are defined in a neighborhood of 0, then
a+ b is also defined in a neighborhood of 0 and a b( ) = a(2)b(2) for any z in this
neighborhood.
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(iv) Let @ be the power series function generated by a double sequence a € IN"
and D (a) is nonempty. Then for each A € ©(a), there exists a ball B(\;vy) C D(a)
and

a(w) = by(w—N)" < oo, we B(\)
N
for some {b,}, e € IV .

(v) Let @ = a(w) be the power series function generated by a double sequence
aelN" and D (a) is nonempty. Then the domains of convergence of the power series
functions generated by the partial algebraic derivatives Dsa, ..., D,a are equal to
D(a) and

da — ,
o, (n) = Dja(p), i =1,2,..., K,

for p € D(a).
(vi) Let a € IN" with nonempty D(a). If a,..0) # 0, then D(1/a) is also
nonempty and

in a neighborhood of 0.
A function f with domain an open set © C F* and range F is said to be analytic
at A if there is a sequence a € IN" and a ball B()\;v) contained in © such that
flw) =Y w=X\-a<o0, we B(X).
N~
The function f is said to be analytic on © if it is analytic at each A € ©. The set
of all analytic functions f: © C F* — F will be denoted by H(O).

The following conclusions are similar to those for the bivariate analytic functions.

(a) Let a € IN" such that the domain of convergence ®(a) of the power series @
generated by a is nonempty. Then @ is continuous and analytic on D(a).

(b) Let U,V be open subsets of F*. If f : U — F and ¢g : V — F are analytic,
then f+g, f-g are analyticon UNV, and f/g is analyticon UNVN{p € V| g(p) # 0} .

(¢) Let f € H(O). Then f is continuous and has continuous and analytic partial
derivatives of all orders in ©. Further, when O is subset of R", the indefinite integral
of f with respect to any of its independent variable is analytic. Furthermore, if
f = f(w) is analytic at A, then

1ol f(A -
) = 3 g AT G €N
for w in a neighborhood of .

(d) Let f,g € H(©) where © is connected. If there is a sequence {u;i};cn
contained in © such that lim; oo p; = p € O, p # p; for i € N and f(u;) = g(u;)
for i € N, then f(\) = g(\) for A € ©.

(e) If f1, fa, ..., fm are analytic on some neighborhood of A € F* and g is ana-
lytic on some neighborhood of (f1(A), f2(A), ..., fm (X)), then the composite function
g(f1(N), f2(A), ..., fm(N)) is analytic on a neighborhood of .
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3.6 Matrix Power Series and Analytic Functions

Finite dimensional matrix (and vector) power series functions and matrix analytic
functions are ordered tuples of power series functions or analytic functions and
they are handled by componentwise manipulations. For instance, a matrix function
F(z) = (fij(2)) is said to be analytic at w if each f;;(2) is analytic at w, and it is
said be analytic over an open set © C F if F' is analytic at each w € ©. The set
of matrix functions are endowed with the usual operations, e.g. let F(z) = (fi;(2))
and G = (g;5(2)), then

(F+G)(2) = (fij(2) + gii(2))

for z in their common domains. Therefore many of the properties of matrix power
series and analytic functions can be inferred from their component functions without
too much trouble. For example, the (real) matrix function

]

is analytic at ¢ = 0 since cost, sint, e’ and 1/(1 —t) are analytic at ¢ = 0. Further-
more, since

2 4 46
COSt:1_21+I_6+ )
Bt 7
SlntZt—iﬁ-g W+ )
2 3
et:1+t+t_+t_+...
21 3! ’
and
1 2, 43, 44
T =Lt 4+, te(—1,1),

we see that our matrix analytic function can be expressed as a matrix power series

10 01 —a
L]l
for t € (—1,1).

Other properties can similarly be obtained whenever they are needed in the
sequel. Hence we will not bother with them at this point.

function of the form

= O

:|t2_|_...
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3.7 Majorants

Given a power series function f(z) generated by a sequence a = {a,},cn , it is of

great interest to estimate the sizes of f(z) or of a. First of all, recall from Theorem
2.5 that if A - a is absolutely summable, then {’ak)\k‘}keN is bounded. Thus, for
each number w € (0, p(a)), there is some M, > 0 such that

M,

The above estimate for the sequence a is called the Cauchy’s estimate. Conversely,
if there is a number r > p(a) such that for each A\ € (0,r), there exists M) such
that

M
lag| < T,j ke N,

then for any number u € F that satisfies |u] < A,

(%)

o o0 k)
Z|aku|k§M>\Z‘§‘ < 00.
k=0 k=0

k)\k k
|ak,uk| = ak%lz |ak)\k| < M, ;‘ , ke N.

Thus

Since A is arbitrary, r < p(a) and hence p(a) = 7.

Theorem 3.26 (Cauchy’s Estimation). Suppose a = {an},cn € IN has a pos-
itive radius of convergence p(a). Then for any w € (0, p(a)), there is some M,, > 0
such that (3.14) holds. Furthermore, there exists a positive number r such that

lan| < 7", n e N.

Proof. By Cauchy’s estimate, for any 8 € (0, p(a)), there is Mz > 0 such that
lanz"| < |anf™| < Mg for n € N and |z| < §. Pick a sufficiently small positive
r~1 that satisfies 7~! < (3 and the additional property that Mgr—' < 1. Then
|anr—"™| < Mg so that

lan| < Mgr™ = Mgr— et < ¢ n e N.
The proof is complete.

As a consequence, if

[ =3 an"
n=0

is analytic over a neighborhood of the origin, then

oo

F(2) = 30+ Dagg”

n=0
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is also analytic over a neighborhood of the origin, so that there exists a positive
constant 7 such that

Ina,| <7, neZr.

Similarly,

oo

F'(z) =) (n+2)(n+ Dany22"

n=0
is analytic on a neighborhood of the origin, thus there is a positive constant § such
that

In(n —1a,| < "1, n>2.
Example 3.12. Let
f(z)=sz+ Z anz"
n=2
be analytic at 0. Then for |z| sufficiently small, there are r and K such that
> o
n=2

Hence

00 [e%S) 1
2 2 2 2
S|Z| E |an+2||z|ng|z‘ E Tn-i-l |z|n:’l"|2'| 1—7’]’|,Z|SKT‘Z| .
n=0 n=0

1f(z) = 52 < K |2
for some K, > 0.
Another useful technique for estimating the sizes of a power series function is
related to the idea of majorization. Let a = {ar}iens b = {br}pen € (V. The
sequence a is said to be majorized by b (or b is a majorant of a) if |ag| < by for

k € N. In such a case, we will write a < b. Clearly, if a < b, then a < ab for any
real > 1, and

Da <« Db

Ja<[b

Theorem 3.27. Let a,b € IN. If a is majorized by b, then p(a) > p(b).

as well as

Indeed, this follows from

lim sup |ak|1/]C < limsup |ak|1/k .

k—oo k—oo

Alternatively, it suffices to assume that p(b) > 0 and show that

oo
Z ‘ak)\k’ < 00
k=0
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for |\| < p(b). But this follows from

o o0
Z |ak/\k| < Zbk,uk < 00
k=0 k=0

where p is a fixed positive number satisfying [A| < p < p(b).

We remark that the above Theorem still holds if we only require |ax| < by for
k > K for some K > 0.
It is easy to see that if a < b, then a‘? < b¢?) since

k k k
Zakﬂ‘ai < Z lak—i| |ai] < Zbkﬂ‘bi, ke N.
=0 =0 =0

The same principle leads to the fact that if @ < b and if ¢ = {cx} ey € [N is defined
by

-

cr = Py (ail,ai17...7aij) , keN, (3.15)

where each Py (21, ..., z;) is a multi-variate polynomial with nonnegative coefficients
and j independent variables (where j may depend on k), then ¢ is majorized by the
sequence d = {d}, n defined by

dir = P (bil,bil,...,bij)7 k € N. (316)
In particular, if @ < b, then a{™ < b{™ for m € Z+.

Theorem 3.28. Let a,b € [N, and let ¢,d € IN be defined by (3.15) and (3.16)
respectively. If a < b, then ¢ < d.

As an immediate application, let p,q, f,g € [N such that p < q and f < g. If
the composition product q o g is defined, then since

[(po fnl <D Ipil | £
1=0

<> aigl = (g0 g)n,
1=0

we see that
pof<Kqog. (3.17)

Let a(A) and b(\) be the power series functions generated by the IN sequences
a and b respectively. If a is majorized by b, then we say that @ is majorized by b on
their common domain €2 of definition (which contains B(0; 3(b)) by Theorem 3.27).
In such a case, we write a@ < b, or @(\) < b()) for A € Q.

In view of the properties of majorizing sequences, we see that

a(\) < b(N),b(N) < e(\) = a(A) < E(N),

~

a(\) < b(N) = a™(\) < b™(A), m € N,

o~

AN < b)) = a(\) < BN,
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) = / A)dA < / b(A)dA,

a(\) < b(N),e(\) < d(\) = a@N) < b(d(N)),

and

where the last assertion, in view of Theorem 3.11, needs the additional assumption
that Y7 [da A" < p(b) for |A] < p(d), >0" o lenA?| < p(a) for || < p(c) (and
conditions that guarantee (a o ¢)p, (bo d), < 00).

Example 3.13. Let a € IN such that {a;AG},  is relatively summable, where
Ao # 0. Then in view of Theorem 2.5, {|axA§|} is bounded, say by M. Hence

M
|ak| S W7 kEN,
0

so that
a<<{M/|)\0 }<<{M/rk} 0<r<|Al.

Note that

OOMk 1
3 e = My Bl <r e O Bl

Thus there is some positive M such that

(z) < |z| < 7€ (0,|Xo]]

M
1—2z/r’

We have defined majorant series functions generated by univariate sequences.
Similar definitions hold for bivariate or multivariate sequences. For the sake of
simplicity, we quickly go through the corresponding facts for multiple sequences.
Let a = {a,} e and b = {by}, - be multiple sequences in IN". The sequence a
is said to be majorized by b if |a,| < b, for v € N*. In such a case, we will write
a<b Ifa<bandif c={c,}, e €IV is defined by

Cv = Py (ay,0), Q)5 ooy Gy ) 5 U, u, . w9 e N¥, (3.18)

where each P, is a multivariate polynomial with nonnegative coefficients and j in-
dependent variables (where j may depend on the multi-index v), then ¢ is majorized

by the sequence d = {dy} .~ defined by

dy = Py (byy, s byn) 5 v,uD . ul) e N¥. (3.19)

Theorem 3.29. Let a,b,c,d € IN" where ¢, and d, are defined by (3.18) and (3.19)
respectively. If a < b, then ¢ < d.
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If @ < b, then we say that the power series functions a(w) generated by a is
majorized by the power series function b(w) generated by b on their common domain
Q of convergence. In such a case, we write @ < b, or a(w) < b(w) for A € Q.

Example 3.14. By Example 2.2, if w, 2 € F and |w| + |2] < 1, then
i k! > 1
Z Z ?wzj Z(w+z) i pw—
k=0 i+j=k;i,j>0 k=0

Since the power series

E wtzd

is generated by the double sequence a = {a;;} where a;; = 1 for all 4,j € N, and
since the coefficient of the term w'z’ in the power series function 1/(1 —w — 2) is
greater than or equal to 1, we see from Example 2.1 that

oo . o oo y 1
(1—w)(1-=2) szzj:,zwzj<l—w—z'
=0 7=0 i,7=0
Example 3.15. If {a,\"} .« is relatively summable for some X\ = (Aq,..., As)

with positive components, then {|a,A”|} is bounded, say, by M. Thus

M
—, v € N

<
=

so that a < {M/|X\"}, cnw - Thus for each z = (21,...,2,) € F® which satisfies
0 < |z21] € A1y 0 < |2i] < A, we have a < {M/|2]"}. Note that for |w| <
|z1] 5 .., |wi| < |2x|, by Example 2.1,

I UEDY M(%)(%)

veENF (V150,05 ) ENF
> w1 ‘ = W, ‘
- M - —_r

_ M
S A—wi/al) (- we/ [zel)

As a consequence, if {a,AV} is relatively summable at A with positive components
A1, .-y As, then there is some positive number M such that for 0 < |z1| < Aq,...,0 <
|2e] < s

M
(I =wi/|za]) - (1= we/ [2])’

a(w) <

[wi] < |21] 5 -, Jwi| < |25] -
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Note that if we set p = min{|z1],...,|2x|}, then for w € F* which satisfies
|wi| + Jwa| + -+ + |wg| < p, by the same reasoning used in Example 3.14, we have

~ M ; - N
S e e e R S OB )

EN

¥ AN () g T b

k=0 |v|, =k; vENN |v], =k;veENF

k

Z wi +wa + -+ Wy M

=M ( ) = 1 — waitwotdws
k=0 P P

Theorem 3.30. Let f, F' be analytic functions from B(0; p) C F* into B(0; u) C F7
such that f(0) = F(0) = 0. Let g,G be analytic functions from B(0;u) C F7
into F. If f(z) < F(z) for z € B(0;p) and g(w) < G(w) for w € B(0; ), then
9(f(2)) < G(F(2)) for = € B(0; ).

3.8 Siegel’s Lemma

An important result in the method of majorants is due to Siegel [203]. Before going
into the details, let us make the following definition.

Definition 3.1. A complex number « is called a Siegel number if |a| = 1, o™ # 1
for n € Z* and

logla™ —1]7' < Tlogn, n=2,3,... (3.20)
for some positive constant 7.
By writing a as €™, the condition (3.20) may be expressed in the form
‘w — ﬂ‘ > An"H,
n

for arbitrary m,n € Z%, where A and p denote positive numbers depending upon
w. It is then easily seen that (3.20) holds for all points of the unit circle |a| =1
with the exception of a set of ‘measure’ 0.

Before stating an important result due to Siegel [203], it is convenient to intro-
duce the following notation. Let d = {d)} € I™N which satisfies dy = 0. Then we set
T, (d) to be

max {dy, dy, -+ dy, |1 + 2+ -+ =n,0<v; <va <o <, 2<t < n}.
For instance,

T2(d) = max {d}},
Y3(d) = max {dydy, d7},
Y4(d) = max {dids, d3, did>, d1 }
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etc. In view of the definition of Y, (d), it is easily seen that it depends only on the
terms dl, dg, cesy dp—1-
Next recall from Example 2.11 that for a sequence f € IN that satisfies fo = 0,

we have
{f2<2>} = {12},
{1268} = 2he 17
{#212 10} = {28 fs + 13,3020, 11}

and
f7<Lt>: Z fvlfvz"'fvt‘
’U1+"'+Ut:n;vl7"'7vfez+

fuos oo fo,, where vi+va+---4vy =n,0 < vy <
. Consequently, if ¢, ¢ € IN satisfy g = co = 0,

Thus it is also easily realized that f,

Vg - -+ < vy, is one of the terms in f,gt1>
¢t >0, qp >0 for k > 1, then

(-9 <T,(e)gl", 2<t <n. (3.21)

Theorem 3.31 (Siegel’s Lemma). Let o be a Siegel number. Then there is a

positive number § such that |o™ — 17" < (2n)° for n € Z*. Purthermore, the
sequence {d,}22 o defined by dy =0, d1 =1 and

dyp=——Tp(d), 2<t<n, n>2, 3.22

@ n (322)

will satisfy

-1
d, < (255+1)” n_%, ne7Zt.

The proof is rather long and we will therefore require several assertions.
First of all, we show that if x1,...,z, and y1, ..., ys are positive integers, where
r >0, s > 2, such that

Dt ) va=k,
p=1 qg=1

- k
;yq > 57

and

then

H Tp H ye > k8 t=r+s. (3.23)
p=1 qg=1
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To see this, denote the left-hand side of (3.23) by L. Consider first the case
k < 2t — 2. Then

k3L >k > (2t —2)7°. (3.24)

Assume now k > 2t —2 and let g = [k/2], n =1+ 3, _, y;. Then t < g+1<
g+14+7r<n<kand

T
pr:k—vﬂ—r,
p=1

so that
HxPZk—n—i—l,
p=1
and
2 n—t+1, n<g—1+t
1_[3/11Z :
e n—g—t+2)g,n=>g—-1+t

In the interval g +1 < n <g—1+4t,
(k—n+1)(n—t+1)22min{(k—g)(g—t+2)27(k—g—t+2)92};
in the interval g — 14+t <n <k,
(k=n+1)(n—g—t+2)°¢"> (k—g—t+2)g%
and in the interval 0 < ¢ < g,
(k=9) (9= = (k—g—Qg* ={(k—9)(— (2k—39) g} < g (29 — k) ( < 0;
consequently
L>(k-g)(g—t+2)

and

Now
t—1<2t72 t>2

and our assertion follows from (3.24) and (3.25).
Next, let

1
en=——,neZr
" an—1 "

In view of (3.20), there is a positive number ¢ such that

en < (20)°, neZt.
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Let Ny = 220+1 and Ny = 8°N; = 20+ We assert that if my, ..., m, are positive
integers, where r > 0, such that mg > my > -+ > m, > 0, then

Hfmz < Nf“ {mo H (my—1 — ml)} . (3.26)
1=0

=1

Indeed, the assertion is true in the case r = 0. Assume r > 1. Note that
af (™" ~1)=(af —=1) — (af = 1), 0< g <p,
hence
5;_1q < 851 + sq_l
and
min (e,,£,) < 2654 < 2°7 (p — Q)°.
Let min{e,,,...&m,.} = €m,. Then
Em, < 2°F1 min {(mh_l —mz)®, (mp, — mh+1)6} , (3.27)

provided we define m_; = co and m,41 = —oo. Assume by induction that (3.26)
holds for » — 1 instead of r, we have

. mo (Mp—1 —m r
5;& HEmz < Nlr{ o (mp_1 hil) H(mlfl _ml)}. (3.28)
1=0

(mp—1 —mp) (mp —mpy1) -5

Since

Mp—1 — Mpt1 _ 1 n 1
(mp—1 —mp) (M — Mpy1)  Mp_1 — My My — My
2

= min (mp—1 — mp, mp — Mpg1)’
the inequality (3.26) follows from (3.27) and (3.28).

We now turn to the proof of Siegel’s Lemma (Theorem 3.31). Let the positive
sequence {d,}52; be defined by d; =1 and (3.22). We assert that

dy <k PN Eezt. (3.29)

Our assertion is true in the case £k = 1. Assume k& > 2. The numbers ap =
k=20 Ny~ satisfy
S (k1) N < 2PN <1
(673N
for k,1 > 1, and consequently
djdjy - dj, <j7PNGL 1<ji+Hjp=4 <k f>1. (3.30)
By (3.22), there exists a decomposition

di = ep—1dg,dgy -+ dgs 1+ -+ ga=k>g1 > 2> ga>1.
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In the case g1 > k/2, we use this formula with g; instead of k& and find a decompo-
sition

dgl :Sgl—ldhldhg"'dhﬁ7 h‘1+"'+hﬂ:gl > hl 2 T Zhﬂ Z 1;
if also hy > k/2, we decompose again

dh1 = €h1,1di1di2 e d'

(2%

W4ty =h1 >0 > >0, > 1,

and so on. Writing kg = k, k1 = g1, k2 = h1, ..., we obtain in this manner the

formula
s

d, = H (Ekp—lAP)

p=0
with k = ko > k1 > --- > k, > k/2, where A, denotes for p = 0,...,r a certain
product dj, ---d;, and

. . kp—kp1,p=0,...,7—1

nt +jf_{kra p=r ’
all subscripts ji,...,j¢ being < k/2. The number f depends upon p; let f = s
for p = r. Using (3.29) for the s single factors of A, and applying (3.30) for the

estimation of A,, p =0, ..., — 1, we find the inequality

—26
HA <N’”S{H34H pl—kp)} ,

— p=1
where 1 < j, < k/2 forg=1,....,sand j1 + -+ js = k. In view of (3.26),

g
Hskp1<NT+1{kH 1=y }

and consequently
-5

dp < NTTINF1 <k—1 =11 y§>
p=1 qg=1
with ¢t =7+ s, p = kp—1 — kp, yq = jq. In view of (3.23),

—1
NITFE205, < NTHINI1800-1) < (8 Nl) —1,
No
and (3.29) is proved.

Siegel’s Lemma can be used to obtain majorants. For instance, we have the
following result.

Theorem 3.32. Let a be a Siegel number. Let {un}, N be a compler sequence
defined by ug =0, uy = p >0 and

M 2
_ Z 2y ()
tn = |Oz”—l _1| pars a’lunlv n>2
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where M >0 and a; > 0 for i > 2. Let {U"}neN be a complex sequence defined by
vg=0,vy =n>p and

Vp = MZbivfp, n>2,
i=2
where a; < b; for i > 2. Then there is § > 0 such that

-1
Up < Up (25“1)“ n*%, n > 2.

Proof. It is not difficult to see by induction that ug,vy > 0 for £ > 1. Let
d = {d,},~, be defined by do = 0, d; = 1 and (3.22). Note that u; < vy = dyvy.
Assume by induction that ug < dgvg for k = 1,2,...,n — 1 where n > 2. Then by
(3.21) and Siegel’s Lemma, there is 6 > 0 such that

M - ‘ M - ,
_7§ ,<l><7§ bi(d - )
i lan=t — 1] i=2 it = lan—t —1 i=2 o

1 - :
T Yu(d)M D bwl?
=2

— |an71 _

=d,v,
<, (255+1)”—1 =28

The proof is complete.

We remark that under the assumptions in Theorem 3.32 and the additional
assumption that there is some r > 0 such that v, < r” for n € N, then we may
conclude that u has a positive radius of convergence as can be seen from

lim sup u,ll/” < limsupr

n—oo n—oo

(255+1)("—1)/" =20/ _ p950+1

3.9 Notes

Most of the material in this Chapter are well known and can be found in standard
analysis text books such as Balser [13], Hille [78], Krantz and Parks [99], Krantz
[100], Smith [211], Sneddon [212], Valiron [216].

Example 3.8 is adopted from Fichtenholz (see pp. 83-87 of [63]).

Siegel’s Lemma and its proof can be found in Siegel [203]. It is also asserted in
[203] that ‘almost all’ complex numbers on the unit circle are Siegel numbers.



Chapter 4

Functional Equations without
Differentiation

4.1 Introduction

Roughly, a functional equation is a mathematical relation involving at least one
unknown function and one or more known functions. Such equations and their
extensions arise in many mathematical models. For instance, the defining relation
for the unit circle is given by
22 +y>=1, z,y € R.
Intuitively, it is clear that the upper part of the unit circle can be described by a
function y = y(x). Therefore, we have a functional equation of the form
22 +y%(x) —1=0.

The unknown function y = y(x) is said to be ‘implicit’ in the above relation.

More generally, given a relation of the form

F(z,y) =0,

where F' is some given function of two variables, it is desirable to ‘extract’ a function
y = f(z) from such a relation so that

F(z, f(z)) =0
for z in some appropriate domain.

In this Chapter, we will assume that the derivatives of the unknown functions
are not involved in the implicit relations.

Example 4.1. Consider the functional equation

F(z, f(x)) = f*(z) — f(z) = 1=0. (4.1)
Suppose we are interested in finding a solution f(x) which renders the equation
(4.1) into an identity on some interval. Although there may be many possible types
of solutions, an analytic solution is a good candidate. We therefore assume that
f(z) is an analytic solution defined over a neighborhood of 0 and is generated by
the sequence a = {ay}ren, that is,

f(z) =1a(z) = Z anz™.
n=0

83
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—

Then substituting it into (4.1), we obtain a{? (x) —@(z) — 1 = 0 for = in a neighbor-
hood of 0. By the Unique Representation Theorem 3.8, we see that a? —a—1 =0,
that is,
a(z) —ap—1=0,
2ap0a1 —a; = 0,
2agay + a2 —ay = 0,
2apas3 + 2a1a9 — az = 0,
and
a,i2> —ar =0
for k > 4. Thus ag = (1£+/5) /2. Since ag # 0, we see from 2aga; — a; = 0 that
a; = 0, and by induction, a, = 0 for k € Z™. This shows that any analytic solution
of (4.1) is necessarily of the form f(z) = (1+ v/5) /2 or f(z) = (1 —V/5) /2. On the
other hand, we may easily show by direct verification that either f(z) = (1 + \/5) /2
or f(z) = (1—+/5) /2 is a solution of (4.1). Since both functions are analytic on
F, we have found all the analytic solutions of (4.1) on F.

Example 4.2. Let us consider the functional equation

2 2
2 . B Mp z
where a, 3, M > 0. Solving the quadratic equation
2 M 2
o, M= (4.2)

_ﬁ+Mw B+ Maoa-—z

B 32 AM(B+ M) =z
w—m{liw— 2 a_z}-
a2 Y
ﬁl_a(ﬁ—s—QM)’

2 2\ V2 z\~V/
wzﬁ{li(l—a> (1—5) 12}.

Thus we are led to the solutions

f+(z):2(ﬁﬁf2m{1+<1_%)l/2 (1_§>1/2}

2 2\ /2 2\ —1/2
f(z)zﬁ{l—(l—a> (1_5> /}.

1/2
Recall from Example 3.7 that the functions (1 - ﬁ) and (1 — %) Y2 are analytic
over B (0; 31) and B(0; «) respectively. Thus f1(z) and f_(z) are solutions of (4.2)
which are analytic over a neighborhood of the origin.

we see that

Setting

we see that

and
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Example 4.3. To see another simple example, let us consider

f(2x) = 2f*(x) — 1. (4.3)

Assume that f(z) = a(x) is an analytic solution of (4.3) defined over a neighborhood
of 0 and is generated by the sequence a = {aj }ren, that is,

(o]
a(x) = Z anx”,
n=0

then substituting it into (4.3), we obtain 2 -a = 2a{?’ — T, that is,
ag = 2a(2) - 1,
20,1 = 4@00,17
2209 =2 (a% + 2aoa2) ,
23a3 =2 (2@0(13 + 2(11(12) s

and
2kak = 2(1,22>
for k > 4. Thus, ag = 1 or ag = —1/2, and a; = 0. By induction, we may easily see
that
asp—1 =0, k € Z".
Furthermore, if ag = —1/2, then ag, = 0 for k € Z™; while if ap = 1, then ay may
be arbitrary, say, as = «, and
(20)"
= kecZ".
92k = k)]
Thus
~ N = (QOf)k 2k
a(z) =1+ Z 2h)] x
k=1
or
. 1
a(z) = bt

In both cases, the power series function a are analytic on F (by applying the ratio
test to the former case). We remark that one particular case occurs when a < 0,
since letting b = —2a, we have

SO SO ()
) = > (1) 5

k=0

2k
)!

and another particular case occurs when a > 0, since letting d? = 2a, we have

= cos bx,
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4.2 Analytic Implicit Function Theorem

In the previous section, the functional relations contain enough information to yield
recurrence relations which define explicit sequences for generating the desired an-
alytic solutions. In general, recurrence relations may only yield implicitly defined
sequences, and alternate technique has to be used to show that the power series
functions generated by these sequences are analytic.
As an example, let F' be a function of two (real or complex) variables and
consider the functional equation
F(z, f(z)) =0. (4.4)
Consider the possibility of determining a solution f(z) such that substituting f(x)
into (4.4) renders it into an identity. The function F is in general not specified.
However, if we assume that F' = F(z,y) is analytic at the point (zo,yo) and
F($07y0) = Coo = 0, F;(xo, yo) 75 0, (45)
we may show that there is a solution y = f(z) of (4.4) which is analytic at xg. To
see this, we assume without loss of generality that zg = yg = 0. Then in view of
(4.4),

0=F(x,y) = Z Zoijxiyj
§=0 i=0
in a neighborhood of (0,0). Since F(0,0) = 0 and Fy(0,0) = Cop1 # 0, we may
divide the above equation by Cy; to obtain
Y = 107 + C202” + cn1xy + coy’ + c302” + 12’y + croxy® + cozy® + -+, (4.6)
where ¢;; = —C;;/Co1. Assuming an analytic solution y = a(z) of (4.4) in the form

o0
Y= Z apx® (4.7
k=0
in a sufficiently small neighborhood of 0, we obtain from the assumption that y =0
for = 0 that ag = 0 and from (4.6) that
a1z + azx® + azx® + - = crox + e + ez (alac + agx® + azx® + - - )
2 3 2 3
+co2 (alx + agx® + asx” + -- ) + c30x

+621x2 (alac + (12(E2 + a3$3 + - )

2
+erow (a1 + aza® + aza® + -+ +)

+co3 (a1$+a2$2+a3$3 +~-~)3 + -

By Theorems 3.16 and 3.11 (which show that substituting one power series into
another and combining coefficients of like powers of z is legitimate), and equating
coefficients of like powers of =, we arrive at the system of equations

a1 = Cio,

a2 = cg0 + c1101 + COQG%

az = c11a2 + 2co2a1a2 + 30 + c2101 + c12a + co3as,

= .. (4.8)
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Although the explicit forms of aj,as,... are not given, their calculations involve
only with additions and multiplications, therefore, it is not difficult to see by
induction that the coefficients asg,as,... are of the form ay = Pa(a,c11,¢20),
a3 = Ps(a1,a9,c11,co2, €30, C21,C12,€03), .., Gk = Prl(ar,a2,...,a5-1,¢11, ..., Cox)
where Ps, Ps,... are uniquely determined polynomials with positive coefficients.
These show the uniqueness of the solution a(x).

To see that (4.7) is indeed an analytic solution of (4.4), we only need to show
that it converges in a neighborhood of 0. This is accomplished by finding a majorant
function for a(z).

To this end, suppose there is a double sequence {d;; }i)jeN such that dgg = 0
and d;; > 0 for (4, j) # (0,0) and satisfies

|Cij| < dij, i,j € N.

Then letting the sequence {by},.n be defined by by = 0, by = dip and b, =
Py (b1, b2, ..., bg—1,d11, ..., dox) for k > 2, in view of the similarity between the se-
quence a and b, it is easily seen that the coefficients by, bs, ... are all positive and
satisty

la;| < bs;,, i €27,
i.e., a is majorized by b; furthermore, its corresponding power series function
ng(x) = b1x + box® 4 bgz® + - -
satisfies
Y = dyox+door? +di1xY +doaY? 4+ dzox® +do12?Y +diarY 2 +dzY3 4 . (4.9)

Such a double sequence {d;; } exists. Indeed, since F(z,y) is analytic in a neigh-
borhood of (0,0), there exist positive numbers o and 3 such that the double series

lc1o] @ + |eao| @2 + |e11| af + |coz| 5% + - -
converges. Then
lcijl o' < M, i€ ZT;j €N,
for some positive constant M so that we may set

dij = icZt;jeN.

aips’

To complete our investigation, we need to show that ¥ = g(m) is analytic at 0. To
this end, note from (4.9) that

M M M M M M
Y=—z+—=2>+—a¥V + ZYV’+...= - M- =Y,
o «o af Jé] (1_£)(1_Z> B
@ B
or,
2 M2
v?2 s p a: =0.

_5+My+ﬁ+Ma—m_
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In view of Example 4.2, Y =Y, or Y = Y_ where

R 2\ Y2 oy —1/2
Yi_72(ﬂ+M){lj:<l—E> (1-) :

_ Y
61_a(ﬁ+2M)7

The correct one is Y_ since Y = 0 when 2 = 0. Since the function ¥ =Y_ = ?)\(ac)
is analytic at 0, hence (4.7) is also analytic over a neighborhood of 0. The proof is
complete.

and

We summarize the above discussions as follows.

Theorem 4.1 (Analytic Implicit Function Theorem). Suppose F = F(z,y)
is analytic at the point (29,Y0), F'(w0,y0) = 0 and Fy(zo,y0) # 0. Then there evists
a unique function

=yYo — T — )+ ar(x — o)k
Yo Fé(ﬂCmyo)( 0) Z o ( 0)

k=2

f(x)
which is analytic on a neighborhood of x¢ and satisfies F(x, f(x)) = 0 for x near
Zo-

We remark that the assumption that F,(xo,yo) # 0 in (4.5) is a sufficient but
not a necessary condition.

Example 4.4. Consider the analytic function
Fla,y) = (1 -a)y —2)(@® +y*) = (1 —2)y’ —ay® +2°(1 - 2)y — 2
for z,y € R. It is easily checked that F'(0,0) =0 and Fy(0,0) = 0. But
x
= = — 1
y=f@) =1 lel <1,
is an analytic solution of the equation F'(z,y) = 0.

We remark further that an immediate consequence of the above implicit function
theorem is the analytic inverse function theorem.

Theorem 4.2 (Analytic Inverse Function Theorem). If y = g(z) is an ana-
lytic function of x at x¢ such that g'(x¢) # 0, then the inverse function g1
and is analytic at yo = g(xo).

exists

Indeed, let g(z) = 37 ax(x — x0)*, and let {cij}; jen
if i = 0 and ¢;; = 0 if 4 > 0. Then the bivariate function

F(uv—u—g Ecw (v — o) —u—g a;(v — xp)’

7=0 =0

be defined by ¢;; = a;
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is analytic at (u,v) = (yo, zo) and
F(yo,0) = —a1 = g'(z0) # 0.

By our implicit function theorem, there exists a function v = f(u) defined in a
neighborhood €2 of the point u = y¢ such that

0=F(u, f(u) =u—Y_a;(f(u)— o) =u—g(f(u).
=0

That is, f(u) = g~ *(u) for u € Q.

Example 4.5. Recall from Example 1.6 that the inverse function of exp is the
function log, defined on {z € C| J(z) € (—m,n|}. Furthermore, as can be veri-
fied directly, the exponential function of a complex variable maps the domain
{z € C| J(z) € (—m,m)} one-to-one onto the domain C\(—oo0,0]. Since exp’(w) =
expw # 0 and since exp is analytic at each w € {z € C| J(z) € (—m,7)}, its inverse
function log, is analytic on C\(—o0,0]. Furthermore, since
#logy(z) = exp (logy(2)) logy(2)
= exp’ (logy(2)) logy(2)
d d
= ;&P (logy(2)) = e= b

we see that

logl)(2) = é 2 e C\{ze C:R=) <0}

Thus
1 o0
/ n, n .
logy(1 4+ 2) = 5= ;(—1) 2", z € B(0;1),
and
z z e ntl
logy(1+ 2) = / logly(1 + w)dw = / S (-1t = 31
0 0 n=0 n=0

for z € B(0;1).

Example 4.6. Recall from Example 1.7 that for w € C and z € C\(—o0,0],
2% = e®1°80(*) Hence the power function f : C\(—o0,0] — C defined by

f(z)=2"
is analytic on C\(—o0,0]. Furthermore,
d
Ezw = wz""

The Newton binomial expansion formula in Example 3.6 takes the form

1+2)*= Z C@gn
n=0
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for real @ and x that satisfies |z| < 1. If z € C and |z| < 1, then for any w € C, in
view of the Substitution Theorem 3.11,

0 n+1
(1 +Z)w _ ewlogo(lJrz) = exp {wZ(_l)n z }
n=0

n+1
-1
:1+wz+%z2+...

To find the coefficients of 2™, we argue as follows: Clearly this coefficient is some
polynomial @, (w) of degree n in w. Since there is no term involving z™ in the
above expansion if w = 0,1, 2, ...,n— 1, the polynomial must vanish at the indicated
points. But then,

Qn(w) =dw(w—-1)---(w—n—1)

where d is a constant. For w = n, the coefficient of 2™ is just 1, and hence Q,(n) = 1.
It follows that

d=—,
n!

so that Q,(w) = CS). Thus we have
(142" = Z CWzm 2] < 1.
n=0

Example 4.7. An alternate derivation of the Newton Binomial Expansion Theorem
can be seen by observing that f(z) = (1 + z)" satisfies f(0) =1 and
(1 +2)f'(z) = wf(2), |2] < 1.

Assume that

flz)= Z anz".
n=0
Then ap = f(0) = 1 and by the Unique Representation Theorem 3.8,

(n+ 1)ap41 + na, = wa,, n € N.

The above recurrence is easily solved and

an=—ww-1)---(w—n+1), ncZ".

4.3 Polynomial and Rational Functional Equations

Given a polynomial P(z) of the form

P(2)=2"+am_12™ 4+ a1z + ao,
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then formally ‘replacing’ each i-th power by the i-th power G* of a function G will
result in a polynomial in G, which is naturally denoted by P(G). Given a polynomial
P(G) in the function G = G(z) and a function h = h(z), the equation
P(G)(z) = h(z)

is called a polynomial functional equation. For instance,

G™(2) + am_1G™H(2) + -+ a1G(2) + ap = h(2)
is such an equation. A rational functional equation is similarly defined. For instance,
G(2)
Giz)—az—f———=H
() 0z = Gy = H)

is a rational functional equation.
In this section, we find analytic solutions to several polynomial and rational
functional equations. As our first example, consider the polynomial equation

1 o
G*(z) — =G(2) + —z =0, 4.10
(2) . (2) . (4.10)
where « £ 0 and p # 0. Solving the quadratic equation
1
w? — —w + %= 0,
we see that
1
w:—{l:t 1—4auz}.
2p

Thus we may conclude that either

G+(z):${l+m}

or

1

G_(z) = o {1 —v/1 —4auz}

]
are formal solutions of our polynomial equation. Furthermore, since (1 — 4apuz
is analytic on B(0;1/ |4apu|) (see Example (3.21)), we see that both are solutions
which are analytic on B(0;1/ [4ap|). They are the only solutions that are analytic
near 0. Indeed, if G(2) is defined at z = 0, then

)1/2

0=G2(0) - %G(O) +0=G(0) (G@) - %) !

so that G(0) = 0 or G(0) = 1/u. But then the additional condition G(0) = 0
will lead us to G(z) = G_(z), while the additional condition G(0) = 1/u to the
G(z) = G4(2).

There is another approach to solving (4.10). We may treat G(z) as an implicit
function to be sought in the relation

1
F(Z,G)EGQ——G—&—gz:O.
T
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Since F(z,w) is analytic for each (z,w) in a neighborhood of (0,0), F(0,0) = 0 and
F/,(0,0) = —1/u # 0, by the Analytic Implicit Function Theorem 4.1, we see that
the implicit relation F(z,G) = 0 has a solution

oo
= E gn2"
n=0

which is analytic on a neighborhood of the origin, and the sequence g = {gn}, cn
satisfies go = 0 as well as g3 = —F.(0,0)/F/(0,0) = a. The other terms of g can
also be determined. To see this, we substitute G(z) = Y7 gn2" into our equation
(4.10), then

0= ngpz" - = Zgnzn +2= ngpz" - = Zgnzn + 2z
n=0 K n=0 ® n=2 K n=1 ®
By the Unique Representation Theorem 3.8, we see that
gn = ngid n = 2.
Or equivalently, by Theorem 3.4, we may view (4.10) as

= 1

@ (2) - =gz +gh:O,
g9%(z) uﬂ) m

which leads us to

and
(2 _ 1
9n __gn:()a 77,22,
I

yielding the same conclusion about the sequence g.
The solution just determined satisfies G(0) = 0, and hence it must be equal to
G_(z) found above. Therefore,

1

—{1— 1—404,uz} Zgnz

2p
where g = {gn}, cn is determined by go = 0, g1 = @ and g, = ﬂgn ) for n > 2 (cf.
Example 2.11).
We can also find the solution G4 (z) by the Analytic Implicit Function Theorem
4.1 since F(0,1/u) =0 and F},(0,1/p) = 1/u # 0. The ideas are not much different
and hence the details are skipped.

Similar techniques will lead us to analytic solutions of several polynomial and
rational functional equations as follows.

Example 4.8. Let 1 # 0 and K € ZT. Then the equation

K ‘ K+1
_Zaizl _ lm =0
— pnl—G(2)
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has a solution G(z) which is analytic at each z in a neighborhood of the origin and
G(z) can be defined in a recursive manner. To this end, let

(z,w) =w — EO‘Z

Since F'(z,w) is analytic for each (z,w) in a neighborhood of (0,0), F(0,0) = 0
and F) (0,0) = 1, by the Analytic Implicit Function Theorem 4.1, we see that the
implicit relation F(z,w) = 0 has an analytic solution w = G(z) which satisfies
G(0) = 0 and G'(0) = —F}(0,0)/F, (0,0) = a1, and is defined on a disk with the
origin as the center and with a positive radius. This solution can be determined in
a recursive manner. To see this, let

wi+1

ul—

oo
k
St
k=0

Then go = G(0) = 0 and g1 = G'(0) = ;. Furthermore, by substituting w = G(z)
into F(z,w) = 0, we see that

K 00
— Zaizi = lGK“(Z) ZG”(Z)
=1 H n=0
:% S ()
n=K+1
S { 3 g,gk>}z.
Polkrr Wk=k41

By comparing coefficients, we see that g; = «; fori =1, ..., K and

n

1
gn=— > g, n>K+1
'uk:K+l

The proof is complete.

We remark that the sequence g in the above result can be obtained in the
following manner as well. First note that
K K+1

w—zaﬂi_%w —w— ZO”Z - — Z wt = w— ZO”Z __H(K+1)( ),

i=1 i=K+1

where H(™) is the Heaviside sequence defined before by H%m) =1 for n > m and

H™ = 0for 0 <n < m— 1. Since G(z) = g(z) where g € [N, thus substituting
w = g(z) into F(z,w) = 0 then leads us to the equation
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Since

HED o g — { Z gff>}

by Example 2.23, we see that

as desired.

Example 4.9. The equation

G?(2) z
1-G(z) T2
has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To see this, let
2

G(z)—az—p G(z)=0

w z
F =w—az— — .
(z,w) =w— az ﬁl—w TV

Since F'(z,w) is analytic for each (z,w) in a neighborhood of (0,0), F(0,0) = 0
and F! (0,0) =1 # 0, by the Analytic Implicit Function Theorem 4.1, we see that
the implicit relation F'(z,w) = 0 has an analytic solution w = G(z) which satisfies
G(0) = 0 and G'(0) = —F.(0,0)/F!(0,0) = «, and is defined on a disk with the
origin as the center and with a positive radius. Let G(z) = g(z) where g € [N. Then
go = G(0) = 0 and g1 = G'(0) = . Furthermore, by writing

Fz,w)=w—az — ﬂﬁ@(w) — ’ywﬁ(\l)(z),
then substituting w = g(z) into it leads us to

g= ah+ﬂH(2) o0g—+yg* HD.

By Example 2.23 and the fact that

n n—1
g+ HW = {ZQiHS—)i} - {Zgz} :
i=0 i=1

we may then see that
n n—1
gn =8> g +> gk, n>2.
k=2 k=1

Example 4.10. The equation

2G?(2)
1-G(z) ¢
has a solution G(z) which is analytic at each z in a neighborhood of the origin and

G(z) can be defined in a recursive manner. To see this, let

Z’LU2 2211}

—51_2.

22G(2)

=0
1—=2

G(2) —az — 2% —v2G(2) = §

F =w—oaz— 322 - -5
(z,w) =w — az — Bz° — yzw T
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Since F'(z,w) is analytic for each (z,w) in a neighborhood of (0,0), F(0,0) = 0
and F (0,0) =1 # 0, by the Analytic Implicit Function Theorem 4.1, we see that
the implicit relation F(z,w) = 0 has an analytic solution w = G(z) which satisfies
G(0) = 0 and G’(0) = —F/(0,0)/F},(0,0) = «, and is defined on a disk with the
origin as the center and with a positive radius. Let G(z) = g(z) where g € IN. Then
go = G(0) = 0 and g1 = G'(0) = . Furthermore, by writing

F(z,w) =w — az — 2% — yzw — 5zﬁ(3)(w) — §wﬁa)(z),
then substituting w = g(z) into it leads us to

g =ah+ h? +yhxg— 6hx* (H(Q) og) +£ (g*H(2)) .

By equating the corresponding terms on both sides, we see that

g2=ay+f

and

n—1 n—2
Gn=n 1403 g +E gk, >3,
k=2 k=1

Example 4.11. The equation
BG(z)

G(z) — az AT —3G(7)

—2Q(2)=0
where

Q(2) =q(2), = {ar} € IV,
is analytic at each z in a neighborhood of the origin, has a solution G(z) which is
analytic at each z in a neighborhood of the origin and G(z) can be defined in a
recursive manner. To see this, let

Fizy,w)=w—az—z

Bw
T Gw 2Q(z).

Since F'(z,w) is analytic for each (z,w) in a neighborhood of (0,0), £'(0,0) = 0 and
F! (0,0) = 1, the Analytic Implicit Function Theorem 4.1 asserts that the implicit
relation F(z,w) = 0 has a unique solution w = G(z) which satisfies G(0) = 0 and
G'(0) = —F.(0,0)/F/,(0,0) = a+ qo, and is defined on a disk with the origin as the
center and with a positive radius. Let G(z) = g(z) where g € IN. Then gy = 0 and
g1 = G'(0) = a + qo. Furthermore, by writing

F(z,w) =w—az — ZHD (Bw) — 2Q(z)

and substituting w = g(z) into it, we see that

g=ah+hx (H(”O(ﬂg)) —hxq.

By equating the corresponding terms on both sides, we see that

n—1
k
gn = E ﬂkgézl + qn—1, N Z 2.
k=1
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Example 4.12. The equation

0G(z)

G(Z) — aZ — 522 - Z2m

- Z2Q(Z) = Oa
where

Q(z) =4(2), ¢={ar} €IV,

is analytic at each z in a neighborhood of the origin, has a solution G(z) which is
analytic at each z in a neighborhood of the origin and G(z) can be defined in a
recursive manner. To see this, let

F(z,w) = w — az — 2% — 2* 1 iu(;w - 22Q(2).
Since F(z,w) is analytic for each (z,w) in a neighborhood of (0,0), F(0,0) = 0 and
F},(0,0) = 1, the Analytic Implicit Function Theorem 4.1 asserts that the implicit
relation F(z,w) = 0 has a unique solution w = G(z) which satisfies G(0) = 0 and
G'(0) = —F.(0,0)/F/,(0,0) = o + qo, and is defined on a disk with the origin as
the center and with a positive radius. G(z) = g(z) where g € IN. Then go = 0 and
g1 = G'(0) = a + qo. Furthermore, by writing

F(z,w) =w — az — 2% — ZQI-/I-(T)(éw) - 22Q(2)
and substituting w = g(z) into it, we see that
g=ah+ Br® £ @ « (H<1> o (5g>) F A xg
By equating corresponding terms on both sides, we see that
g2=1p

and
n—2
gn = Z 6]697(1’622 + hn2, n>3.
k=1

Example 4.13. Let p # 0. The equation

5G2(2) 22
G(z) —az — — =0
(2) —az ﬁl —0G(z) p?—pz
has a solution G(z) which is analytic at each z in a neighborhood of the origin and
G(z) can be defined in a recursive manner. To see this, let

dw? 2?2

Fizyzw)=w—az—f (4.11)

1—ow p2—pz
Since F(z,w) is analytic for each (z,w) in a neighborhood of (0,0), F(0,0) = 0 and

a_F_l_ﬂ 20w n 52w?
ow L—d0w  (1-6w)?
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which is not zero at (0,0), by the Analytic Implicit Function Theorem 4.1, we see
that the implicit relation F'(z,w) = 0 has an analytic solution w = G(z) which
satisfies G(0) = 0 and G’(0) = —F.(0,0)/F.,(0,0) = «, and is defined on a disk
with the origin as the center and with a positive radius. G(z) = g(z) where g € IN.
Then go = G(0) =0 and g; = G'(0) = «. By writing

Fz,w) =w— az — ﬂwﬁa) (dw) — %z2ﬁ@(z/u)
and substituting w = g(z) into it, we see that
g=ahtpgx (B0 o (0g)) + 5« (5 HO)

By equating the corresponding terms on both sides, we see that

Gn =B gn—i {Z 5’“g§k>} + ul” n>2.
=0 k=1

We remark that in case § = 1, the function in (4.11) reduces to

pw? vz
1—w p2—puz

Fz,w)=w—az —

The corresponding analytic solution

oo

G(z) = Z gn2".

n=0

can then be defined recursively by gg = 0, g1 = a and
- g
g =83 g + L
k=2 H
for n > 2.
Example 4.14. Let p # 0 and M € Z*. The equation
1 o WAON n—1
G*(2) — —G(z)—i——lz—i—z = —Zakan,k 2" =0
K K n=2 K k=1

has a solution G(z) which is analytic at each z in a neighborhood of the origin and
G(z) can be defined in a recursive manner. To see this, let

M n—1

1 n

F(&w)zuﬁ——u}—i—ﬁz—l—z a——Zakan,k 2" MeZT.
K K n=2 K k=1

Since F'(z,w) is analytic for each (z,w) in a neighborhood of (0,0), F (0,0) = 0 and

0 1
“Fr - _Z
B0 (0,0) . #0,
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the Analytic Implicit Function Theorem 4.1 asserts that there is a function G (2)
which is a solution of F/(z, G(z)) = 0 and is analytic at each z in a neighborhood of
the origin. To determine G(z) = g(z), we write F(z,w) = 0 as

M n—1
,uw2_w+a1 +Z <an—ﬂ2akank> Z" =0,
n=2 k=1
which leads us to
M n—1
9=ng® +onh+> <an -y Oékank) R,
n=2 k=1

By comparing coefficients on both sides, we see that go = 0,
gn = Qp, L= 1a "'aMa

and
2
Gn+1 = § k+19n—k = ugflll, n > M.

We remark that F(z,G(z)) = 0 in the above Example can be verified directly

as follows:
<nggn k)
2
<Z Qp Oy — k)
n=M+1
(Zakan k)z + = Z Gnp12" T
(Zakan k)z + = G —% anz”.

n=1

3
| |

P Z (Zgwn k)

M: |P”ﬂ§ HME

n=2

We remark further that the case M = 1 has been discussed in depth at the
beginning of this section.

Example 4.15. Let p # 0. The equation
1 1
G3(2) — 2aG?(2) — (; - a2> G(z) + m (Bz+a)=0

has a solution G(z) which is analytic at each z in a neighborhood of the origin and
G(z) can be defined in a recursive manner. To see this, let

1 1
F(z,w) = w® — 20w? — (;—oﬁ)w—&—;(ﬁz—ka).

Since F'(z,w) is analytic for each (z,w) in a neighborhood of (0, «), F (0,«) = 0 and
F/, (0,a) = —1/p # 0, the Analytic Implicit Function Theorem 4.1 asserts there
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exists a function G (z) which is a solution of F(z,G(z)) = 0 and is analytic at each
z in a neighborhood of the origin. To determine G(z) = g(z), we write F(z,w) =0
as

pw (w—a)? —w+Bz+a=0,
which leads us to
ug*(g—a)<2>—g+ﬂh+620.

By comparing coefficients on both sides, we see that go = «, g1 = 0 and

n n—=k
In+2 = MZ Z Jk+195+19n—k—j = K (g * (g — E)<2>)n+2 , neN.
k=0 j=0

We remark that F'(z,G(z)) = 0 in the above Example can be verified directly
as follows:

o0 oo oo oo n
G?(2) = (go + Z gn+1z”+1> <Z gnz”> =90 Z gnz"+z <Z gk+1gn—k> P
n=0 n=0 n=0 \k=0

n=0

and

o0 o0 o0 n
616 = (S0t (w305 (Sans) )
n=0 n=0 n=0 \k=0
o0 o0 n
n=0 n=0 \k=0

thus

as desired.
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4.4 Linear Equations

We have considered some specific implicit relations and their analytic solutions.
Now we will consider more general functional equations of the form

F(2,0(2), 6(f1(2)), -, o(fn(2))) = 0. (4.12)

In general, z belongs to a subset of F, while the functions F, f1, ..., f;, are assumed
known. We will be interested in finding analytic solutions ¢ or to derive existence
theorems for these equations. When the function F in (4.12) is linear, we obtain
the following ‘nonhomogeneous’ linear functional equation

Z ai(z )+ h(z) = (4.13)

A fair amount of investigations have been carried out for this equation. We select
a few simple ones to illustrate how power series solutions are found.

4.4.1 FEquation I
A simple case of equation (4.13) is [112]
= a;ip(Niz) +G(2), z € C. (4.14)
i=1

Theorem 4.3. Suppose |A1],|Xa|, .., | M| < 1 and ar\F + ao)s + -+ ap,\E, £ 1
for all k € N. Suppose further that

oo
§ k
= gkz
k=0

is analytic over a neighborhood of the origin. Then equation (4.14) has a solution
which is analytic over B(0;p(g)) where p(g) is the radius of convergence of the

sequence § = {gn},en -

Proof. Assume that
= B Z bkz

is an analytic solution of (4.14) on a neighborhood of 0. Then inserting ¢ into (4.14)
and employing the Unique Representation Theorem 3.8, we see that

bzg—‘—iaiﬁ-b.

i=1

Hence

b, = artbp Ay + agbp NS + -+ + ambiAE, + g, k€N,
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or
9k

1= (@A a2y an k)
This proves the uniqueness of the analytic solution ¢(z). To see that ¢(z) is indeed
an analytic solution, we only need to show that it converges in a neighborhood of
0. This is accomplished by finding a majorant function for ¢(z). To this end, recall
from Cauchy’s Estimation (Theorem 3.26) that for each r € (0, p(g)), there is some
M, > 0 such that

b, , keN.

M,
lgx| < et ke N.

Next, since |A1], ..., |Am| < 1, there is some positive integer T such that
laa| A" + lag| [Aal” + -+ Jam| [An]¥ < 1, k> T.
Let the sequence c(") = {c,(;)}k \ De defined by
€
(r)y _ M, 1
G = rk k k k
1= (Jaal Pal" + laal Dal + -+ + lam| Anl")

s k>T,

and
ck > |bg|, k=0,1,...,T.
Then b < ¢(") since
Gk
1= (a1 A} +a2Mf 4 -+ amAk)
g2 1
T (el el ol - L] Al )
for k > T. Since

i Cl(c:zl _1
k—oo C](:) ’]"7

we see from the ratio test that

r=p (c(r)> < p(b).
Since r is an arbitrary number satisfying 0 < r < p(g), we see further that p(g) <
p(b). Finally, since ¢(z) is majorized by S 7c,c™zF, we see that ¢(z) defined by
(5.2) is an analytic solution on B(0; p(g)). The proof is complete.

Example 4.16. As an example, consider the functional equation
sin z

o) =20 (2) +30(3) + 22,

where we take
)22k

sinz = (=1
= e ) 6 C.
p ;0 Qe+~
By means of our Theorem 4.3, we see that it has the unique analytic solution
o0
(—1)k22k

¢(Z) = i (Qk + 1)! (1 — 9—2k+1 _ 372k+1)

, z € C.
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4.4.2 FEquation II

Next we consider another simple case of (4.13) [112]:

#(z) = P(z)¢(az) + Q(z), z € C. (4.15)

Theorem 4.4. Suppose |a| < 1 and P(0)a* # 1 for k € N. Suppose further that
P(z) = p(z) and Q(2) = q(2) are power series functions generated respectively by
= {pr}ren and ¢ = {qi}yen in N with positive p(p) and p(q). Then (4.15) has
a solution which is analytic over B(0, p) where p = min {p(p), p(q)} .

Proof. Assume that
= g Z bkz

is an analytic solution of (4.15) in a neighborhood of 0. Then inserting ¢ into (4.15)
and employing the Unique Representation Theorem 3.8, we see that

b=px(a-b)+gq,
that is,

bo = po + qo,

and
b (1 —poa®) = pra® b1+ + prabo + qi, k€ Z7.

Since P(0)a* = poa® # 1 for k € N, we can easily show by induction that {b},cn
is uniquely defined. This proves the uniqueness of the analytic solution ¢(z). To see
that 3(2’) is indeed an analytic solution, we only need to show that it converges in
a neighborhood of 0. This is accomplished by finding majorant functions for ¢(z).
To do this, first observe that the convergence of the series p(z) and g(z) implies,
by Cauchy’s Estimation 3.26, that for each r € (0, p) where p = min{p(p), p(¢)},
there is some M, > 0 such that

M,
pwl s law| < T_kr’ ke N.

Next, since |a| < 1, there is some positive integer T' such that M, |a|k < 1 for
k > T. Let the sequence ¢(") = {c,(:)}k be defined by
EN

(r) _ 1 {(MT —1 () M, 0 (T)> Mr}
RS g (2 P[0 T Y R [ R

Mo L ™ %y ol rk
for kK > T, and

)

A" > bl k=0,1,...,T
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Note that
1 T 0
lbri1| £ ————5 1 {Ipallal” [br] + -+ [prialle]” [bo| ) + |gr+1]
1 — |po| |a]
1 M, T (r) M, 0 (r) M,
< - - -r _r
<y (el P ) +
= CT+1,

and by induction, it is easy to show that
[b| < C , k>T+2.

Thus b is majorized by c. Furthermore, since
M M M
1— : k+1> (r) _ : kE (r) M k—1 L r (r) r
r( M, |a Criy = My || ¢ + " o)™ 4 et R

= Mal* ! (r) 4 (1 — M, |of* ¢! (r) ) c,(cr)
(r)

:Ck)7

we see that

. c,(;)l . 1 1

11m = —.
T k+1
k—o0 Cl(c) kHOOT(].—MT |Oé| + ) r

Thus r = p (c(r)) < p(b). Since r is an arbitrary number satisfying 0 < r < p, we
see further that p < p(c). Finally, since ¢(z) is majorized by ¢(z), we see that ¢(z)
is an analytic solution on B(0; p). The proof is complete.

Example 4.17. Consider the functional equation

o(z) = (1 — az)p(az)
subject to the condition ¢(0) = 1, where |a| < 1. By means of Theorem 4.4, we see
that it has the analytic solution

o (k+1)/2 K

Z):szzl(a—l)(a2—1)~--(ak—1)’ zeC.

4.4.3 FEquation II1

As our third simple case of (4.13), consider the equation [145]
p(az) = P(2)¢(z) + Q(z), z € C. (4.16)

Theorem 4.5. Suppose 0 < |a| < 1. Suppose that P(z) = p(z) and Q(z) = q(=) are
power series functions generated respectively by p = {pr}ren and ¢ = {qr}pen
IN with positive p(p) and positive p(q). If P(z) # 0 for z € B(0; p(p)) and o* # py
for k € N, then (4.16) has a solution which is analytic over a neighborhood of 0.
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Proof. Assume
b(z) =2z) = 3 et
k=0
is an analytic solution of (4.16) over some ball B(0;p). Then substituting ¢ into
(4.16) and invoking the Unique Representation Theorem 3.8, we see that
Q-c=pxc+q,
or
(@™ =po)en =picn—1+ -+ Pnco+ qn, n € N.

If a™ # pg for n € N, then ¢ can be uniquely determined by induction. This shows
that an analytic solution of (4.16) is unique. To show that ¢(z) is analytic on some
ball B(0;p), we may try to calculate p(c) directly. This turns out to be difficult.
We therefore proceed in a different manner. First observe that if ¢o(z) is a solution
of the equation

¢o(az) = P(2)¢o(2) + Q(2) + P(2)o(2) — ¢(az), (4.17)

where
m—1
$(z) = Y iz, meZ¥,
i=0

then ¢o(z) + @(2) is a solution of (4.16). Now pick m € Z™T such that

la™ < |pol, (4.18)
and let
Q(2) = Q(2) + P(2)(2) — d(az). (4.19)
Then
do(z) =—>_ Qa"z) [ [] P(e’2)
n=0 =0

P(2)o0(2) + G(z) = P2) 4 ~ L2 - S Game) [ [[ Plade) | b +02)

n=1 7=0
—1
= —ZQ(Q”Hz) HP(oﬂHz)
n=0 7=0
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It suffices to show that ¢ just defined is analytic in some B(0; p). To see this,
note that Q(z) is analytic in B(0;7) where r = min {p(p), p(¢q)} . If we write Q(z) =
h( ) where h = {hp}, N € IN, then we may easily check that hg = hy = -+ =

hm—1 =0 in view of (4.19). Thus there is B > 0 such that ‘Q(z)‘ < Bz|" for |z]
sufficiently small. Next, we note that P(z) = 1/P(z) is analytic in some ball B(0; s)
and P(0) = py*. Thus by continuity, there is A > 1 such that A |a|™ |po|™" < 1
and ’]5(2)’ <A |p51| for |z| sufficiently small. We may now conclude that

Q)| < BI™,[PE)| < Alpol ™ Alal™ o < 1, = € Bo;7)

where 7 is some small positive number in (0, 7).
Now let B(0; ) be any closed ball inside B(0; 7). Then there exists some positive
integer T such that oz € B(0;¢) for k> T and z € B(0;7). Thus for z € B(0;¢),

n T
(a2 <A{Bla™|" |2|" a P(d? {A"_T 7(n7T)}
Qo) [ Plad) < (Bl ™) | _max [T (@) ol
Jj=0 7=0
T n—=T
max Bamsz<A -t am) }
s TP At {BlarT e (A1l o)

n—T
Since A o™ |po| ™' < 1, the series 370 (A lee|™ |p0|71) converges. This shows,

~ N
in view of the Weierstrass Test (Theorem 2.7), that "/ Q(a"z) (H?:o P(ad z))

is analytic on B(0;¢). The proof is complete.
We remark that if the condition that a® # py for k € N in the above result is
replaced by the alternate condition
¥ =po, p1ea-1 4+ pnco+¢a =0, neN.

Then the sequence ¢ can be chosen in an arbitrary manner. The uniqueness now
does not hold. However, the rest of the proof goes through so that we may now
conclude that (4.16) has a solution which is analytic on a neighborhood of 0.

4.4.4 FEquation IV

We next consider linear equations of the form [145]

¢(2) = g(2)0(f(2)) + h(2), (4.20)
where ¢ is the unknown function, and f, g and h are assumed to be given. In case
f(2) = az, equation (4.20) reduces to (4.15).

Assume f : B(0;r) — B(0;r) and g,h : B(0;r) — C are analytic over B(0;r)
and f(0) = 0. Then for any analytic function ¢ : B(0;7) — C, we have

d% l9(2)6(f(2))] = 9(2)8' (f(2)) ' (2) + ¢ (2)8(f (),



106 Analytic Solutions of Functional Equations

and in general, by the Formula of Faa di Bruno (Theorem 2.16), we have

k k—1
% 9(2)6(f(2))] = 9()(f'(2)) M (£(2)) + D Pri(2)6 (f(2)) (4.21)
=0

for k € ZT, where each Py; is analytic in U. Therefore, if we look for an analytic
solution of (4.20), then ¢, = ¢ (0) satisfies
k—1

cr = g(0)(f'(0))fck + > Pri(0)e; + h™(0) (4.22)
1=0
for each k € N.

Theorem 4.6. Suppose f : B(0;0) — B(0;0) and g,h : B(0;0) — C are analytic
over B(0;0) and f(0) = 0. Suppose further that |f'(0)| < 1. Then given a sequence
{cr}pen which satisfies (4.22) for each k € N, there is B(0;0) and a solution ¢(z)
of (4.20) which is analytic over B(0;9) and satisfies

o™ (0) = ¢, keN.

Proof. The formal power series function

6= > e,
i=0

in view of (4.22), is easily seen to be a formal solution of (4.20). We need to show
that it is analytic at 0. To see this, choose a positive integer r, a real number
6 € (0,1) and B(0;0) strictly inside B(0;7), and

[f'(2)]" 19(2)] < 8, = € B(0;9).

Let ¢(z) = Q(2) + 9(z), where

Q) =Y e, (4.23)

i=0
and v : B(0;0) — C is analytic over B(0;0) and satisfies
™ (0)=0, k=0,..,r
Then
(2) = g2 () + H(2), (1.24)

where

H(z) = h(z) = Q(2) + 9(2)Q(f(2)) (4.25)
is analytic in B(0;0) and H®*)(0) =0 for k =0, ..., 7.
Let Z be the set of all analytic functions 1 on B(0;6) such that 1*)(0) = 0 for
k=0,...,r and ¢(") is continuous on B(0;§). When endowed with the usual linear
structure and the norm

Jol = s [0()

2€B(0;6)

)
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it is easy to show that = is a Banach space. Define a mapping 7' : ¥ — ¥ by
(T)(2) = g(2)¢(f(2)) + H(2), z € B(0;0).

Then for any 11,12 € E, in view of (4.21), we have

& (9) ()~ 2 F ) = 9(2) (7 (9 (7) — (7))

r—1
+3 Pule) (v (1) = v (7(2))
=0
By Example 3.9,

sup W)(w) . qu“(w)‘ <6 by — o[, i = 0,1, — 1.

wEB(0;0)
Thus,
r—1 )
[T — Tl < {9 +) 6 sup |Pki(z)|} |11 — o]
i=0 z€B(0;0)
If we choose ¢ so small that
r—1
6+ Zé“i sup |Pri(2)] <1,
i=0 2€B(0;9)

then T is a contraction mapping. Thus (4.24) has a unique solution ¢ € W. This

in turn implies (4.20) has a unique analytic solution ¢ : Uy — C of the form

d(2) = 3252, ¢;2' /il which satisties () (0) = ¢, for k € N. The proof is complete.
We also remark that the condition f(0) = 0 asserts that 0 is a fixed point of f.

4.4.5 FEquation V

Next we consider equations of the form

¢(f(2)) = 9(2)6(2) + h(2), (4.26)

where ¢ is the unknown function, and f, g and h are assumed to be given function
analytic at 0. In case f(z) = az, equation (4.26) reduces to (4.16).
First we consider the situation

f(0)=f"(0)=g(0)=0. (4.27)
To avoid trivial cases, we assume that f and g are nontrivial. There exist integers
P, q,r such that

f(z2)=2"F(z),
9(2) =21G (2),
and

h(z)=2"H (2),
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where F'(0) # 0, G(0) # 0 and H (0) # 0 unless h = 0. By (4.27) we have p > 2,
g>1and r >0 (we take r = 0o if h = 0). We exclude from further considerations
the trivial solutions of equation (4.26) (occurring iff h = 0). Thus we seek analytic
solutions of (4.26) in the form

p(z)=2°®(z), ®(0)#0, s € N.
By substituting ¢ into (4.26), we see that
25 (F(2))°®(f(2) = 297G (2) @ (2) + 2" H (2), (4.28)

and thus by comparing the orders of the zeros at z = 0 we arrive at the four
possibilities (i) ps = ¢+ s =, (ii) ps = ¢+ s < r, (iii) ps > g+ s = r, and (iv)
ps =1 < ¢+ s. (Note that the case h = 0 comes under (ii).)

We need to find nonnegative integers s satisfying one of the relations (i)-(iv).
This leads to the following conditions for p, g, r:

p—1ldividesgandpg=(p—1)r (s=¢/(p—1)); (4.29)
p—1divides g and pg < (p— 1) (s = ¢/ (p — 1)) ; (4.30)
plr—q)>r(s=r—q; (4.31)

p divides 7 and pg > (p — 1) (s = r/p). (4.32)

In each of the above cases, there is a unique s € N (given in the parentheses)
satisfying the corresponding cases (i)-(iv). Conditions (4.29)-(4.32) exclude each
other, with the only exception that (4.30) is a special case of (4.31) (since pq <
(p—1)r < p(r—q) >r). Of course, the s from (4.30) is smaller than that from
(4.31), when calculated for the same p,q,r. Moreover, each of conditions (4.29)-
(4.31) implies ¢ < .

The first thing to be determined now is the value ¢g = @ (0) of an analytic
solution ® of (4.28) in each of the cases (4.29)-(4.32). Whenever it exists, all the
remaining ¢, = ®*) (0) for k£ > 1, as we shall see, can be uniquely determined by
applying Theorem 4.6 to equation (4.28).

Let us examine cases (4.29)-(4.31). In case (4.29), equation (4.28) becomes

(F (2))°
@ = 7(p —
()= G )
Since H (0) # 0, cg exists if, and only if, (F (0))® # G (0).
In case (4.30), we obtain from (4.28) that
(F(2))° 2"PH (2) q
(0] = d -, §= ——. 4.33
(=) ) - o= (43
Now, if (F(0))° = G (0), then ¢y = 7 may be taken as arbitrary. Then equation
(4.26) has a unique one-parameter family of analytic solution ¢, (2) = 2°®, (2),
where s = g/ (p — 1). For 7 = 0 we obtain the solution g which at the origin has
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a zero of an order higher than ¢/ (p — 1). If h # 0, this order must be r — g (Case
(4.31)), while if h =0, then ¢ = 0.
In case (4.31), let us exclude (4.30). Now (4.28) may be written as

_(FR) e H(z)
D (2) = G0 z (I)(f(z))_G(z)’ s=r—q.

Then ¢g = @ (0) = —H (0) /G (0) always exists.
The observations obtained so far can be summarized as follows.

Theorem 4.7. Let the functions f(z) = 2PF (2), g(2) = 29G (2) and h(z) =
2"H (2) be analytic at 0 and F (0) # 0, G (0) # 0 as well as H (0) # 0 except when
h = 0. Further assume thatp >2,q>1 andr > pq/(p —1). Then (i) when (4.29)
and (F (O))q/(p_l) # G (0) hold, equation (4.26) has a unique analytic solution
defined over a neighborhood of 0; (ii) when (4.30) and (F (O))q/(p_l) = G (0) hold,
equation (4.26) has a unique one-parameter family of analytic solutions ¢ defined
over a neighborhood of 0; (i) when (4.31) and q/ (p — 1) ¢ N hold, equation (4.26)
has a unique analytic solution ¢ defined over a neighborhood of 0; (iv) for other cases
covered by (4.29), (4.30) and (4.31), equation (4.26) does not have any solutions
which are analytic at 0.

Now we turn to the case (4.32). We need some extra work before we can apply
Theorem 4.6. Put s = r/p and let m be the smallest integer fulfilling
m>aq/(p—1). (4.34)

Of course, m > s by (4.32). Suppose that equation (4.26) has an analytic solution
. Since the order of zero of ¢ at the origin must be s, we can write

p(2) =P(2) +¢" (2), (4.35)
where
P(2)=dsz"+ - +dp_12™, (4.36)
and ¢* (2) = 25®0* (2), S > m, ®* (0) # 0. It follows from (4.26) that
e (f(2) =9 () ¢" (2) +h" (2), (4.37)
where
h*(2) =h(z) = P(f(2)) +9(2) P(2). (4.38)

Write h* (z) = 2BH* (z), where H* (0) # 0 unless h* = 0. By (4.34) we have
Sp>q+ S, whence R>q+S>q+m.

We conclude from the above remarks that equation (4.26) cannot have analytic
solutions unless there exists a polynomial (4.36) such that function (4.38) has at
the origin a zero of an order at least m + ¢. If such a polynomial does exist, it is
uniquely determined by (4.38). Indeed, we have by (4.38) and (4.36) that

m—1 m—1
h* (2) = h(z) — Z diz"?(F(2))' + Z d;z"HIG(2). (4.39)
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The integer m being the smallest one to fulfil (4.34), we have ip < i+ ¢ for i < m.
Thus the coefficient of 2% on the right-hand side of (4.39) has the form d; (F (0))" +
A;, where A; depends only on f,g,h and on d; for j < 4. All the coeflicients of
2% in (4.39) must vanish whenever k < m 4 q. If k = ip for i = s,...,m — 1, then
d; = A; (F(0))”" and the dy,...,dp—1 in (4.36) are uniquely determined (if they
exist). The existence of P depends on whether the coefficients of the remaining z*
in (4.39), i.e. of those where k, not an integral multiple of p and k < m + ¢, vanish
for the d; just determined.

Suppose the polynomial P exists, then equation (4.26) has analytic solutions if
and only if equation (4.37) has, and these solutions are linked by formula (4.35).
As we have R > m + g > q for h* given by (4.38). Theorem 4.6 applies to equation
(4.37), yielding the following result.

Theorem 4.8. Let the hypotheses of Theorem 4.7 be satisfied, except that now
r < pq/(p—1). Assume that there exists a polynomial (4.36) such that function
(4.38) has at the origin a zero of an order R > g+m, where m is the smallest integer
fulfilling (4.34). Then, (i) when q/ (p—1) € N, pg = R(p — 1) and (F (0))¥/ @™ +
G (0) hold, equation (4.26) has a unique analytic solution ¢ over a neighborhood
of the origin; (ii) when q/ (p—1) € N, p¢g < R(p—1) and (F (0))q/(p71) =G (0)
hold, equation (4.26) has a unique one-parameter family of analytic solutions p;
over neighborhood of the origin; (iii) when q/ (p — 1) ¢ N, and pg < R (p — 1) hold,
equation (4.26) has a unique analytic solution ¢ on a neighborhood of the origin;
and (iv) when remaining cases hold, equation (4.26) does not have any analytic
solutions near the origin.

4.4.6 Schréder and Poincaré Equations

Schroder equation is

o(f(2)) = s¢(2), (4.40)

where z € F, s is a given number in F different from 0 or 1, and f is a given function
(which will be taken to be analytic at 0 and satisfies f(0) = 0). This equation can
be regarded as a special case of (4.20) (by taking g(z) = 1/s). Since formally,

S(f(f(2)) = s(f(2)) = s*(2),

and

o(f"(2)) = s"(2), n e ZT,

where we recall that [ denotes the n-th iterate of f. It appeared for the first time
in Schréder [173] in connection with the problem of continuous iteration. After the
proof of a fundamental existence and uniqueness of analytic solutions by Koenigs
[96, 97], it has been studied by many authors.
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Note that if f(0) = 0 and if ¢ is a differentiable function that satisfies (4.40),
then the number ¢'(0) = n satisfies
f'(0)n = sn.
If n # 0, then f’(0) = s is necessarily true; while if n = 0, f’(0) and s can be
arbitrary. For this reason, we will consider the existence of analytic solutions of the

Schroder equation under two different assumptions on the given number s = f/(0).
We first assume 0 < |s| < 1. We have the following theorem of Koenigs [96, 97].

Theorem 4.9. Suppose f is analytic at 0 and f(0) =0, f'(0) = s where 0 < |s] < 1.
Then (4.40) has an analytic solution ¢ defined over a neighborhood of the origin
and satisfies ¢'(0) = 1.

Indeed, if ¢ is an analytic solution of (4.40), then

$(0) = ¢(£(0)) = s¢(0)
so that ¢(0) = 0. Next, by (4.40),

&' (f(2)f'(2) = s¢/(2),
so that

¢'(0)s = s¢/(0).

Thus ¢/(0) can be any given number 7. Furthermore, by (4.22), we see that ¢ =
#*)(0) satisfies

k—1 k—1
— 1 / k k=1
Ck = g(f (0))%er + ; Pyi(0)c; = " “ex + ; Pri(0)c;

for k£ > 2. Hence
1 k—1
Cr = W ZP]“'(O)CZ', k Z 2.
=0

Thus by Theorem 4.6, (4.40) has a solution ¢ which is analytic on a neighborhood
of the origin.

We remark that the analytic solution ¢ just found satisfies the interesting prop-
erty

6(x)=n lim £ an(z)? (4.41)

a proof of this fact can be found in Kuczma [104].

We remark further that the condition f(0) = 0 asserts that 0 is a fixed point of
f. When ¢'(0) = n # 0, by the Analytic Inverse Function Theorem 4.2, we know
that the inverse function 1(z) = ¢~!(2) exists and is analytic on a neighborhood of
the origin. By substituting ¢(z) = w and z = 1(w) into the Schréder equation, we
see that

o(f (W (w)))) = sw,
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or

fh(w)) = P (sw),

which is called the Poincaré equation. For obvious reasons, we will write this equa-
tion as

P(sz) = f(¥(2))-
Next we consider the case where |s| = 1. This case is more complicated. Under
the assumption on f in the previous Theorem, we may write

f(z)=sz+ Z anz".
n=2

If [s| = 1 but s is not a root of unity, then (4.22) has a solution {c},.n - Note
that ¢; is arbitrary as before, in other words, (4.40) has a one parameter family of
formal solutions of the form

oo

$(z)=>" %z” (4.42)

However, it is possible that for each ¢1, ¢(2) is divergent for any z # 0. Thus it is of
great interest to find a set of points in the unit circle such that the corresponding
Schroder equation has analytic solutions.

Theorem 4.10. Suppose s is a Siegel number. Suppose further that
o0
fz)=sz+ Z anz"
n=2

is analytic at 0. Then (4.40) has an analytic solution defined over a neighborhood
of 0.

Proof. In view of the above remark, it suffices to derive an analytic solution of
the Poincaré equation

P(sz) = f((2)) (4.43)

in a neighborhood of the origin. To accomplish this, note that by applying Cauchy’s
Estimation (Theorem 3.26) to the power series function

)
§ n

An+422°,
n=0

we see that there is p > 0 such that

n+1

lani2| < p"7, neN.

Introducing new functions ¥(z) = py (p~'z) and F(z) = pf (p~'z), we obtain
from (4.43) that

U(sz) = F(¥(2)),
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which is again an equation of the form (4.43). Here F is of the form

z) =sz+ i Apz",
n=2

but [A,| = |anp1*”| < 1 for n > 2. Consequently, we may assume that
lan| <1, n>2.

Let us assume an analytic solution of (4.43) in the form

z) = i bpz",
n=0

where by = 0 and b; is an arbitrary nonzero number. By substituting ¢ into (4.43),
we obtain

P(s2) = s9(z) = [ (P(2)) — s¢(2),

and
S = )b =Y an ((2)" = 30D aibfl "
n=2 n=2 n=2 =2

By the Unique Representation Theorem 3.8, we see that

by = (s""t—1)71 Z a;bsV.
i=2

It now suffices to show that 1 (z) is analytic over a neighborhood of the origin. To
see this, consider

oo
= E Up 2",
n=0

where ug = 0, u3 = |b1] and

1 LI
_ (1)
Uy = o= Zunz , n>2.
i=2
We assert that
bn| < upn, neZt.

Indeed, |b1]| < uy. Assume by induction that |bg| < ug for &k =2,3,...,n — 1, then

(i)
|b|f|sn1 ‘Zu = Un

as asserted. In other words, @Q(z) is a majorant series of ¥(z).
Next, we show that @ has a positive radius of convergence. To see this, note
that by Example 4.8, the solution

o
= E vp 2"
n=0
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of the implicit relation
(I)Q
1-9
is analytic on a neighborhood of the origin and v = {v,}, . is given by vy = 0,
v = |b1| and

=0

<I)—|b1|2—

T vaﬁ, n> 2.
k=2

By Cauchy’s Estimation (Theorem 3.26), there is a positive number A such that
lva| <A™ ne ZT.
Hence by Theorem 3.32, there is a positive number § such that
u, < A"t (255+1)”—1 n=2 n > 9,

which shows that Q(z) has a positive radius of convergence. The proof is complete.

9

We remark that since the coefficient b1 of ¢(z) in the above proof can be taken
as any nonzero number, we have actually shown that (4.40) has a one-parameter
family of nontrivial analytic solutions defined over a neighborhood of 0.

4.5 Nonlinear Equations

We have considered some functional equations of the form

F(2,¢(2), 6(f1(2)), -, o(fm(2))) = 0,

where F' is linear. We now consider some equations where F' is nonlinear. Such
equations are difficult to handle. We will only give two examples.

Recall the Poincaré equation derived in the previous section. Although it is
obtained from the linear Schréder equation, it can be regarded as nonlinear. Here
let us illustrate the technique of finding analytic solutions further by considering
the nonhomogeneous Poincaré equation

f((2)) = ¥(az) + F(2), (4.44)

where f and F are given functions, and « is a given number.

Theorem 4.11. Suppose
f(z)=az+ Z fn2",
n=2

where a > (1++/5)/2, is analytic on B(0;6). Suppose further that the power series
function

F(z)= i E,z" (4.45)

is analytic on B(0;7). Then for any n # 0, (4.44) has a solution ¥ (z) which is
analytic on a neighborhood of the origin and satisfies ¥(0) = 0 and ¥’(0) = 7.
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Proof. In view of Cauchy’s Estimation (Theorem 3.26), there is p > 0 such
that | f,| < p"~! for n > 2. Introducing new functions ¢ and g defined by

8(2) = pv (5) . 9() = pf (5) ,

it is easily seen from (4.44) that

§(6(2)) = d(az) + pF (5)

which is again an equation of the form (4.44). Here g(z) = pf(z/p) is of the form

but

Consequently, we may assume that
fnl <1, n=2,3,....
Next, by Cauchy’s Estimation (Theorem 3.26), there is M > 0 such that
M
|Fol < —, 0<r<71, n=2,3,....
TTL

Suppose (4.44) has an analytic solution

U(z) =) bp2" (4.46)
n=0
where by = 0. By substituting v into (4.44), we obtain
ab; = bia, (4.47)
and
(@ —a)b, =Y fibl) = F,, n>2. (4.48)
i=2

Since (4.47) is satisfied by taking by in an arbitrary manner, we will take by = 7,
and then bg, b3, ... can then be determined by (4.48) in a unique manner. It suffices
now to show that the subsequent series (4.46) converges on a neighborhood of the
origin. To see this, note that a > (1 4 1/5)/2 implies a?> — a — 1 > 0 for n > 2 and
hence

bu] < o™ —af [ba] < DB + 1Fal < DI+
i=2 i=2
for n > 2. If we now define a sequence ¢ = {gn}, cn by 90 =0, ¢1 = || and

M
=) )+ n>2
=2



116 Analytic Solutions of Functional Equations

then it is easily seen that
bn] < qn, n> 1.

In other words, the series Q(z) = g(z) is a majorant series of t. But by Example

4.13, Q(z) is a solution of the implicit relation
Q2 M 2?2
F =Q—nz— — =
(Q=Q-n:-7og g =0
which is analytic on a neighborhood of the origin, thus v(z) is also analytic there.
The proof is complete.

Next, we consider the more difficult nonlinear equation

¢(2) = h(z,6(f(2))), z € C, (4.49)

where (i) f(2) is analytic on B(&;00), f(§) =& and 0 < |f'(§)| < 1, and (ii) h(z,w)
is analytic over the dicylinder

Q={(z,w) €C? |z—¢| <o, |w—1n| <7} (4.50)

with dicenter (¢,7) and h(§,n) =n.
In view of the above assumptions, we may write

F2) =€+ balz— 8", |z =& < 00,0 <|by] < 1. (4.51)
n=1
and
h(z,w) = Z A (2 — &)™ (w — )™, ago =1, (2, w) € Q. (4.52)
n,m=0

We will seek an analytic solution of (4.49) of the form
o) =n+ calz =" (4.53)
n=1
After substituting (4.51), (4.52) and (4.53) into (4.49) and comparing coefficients,
we see that
(1 = ao1b1)er = ano,
and
(1 =0btao1)en = Fplcl, ooy Cno1), n=2,3, ..., (4.54)

where F), is a (n — 1)-variate polynomial, with coefficients depending on a;; and by.
If

b?a(n 75 1, ne Z+, (455)

then ¢y, ¢, ... can be uniquely determined and hence a formal solution of (4.49) is
found. If

b1a01 =1 and ajg = 0,
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then we may let ¢; to be an arbitrary number, and then cs, cs, ..., can be determined.
Or if for some [ > 2,

blla(n =1 and Fl(Cl, ---7Cl—1) = 07 (4.56)

then ¢; can be chosen in an arbitrary manner and the subsequent c¢;11, cj42, ... can
be determined.

Next, observe that since ¢(z) is an analytic solution of (4.49) satistying ¢(§) = 7,
in view of (4.49), we see that

¢'(2) = D (2, w) + hyy (2, 0)¢' (f(2)) ' (2)
where w = ¢(f(2)). Let us write w; = ¢'(f(2)) and
Hy(z,w,wi) = W (z,w) + h, (2, 0) [ (2)w,
the applying another differentiation, we see that

#/(z) = A ) OB gy ) +

oy (0, o
0z +f(z)(6wwl+6w1w2>

where we have set w1 = ¢”(f(2)). In general, let f = f(z) and h = h(z,w) be C"
functions and let

OH1(z,w,w1)
awl

¢"(f(2))f'(2)

Hy(z,w,wi) = W (z,w) + h, (2, 0) [ (2)w,

and
aHk 8Hk 6Hk

Hip1(z,w,we, .y Wy1) = 07 + f’(z) (a—wwl + -+ a—wkwk+1>

for k > 2. Then Hy(z,w,wy, ..., wx) is a C"~* function and

wy) 1
Hi(z,w,w,...,w) = Pp(z,w,w1) + Qr(z, w,wy) + Ri(z, w,wy, ..., wx_1), (4.57)

where
5k OFh( o
) =320 I () wh, (458)
Qe ug) = P (1)) (1.59)

and Ry (z, w, w1, ..., w,—1) is a (k+ 1)-variate polynomial with coefficients which are
C"=* functions in z and w. Furthermore, if ¢(2) is a C" solution of (4.49), then

0" (2) = Hilz, 0(f(2)),¢'(f(2)), -, 6 (F(2))), b =1,2, 07 (4.60)
Under the additional analyticity assumptions on h, f, it is easy to see that for every
positive integer k, Hy(z,w, w1, ...,wg) and Rg(z,w,wy, ..., wk—1) are analytic over
{(‘Z? W, Wi, .- UJk)| (Za ’I,U) € Q} .
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Now that ¢(z) in (4.53) is a formal solution of (4.49), we infer from (4.60) that
m=ci, N2 =2, ..., np = kleg, ... (4.61)
and
M = Hi (&m0, k)

Theorem 4.12. Suppose f(z) defined by (4.51) is analytic on B(&;0¢), and h(z,w)
defined by (4.52) is analytic on the dicylinder Q0 defined by (4.50). Suppose further
that (4.55) or (4.56) is satisfied. Then the formal solution ¢(z) given by (4.53) is
analytic on a disk B(&;0), and ¢(z) is unique in case (4.55) while ¢p(z) depends on
a parameter in case (4.56).

Proof. Since 0 < |b1| < 1, there is a positive integer > 1 such that

e (&m) [F'(©)]7] < 1. (4.62)
We can also find numbers v € (0,1), 01 > 0 and d € (0, 7) such that for |z — &| < o1
and |w —n| < d,

B, (z,w) [ (2)]"| < v (4.63)
Furthermore, for any positive numbers My, ..., M., we can find Lg, L1, ..., L,_1 and

L, = v such that for any (z,w’, w},...,w".), (z,w”,wy, ..., w?) in B(&; 01) x B(n; d) x
B(m; My) x -+ x B(n,; M,.) (where 1, ..., ) are given in (4.61)),

K
|H, (2,0, wh, ooy wl) — He(z,w" wy,...,w!)| < Lo |w' —w"| + ZLk |wj, — wy| .

k=1
(4.64)
Let
P(z)=n+> c(z—¢)
i=1
and pick a positive number K such that for z € B(£;01),
1—v
[ Hy (20,1, e 00) = Hi (€ 7,701, 0y m0)| € —5— K-
Also pick o3 > 0 such that when |z — §| < 0 < g9,
" K
|P(z) —n| <d— ma (4.65)

In view of 0 < |b1| < 1, there is some positive number o3 such that for |z| < o3,

1f(2) =€l <[z —¢].
Finally, pick A € (0,1) and ¢ which satisfies

0 < o <min{l,09,01,02,03},

T k k

o o
Sl &+ KL < d

— k! r!
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r—1r—k i r k

o o 1—v
E E Ly, |t T +K E Lr—kﬁ < 3 K
k=0 i=1 k=1

and
r—1 O.r—k
Y Li—=+v<A<l
— (r—k)!

Let S be the set of functions of the form

oo

¢(z) = P(z) + Z un(z —&)" (4.66)

n=r+1

which is analytic in B(¢; ), with ¢(")(z) continuous on B(£; ), and
‘(b(r)(z) —Nr

The set S is nonempty since P belongs to it, and is a complete metric space when
equipped with the usual linear structure and metric

por,62) = s |00 (2) - 0§ (2).

z€B(&;0)

<K, z€ B(&o0).

Note that in view of Example 3.9,

swp [0 (2) - 0 ()] <
2€B(&;0)

r—k

(:—k)lp(

b1, 02) - (4.67)

Define a mapping 7" on S by
(T9)(2) = h(z,¢(f(2)))-
Since for z € B(£;0) and ¢ € S,
|¢(2) = nl = [6(z) = P(2)| + |P(z) — ]

<% sw [67) - n
* 2€B(&0)
<d,
T¢ is analytic in B(¢;0). In view of the properties of H,, ¢(f(2)),...., o (f(2)),
the function

+ sup [P(z) -1
2€B(&;0)

(T$)")(2) = H(2,0(f(2)), -, 67 (f(2)))
is continuous on B(&;0). Also, T¢ can be expressed in the form (4.66). Finally, we
will show that for z € B(&;0),

(7)) =
To see this, note that in view of Example 3.9, the function

r—1 (k) r—1
D= ci(z— &) — 6" () — i, _gyi—k
o) —n=Yel=e) | =) =Y =9

<K.
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satisfies
r—k—1 ) . _ A\r—k 1
WD -m= Y B gy E / (L=t 160 (¢ + 1z — ©))
=1 1. (7" — k — 1). 0
so that
i r—k
Hence,

H(2,0(f(2)), ' (f(2))s s 0 (£(2))) = Ho(&,mym, ooy )

H(2,8(£(2)), 8 (f(2))s -, 6 (f(2)) = He(zomm0, s mr)
+ |H7“(Z7na m, "'7777“) - HT(§7T)’ M- 777’)|

|(T6) (=)~

<

r—1
< Lolo(F(2) =l + > L [6® (£(=)) = me
k=1

1—v

[0 (f(2) = |+ S EK
r—1r—k 1—v
§;§Lk|nk+z +K2er -I-VK-I- K
1—v 1—v

K —K K
< B + 5 +v
=K.

These show that T'¢ € S.
Now by means of (4.64), (4.67) and

ZLk [tr<Aa<l,
we see that
p(T61,Ton) = sup_|(Ton)(z) — (T6))(2)
z€B(¢,0)
< sw |Lolor(f(2) — 62/ (D) + D Le |6 (/()) é’“><f<z>>]|
z€B(&,0) k=1
< Lo { sup _|¢1(z) = da(2)[ +)_ L sup ]qﬁ ¢5’“><z>\}
z€B(&,0) k=1 ZGB(f o)
Z ,P (61, ¢2) + Lrp(o1, $2)

=0
(¢17¢2)'



Functional Equations without Differentiation 121

By means of the Banach contraction theorem, (4.49) has a solution in S. The proof
is complete.

Example 4.18. Consider the equation
P(f(2)) = (¥(2))", (4.69)

where p is a positive integer greater than or equal to 2. Suppose f(z) = 2PF(z)
where F is analytic in B(0;d) and F(0) # 0. Then (4.69) has a solution (z) which
is analytic on a neighborhood of the origin and satisfies ¢(0) = 0 and ’(0) # 0.
Indeed, pick ¢ such that ¢?~! = F(0) and consider

9(2) = (F(2)o(f(2))"" (4.70)
where u'/P denotes the branch of the root function in a neighborhood of u = ¢? for

which (cp)l/p = ¢. By Theorem 4.12, equation (4.70) has an analytic solution ¢(z)
defined over a neighborhood of 0 and ¢(0) = c.

4.6 Notes

The Analytic Implicit Function Theorem 4.1 is well known and is believed to be due
to Cauchy. The presentation here is based on Fichtenholz [63]. More information
can be found in Krantz and Parks [101]. It is interesting to note that the basic idea
of the proof is to make use of the Newton binomial series as a majorant!

The results in the section on polynomial and rational functional equations are
obtained in the processes of deriving analytic solutions of other functional equations
(see later discussions).

The linear functional equation (4.14) is studied by Li [112], in which Theorem
4.3 is obtained.

The linear functional equation (4.15) is also studied by Li [112], in which The-
orem 4.4 is also obtained.

Equation (4.16) and the corresponding Theorem 4.5 are in [145].

Equation (4.26) has been studied by Smajdor and Smajdor [210], Myrberg [145],
Li and Si [125] and Kuczma [105, 106]. In Kuczma [105], Theorem 4.7 is given.

A Chapter on Schroder equation (see Schroder [173]) can be found in Kuczma
[104], in which more references can be found. A new reference is Smajdor [209].
Theorem 4.10 is due to Siegel [203].

The same method of proof of Theorem 4.11 found in [125] can be used to deal
with a more general equation of the form

F(2) = ¥(az) + F(2).
=1

Equation (4.69) is the Bottcher equation which is a special conjugacy equation.
Suppose f is analytic on the unit disk D, maps D into itself, and can be expanded
as f(2) = arz® + app128Tt 4+ -+, where ar # 0 and k > 2. Cowen [43] gives a
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necessary and sufficient condition for the existence of single-valued analytic solutions
defined on all of D to the Bottcher’s equation. It is seen in [43] that the only
non-zero solutions occur when k& = m. There is always a solution of the equation
¥(f(2)) = (¥(2))* that is analytic and univalent in a neighborhood of the origin
(see Valiron [216]).

Implicit function theorems for equations (4.20), (4.49) and more general equa-
tions such as

(I)(Z) = H(Z’(I)(fl(z))v"'7(I>(fm(2)))7 z€C,

where @ is the unknown function, and f1,..., f;, as well as H are given complex
valued functions, can be handled by the Banach contraction theorem as can be seen
in Smajdor [205-208], Matkowski [135], Baron et al. [15].



Chapter 5

Functional Equations with Differentiation

5.1 Introduction

A differential equation is an equation that involves an unknown function and its
derivatives. Differential equations play an extremely important and useful role in
applied mathematics since they are used to model natural evoluntionary processes
in which the unknown functions and their rate of changes are involved.

It may occur in some natural processes that the unknown function is involved
in an indirect manner. For instance, the following relation

ffe)y=ft-1)

states that the derived function of the unknown function f is equal to the function
f translated one unit to the right. Such an equation or similar ones arise when
the rate of changes at time t of the unknown processes are influenced by the past
histories of the processes. We will grossly call such equations functional differential
equations. Nowadays, functional equations with differentiation can be much more
complicated than the functional differential equations and may involve operations
of iteration, composition, integration, etc., besides the usual algebraic operations.

Recall our very first example in this book which is concerned with finding a
solution y = y(¢) to the equation

dy
=y,
at — "
and the condition y(0) = 1. If we assume that y is an analytic function on a

neighborhood of 0, then y(t) = a(t) for ¢ in the open interval B(0; p(a)) for some
sequence a € [N. By Theorem 3.7, y/(t) = @ (t) = Da(t) for t € B(0;p(a)). Thus,
from Da(t) = ry(t) = ra(t) and Theorem 3.18, we have Da = ra, that is,

(k+ 1)agy1 = rag, k€ N.

~{x)
k! keEN

123

Since y(0) = ap = 1, we see that
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Finally, by the ratio test, we see that

Qi1
ag

ki»n;o‘k—kl

lim =

k—oo

Thus p(a) = oco. This means y = a(z) is an analytic function on R, and since
Da = ra implies y'(t) = ry(t) for t € R, it is the unique analytic solution of our
equation satisfying y(0) = 1.

Based on similar ideas, we may obtain many existence theorems for different
types of ordinary and partial differential equations. Some of these equations have
been discussed quite extensively and systematically in standard texts (see e.g. Hille
[78], Balser [13]), while others including the functional differential equations are
only reported in different research papers. We will present a variety of existence
results in this Chapter, but more attention will be paid to the less known and more
recent results in the literature for obvious reasons.

5.2 Linear Systems

Recall that a matrix function B(t) of one variable is analytic at ¢ = ¢¢ if all its
component functions are analytic at tyo. The initial value problem

Z'(t) = A(t)z(t), x(to) = xo (5.1)

is now studied under the condition that the m by m matrix function A(¢) is analytic
at t = tg. Such a point is also called an ordinary point of the differential system
' = A(t)z.

Assume that x(t) and A(¢) are respectively analytic functions of the form

a(t) =Y ax(t —to)", (5.2)
k=0
and
A(t) = Ax(t —to)* (5.3)
k=0

in a neighborhood of the point tg, say B(to;p), where we interpret the above no-
tations as an abbreviation for simultaneously writing component functions. Then
inserting these expressions and employing the Unique Representation Theorem 3.8,
we see that

k
(k4 Dzpsr = Y Akmm, k€ N. (5.4)

m=0
Hence, given x(, we can recursively compute x1,x2,... in a unique manner which
proves the uniqueness of the analytic solution z(t). To see that (5.2) is indeed
an analytic solution, we may assume without loss of generality that x( is not 0 for
otherwise x,, = 0 for all n. We only need to show that it converges in a neighborhood
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of tg. This is accomplished by finding majorant functions for the components of x ().
To this end, first observe that the convergence of the series in (5.3) implies, in view
of Cauchy’s Estimation (Theorme 3.26), that for 0 < r < p, there is some M,. > 0
such that

| Ak

— keN,

where |[|-|| stands for a natural norm for matrices. Let the sequence ¢ = {ci} o be
defined by co = ||| and

(k+1)cps1 = MZ ———Cm, k€N,
Then we may conclude by induction that cr /<0 and [|zg[| < ¢y for k € N, and
k
(k + 1)Ck+1 = (MT + ;) ck, ke N.

By means of the ratio test, we see that {r’-c} is absolutely summable for any
r’ € (0,7). Since r is an arbitrary number satisfying 0 < r < p, we see further that
p(c) = p. Finally, since each component function of z(¢) is majorized by ¢(t), we see
that x(t) defined by (5.2) is an analytic solution on B(to; p).

Theorem 5.1. Suppose the m by m matriz function A(t) is analytic at each point
t in an open set S of R. Then for every ty € S, there exists a unique vector function
x(t) analytic on the largest open ball B(to;p) with center tg contained in S such
that ' (t) = A(t)z(t) for t € B(to; p) and z(tg) = xo.

We remark that with the help of a monodromy theorem (see e.g. page 225 in
Balser [13]), we can extend the above local existence theorem into a global existence
theorem.

We remark further that the above theorem holds if the functions involved are
defined on subsets of the complex plane. The proof is almost the same with minor
modifications.

Example 5.1. Consider the differential system

YO _ (01 (yl0)
Z'(¢) 11 z(t) )
Since the coefficient matrix is analytic on R, by Theorem 5.1, it has an unique

solution (y(t), z(t))" which is analytic on R and satisfies y(0) = ag and z(0) = by.
Furthermore, if we let y(t) = a(t) and z(t) = b(¢), then in view of (5.4), we see that

w0 () = (1) (3) ren

Since y(0) = ap and z(0) = by, we see that

(z:)={%(?i>‘“(zs>}@
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Hence,

[e%S) k
y(®)) _ " (01 [ao
(z(t)>_zk! 11) \p ) 158
k=0
We remark that when a scalar linear differential equation can be expressed as

a linear differential system, then the above theorem can be applied. For instance,
the following equation

y"(t) —y(t) =0, (5.5)

(4 =(00) (%)

Thus an analytic solution of (5.5) exists. However, to find the explicit solution, it
is sometimes easier to proceed in a direct manner illustrated as follows.

We first assume that y(t) = @(¢) is an analytic solution of (5.5) on B(0;p(a))
for some a € IN and y(0) = agp = o and y'(0) = a3 = 0. By Theorem 3.7, y"(t) =
a’(t) = 52\a(t) for t € B(0; p(a)). Thus, from y”(t) = y(t) we have D?a = a, that
is,

can be written as

(k4 1)(k+2)agye = ak, k € N.

Since ag = a and a; = 0, we may calculate

_ @ _ +
asy = ek agk+1 =0, k € Z7.
This shows the uniqueness of the analytic solution
_ O o
k=0
If o« =0, then y(x) = 0 is analytic on R. If a # 0, note that for ¢ # 0,
, a (2k)! 1 . |t?]
| S——— U N 5 W L B
b | 2(k + 1))! a 2% ke 2k 1 2)(2k+ 1)

Thus y(x) is analytic on R.
Similarly, if we assume that z(¢) = b(t) is an analytic solution in B(0; p(b)) for
some a € IN and z(0) = by = 0 and 2/(0) = by = 3, then D?b = b is valid and
B +
bor, =0, b = keZz™.
2k y D2k+1 2kt 1) €

As before, we may show that
A(t) = 3 =gk

24 2k + 1)!

is analytic on R.
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Therefore the radius of convergence of a + b is 0o, which follows from the fact

that the sum
o o
Z agit®® + Z bo 1t 2T
k=0 k=0

is convergent. Finally, the analytic function w(t) = m(t) over R is the unique
analytic solution of (5.5) satisfying w(0) = o and w’(0) = .

The same method can be used to find analytic solutions for linear ordinary
differential equations with nonconstant analytic coefficient functions. For instance,
consider the second-order equation

v +p@)y +q(2)y=0. (5.6)

An important fact about (5.6) is that the behavior of its solutions near a point
xo is determined by the behavior of p (x) and ¢ (x) near this point. If p(x) and
q (z) are analytic at xq, then z = x¢ is called an ordinary point of the equation. A
solution is sought of the form

y(z) = a(z — o), (5.7)
where a € IN. For instance, if we consider equation (5.6) with p (z) = 3z/ (2% + 4)
and ¢ (z) = 1/ (% 4+ 4), or in working form

(2 +4)y" + 32y +y =0, (5.8)

then 0 is an ordinary point and the substitution y(x) = a(x) leads to
__(+D)
2= T+ 2)
Given ap and a1, we may then find the terms in the series. To treat convergence, we

an, n € N.

first find the radius of convergence of the sequence p(a) from the recurrence formula
involving two terms such as

angp = f(n)an, neN. (5.9)

Example 5.2. Suppose the sequence a = {ax},n is generated by the recurrence

formula (5.9) where p € Z™. Then
1 1/p
s = 17 ] (5.10)
pla) L*w
(with the convention that +%.O = 0). The idea of proof has been explained. More
specifically, note that

lim [
k—oo

If limy oo | f(PK)| = fp < 00, then when |z] < 1/f1}/p7 we have

Opk+p+ts
apk+s

ol | = iy 7k + )" =l Jim, 1)

Zapk+sxpk+s <00, s=0,1,2,....,p— 1.

k=0
Thus z - a is summable, which shows that p(a) > f, /% If [z| > 1/fs/" then z - a
is not summable, thus p(a) < f;l/p. The case where limy_, |f(pk)| is either 0 or
oo is similarly proved.
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Example 5.3. Consider equation (5.8). Application of (5.10) now gives

42k +2)|"?

kinéo‘ 2% + 1

pla) =

Note that the radius of convergence of the series solutions are equal to the distance
of the ordinary point (z = 0) to the nearest singularity +2i of the rational function
1/(22 +4).

Example 5.4. Consider the Airy’s equation y” — xy = 0. Substitution of solution
y to Airy’s equation about the ordinary point zo = 0 in the form of (5.7) gives

a
n+t3 = ( 2 n €N,

n+2)(n+3)’
with ag = 0, which is of the form (5.9). Application of relation (5.10) gives
pla) = lim |(3k+2) (3k + 32 = cc.

Example 5.5. Consider the Chebyshev’s equation
1
(1-2%)y" —zy + V=0

The point £ = 0 is also an ordinary point for Chebyshev’s equation so that the
substitution (5.7) with zg = 0 leads to

n? —1/4

n+2 = 7T 3 an, N. 5.11
R P N D AL (5.11)
The application of (5.10) gives

1/2
(2k+2)(2k+ 1)

(2k)* —1/4

pla) =

5.3 Neutral Systems

Let J be an interval in [0, 00). Consider the system [35]
te' (t) +ca’ (t/a) = Az (t)+ F(t), t € J C[0,00), (5.12)
under the condition
z(0) = zo € R¥ (5.13)
where F : J — RF is analytic and is of the form

F(t)=Y Ft", F,eRF teJ, (5.14)

n=0

A is a real k by k nonsingular matrix, ¢, € R and o > 1, ¢ # 0.
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Let

t)=> ant", z, € R (5.15)
be a formal power series solution of (5.12) and (5.13). Then
"(t) = annt"_l "(t/a) = ann Lmngn=1, (5.16)
n=0

Substituting z(t) into (5.12), we obtain
(n—1)zp_1 + enat "z, = Axp_1 + F_1, n € ZT,

so that
1
Ty = Ea”_l {A—-(n—=1)Exy1+F, 1}, neZt, (5.17)

where E is the identity matrix. Thus

1
xr1 = E (A.Z‘() —|—F0),

« «
IQ:%[(A—E)l'l—FFl]:@(A—E)AJZ()—F 2(A E)F0+—F1,
062 063 062
3 3 3—1(1—1)/ 2-1
@ Ul .
=33 [[A-6-HE )I0+Z T H[A—(3—J)E} £,
j=1 j=1

and by induction,

n—1)(n+l-1)/2 ["Z *l

2 llal

Theorem 5.2. Suppose det(A —nE) # 0 for n € ZT. Then for any nonzero xq in
RF, the homogeneous system

2’ (t) 4 cx' (t/a) = Az (t), t € J C [0, 00), (5.19)
does not have any nontrivial analytic solution that satisfies x (0) = zy.

Proof. Any formal solution z(z) of (5.19) that satisfies (0) = x¢ is of the form

[[1A—-(n—34)E]| . (5.20)
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In view of (5.17), we see that
tn=—(a"""/c)(E—(A+E)/n)xn_1.

Since a > 1 and ||A + E|| is finite, there exists a m € Z* such that

1

r:za(l——||A—|—E|) > 1.

m

Set t = ca~™. Then
1
a(l— —||A—|—E|> >r keN,
m+k
and
Ty =—a""" Y E~(A+E)/n)Tn_1, (5.21)

where z,, = x,t". We have

_ 1 _
Tm+1 — m(A + E)Emt1

[Tl = [

— 1 —
> fol (1l =~ 14+ Bl [T

1 —
2 fol (1=~ 14+ B1) [

27 [Tl
By induction, we see that
[Tmsrwll = 7 [T, k€ ZF

and hence lim,, .o ||Z,, || = +o00. This shows that z(t) = Y .7 ant" = > 00 Tn

diverges for any ¢ different from 0. The proof is complete.

Next, let A has real and simple eigenvalues A1, Ag, ..., Ay, only. Let A be the
Jordan canonical form of the matrix A so that

A=TAT™! (5.22)
for some nonsingular 7' € R¥**, Let

z(t) =Tz (t) (5.23)
and

z2(0) =Tz (0) = Txo = 2.
Then (5.19) can be written as
tT 12 () + T (t/a) = AT 2 (t), t € J,
so that
t2' (t) +c2' (t/a) = Az (t), t € J. (5.24)
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Let
2(t) = (21(t), 22(¢), ...,Zk(t))T = Z Zmt™,
m=0

where 2, = (Zm1, Zm2, .-, Zmr )|, be a formal power series solution of (5.24). Then

2m =TT, m € ZT, (5.25)
and
am—1 am(mfl)/2 m )
Zmi = e P\i — (m — 1)] Zm—1,i = W H P\i - (m - J)] 204 (5'26)

j=1
fori=1,2,...,kand m € Z+.
Note that when one of the eigenvalues Aq, ..., A, say, A¢, is a positive integer,
then
amim—1)/2 ™M
[Ae = (m = j)] 20¢ = 0
j=1

A =
mé mlem

for m = A¢ +1,A¢ + 2, ... . This shows that

Ag
2 (t) = zZmet™ t € J,
m=0

which is a polynomial in ¢.

As a consequence, when the eigenvalues of the matrix A are simple positive
integers, then in view of (5.23), we see that the homogeneous system (5.23) has a
unique analytic solution that satisfies 2(0) = xg. Each component of this solution
is a polynomial.

Next, we consider the nonhomogeneous equation (5.12) when F(¢) is a polyno-
mial.

Theorem 5.3. Suppose
M
F(t)=) Fut", te
n=0

Suppose further that det(A — nE) # 0 forn = M + 2, M + 3, ..., and that for any
X € Rk,

aMm-1)/2 [ M
! o
M—1 M—-1-1
N (M—=D(M+1-1)/2 ‘
> e [T (A--5)E)| Al
1=0 : j=1

Then there does exist any analytic solution x(z) of (5.12) on J that also satisfies
z(0) = zo.
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Proof. In view of (5.17), we see that a formal power series solution z(t) =
Yoo o wnt™ of (5.12) satisfies
T, = L {[A-=(n—1)Elzp_1+Fy1}, n=1,.,M+1,
and e
tn= A= (=) Elay ), n=M12,...
Thus, for any oy € R*, x,, is uniquely determined up to n = M + 1, and
Tare1 = L (A= ME)xy + Ful.

Mc
Furthermore, in view of (5.18) and the condition on Fj, we see further that Fy; #

(ME — A)xpr and zpr41 # 0. For n > M + 2, we can determine x,, from
a1 ( A+ E)
Tp = — FE— Tn—1-

c n
We may now proceed as in the proof of Theorem 5.2 to show that the corresponding
formal power series solution diverges for all nonzero ¢. The proof is complete.

Let us investigate the existence of analytic solutions for the nonhomogeneous
problem (5.12), based on the analysis of structures of the spectrum of the matrix
A. A substitution

z(t) =Tz (t), (5.27)
where T' € R*** is a real nonsingular matrix, allows us to write
2(0) =Tz (0) =Txo = 20

and (5.12) in the form

tT= 2 (t) + T2 (t/a) = AT 2 () + F (1), t € J,
or, equivalently,

t2' (t)+c2’ (t/a) = Az (t) + B(t), t € J, 2(0) = 2o, (5.28)
where A = TAT~! and B (t) = TF (t). Let

2(t) = (21 (), 22 (1) o2k (1) =D zat", 2, €RF L€, (5.29)
n=0
be a formal solution of (5.28), and let

B(t) = (Bi(t), ., Bi(t))' = > But", By = (Bp1, ... Bui)',
n=0

then
zi() =) zit", z €R, i=1,2,..k (5.30)
n=0
and )
i = [N — (n—1)] 201t + Buoritn €25 i=1,2,.. k. (5.31)
nc

Theorem 5.4. Suppose the eigenvalues of the matriz A are simple positive integers
Ay ooy A If each component B;(t) of B(t) is a polynomial of degree less than or equal
to \; — 1, then for each xo € R*, equation (5.28) has a unique solution x(t) that
satisfies x(0) = z¢ and is a polynomial of degree no greater than max{A1, ..., \g}.
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Proof. It suffices to look at ¢ = 1. Since

n—1
2= —{— (=D B 1<n < A,
and
O - D =
Znl = —\n — z , n = g eeny
1 e 1 1 1
thus,

Zn1 =0, n> X + 1.
It follows that

A1
=3zt t
n=0
The proof is complete.

As a direct consequence, if the eigenvalues of A are simple positive integers,
and if each component F;(t) of F(t) is a polynomial of degree not exceeding
min{\, ..., \x} — 1, then for each zy € RF, equation (5.28) has a unique solu-
tion z(t) that satisfies (0) = z¢ and is a polynomial of degree no greater than
max {1, ..., A} .

By (5.15) and (5.18), the solution of (5.12) can be written as

() =X (o +Y (1),

where the ‘fundamental matrix’ X (¢) and the vector Y (t) are determined as

maxji<i<g i n(n—1)/2 L
xw= Y ——|([[a-t-ne|e
n=0 =t

and

maxi<i<k Ai n— ll'an D(n+l—1)/2 n—1-1

Y (t) = Z ZT i‘[ (n—j) E] | Rt~

Jj=1

5.4 Nonlinear Equations

We consider the simple nonlinear differential equation

dy
- . 5.32
P AC) (5.32)
which includes the following nonhomogeneous equation
Fit)=G(F @)+ HI(), (5.33)

where G and H are known functions.

~

Theorem 5.5. Suppose G(x) = g(x) and H(t) = h(t) are analytic over some
B(0;6). Then equation (5.33) under the condition F'(0) = 0 has an analytic solution
of the form F(t) = b(t) over some B(0;¢), where by =0 and by = go + ho.



134 Analytic Solutions of Functional Equations

Proof. Let F(t) = b(t), where by = 0, be a formal solution of (5.33). After
substituting it into (5.33), we see that

Db=gob+h.
Hence, by = gobéo> + ho = go + ho and
(n+1) b1 = (g0 b+ hn =Y gk + hn (5.34)
k=0

for n > 2. The sequence {b,}, ., can be uniquely determined by (5.34), and thus
the formal solution F'(t) is found. Next, we will show that F(¢) is analytic on some
B(0;¢). To this end, note that by Cauchy’s Estimation (Theorem 3.26), there is
some p > 0 such that

lgn| < p", n € ZT. (5.35)
Since (5.33) is invariant under the transformations F' (t) = pF (p~'t) and G (z) =
pG (p~'z) :
F'(z)=G(F(qt)) + H (p™'t),

and
G(z)=G(p'z) = Zgnac” = Z f)—Zacﬂ
n=0 n=0

where |gn| = |gn/p"| < 1 for n € Z*, we may thus assume without loss of generality
that |g,| < 1 for n > 1. Next, we consider the power series function () = u(¢),
where ug = 0,

u1 = |go| + |hol ,

and
n
Upy1 = ZugC> +|hnl, n€ZT.
k=0
By induction, we may easily show that

|bn| < up, n€ZT,

thus F'(t) is majorized by 7(¢). Note that, by Example 4.11, the power series function
~(t) is an analytic solution of the implicit relation

Pl == ool + ot —t (2 + 2 @) =0

near the origin. Hence F'(¢) is also analytic in some B(0;¢). The proof is complete.

As a corollary, if G(z) is analytic on some disk B(0;¢), then the equation
F'(t)=G(F (1)) (5.36)
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under the condition F(0) = 0 has an analytic solution of the form
F(t)=got+ Y _ gnt"
n=2
on some B(0;¢).
Theorem 5.6. Suppose [ = f(x,y) is analytic in a neighborhood of the point

(z0,y0). Then there is a unique analytic solution y = g(x) of (5.32) in a neigh-
borhood of xo which satisfies yo = g(xo).

Proof. Assume without loss of generality that zg = yo = 0 and

fz,y) = a(z,y)

for |z| < «, |y| < 8. Assume further that g(x) :Z(x) for |z| < u < . Then by = 0.
Furthermore, in view of the Substitution Theorems 3.11 and 3.25, the composite
function a(x,b(x)) is analytic on a neighborhood of 0, so that

a(x, ZZamnx ( ) ZZZamnb,in xR = ch
m=0n=0 m=0n=0 k=0

for x in a neighborhood of 0, where {c;} € IN with p(c) > 0. The first few terms of
the sequence ¢ can be easily determined. To this end, let us write

a™ = {amn}pen>n €N

Then
ZaOn = (a© 0 b)o = ago + ao1bo + ao2b + - - = ao,

and

Z aOn + Z alnb<

= (a(o) ob) + (a( ) o b)y
= {a00b§0> + (101b§1> + aozb§2> + - } + {a10 + a11bo + a12b3 + - - }
= ag1b1 + aqo,

and in general,

t
¢ = (@D ob) + (@M ob)y_1 4+ -+ (a® 0 b)g Z
p=0

In view of (5.32) and the Unique Representation Theorem 3.8, we see from

Db(z) = a(x, b(z))
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that
b1 = aoo,

1
by = 5((110 + aop1a00),

and by induction that
t

by = Z(a(p) 0b)t—p = Pi(ago, @10, aot, -+, ao,t—1), t > 3,
p=0

where each P, is a nontrivial polynomial with nonnegative coefficients. This proves
the uniqueness of the analytic function g(z). To see that g(x) is indeed an analytic
solution, we only need to show that it converges absolutely in a neighborhood of 0.
This is accomplished by finding a majorant function for g(z). For this purpose, let
7 € (0,a) and p € (0, ). Then by Example 3.15, there is some positive constant M

such that

M
1) < Ty = 2 S A

m=0n=0
where
M
Amn = W’ m,n c N.

~

Note that any analytic solution h(z) = d(z) of the differential equation
@ _ M
dr (1—z/7)(1-y/p)

satisfying the initial condition ~(0) = 0 is a majorizing function of g(x):

di = Ao > |ago| = b1,

1 1
dy = §(A1o + Ao1Aoo) > = (laio| + |ao1| |aoo|) > b,

[\)

and by induction,
dn, = P (Aoo, A0, Ao1, s Ao n—1) > bn, n > 3.
Furthermore, this solution h(x) can be found by rewriting (5.37) as
(1 ) dy M
= T-7)

then integrating and substituting (z,y) = (0,0), we obtain

y:p<1—\/1+2]\571n(1—§)>.

Note that the function

(5.37)
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is a composite function of the form F(G(z)) where G(z) = In(1 —z/7) and F(u) =
(14+2M7u/p)'/?. Since G is analytic for |z| < 7 and F is analytic for (2M7/p) |u| <
1, we see that F(G(z)), and hence, g(x) are analytic on a neighborhood of 0 by
Theorem 3.16. The proof is complete.

We remark that since it can easily be checked that F(G(x)) is analytic for
|z| <7 (1 —e=?/(M™)) the above theorem can be stated in a more precise manner,
namely, if f(x,y) is analytic for |z| < « and |y| < [, then the equation y’ =
f(z,y) has a solution y = g(x) which satisfies g(0) = 0 and is analytic for |z| <
T(1- e_p/(QMT)), where 7 € (0,a), p € (0,8) and |f(z,y)| < M for |z| < 7 and
lyl <p.

We remark further that if f(xz,y) = a(z,y) where a is a nonnegative double
sequence, then the analytic solution found above is of the form b(z) and b is a
nonnegative sequence.

Example 5.6. Consider the equation
1 M
Y M (5.38)
« u u
(1) (1 - ;7)
in the unknown function v = wu(t), where a € (0,1) and M, r, p are fixed positive
numbers. If we rewrite (5.38) as

1 (du)\® (1 M)\ du M
— (&) (-2 )2+ ——— —m—o,
ap(dt) (a p)dt+1—(u+t)/7‘

M-y () (- )

then

du _ap ) (L

at 2 «
1
«

where

-1
Wo— AMap t+u 1_t—|—u .
(p — aM)? r r

1x3

/ 2 3

— — W —_|/]/'_|_—|/]/' + —— W24+ ...
1 1 2x4 2><4><6

B I1x3x---x(2k—1)
Z 2><4><---><(2k:) W

Since

for |W| < 1, we see that the function 1—+/1 — W is analytic at 0 and generated by a
nonnegative sequence. Thus, for a sufficiently small, the composite function on the
right hand side of (5.39) is also analytic at (0,0) and is generated by a nonnegative



138 Analytic Solutions of Functional Equations

double sequence. In view of the preceding remark, we see that (5.39), and hence
(5.38), have a solution

u(t) =Y bit"
k=1

which satisfies the additional condition «(0) = 0 and by > 0 for kK € ZT and is
analytic at 0.

There is a natural extension of Theorem 5.6: Suppose [f1(t,Z1,...,%n), -
fn(t,z1,...,2,) are analytic in a neighborhood of the point (tg,uo, ..., un). Then
there is a unique analytic solution (z1, ..., z,) = (z1(t), ..., x, (¢)) of

Ill(t) = fl(t’xl(t)’ ...,.Z‘n(t)),
1'/2(t) = fg(t,(El(t), ,(En(t)),
I;z(t) = fn(t’xl(t)’ ...,.Z‘n(t)),

in a neighborhood of ¢y satisfying (x1(to), .., Tn(to)) = (uo, .., ). The proof, in
spite of the more complicated technical detail, is similar to that of Theorem 5.6 and
hence is omitted. Instead, we consider a more specific example as follows.

Example 5.7. Consider the nonlinear differential equation
2" (t) = e~ ta?(t), (5.40)
subject to the boundary conditions
z(0) =1, 2(0) =1, z(1) =e.

Our problem is to try to find an ‘approximate’ solution. Since (5.40) is equivalent
to a system of differential equations just described, we see that a unique analytic
solution z(t) = a(t) of (5.40) exists which satisfies 2(0) = ap = 1, 2'(0) = a1 =1
and z”(0) = ay. Substituting this solution into (5.40), we see that

D3a= (=1 -w)xa'?.

Hence
k k—j .
1 (—1)
= iQk—j—i, ke N,
ak+3 (k+3)(k+2)(k+]- JZZ:O Jl a;ak J
which yields
! 1
= 50" R0
1 23
a4 = 02 — ————
47630077 25200
b g2 819 1301
> 7271058400 2 " 2116800
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etc. These lead us to

1 1 1 23
x(t) =1+t +ast’ + | —ag — — | 2+ [ =——=a2 — —— | t* +---
60 80 6300 25200

If we now solve

1 1 1 23
—r() ~ 1414 a4 (ap— — )P4 (o—ay — ) 14
e=a()m1+1+a +(60a2 80) +<6300a2 25200) ’
we obtain

3150 25031

az

Then

T(t)=1+t+axt® + ia 1 3+ La _ 2 4
B 2 60~ 80 6300~ 25200
is a candidate for an approximate solution of our problem. To check our assertion,

note that z(t) = e’ is the unique analytic solution of our problem (as can be checked
by direct verification). Now we may obtain the following supporting data:

Z(0.5) = 1.6798 - - - ~ 1.6487 - - - = ",

Z(0.1) = 1.09020509 - - - ~ 1.1052 - - - = %1,

etc.

5.5 Cauchy-Kowalewski Existence Theorem

As an application of Theorem 5.6, let us consider the following partial differential
equation in the unknown function u = u(z,y),

% = (x,ym, g—Z) , (5.41)
subject to the initial data
u(0,y) = 0. (5.42)
We will assume that f is an analytic function so that f(0,0,0,0) = 0 and
flayuo) = > aguz'y’u, o]yl Ju] <7 lo] < p.
(i,5,k, 1) EN4

The Cauchy-Kowalewski Theorem asserts the existence of a solution u = u(z,y)
which is analytic at (0,0). To this end, we first compute the partial derivatives of
u(z,y). Note that u(0,0) = 0 and

ou ou

%(0,0) =f (0,0,u(0,0), a—y(0,0)) = f(0,0,0,0) = 0.
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Furthermore, since

0%u
m = f2 (I7ya Uvuy) + f3(xa Yy, u, uy)zy + f4('x7ya Uvuy)uyy

= f2 (I7yau7uy) )
we see that
Uzy(0,0) = f2(0,0,0,0) = ao1o0-
Similarly,
0%u B
@ - fl (I, Y, u, uy) + f3('77’ Y, u, uy)uﬂﬂ + f4('77’ Y, u, uy)uymv
so that
9%u
ﬁ(ov 0) = a1000 + @0001@0100-

It should be clear by now that we can calculate all the partial derivatives of u(x,y)
at (0,0), and

9°thy,

W(O, 0) = Pats (@000, @1000, - @o00(a+5—1)) -

where P, is a nontrivial polynomial with a finite number of independent variables
and nonnegative coefficients. We have thus found a unique formal power series
solution u(x,y).
To see that the power series function
1 0°tPy
u(z,y) = ————(0,0)z%y"
@)= 2. gy » 0
(a,3)ENZ?

is analytic at (0,0), we first infer from the Cauchy’s Estimation (Theorem 3.26)
that there is some positive constant M such that

M . 4
|aijkl| < ma (Zajvkal) € N™.
Thus
(i+j+ k)M

|(l7,]kl| > Z.!j!k!(sz'f‘z+]+kpl Cijkl

for some 0 € (0,1). As a consequence,

(i+j+R)IM oy
T v~ L1 v _M
flz,y,u,v) < y kEZ)EN4 Tkl Y
. . . . i
47+ raxN\try\I fu\k v
cul x> ey e )
_ Z iljk! or r r Z p
(4,3,k)EN3 IEN
1
=M 1

()



Functional Equations with Differentiation 141

We now consider the problem

e

p Oy

In view of Example 5.6, for sufficiently small § > 0, there is a nontrivial analytic
solution

W(t)=> bt
k=1

of (5.38):
Ldw M

cd o (1)

which is analytic at 0 and by, > 0 for k € ZT. If we let
T

Ue,y) =W (5 +v).

then U(x,y) is a solution of (5.43) which is analytic at (0,0) and satisfies
U(0,9) = W(y) = S bey* > 0
k=1

for y in a neighborhood of 0. Furthermore, since
9°tPU
W(O, 0) = Pa+s (00005 €100, -+ C000(a+5—1))
> Poygp (|a0000| s latooo! 5 - |aooo(a+ﬂ—1) |)
0ty
> ——F—=(0,0),
- 6560‘6yﬁ( )
we see that U(z,y) majorizes u(z,y) in a neighborhood of (0,0). This shows that
u(z,y) is analytic near (0,0). The proof is complete.

5.6 Functional Equations with First Order Derivatives

In this section, we consider functional differential equations involving first order
derivatives of the unknown function. Sometimes it is relatively easy to find analytic
solutions. For example, we first consider a simple equation

2'(2) = z(az),

where a is a fixed complex number different from 0. We may easily show that it
has a solution of the form

0 (n(n—1)/2)

x(z) = Z Tnz”

n=0
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which is analytic at each z € C. Indeed, if we seek a power series solution of the
form

o0
x(z) = Z bp2",
n=0
then substituting it into the above equation and comparing coefficients, we see that
Db=a-b,
or
(n+ 1)bpy1 =a"by,, n e N.

Let by be an arbitrary number 7, then the sequence {b,} is uniquely determined by

a(n(n=1)/2)
bp=———n, nEN.
n.

If 7 = 0, our original assertion clearly holds. If n # 0, then

n

b
hm n+1 1 -0,

so that z(z) is analytic at each z € C.

5.6.1 FEgquation I
We consider the equation [118]
2’ (2) = G(z(qz)) + H (2), q € C. (5.44)

Theorem 5.7. Suppose G(z) = g(z), where go = 0, and H(z) = iAz(z) are analytic
on a neighborhood of the origin. If |q| < 1, then the equation (5.44) has a solution
x(2) which is analytic on a neighborhood of the origin.

Proof. By Cauchy’s Estimation (Theorem 3.26), there is p > 0 such that
gm| < p™, m > 1. (5.45)

Let z(z) = 3(2)7 where by = 0, be a formal power series solution of (5.44). Substi-
tuting it into (5.44), we see that

Db=q-(gob)+h.
Hence
b1 = hg

and

(n+1)bps1 =¢" thbﬁﬁ + hy,, n€N. (5.46)

t=1
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Note that Example 4.11 asserts that the implicit relation

Y G 1 [ R
F(z,w) = <l—p|qw+h()> 0 (5.47)

where h (2) = Y2 |hn| 2™, has a solution w(z) which is analytic on a neighborhood
of the origin and

oo
=D un",
n=0
where the sequence u = {un}, o is defined by ug = 0, uy = |ho| and

Ung1 = Zp g u$® + |hy|, n e N. (5.48)

t=1

We assert that b is majorized by u. Indeed, by = ug = 0, |b1] = |ho| = u1. Assume
by induction that |b;| < u; for i = 0,1,...,n where n > 1. Then

qn n n
|bn+1| - TL——FI thbﬁp + h” B Z |Q|tptu§1t> + |hn| = Un+1
t=1

t=1
as required. Now that b < u, thus z(z) has a positive radius of convergence. The
proof is complete.

5.6.2 FEquation II
We consider the equation

G (z) F' (x) = G (F (2)), (5.49)
where G and H are known functions.

Theorem 5.8. Suppose G(x) = a(x), where ag # 0, is analytic on some B(0;9).
Then the equation (5.49) under the condition F'(0) = 0 has the unique analytic
solution F(x) = x on B(0;9).

Proof. Let F(x) = ¢(x), where ¢y = 0, be a formal power series solution of
(5.49). Substituting it into (5.49), we see that

axDc=aoc

or,

Z (k+ 1 cgr1an-k = Z akc ,n e N. (5.50)
k=0 k=0

Since agcy = ag, 2agce + cia1 = ajc; and since ag # 0, we see that ¢; = 1 and
co = 0. Assume by induction that ¢ = 0 for k = 2, ..., n, then in view of (5.50),

(n+1)apcnt1 = anct —ancy =0,
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so that ¢,+1 = 0. In other words, F(z) = x, which is analytic for |x| < é. The proof
is complete.

Theorem 5.9. Suppose G(x) = a(x), where ag = 0 and a1 # 0, is analytic on some
B(0;9). Then the equation (5.49) under the condition F(0) = 0 has an analytic
solution of the form

F(z)=nz+ Z cnz” (5.51)
n=2
on some B(0;¢), where n is arbitrary.

Proof. Let F(x) = ¢(x), where ¢y = 0, be a formal power series solution of
(5.49). As in the proof of Theorem 5.8, we see that (5.50) holds. Since agci = ao,
and ag = 0, we may choose ¢; to be any number 1. Then co, c3, ... can be determined
from (5.50):

n n—1
naic, = 2:akc§f> — Z kekQni—k (5.52)
k=0 k=1

for n > 2. Since a; # 0, ¢ can be chosen in an arbitrary manner. Let ¢; = 1. Then
the sequence {c,}, -, can be uniquely determined by (5.52). In other words, we
have determined the formal power series solution F'(z). We will show that F(x) is
analytic in some B(0;¢). To this end, note that by Cauchy’s Estimation (Theorem
3.26), there is p > 0 such that |a,| < p"~! for n > 2. Since the equation (5.49) is
invariant under the transformations F'(z) = f (px) /p and G (z) = g (pz) /p :

g (@) f' () =g (f (),

and
= x > a,
g(x) =Y gna" =pG (—) = 5
n=1 p n=1 p
where ‘an /p"_l‘ <1 for n > 1, we may assume without loss of generality that

la,| <1, neZt. (5.53)
Next, let the power series function h(z) = Y 7 hnz™ be defined by hg = 0,
hi = |n| and

n n—1
1
hn=— (> B +> |, n>1 (5.54)
|as] k=0 k=1
Then |¢1| = |n| < hi. Assume by induction that |cx| < hy for k = 2,3,...,n — 1.
Then in view of (5.52),

n n—1
1 k
enl < (Zw el + D7 kel |an+1k|>
k=0

k=1

LS L
las| no "=

k=0
1 n n—1
_— (k)
o] <Z hy + Z hk)
k=0 k=1

< hy,.

IN

IN
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In other words, F(z) is majorized by h(z). Next, by Example 4.9, h = h(z) is an
analytic solution of the implicit relation

1 h? x
h—lgle—— (—— + -2 h) =0
nl |a1] (1—h+1—1‘>

near the origin. Hence F'(x) is also analytic near the origin. The proof is complete.

5.6.3 FEquation IIT
We consider a simple equation
f22) =2f"(2)f(2). (5.55)

Assume f(z) = a(z) is a solution of (5.55) which is analytic on a neighborhood
of 0 and generated by the sequence a = {a}, . - Substituting it into (5.55) and
comparing coefficients, we obtain

a-2=2(Da)x*a,

or
ag = 2ayap,
2a1 = 4asap + 2a%,
and
2"%a, = 2(n+ 1)agans1 + ZQkakan+lfkv n>2. (5.56)
k=1

In view of the first two equations, there are three cases: (i) ag = 0, a3 = 0; (ii)
ap =0, a; = 1; and (iii) ag # 0. In the first case, we may show by induction that

ar =0, k€ N.

Thus the trivial analytic function is an analytic solution of (5.55). In the second
case, we substitute n = 2 and n = 3 into (5.56) to obtain

4as = 2a1a2 + 4asa; = 6asg,
and
8az = 2a1a3 + 4a§ + 6aza; = 8agz + 4a§

respectively. Thus a2 = 0 and ag is arbitrary, say, as = «/3!. Then by induction,
we may show that

asn =0, n €N,

and

a'ﬂ
ni1 = ———, n € N.
N L TR
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Indeed, the fact that as, = 0 for n € N is easily seen by induction. Next, assume
by induction that asx 1 = ¥ /(2k + 1)! for k = 1,2, ...,n, then in view of (5.56),

{22"%2 — (2n+3) — 1} aspis

~ 3amt! 5antl N (2n + 1)an*!

C3l12n+ 1) 5!(2n —1)! (2n + 1)!13!

[ (2n+3)! (2n + 3)! (2n + 3)! antt

Sl 21(2n+ 1) 4l(2n —1)! (2n)!13! | (2n+ 3)!
that is,
{22n+2 _o2nt3) _ C(2n+3 }a _ {C(2n+3) C(2n+3 LC 2n+3)} ot

2n+2 2n+3 = 2 2 (2n + 3)' .
Since

n 2n+2 2n+2 2n+2 2n+2
2212 = o) 4 ¢f O ot

we see further that

O/H_l

a2n+3 = m

as desired.
It is easily checked that the radius of convergence of the sequence a is p(a) = oco.
Thus the power series function

2k+1
= b e C7
; 2k + 1) :

is an analytic solution of (5.55). Note that when o = 0, a(z) = 0 for z € C; when
a >0,

=R 1 & (al/?z 2kt .
a(z) = a1/2Z ((2]{_’_)1)' =7 sinha'/?z, z € C,
k=0 ’

and when o < 0,

%) 2k+1
)1/2 1 )
S = e s seC

E\)

In the third case, let ag = 8 # 0, then a; = 1/2. We may show that

1

+
i1 M4

Ay =
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Indeed, assume by induction that ap = 1/(k!2¥3*~1) for k = 2,3,...,n. Then in
view of (5.56),

1

_— 2"n— 2 ntl—

1
"2+ 1)8 {(2 e Z et k}

(n) 1
{ —n- ZC } (n+ 1)12nt+1gn
n N~ )

1
~ (n+1)l2ntign’

It is again easily checked that the radius of convergence of the sequence a = {ax },cn
is p(a) = co. Thus the power series function

=1 z
a() = p —(—) 5exp{ } cec
kzzok! 23 253

is an analytic solution of (5.55).

an41 =

Theorem 5.10. Analytic solutions of (5.55) on C exist and are uniquely deter-
mined by the values of their zeroth, first, second and/or third derivatives at the
origin. More specifically, (1) if f(0) = 0 and f'(0) = 0, then the trivial func-
tion f(x) = 0 is the only analytic solution of (5.55), (2) if f(0) =0, f'(0) =1 and
17(0) = 0, then the identity function f(z) = z is the only analytic solution of (5.55),
(3) if f(0) =0, f/(0) =1 and f"(0) = a > 0, then f(z) = a~/?sinha'/?z is the
only analytic solution of (5.55), (4) if f(0) =0, f'(0) =1 and f"'(0) =~ <0, then
the function f(x) = (—v) /2 sin(—v)/2z is the only analytic solution of (5.55), and
(5) if the additional condition f(0) = 3 # 0 is imposed, then f(z) = Bexp{z/(20)}
is the only analytic solution of (5.55).

5.6.4 FEquation IV

Let us now consider functional differential equations of the form
P q
= aiy (N2) + Dby (12) + ey (2). (5.57)
i=1 j=1
Theorem 5.11. Suppose 0 < A1, ..., Ap, i1, ..., g < 1. Suppose aq, ..., ap,b1, ..., bq, C

are nonnegative numbers and a1+ - --+a, < 1. Then (5.57) has a solution y = y(z)
which is analytic on C and satisfies y(0) = 1.
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Proof. We first assume that
= dn2", (5.58)
n=0

where dy = 1, is a formal power series solution of (5.57). Substituting it into (5.57),
we obtain

P q
(1 — Zaz) di = ij +c,
i=1 J=1

and

q
(n+1)dpt1=(n+1) <Zal ) dpy1 + iju? d,, + cd,
j=1

for n > 1. Thus

P b +c
d = 5.59
LTS o (5.59)
and
P i bjul +c J
T )= aam) "
for n > 1. Since a1 + - - - + ap < 1, we see that

(5.60)

p
Zai)\? <1, neZ".
i=1
Thus {d,},-; can be uniquely determined by (5.59) and (5.60), and d,, > 0 for
n > 0. Furthermore, from our assumptions on \; and p;,

i dn+l — I Zq bun+c -0
nl—>ngo dn _ningo(n—kl)(l— i lazA)_ '

This shows that the series (5.58) converges for all z € C. The proof is complete.

5.6.5 FEgquation V

Consider the equation [184]

2 (2) = Z A; (2)x (F; (2)) + H (2), (5.61)

a special case of which is
2'(z) = A(z)z(F(2)) + H(2). (5.62)

Theorem 5.12. Suppose A(z) = a(z), F(z) = f(z) and H(z) = Tz( ) are analytic
over a neighborhood of the origin. Suppose further that F(0) = fo = 0 and |F'(0)| =
|s| € (0,1). Then (5.62) has a solution of the form x(z) = b( ), where bg = 0 and
b1 = hg, which is analytic over a neighborhood of the origin.
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Proof. Let z(z) = b(z) be a formal power series solution of (5.62). Then
substituting it into (5.62), we see that
Db=ax(bof)+h. (5.63)
Hence
n n k ]
(4 Vb1 =Y ani (b0 fly+hie = an | D 07 | + i, k €N,
k=0 k=0 3=0
If we let by = 0, then by = hg, and {b,},_, can be uniquely determined. To show
that the formal solution is also analytic, we consider
y(2) = 2A(2)y (F(2)) + zH(2), (5.64)
where
A(z) = lal(2), F(2) = |f(2), H(z) = |h[(2).

In view of Theorem 4.6, (5.64) has a solution y(z) = u(z), where ug = 0, which is
analytic over a neighborhood of the origin. Furthermore, by substituting y(z) =
u(z) into (5.64), we see that

w= e lal (wo |f]) +hx |A.

Now it suffices to show that b is majorized by y. Indeed, by = 0 < ug. Further-
more, from (5.63),

Fix Db = {0,b1,2b2,3b3,..} = i a* (bo f) + hix h.
Hence,
by =(hxax(bof)+hxh), < (hxl|a|l*(uwo|f])+hx|h|); =u,

and by induction, b, < u, for all n > 2. The proof is complete.

By similar methods, we may also deduce analytic solutions for the more general
equation (5.61).

Theorem 5.13. Suppose Ai(z), ..., Ai(2), f1(2), ..., fi(z) and h(z) are analytic for

o — €| < R, f1(€) = fo(€) = -+ = fi(€) = & and FI(€) = 5: for i = 1,...,I, where
0 < |s;| < 1. Then (5.61) has a solution of the form

z(2)=n(z=&+ > ba(z=8", n="h(9), (5.65)

which is analytic on a neighborhood of the point &.
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5.6.6 FEquation VI

Consider the equation [178]

m

G(2) F'(2) =Y _ ;G (F(g2)) (5.66)

Jj=1

where p1, ..., Pm, q1, --., ¢m are complex numbers. Note that (5.66) is an extension of
(5.49).

Theorem 5.14. Suppose E;nzl lpi| < 1 and |g1],..., |lgm| < 1. Suppose further

that G(z) = a(z), where ag = 0 and a1 # 0, is analytic on a neighborhood of the
origin. Then for any complex number n, equation (5.66) has a solution F (z) which
is analytic on a neighborhood of the origin and satisfies F (0) = 0 and F'(0) =

URDIEY I

Proof. In view of the Cauchy Estimation (Theorem 3.26), there exists a positive
(3 such that

lan| <"1, 0> 2. (5.67)

Introducing new functions f(z) = 3F(3712) and g(z) = BG(B~'z), we may trans-
form (5.66) into an equation of the form

9(2)f'(2) =Y _pig(f(g;2))
j=1

where ¢(z) is of the form

9(2) =Y gn2"
n=1
with

a
gnzﬁn—il,n>2.

Since |g,| < 1 for n > 2, we may assume without loss of generality that the original
sequence {an }, n satisfies [a,| < 1 for n > 2.
Let

F(z)= ibnz”, (5.68)
n=0

where by = 0, be a solution of equation (5.66) which is analytic at 0. Inserting
G(z) = a(z) and (5.68) into (5.66) and comparing coefficients we obtain

m
a (b1 —> pj | =0,
j=1
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and
m m n n—2
n=> pig} | arbn = piq) Y ab? =Y (k+1) an_gbisa, (5.69)
j=1 j=1 t=2 k=0

for n > 2. Since ap = G (0) = 0, we may choose by — Z;n:lpj = 1. Since a; =
& (0) #0 and

m m m
D opidd| <D Ipillgl" <D Ipsl <1,
j=1 j=1 j=1

we see that the sequence {by, },, is successively determined by the relation (5.69) in
a unique manner. To complete our proof, it suffices now to show that the sequence
{bn},cn has a positive radius of convergence. To this end, first note that

kE+1
n— 30 pigy
for 0 <k <n—2and n > 2. Furthermore, since
> i}

<1 (5.70)

lim —=7—— =0,
n—oomn — 3 0L, Pigy
there exists a positive number M, such that
m n
# <M, n>2. (5.71)
n
n-— Ej:l p;q;

Next note that Example 4.9 asserts that the equation

W)~ (bl + Il | = - D L E ) =g

lar|1=W (2) Ja|1—2

has a solution
W(z) = Z B,z"
n=0

which is analytic on a neighborhood of the origin and satisfies By = 0, By =
Il + 327, Ips] and

M n 1 n—2
By=7—=> BV +—>% Bin
|ax] ; |ax] kZ:o i
for n > 2. In view of (5.69) and the inequalities (5.70) and (5.71), it is clear that
lbn| < Bn, n€ Z™. (5.72)
This implies that {b,} has a positive radius of convergence. The proof is com-
plete.

neN

Theorem 5.15. Suppose Z;nzl lpi| <1 and |q1], ..., |gm| < 1. Suppose further that
G (z) = a(z) is analytic on a neighborhood of zero and G (0) = ag # 0, Then
equation (5.66) has a solution F (z) which is analytic on a neighborhood of the
origin and satisfies F (0) =0 and F’' (0) = Z;n:lpj.
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Proof. As in the previous proof, we seek a power series solution of the form
(5.68). Since ag = G (0) # 0, by defining by = 377", p; and then substituting G/(2)
and (5.68) into (5.66), we see that the sequence {b,}52, is successively determined
by the condition

(n+1)agbni1+ | n—> pia} | arbn =Y pijq) > asbl Z (k+1) an_pbps1,
j=1 j=1 =2 k=0

(5.73)

for n > 2, in a unique manner. Furthermore, it is easy to see from (5.70) and (5.71)

that
n— E;n:l Piq;

bn+1] <
| +1|_| —
\Z?llqu?\ n 12 k11
+— ag| b — An_k||b
(n+1)|a0| ;l t|| |n ao kzz()n+1| k||k+1|
a 1 - (t) 1 w2
1 t
b, +’— | +‘— bl - 5.74
LR Pl PILCEER P PO (5.74)

Note that Example 4.10 asserts that the equation

1, 2, @ s~
Sl =t [ 2] (00— [ L ini) »
=1 Jj=1

1] z[@ ()] |1 22

ap| 1 —®(2) |ag|l—2

has a solution

z) = i B,z"
n=0

which is analytic on a neighborhood of the origin and satisfies By = 0, By =
> i1 Ipils B2 = 3270 Ipjl lar/aol 4 p and

1
n+—Z ‘O

for n > 2. By choosing p so that |ba| < Ba, it is then easily seen from (5.74) and
(5.75) that |b,| < B, for n > 1. Thus the sequence {by}, N has a positive radius
of convergence. The proof is complete.

Bn+1

n—2
> B (5.75)
k=0

5.7 Functional Equations with Higher Order Derivatives

In this section, we consider several functional differential equations involving higher
order derivatives of the unknown functions.
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5.7.1 Equation I
Consider first the equation
2" (z) = G(z(qz)) + H (2), q € C. (5.76)

Theorem 5.16. Suppose G(z) = g(z) and H(z) = ﬁ(z) are analytic on a neigh-
borhood of the origin. If |q| < 1, then for any complex number n, equation (5.76)
has a solution x(z) which is analytic on a neighborhood of the origin and satisfies
x(0) =0 and z'(0) = 7.

Proof. By Cauchy’s Estimation (Theorem 3.26), there is p > 0 such that
lgn| <p", n > 1.

Let
x(z) = Z bp2" (5.77)
n=0

be a formal power series solution of (5.76) generated by the sequence b = {b,,}
that satisfies by = 0. Then substituting it into (5.76), we obtain

neN

D*»=go (b-q) +h,

so that
2by = go + ho,
and
(n+1)(n+2) b2 =" > gmb{™ +hn, n € Z". (5.78)
m=1

By imposing the condition by = 7, where 7 is an arbitrary number, we see that
{b,},~, is then uniquely determined. Note that Example 4.12 asserts that the
equation

plglu

PR L F(2)] =0,
1-plqu (2)

1
w= = g ool + ha) 2~ 2 |

where H(z) = 320°  |hn| 2™, has a solution u(z) which is analytic on a neighborhood
of the origin and

o0
u(z) = Z Up2"
n=0

where the sequence u = {un }, o is defined by ug = 0, w1 = 1|, u2 = (|g0| + |hol) /2
and

n
Uiz = 3 0" |l ul™ 4 [hal . € N
m=1
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We assert that |b,| < u, for n € N. Indeed, |by| = 0 = ug, |b1] = |n| = u1,
[b2] = g0 + hol /2 < (lgo] + |hol)/2 = us. Assume by induction that |b;| < wu; for
1=0,1,...,n+ 1 where n > 1. Then

s ]meubﬁ” +lhal

Z " al™ ul™ [

n+2

|bn+2| <

as required. Now that we have proved that b is majorized by u, we see that

z)=nz+ i bp 2™
n=2

is convergent for each z near 0. The proof is complete.

5.7.2 FEquation IT
Consider the equation [184]
2™ (z) = Zﬁix(qiz) + G(z(g2)) + H(2), q,q1, -, q, 31, -, 51 € C.  (5.79)
i=1

Theorem 5.17. Suppose (i) G(z) = g(z), where go = 0 and g1 = «, is analytic on
a neighborhood of the origin, (1) H(z) = h(z), where hg = hy = 0, is analytic for
|z| < R, and (iii) |q] < 1, ‘22:1 Biqgi" +aqm‘ >1form=1,..,n—1, as well as

!
m!
|7(m ) > Big]" —aq™
: i=1

for m > n. Then the equation (5.79) has an analytic solution of the form

>1

)= bpa™ bi=mn, i=1..,n-1, (5.80)

in a neighborhood of the origin, where 01, ...,Nn—1 satisfy

Zﬁqu Mm +¢ Z Z Geniy -+ My, + hm =0 (5.81)

t=11y+-+ly=msly,la,....Is €ZT

form=1,2,...n—1.

Proof. In view of the condition on G(z), by Cauchy’s Estimation (Theorem
3.26), there is p > 0 such that

lgm| <p™ ", m=2,3,.... (5.82)
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It is easily checked that (5.79) is invariant with respect to the transformations

y(z) = pz(p~'2), ¥(z) =pG(p~'2),

and
— g
Y(z) =az+ Z pmnilzm
m=2

with

’ Im_| <1, m>2.

p
Consequently we may assume that

gm| <1, m > 2. (5.83)

Next, in view of (ii) and Cauchy’s Estimation (Theorem 3.26), for any r € (0, R),
there is M > 0 such that ,

M

hn| < 84
|l < - (5.84)

Assume that z(z) = 3(2)7 where by = 0, is a formal power series solution of (5.79),
then substituting it into (5.79), we see that

l
h*D"bZZﬂib'ﬂ‘Fgo(b'ﬂ)‘Fh’

i=1
so that

l m
<Z Biql" — aqm> by +q™ thbs,’? —hm, 1<m<n—1, (5.85)
i=1

t=1

and

1 m
m! m m m
(m — Zﬂi‘h —aq ) bm =q X;thﬁr? + hypy, m > (5.86)
i=1 t=

Set b; = n; for i = 1,...,n — 1, where n,...,m,—1 satisfy (5.81). Then (5.85) is

satisfied. Furthermore, in view of (5.86), {bm, },-_, can then be uniquely determined.
Now we need to show that x(z) is analytic in a neighborhood of the origin. To

this end, consider the implicit relation

y2 M 2?2

+ )
1—y r2—rz

y=Imlz+ (5.87)

which, in view of Example 4.13 has the analytic solution y = y(z) near 0. If we
write y(z) = > o_; u,2™, then substituting it into (5.87), we see that u; = |n]
and

" M
Um = Y ufl) + o (5.88)
t=1
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for m > 1. In view of (iii), (5.83), (5.85) and (5.86),

b < 3B + [ (5.89)
—1
for m > 1. We assert that
|| < U, m > 1. (5.90)

Indeed, |b1] < u;. Assume by induction that |bg| < ug for kK = 1,...,m — 1, then in
view of (5.89) and (5.84),

bl < 3B A+ ] <30l + = =
t=1 t=1

as desired.
Finally, since x(z) is majorized by y(z), x(z) is also analytic for |z| < . The
proof is complete.

5.7.3 FEquation IIT

Consider the equation [174]

k
FE @)+ i () fE0 (2 +Z% zy+2& faz) =g(2) (5.91)
i=1
where k > 1, |pj| <1land |g| <1lforj=1,2,..,nandl=1,2,..s.
In case k = 1, we have the following existence result.

Theorem 5.18. Suppose k = 1. Suppose further that (i) v1(z), a1(2), ..., an(2),

P1(2), ., Bs(2) are analytic on B(0;p), and (i) [p1], ..., [pn| <1 and |qu|, ..., |gs| <
1. Then (5.91) has a solution y = y(z) which is analytic on B(0; p).

Proof. We may assume that

o0

m

z) = § P1m2z,
m=0

2)=> amz™, j=1,2,..,n, (5.92)
2= Bmz™, 1=1,2,...s, (5.93)
m=0
and
9(z) =Y gm2" (5.94)
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By Cauchy’s Estimation (Theorem 3.26), there is some M > 0 such that for any
r € (0,p),

M M
lp1m| < o legml < s 1Bim| < e lgml| < m (5.95)
where m > 0,1 <j<nand1<[<s. Let
)= fm2" (5.96)
m=0
be a formal power series solution of (5.91), then
9m = 1 +Zaj0p;‘n (m+ 1) f1+m + Z‘plufm—u
j= u=0
+ Z Z Qju (m +1- u) fm+17up;n_u + Z Z 5lu‘hm_ufmfu (5'97)
j=1u=0 =1 u=0

for m > 0. Since |p;| < 1, there exists T such that for m > T, we have
n
~1
> lajol [p; ™ < 1.

Jj=1

Let {A,,} be defined by A,, = B, for 0 < m < T and

m—1
1 M
e ) (3 e

mil—- E?:l lavjo| |p;

_|_
Jj=
n (5.98)

(1
n m-—1
M m—1—u
er_u(m_U)Amfu“?ﬂ !
1 u=0
s m— lM M )
=1

Zz_|Ql|m lu m 1—u T+ Fm—
u=0

for m > T, where B,, > 0 satisfies |f,,| < By, for 0 < m < T. In view of (5.98),
Ay, > 0 for m > 0. Furthermore, in view of (5.95), (5.97) and (5.98), we may show
by induction that

|fm| < A (5.99)
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Thus, when m > T,

(m+1)(1- Z lejol [ps|™ | Ami

= Z %Amfu D) T% (m+1—u) Apyru lp;™"
u=0 j=1lu=1
S5 Ml At

=1 u=0

= MA,, + mA Z|J|m '+ MA, Z|ql|

n m-— 1M
(Z —Amut Y D A ™
1

j=1 u=

sml
N Ml At j‘fl>

=1 u=0

= MA,, + mA Z|j|m '+ MA,, Zlqz

n

1 m—1

+-m 1—Z|Oéj0|lpj| Am,

j=1
so that

n m—1 - m m n m—1

M M Sl 42 (1= S ol )

Am+1 _ =1
A (m+1) (1= S5y lagol Ips1™)

By taking limits on both sides, we may easily see that

li Am+1 1
11m = -
A

m—oo m r

Since the radius of convergence of Y °_  A,,z™ is r and since r is an arbitrary
number in (0, p), we see that Y -, A,,z™ is analytic on B(0;p). Finally, since
|fm| < Ap, for m > 0, we see that Y °_ fn2™ is analytic on B(0; p). The proof is
complete.

In case k > 2, we have the following result.

Theorem 5.19. Suppose k > 2. Suppose further that (i) ¢1(2),...,0r(2),

01(2), s n(2) and By(2), ., Bu(2) are analytic on B(0; ), and (ii) pr| - pal.
lg1], -y 1gs| < 1. Then (5.91) has a solution which is analytic on B(0; p).
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Proof. We may assume (5.92), (5.93) and (5.94) as well as

o0
z) = Z Yimz™, i =1,.. k.
m=0

By Cauchy’s Estimation (Theorem 3.26), there is some M > 0 such that for any
r€(0,p),

M M M M

|Pim| < s loml < s |Bum| < 7 lgm | < 7 (5.100)

where m>0,1<i<k,1<j<nand1<I[<s. Let
= fm2" (5.101)

m=0
be a formal power series solution of (5.91), then
k

fk‘k!‘f‘ZSDiOfkfi( — 1) +Zagof1+2ﬁzofo—90, (5.102)

i=1 j=1

and

E4m)  oa E—i4+m—u)
2O S P (S5 L

i=1 u=0 (m — u)!
+Zz%u (m+1—u) fmt1-up] “+1+226mq (5.103)
i=1 u=0 =1 u=0

for m > 1. Let {A,,} be defined by A,, = By, for 0 <m <k —1 and

m—k .
Am:(m—k)!x<z %uAm_i_u((m—z—u)!

| —k—=u)!
m! — = m—k—u)!
n m—k M
A = m— k1= w) A |py [T
- T
j=1 u=0
s m—k M M
+ r_u |ql|m7k*u Amfk*u + m—_k> (5104)
=1 u=0

for m > k, where B,,, > 0 satisfies |f,,| < By, for 0 <m < k —1. In view of (5.104),
we see that A,, > 0 for m > 0. Furthermore, in view of (5.100), (5.102), (5.103)
and (5.104), we see that |fi| < Ag. Then by induction, we may show that

|[fm] < Ay, m € N.
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Thus, for m > k, we have

k m+1— k .
Am+1=(m+1_ (Z Z N (m+1—17—u)!

Am1—i “(m+1—k—u)!

i=1 wu=0
n m-4+1l— k
+ Z Z m+2 =k — ) Amia—g—u lpj| "
s m-+1— k
m+l—k—u M
+Z Z |q T A 77"m+1_k>
B m—|—1 e TzluO pu —k—u)!
+ Z M Aiaie (m+2 = k) [pg "1 7"
j=1
1 n m-—k M
m—k—u+1
+;Z r—u(m—k+1—U)Am—k+l—u (21 *
j=1 u=0
s s m—k
>N MAp g g™+ = ZZ — ol TR Ay s k)
=1 l 1 u=0
m+1—k) m+2—
= ﬁ(ZMAmJFI % +ZMAm+2 k(m+2_ )|pj| 2k
j=1
> m+1—k 1 m!
+ > MAnpii-k|ql + - 54m |
= r(m—k)!
so that
n m+2—k
Amy1 M n M k Amyi—i MZj:l (21 i 'Am+2—k
A (m+1)u M+l = An (m+1) 4y A
MYP o™ Apas  mA1—k
. . (5.105)
Let C,, '”“ . Then (5.105) becomes
M
Cm =
(m-‘r ].)( > Z C’m, ICm 2" Cm+2*i
MY o™ 1 m+1—k

+ . (5.106
(m+1) 4, Cm-1Cmz-+ Cpgrx 7(m+1) (5.106)
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In view of (5.106), Cy, > ;’E;—tl’;, thus lim C,, > % > 0. As a consequence,

m— 00
11 Su 1111 111 — —2 ¢ —q
pCm 1Om QOm 1 m—1Ym—2 m+11—12

< {lim inf C,,_1 }71 e {lim inf C’m“,i}il

m—00 m— 00

< 400

for i = 1,2, ..., k. For similar reasons,

1
lim sup < +00.
m— 00 mflcm72 te Cm+27i

Thus from (5.106),

limsup Cy,
m—0o0
~ 1
< limsup ————— + limsup —— lim su
m%oop (m + 1)(19) maoop (m + 1)(k> ; m%oop C(TrL—lc’m—2 e Cm+1—i
+ lim sup MY |pj|m+2ik -lim sup L
m—oo (m + 1)(1971) m—oo Om_lcm_Q s Cm+2—k
M s m+1—k 1
+ lim sup 2=t @] - lim sup
m—oo (m + 1)(k> m—oo Cm—1Cm—2-" Cerl*k
i m+1—k
imsup ————
s T (m+1)
1
=
This implies
A 1
lim sup —2+L < =
m—oo m T
and hence
. m . Aerl 1
limsup Y/ A4,, <limsup < -,
m—o00 m— o0 Am T
or

1
limsup,, ... VAm

1
> =
-
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Since 7 is an arbitrary number in (0, p), we now see that Y~ A,,z™ converges
for |z| < p. Since | f| < Ay, for m > 0, we may now conclude that f(z) is analytic

on B(0; p). The proof is complete.

Theorem 5.20. Suppose k > 1 and g(z) = 0. Suppose further that (i) |p1|, .

..y

lonl s la1l, - las| < 1, (i) z = 0 is a ‘reqular singular point’ of (5.91), so that
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2i(2), zk_laj(z), 2%B1(2), where 1 <i <k, 1<j<nand1<1I<s, are analytic
on B(0; p), and (#i) d is a root of the ‘indicial’ equation

k n s
z) = zgy + Z ©i0Z(k—i) T Zajozpf_l + Zﬁzoqzz =0
i=1 j=i =1
and w(m +d) # 0 for m € N. Then (5.91) has a solution of the form

z) = 24 i fmz™, fo#0, (5.107)

m=0

which is analytic on B(0; p).

Proof. In view of the conditions imposed in (i), we may assume that

2t gpl Z Yimz™, =1, ...k,

o0
— m >y —
z) = E ajmz™, j=1,..,n,
m=0

and
kﬁl Zﬁlmz = 7"'787

are analytic near 0. By Cauchy’s Estlmatlon (Theorem 3.26), there is some M > 0
such that for any r € (0, p),

M
lpim| < =5 lagml < 25 1Bl < (5.108)

where m>0,1<i:<k, 1<y § nand 1 < l § S. Substltutlng the formal solution
(5.107) into (5.91), we obtain

w(d) fo =0 (5.109)
and
w(m+d) f Z Z Pin (M —w+d) i 9y fnu
i=1 u=1
k. m
- Z Z gy (m —u—+ d) p;‘niqudilfm—u - Z Z ﬁluqm u+dfm—u7
j=1lu=1 =1 u=1

for m > 1. Furthermore, in view of (iii), we may also see that {f,}~_, can be
uniquely determined by the above recurrence relations. Let the sequence {Am}m:
be determined by Ag = |fo| and A,, is equal to

(ZZ u+d)(k7i+2) Am—u

i=1 u=1

k m

23 % (= d) " S T g Am_u) (5.110)

j=lu=1 =1 u=1
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for m > 1. Then
lw(m+1+d)| Ami1

~ (m+1—u+ d)(k—i+2) Amt1—u

Pz M m—u-+d - M m+1—u+d
+Y ) — (m—u+d)|pl Am+17u+zzr_u|ql| Amt1-u

j=1lu=1 =1 u=1

k
M M s
:TZ(m+d)<k . Z (m +d) |p;| g

i=1 j=1

" 1
@™ A+ w0 (4 ) A

k
Aerl 1
= ME d )
Am r|w(m+1+d)|( ; (m+ )<k_l>

k s
M (m+ d) oy MY |w<m+d>),

j=1 =1
so that
lim Ami1 = 1
m— o0 m r

In other words, the series > A, 2™ converges for |z| < r. Since r is an arbitrary
number in (0, p), we see that Y~  Apz™ converges for |z| < p. On the other
hand, from (5.108)-(5.110), we may prove by induction that |f,| < A,, for m > 0.
As a consequence, Y °_ fm2z™ converges for |z| < p. This shows that the formal
solution (5.107) is analytic on B(0; p). The proof is complete.

We remark that the same techniques can be used to handle the following equation

k

Y@+ Y e f +Zz¢m ) FE D (prjz) = g(2) (5.111)
i=1 n=1 j=0

under the initial condition

fO0)=¢, t=0,1,2,..,k—1. (5.112)

Theorem 5.21. Suppose |pp;| < u <1 for j =0,..,K and n = 1,2,..,T and
Suppose @1, ..., G, V1o, Y11, ..., UK, as well as g are analytic functions of the form

— i Oimz™, 1=1,2,..., K,

wn] Z wnjmz i =0,...K;n=1,2,....,T,
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on B(0;7), and

T
1+ o (0) pliy #0, m € N.
n=1

Then the initial value problem (5.111)-(5.112) has an unique analytic solution on
B(0;7).

We now consider several examples.

Example 5.8. Consider
f1(z) = af (A\2) +bf (2) +cf' (B2) + g (2) (5.113)

where g(z) is analytic for |z| < R, || < 1 and |A| < 1. First in view of Theorem
5.18, (5.113) has an analytic solution for |z| < R. Let

g(2) =Y gmz"
m=0

and
f(z)= Z dmz™.
m=0

Substituting these into (5.113), we see that

(m+1)(1—¢6™)dmt1 = (@N" +0)dm + gm, m=0,1,2, ... (5.114)
If1—¢p™ #0 for m > 0, then
[1 (aX +0) w10 +0)
dm+1 = m =0 77+Z m = 9k
I1GE+1)(1—esY) k=0 [] (i 4+ 1) (1 — cB?)
1=0 =0
and
w | T (v +0) w1 (aX +b)
fE=ntd |m= AP gr| 2",
| TG+ —cB) =0 [T+ 1)(1— )
1=0 =0

where f(0) =n. If 1 — ¢8™ = 0 for some m € N, since |3| < 1, there exists some
N such that |[¢f™] < 1 for m > N. Thus there are mq,ma,...,m, < N such that
1—¢f™ =0for j=1,..,r It is then not difficult to see that

r s N
HOEDICEEME DT S DI e
=1 j=1 m=0;m#mai,...,mn,

I (axi +b) ] (aX' +1)
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where cy, ..., ¢, are arbitrary and ¢, ..., ¢, satisfy
(@A™ +0b)é 4+ gm;, =0,i=1,..,r
and 7, is determined by
(m4+1)(1—¢8™) Nm1 = (@™ +b) diy + gim-
Example 5.9. Consider the Bessel equation
229" (2) + 2y (v2) + (22 — v*%> y(vz) =0 (5.115)
where v € (0,1]. We may rewrite (5.115) in the form

22—~

=

1
Y (2) + ;y’ (vz) + s Y (vz) =0,
_1
where a (z) = 1 and B (z) = 22_;2’ > have regular singular points at z = 0. Since

z =1 is a root of the indicial equation
2(z—1)+ 20" —0* 1 =0,

in view of Theorem 5.20, (5.115) has an analytic solution of the form

y(z)==z2 Z amz™, ag # 0. (5.116)
m=0
After substituting it into (5.115), we see that
m—1
U = ———— 5, mE LY

m(m+14ovm)
Thus agiy1 =0 for £ > 1 and

(—l)k v,

asy = ,k€Z+.

k
[2i (20 + 1 4 v21)]
=1

This shows that

oo k., 2k—1
—1)"v a
y (Z) ao E - ( ) 0 Z21<:7

k=1 TT [2¢ (2¢ + 1 4 v?)]
i=1
where ag is an arbitrary number different from 0.

Example 5.10. Consider the equation
) =af® D A2) +0f D (2) 4+ ef W (82) + g (2), (5.117)
under the condition

Fr0) =& m=0,1,...k—1, (5.118)
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where |8] < 1,|]A] <1 and 1 — ¢8™ # 0 for m > 0. We will assume that

g (Z) = Z gm2"
m=0

is analytic for |z| < 4. By Theorem 5.21, our problem has a unique solution of the
form

f(z) = Z fmz™
m=0

which is analytic for |z| < v. To find this solution, we substitute f (z) into (5.117)
and find the difference equation

m+ 1)! - m m+k—1)!
(mi,)(l—cﬂ ) [tk = (aX +b)%fm+k71 + gm, m € N.

Since this equation is of the form
hm+1 = pmhm + Xm, m € N,

we easily see that

ﬁ (aX' +b) m ﬁ (aX’ +b)
P = —1=0 Ek—1 n Z nl i=nt1 g
: (i + k) (1— gy E—DP i (m ARl ﬁK(l—cﬂi)

for m € N.

5.7.4 Equation IV

Consider the equation [174]

k n s
FP @+ e () 5 () + Y (2) f (2= 1) + Y B (2) f (2 —wr) = g(2)
i=1 j=1 =1

(5.119)
where k > 1 and |p1], ... [pnl, @1l , s 1gs] < 1.

Theorem 5.22. Suppose there is a positive number D such that for all negative b
that satisfies |b| > D, the functions ¢1(2), ..., pr(2), 1(2), ..., an(2), B1(2), ..., Bs(2)
are analytic for |z —b| < |b| — D :

0i(2) =Y im(z =", i=1,2 .k (5.120)
m=0

a;(z) = Z Ajm (z=0)", 7=0,..,n, (5.121)
m=0

Bi=> Bm(z=b", 1=0,..,s, (5.122)
m=0
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and
)= gm(z=b)". (5.123)
m=0
Then the following equation
k n s
e (2) = @™ ()| D, (2) | & (2)+ <Z B (Z)) ¢ (2)+g(2) (5.124)
i=1 j=1 =1
where
Bi(2) =Y lpim| (z =)™, i=1,2,..k, (5.125)
m=0
aj(2) =Y lajml(z=b)", j=0,..,n, (5.126)
m=0
B = Z |Bim| (z =)™, 1=0,..., s, (5.127)
m=0
and
= " lgml (z = 0)™, (5.128)
m=0
has a solution ¢(z) which is analytic for |z — b| < |b|] — D and satisfies
0< ¢ (b) <400, i=0,1,...k— 1. (5.129)
Proof. Let
2)=> by(z—b)" (5.130)
m=0
be a formal power series solution of (5.124). After substituting it into (5.124), we
obtain
klby = Z [pio| be—i (k —0)! + Z lajol by + Z |Bio] bo + 190l »
=1 j=1
and

kK m
k+m (k—i+m—u)!
bk:er E E |§Dzu|bk) i+m—u ( — U)'
i=1 u=0 ’

Z Z |aju| (m+1—u)bmi1—u
j=1u=0
=1

Z Z |5lu| bm—u + |gm| ) (5131)

=1 u=0

+
+
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for m > 1. By Cauchy’s Estimation (Theorem 3.26), there is some M > 0 such that
for any r € (0, |b| — D),

M M M
lpim| < =50 lagm| < =% 1Bunl < =55 lgm| < 2, (5.132)

WheremZO,lgigk,l§j§n71§l§s.Let{Am}mzobedeﬁnedbyAm—
for0<m<k-—1and

Am:(mn:'k)!x<im ‘“M (m —i—u)!

e Am—i- “(m—k —u)!

i=1 u=0
n mfktM
AN =+ 1=k —u) A1 -k
=1 u=0 "
s mfktM M
DD S Amekeut Tm—k) (5.133)
=1 u=0

for m > k, where B,,, > 0 satisfies b,,, < By, for 0 <m < k —1 (since 0 < ap(i)(b) <
+oo for ¢ = 0,1,...,k — 1). In view of (5.131)-(5.133), we may show by induction
that

0< by < A, m > 0. (5.134)
As in the proof of Theorem 5.21, we may show that Y ~_, A,,(z — b)™ converges

for |z — b| < |b] — D. This then implies ¢(z) converges for |z — b| < |b|] — D. The
proof is complete.

We now turn to equation (5.119). In order to find an analytic solution, we need
to consider “approximating equations”. Let
b<0,p; =1 —|—zjb*1, g=14+wbtj=1,....n1l=1,..s.

Construct equation

+Z§D f(k +Za3 pjz 75) +Zﬁs flaz—wr) = g(2).

(5.135)
When b — —oo, we have pj — 1 and ¢ — 1 for j =1,..,nand l =1,...,s. Thus
(5.135) ‘tends’ to (5.119) in a formal manner.

Theorem 5.23. Suppose k > 2. Suppose further that there is a positive num-
ber D such that for all negative b that satisfies |b| > D, the functions ¢1(2), ...,
or(2),01(2), ...y an(2), B1(2), ..., Bs(2) are analytic for |z —b| < |b| — D. If the an-
alytic solution found in Theorem 5.21 is bounded, i.e., for b < 0 with sufficiently
large |b|, there is K > 0 such that

> b (z—b)"
m=0

<K, |z—b<[b|-D (5.136)
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then there is Q@ < 0 such that |Q| > D and (5.119) has a solution f(z) which is
analytic for R(z) < Q and

fz)=tim f(b2), (5.137)

where f(b, z) is an analytic solution of (5.135), and the convergence is interpreted
as uniform convergence on compact subsets of the region defined by R(z) < Q.

Proof. By Theorem 5.22, there is a solution of the form (5.130) for equation
(5.124) which is analytic for |z — b| < |b] — D. We assert that (5.135) has an analytic
solution f(z) which satisfies

’f(i) (b)‘ <D (B), i=0,1,. k1. (5.138)

To this end, let
=> fm(z=0)" (5.139)

m=0
be a formal power series solution of (5.135). Substituting it into (5.135), we obtain
k
90 =K\ = iofi—i(k—i)+ Z%oflpy + Zﬂzofo,
i=1

k m .
k+m)! k—i+m—u)!
om T S i

i=1 u=0 (m —

+Zza3u m+1_u)fm+1 upm u+1+ZZﬂlufm—ua

j=1u=0 =1 u=0

for m € Z*. In view of (5.131) and (5.138), we may show by induction that |f,,| <
by, for m > 0. Thus, (5.135) has a solution of the form (5.139) which is analytic for
|z — b| < |b] — D and satisfies (5.138). Furthermore, in view of our assumptions,

me z—b)™ Zb (z—b)™

that is, f(b, z) is bounded for |z — b| < |b] — D. Let B be a bounded region whose
closure is contained in RR(z) < Q. Then there exists by < 0 such that for b < by, we
have

<K,

Bc{z:[z-bl <ol -]Q[}.

Let {by},—, be a sequence which is decreasing and tends to —oco. The family
{f (bj,z)} o of solutions is a sequence of bounded functions on B. Thus there
is a subbequence of {b;} which we may, without loss of generality, denote by {b;}
such that the limiting function lim; .o f(b;, 2) is analytic on B, and it is the uni-
form limit of {f(b;, z)} _, on any compact subset of B. Since {z: Rz < Q} is the
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union of all B that satisfies the above assumption, we may infer from the Unique
Continuation Theorem 3.17 that there is some sequence {dj} such that

F(2)= Jim [ (de,2)
is the analytic solution of (5.119). The proof is complete.

We remark that in the above Theorem, if ¢i(z),..., (%), 01(2),...,an(2),
B1(z), ..., Bs(z) and g(z) are rational functions, then letting ai,as,...,any be the
totality of all their poles, we may take

D > max {|ai1], |az]|, ... |lan|}
so that for any negative number b with sufficiently large absolute value,

01(2)y oy pr(2), 01(2)s ooy an(2), B1(2), ..., Bs(2) are analytic for |z — b| < |b] —

Example 5.11. Consider the equation

1
" (2) - fllz=7)=——, 7>0, (5.140)
(1+2)? 1+2)"
For any negative b with sufficiently large absolute value, the functions « (z) =
—2 . and g(z) = —L< are analytic for |z —b| < |b| — 2. The approximating

(1+Z) (1+2)
equation of (5.140) is
5 1
f"2) - ——=f pz—17) = —, (5.141)
(1+2)? 1+ 2)*
where p = 14 7b~!. Furthermore, the equation
1
"
" (2) - flla=m)=—F
(1+ )2 1+ 2)*

on |z — b| < |b| — 2 has the bounded analytic solution ¢(z) = z/(1 + 2). In view of
Theorem 5.23, there exists @ < 0 such that |Q| > 2 and equation (5.140) has an
analytic solution of the form

F2) = Jim f(b2),

n (—o0, @), where f(b, z) is an analytic solution of equation (5.141).

5.8 Notes

Equation (5.6) and nonhomogeneous differential equations of the form

y' +p @)y +q(2)y=h(z)
arise in a large number of mathematical models in mechnical vibration theory,
quantum mechanics, etc. Therefore there are many results on the analytic solu-
tions of these equations which can be found in standard text books and references
[81, 78, 92]. Therefore we have restricted ourselves to the basic Theorem 5.1. How-
ever, the following remarks may be of further interest.
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First of all, there are equations which do not allow nontrivial analytic solutions.
As a simple example, consider the equation

xSy// +y =0.

If we seek a solution of the form y = @(z) which is analytic at 0, then substituting
y into the above equation, we see that ap = 0 and

ap = —(k - 1)(k‘ - 2)ak_1, keZ™.

But then ay = 0 for k£ € N. This shows that the only solution which is analytic at
0 is the trivial one. As another example, consider the differential equation

22y =y —x. (5.142)

If y = a(x) is an analytic solution at 0, then substituting it into the above equation,
we obtain

a(x) = nlemt (5.143)
n=0

with radius of convergence p(a) = 0. In other words, equation (5.143) does not allow
solutions which are analytic at 0. Note that although (5.143) is not analytic at 0,
yet it is a formal solution of (5.142). We can also find equations where no formal
solution can exist. For instance, consider the equation

xy =y —x.
Substituting y = a(x) will formally yield
a; =ay — 1,
which is impossible.
Although nontrivial analytic solutions cannot be found in general, it is possible in
some cases to find solutions of the form x* f(x) where f is analytic in a neighborhood
of zero. The method for finding such solutions is called the method of Frobenius.

Since this method has been discussed quite extensively in many texts, we will only
refer the interested readers to the references [81, 78, 92].

Examples 5.2, 5.3, 5.4 and 5.5 are due to Herron in [77]. Further examples can
be found in [116].

The neutral system (5.12) is studied by Cherepennikov in [35]. Theorems 5.2,
5.3 and 5.4 can be found in his work. Related systems and more general systems
have also been studied by him in [33, 34, 36-38].

The Cauchy Kowalewski existence theorem has been extended to more general
partial differential equations or systems. For instance, we may seek solutions Z, v, w
of the system

by = F2(2,y, 2, 0,10, 2, Vg, W) (5.144)
wy = F3 (‘ruyvgavvﬁ)7217@wuww) )
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which are C*-functions of 2 and y and which assume prescribed initial various along
the x-axis:

Z(z,0) =20 (x), v(x,0) =0 (x) ,W(x,0) =1 (). (5.145)
From (5.145) the values of 2, (x,0), 0, (,0), W, (x,0) are known at every point on
the x-axis, and from substitution in (5.144) so are the derivatives with respect to
y. The Cauchy-Kowalewski theorem now asserts that if the functions zg, v, wg, are
analytic in a neighborhood of z = 0, and if the functions F'!, F2, F'3 are analytic in
a neighborhood of

x=y=0, 2(0,0), v(0,0), w(0,0), z,(0,0), v, (0,0), w,(0,0),

then the initial-value problem (5.145) has precisely one solution (z,v,w), which is
analytic in a neighborhood of x =y = 0.
By means of such generalized Cauchy-Kowalewski theorems, we may handle the
existence theorems for analytic solutions of partial differential equations of the form
G(z,y,2,p,q,7,5,t) =0 (5.146)
where
D=2z, =2y, T = Zga, 5= Zay, L= Zyy, (5.147)

under prescribed initial values on an initial curve yo (z):

20 () =z (2,90 (), po(2) =p(z,90 (7)), @0 (z) = q(z,90(x)).  (5.148)
Equation (5.44) is studied by Li [118], in which Theorem 5.5 is obtained. The
two results related to equation (5.49) are contained in [118].

Neutral differential equations and systems with proportional delays have been
studied for some time and found potential important applications in a number of
scientific fields. In Carr and Dyson [23] and Kato and McLeod [95], asymptotic
behaviors of solutions of the equation

y' () = ay (\z) + by (x) . (5.149)

are discussed. In Feldstein and Jackiewicz [64], the ‘exponential order’ of the solu-
tions of the pantograph equation

y' (2) = Ay (2) + B(\2) + Cy' (yz) (5.150)

is discussed. Viorica in [216] discussed the analytic solutions of the equation

P
(=)= S ki ) + by (2), A, € (0,1) (5.151)
j=1
under the initial condition y(0) = 1. In Iserles and Liu [84], the pantograph equation
(5.150) is illustrated by means of interesting examples and figures. In [82], Ifantis
discussed the following linear functional differential equation

k k—1
DY T 0 (07 09 =),
=1
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where k > 1 and |g;| < 1 for j = 1,2,...,n. He transforms the problem of the
existence of analytic solutions into the problem of finding the null space of an
operator defined on a separable Hilbert space. In particular, the equation

f'(x) =af(\x) +bf(z), ac C,be R,A € C

is discussed in detail.
By methods similar to that in the proof of Theorem 5.12, we may show the
following for equation (5.61):

Theorem 5.24. Suppose A1(2), ..., Ai(z), f1(2), ..., fi(z) and h(z) are analytic for
|z —&| < Ry and f1(§) = fa(§) = -+ = fil§) =&, fi(§) = si fori=1,...,1, where
0 < |s;| < 1. Suppose further that there exist Re > 0, Ny,...,N; > 0 such that for
|z —&| < Ra, we have |A;(2)] < N; fori = 1,..,1, and R (N1 +---+ N;) < 1.
Then (5.61) has a solution of the form

(2) = h(€) + Y ba (2",
n=1
which is analytic on a neighborhood of the point &.

The above result and Theorem 5.12 can be found in Si and Li [184].

Equation (5.66) and the corresponding Theorems 5.14 and 5.15 can be found in
Si [178].

As mentioned before, there are many differential equations with second order
unknown derivatives which allow analytic solutions and they can be found in stan-
dard text books. There are also many functional differential equations with higher
order unknown derivates which allow analytic solutions. We have only presented
some simple ones. In particular, equation (5.79) and the corresponding Theorem
5.17 are in Si and Li [184], while equations (5.91) and (5.119) and the corresponding
existence theorems are in Si [174].

In Example 5.7, we have demonstrated how analytic solutions can be used to gen-
erate approximate solutions of differential equations under various conditions. Simi-
lar ideas have been employed in a number of recent studies under the so called ‘differ-
ential transformation method’, see e.g. [237, 24, 26, 25, 88, 89, 10, 6]. However,
most of the derivations in these studies are heuristic and error analyses are not
provided. Therefore, there is much to be done in this area.
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Chapter 6

Functional Equations with Iteration

Recall that ¢l%(2) = z, ¢l!l(2) = ¢(2), ¢ (2) = ¢(8(2)), ..., 9"} (2) = B(¢l" 1 (2))
are the zeroth, first, second, ..., and the n-th iterate of the function ¢(z). Functional
equations (with or without differentiation) that involve iterates of the unknown
functions are called iterative functional equations. Such equations arise naturally
in many problems. In this Chapter, we allow functional equations involving more
complicated composition of known or unknown functions.

6.1 Equations without Derivatives

For motivation, let x,, be the amount of money saved in a bank during the time
period n. Then the amount of money during the time period n + 1 is commonly
given by

Tnt+l = Tp + 12y, N € N,

where r is the interest rate offered by the bank for one period of time. Let f(z) =
(1 + 7)x. Then the above recurrence relation can also be written as x,4+1 = f(z,).
Given zg = A, then z1 = f(z9) = f(A), 22 = f(z1) = f (f(z0)), ..., and in general
z, = fI")(\) for n € N. A natural question is when it is true that f[®()) is equal
to a prescribed number. A more general question naturally arises as to what kind
of function ¢ such that its n-th iterate is equal to a given function @. Indeed such a
question has been considered by Babbage [11, 12]. Another well known recurrence
equation is

Tpt1 = pn(l —x,), n € N.

Here f(z) = pz(1— ). By asking the question as to when f["J(\) = A (which corre-
sponds to whether periodic solutions exist, see e.g. Li and Yorke [111], Feigenbaum
[60]), there follows a great many number of research works related to ‘chaos theory’!

As another example, let L be a curve in the x, y-plane which can be described
by a function y = ¢(z). By means of a transformation T on the real plane

T(x,y) = (f(x,y),9(z,y)),
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the curve L is transformed into another curve L. If L can be described by another
function y = ¢ (z), we call the function ¢ the transform of ¢ and we write ¢» = T'¢.
It may happen that L is transformed by T into itself, that is, ¢ = T'¢. Then L is
called an invariant curve under 7. This means that y = ¢(z) satisfies

¢ (f(z, d(x))) = g(z, d(x)), (6.1)

which is called the equation of invariant curves.
We first take up iterative equations of the form

F (2,6(2), (£ (=), (17 (=) ) = 0, (6:2)
and

F (2,60 (F(2)), s 6 (£ () = 0. (6.3)

6.1.1 Babbage Type Equations

We first consider a simple case of (6.3), namely,

P(d(Az2)) = g(2), A #0. (6.4)
Suppose
9(z) = > anz (6.5)
n=0

where ap = 0 and a1 = ¢'(0) # 0, is analytic on some disk B(0;4), and |¢'(0)/A] < 1.
Then the equation

a
W(g(@)) = 5 ¥ (M)
can be written as a Schréoder equation

Y(f(x)) = s¥(x) (6.6)
by letting s = a1 /A and

fl)y=g (§> =sx + i f\l—Zac".
n=2

Since 0 < |s| = |a1/Al = [¢'(0)/A] < 1, in view of Theorem 4.9, (6.6) has a solu-
tion ¢ (x) which is analytic on some B(0;7). From the Analytic Inverse Function
Theorem 4.8, 9)~! is analytic on some B(0; 3). Then the composite function

h(z) = ¢~ (i (),

where
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is analytic on some B(0;~) and

h(h(Aa)) = = brp(h(Ax))) = =" (b (v (g (\2)))

= 47! () = vt (Tv0a)
= v (Y(g(2))) = g(x),

that is, h is an analytic solution of (6.4) and h(0) = 1~ 1(b14(0)) = 0.
Once the existence of analytic solutions is guaranteed, we may find them by
setting

Px) = bpa™, (6.7)
n=0

where by = 0. Substituting it into (6.4), we see that
a=bo(b-)).

Hence
an =Y b A =3"b (A-bw) = (Zbibﬁﬁ) A", meN,
i=0 i=0 " i=0
which yields
Ab? = ay, (6.8)

and

/\n(bl + b?)bn + Pn(bl, ba, .., b1, /\) =an, N> 2, (69)
where P, is an n-variate polynomial. We may thus determine two sequences
{0,b1, b2, ...} as expected.

We remark that any other existence results for the Schroder equation (such as
Theorem 4.10) will yield additional existence results for (6.4).

We remark further that similar principles will lead us to the existence of analytic
solutions of the equation

oM (2) = g(z), n=2,3,..., (6.10)

where g stands for a given nontrivial function analytic on some disk B(0;0) and
satisfies g(0) = 0 and ¢’(0) = s. In case ¢ is a solution of (6.10), it is sometimes called
a n-th iterative root of g. Indeed, assume that ¢ is a nontrivial function analytic on
a neighborhood of zero and g (0) = 0 as well as ¢’ (0) = s. If 0 < |s| < 1, then there
are n local analytic solutions of the form

p(z)=0""! (sl/”o (z)) , z€eU,

stands for any of the n possible values of the complex root of s, U is a
neighborhood of zero and o (2) is a local analytic solution of the Schroder equation

a(g(2)) = so (2).

where s1/7
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We now look for analytic functions f that satisfies the equation [120]

fp(z) +bf(2)) = h(2), (6.11)

where b is a nonzero complex number, and p,h are given complex functions of
a complex variable. The basic conditions that p(z) and h(z) are analytic in a
neighborhood of the origin, p(0) = h(0) = 0, p’(0) = r and A'(0) = s # 0 will be
assumed throughout the rest of this section.

Let 3 be a root of the equation 22 — rz — bs = 0 (note that 3 # 0 since bs # 0).
We will need an auxiliary functional equation in the unknown function g :

9(8%2) = p(9(82)) = bh(g(2)). (6.12)
Once we can show the existence of a solution g of this equation which satisfies

9(0) =0, ¢’(0) # 0 and is analytic on a neighborhood of the origin, then it is easily
seen that f defined by

£2) = 59 (597 (2)) ~ p(2)) (613)

is a solution of (6.11) which is also analytic in a neighborhood of the origin. Indeed,

by the assumptions on g, we see that g—! and hence f are analytic in a neighborhood

of the origin and

fp(z) +bf(2)) = f (p(z) + 9 (Bg~"(2)) — p(2))
= f(9 (B9 "(2)))

- %{9 (897" (9 (8971 (2)))) = (9 (B9~ (2))) }
= {0 (P @) = (0 (307 )}

= %bh (9(97'(2)))

= h(z).

We will therefore seek analytic solutions of (6.12) which vanish at the origin but
not their first derivatives.

Theorem 6.1. Suppose the equation 2> —rz—bs = 0 has a root 3 such that |3| # 1
and |B| # \bs\l/(nﬂ) forn = 23,.... Then for any nonzero complex number 1,
(6.12) has a solution g(z) which is analytic on a neighborhood of the origin and
satisfies the conditions g(0) = 0 and ¢'(0) = 1.

Proof. Under our assumptions on p and h,

p(z) =rz+ anz”, (6.14)
n=2
h(z) =sz+ Z hn 2", (6.15)
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and the Cauchy’s Estimation (Theorem 3.26) asserts that there is p > 0 such that
[Pl lhal < p" 7 > 2.
Introducing new functions

P(z)=pp(p~'2), H(z)=ph(p'2), G(z) = pg (0~ '2),

we obtain from ¢(0) = 0 and ¢’(0) = 7 that G(0) = 0 and G’(0) = n respectively,
and from (6.12) that

G (6%2) — P (9(B2)) = bH(g(2)),

which is again an equation of the form (6.12). Here P and H are of the form
P(z) = i P,z",
n=1
and
H(z)= i Hyz"
n=1

respectively, but |P,| = |pnp'™"| < 1 and |Hy| = |hpp' ™| < 1 for n > 2. Conse-
quently, we may assume that

|pn| <1, |hn| <l,n=>2. (616)
We seek solutions of (6.12) in the form

9(2) =3(2) = Y _ gn2" (6.17)

By formally substituting ¢ into (6.12), we obtain
B -g—po(g-B)=b(hog).

Since go = 0, we see that

po(g-8)=pB-(pog),

hence
(8% —rB—bs)g1 =0, (6.18)
and
(BQTL —rp" —bs)gn, = B" Z pmgflm +b Z hmgrgm>7 n=2. (6.19)
m=2 m=2

Since 3 is a nonzero root of z2 — rz — bs, we can choose g1 as 7 so that (6.18) is
satisfied. Furthermore, we assert that (87)% — r3" — bs # 0 for n > 2. Indeed,
if the contrary holds, then 8" is a root of the equation 22 — rz — bz = 0. Thus
6™ = B or " # (. In the former case, |5] = 1 and in the latter, 53 = —bs so that
18] = |bs|1/(”+1) . Both are contrary to our assumptions on f.
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We may now see from (6.19) that the resulting relation defines g, g3, ... in a
unique manner. We need to show that the subsequent series (6.17) converges in a
neighborhood of the origin. To see this, note that

. g"
lim ———— =0
HLH;O B2 — " — bs ’
and
. b 0 18] > 1
1 -z 9 )
o B2 —rpn —bs {—l/s,0< 18] < 1.

Thus there is some positive number M such that
B b
B2 —rpn —bs|’ |2 —rfB™ — bs
for n > 2. From (6.19) and (6.20), we have

M
< =
- 2

(6.20)

)

lgnl <M > gl n > 2.
m=2

If we now define a sequence {¢,}, .n by 90 =0, ¢1 = || and

G =M> ™ n>2,
m=2

then it is easily seen that
lgn| < gn, n > 1.
In other words, the series Q(z) = q1z + q222 + - - - is a majorant series of g. But by
Example 4.8, Q(z) is a solution of the implicit relation
MQ? B
1-Q
and is analytic on a neighborhood of the origin. Thus g(z) is analytic there as well.
This completes the proof.

F(z,Q)=Q—nlz— 0,

In the above result, we assume that |3| # 1. Next, we deal with the case when

16l = 1.

Theorem 6.2. Suppose |bs| < 1 and the equation 2> —rz—bs = 0 has a nonzero root

B which is a Siegel number. Then (6.12) has a solution g(z) which is analytic on a
neighborhood of the origin and satisfies the conditions g(0) =0 and ¢'(0) =n # 0.

Proof. As in the proof of the previous Theorem 6.1, we may assume that (6.14)
and (6.15) hold, and there is a formal solution g(z) of (6.12) given by (6.17) with
g1 =n and

(BQTL —rp" —bs)gn, =" Z pmgflm +b Z h’mgrgm>7 n =2
m=2 m=2
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Since 32 — r3 — bs = 0, we have
bs
ﬁ -—r=—-_,
B
and

52n—7‘ﬁn—b82 (ﬁ2n_52) —T(ﬁn—ﬁ):ﬁ(ﬁn_l—l) (571—"-5—7‘)
Thus,

B =1) (8" + B =7) g ﬂ"meg +bth9nv”22~

Note that
1 1 1 1
P = 1 S .
B+ B—r[ B +bs/B] B +bs| T 1 |bs]

by wo = 0, w; = || and

If we now define a sequence {wy},

w, = M |6”_1 — 1|71 Z wflm>, n>2,
m=2
where
EReay
1 —|bs|
then it is not difficult to show by induction that

>0, n>2,

|9n| < wn, n>2.

In other words, W (z) = wyz + we2? + -+ is a majorant series of g. We now need
to show that W(z) has a positive radius of convergence. To see this, note that
Example 4.8 asserts that the implicit relation

MQ?

defines an analytic function
(Z) = Z qnz",
n=0
with go = Q(0) =0, ¢ = Q'(0) = [y > 0, and
G =M g™ n>2.

Since Cauchy’s Estimation (Theorem 3.26) asserts that there is a positive number
A such that

g < A", n>1,
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we see from Theorem 3.32 that

—1
W, S A" (255+1)n n72§’ n 2 1’

which shows that W (z) has a positive radius of convergence. The proof is complete.

We remark that once existence is guaranteed, it may be possible to expand
(6.11) in series form and seek the desired solution instead of first finding a solution
of (6.12). As an example, consider the functional equation

f(z+ f(2)) = sz, s #0. (6.21)
If 22 — 2 — s = 0 has a nonzero root (3, then writing f(z) = fiz+ f222 +--- , we see
that
fl(l + fl) =S5,

fifo+ f2(14 f1)* =0,
fifs+ (1 +bf1)fs =0,

The conditions in Theorem 6.1 or Theorem 6.2 assure that there is at least one
nontrivial solution to the above system of equations. Indeed, one solution of the
above system is {f1, fa2, f3,...} = {6,0,0,...}, and the corresponding f(z) = Bz is
an analytic solution of (6.21).

6.1.2 FEquations Involving Several Iterates

A natural extension of the problem of the existence of iterative roots of (6.10) is to
find a function f such that a linear combination of its iterates is equal to a given
function F':

Mf(2)+ X fPU2) + -+ A fM(2) = F(2), (6.22)
where A1, ..., A, are complex numbers, not all zero (see [186]).

Theorem 6.3. Suppose the power series function F(z) = ¢(z), where ¢co = 0 and
c1 = s, is analytic on some B(0;r1). Suppose further that v is a Toot of the equation

Mz 4+ X224+ A2" = (6.23)
and there is some positive number 8 such that for m > 2,
|/\1am 4 XA 4 A — s| > 0.
Then (6.22) has a solution which is analytic on some disk B(0;r).

Proof. We first look for an analytic solution of the form

o(z) = bz = nz + Z bmz2™, n#0, (6.24)

m=1
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for the equation
Mo(az) + Xao(a?2) + -+ Mo(a"z) = F(¢(2)) (6.25)

in a neighborhood of the origin. In view of the assumptions on F, the Cauchy’s
Estimation (Theorem 3.26) asserts the existence of some positive number p such
that

m—1

|Cm|§p 7m:2a37""

Introducing transformations ¥ (z) = p(z/p) and G(z) = pF(z/p), we may obtain
from (6.25) that

Mp(az) + dop(a?z) + -+ Mth(a™2) = G(¥(2)),

which is again an equation of the form (6.25). Here G is of the form

o0 o0 Cm
G(2) = D dma™ =524 30 Epa,
m=1 m=2
but
Cm
ld| = | =22 | <1, m=2,3, ...
pm

Consequently, we may assume that |¢,,| < 1 for m > 2.
By substituting (6.24) into (6.25), and comparing coefficients, we see that

Ma-b4+ A0 b4+ Xa”-b=cob.

Hence
M+ X+ F X" —5)by =0
and
(A10™ + 2002™ + - 4 Xpa™™ — 8)by = Y cibfl), m > 2. (6.26)
t=2

Since « is a root of (6.23), we may choose by = 7, and then b,, can be uniquely
determined by the recurrence relation (6.26) for m > 2. This shows that (6.25) has
a formal solution of the form (6.24) for any given n which is not zero.

Note that by Example 4.8, the implicit relation

2
W(Q)=Q—|nz— =9

51-q "

has a solution
Q(Z) = Z ann
n=0

which is analytic near 0 and the sequence ¢ = {g, }, . satisfies go =0, g1 = || >0
and

1 w—
qn = _qung n>2.
61‘:2
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Note that |b1| = |n| < ¢1. Assume by induction that |bg| < g for k=1,2,....m—1,
then

6|bm| < |>\1(1m+)\2a2m+...+/\

nanm
< led I < ST <> 6l < Bam.
t=2 t=2 t=2

_3||bm|

Thus |by,| < ¢m for m > 2, which shows that Q(z) is a majorant of ¢(z). We have
thus shown that ¢(z) is an analytic solution of (6.25) on some B(0;r2). Since ¢(0) =
0 and ¢'(0) = n # 0, the inverse function ¢~ is also analytic in a neighborhood
B(0;r) where r < ry. Let

f(z) = ¢lad™(2)), 2| <7
Then f is analytic near 0 and is a solution of (6.22):
Mf(@) + 2 fB )+ A ()

= Mg(ag ! (2)) + Ae(@?97H(2)) + -+ Mug(a”dT ()

= F(z).
The proof is complete.

As a corollary, we may obtain the following result.

Theorem 6.4. Suppose F(0) = 0, F'(0) = s where |s| > (1+V/5) /2 and F is

analytic in a neighborhood of the origin. Then there is an function f analytic on
some B(0;0) such that f"(z) = F(2) for n > 2 and z € B(0;9).

Indeed, if we let a be a root of a™ = s, then for m > 2,

1+v5 <1+x/5>m1_1

> 1.

nm _ — ™ _ > ( m—l_l):
@™ — o] = | — o] > |s| (I g g

In view of Theorem 6.3, the equation f[")(z) = F(z) has a solution which is analytic
near 0.

Theorem 6.5. Suppose F is a function analytic on some disk B(3;9), F(8) =0
and F'(B8) = Ma + Xoa? + - -+ + N\,a™ # 0 where |a| < 1. Suppose further that

Z)\k =0 and |af Z Akl <1,
k=1 k=1
and there is an integer m such that
F'(B) = Ma™ + Xoa®™ + -+ 4 \a™™.

Then (6.22) has analytic solutions near 3.
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Proof. Since F(8) = 0 and F’(3) # 0, the inverse function F~1 of F is analytic
in a neighborhood of the origin and is of the form

FH2)=02(z) =B+ ) cmz™ (6.27)
m=1
In terms of F~!, we may obtain from (6.25) the equation

-1 (i /\quﬁ(ozkz)) . (6.28)
k=1

We first look for solutions of (6.28) of the form
=1(2) Z by 2™ (6.29)

Substituting (6.29) and (6.27) into (6.28), we obtain

o <Z)\kb-a_]€> =cod,
k=1

where
d= { <Z )\kO[kj> bj}
k=1 JEN
Since
do=> M =0,
k=1
we see that
J
_ ()
b= {Z cid; }
1=0 jEN
These lead us to
bO = ﬂ7
{1-c(a+Xa®+- -+ Xa")} b =0 (6.30)

and

t n
= Z Ct H <Z )\kakli> bllb12 cee blt (6.31)

litlot-+ly=m;t=2,3,....m i=1

for m > 2. Since

TF(F0)  F(B) Mat it + Aar
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thus
1—ci(Ma+ A + -4+ X)) = 0.
In view of (6.30), we may choose by = n # 0. Furthermore, since || < 1, there
exists a positive integer K such that for m > K,
let(Ara™ + Xo0®™ + -+ 4+ Apa™™)| <1 =1, v € (0,1).
Thus, for m > K,
{1 = cr(Aaa™ + Xa®™ + -+ + Apa™™) }|
>1-— |{1—cl()\lozm+)\2a2m+---+/\na”m)}| > 7. (6.32)
If 1 —ci(Aa™ 4+ A2a?™ + -+ X,a™™) # 0 for m = 2,3, ..., K, then we see that

= [ and by =7 # 0 and that be, b3, ... can be determined from (6.31) in a unique
manner to obtain

o(z)=F+nz+ Z:bmzm7 n#0.
m=2

If 1 —ci(Aa™ + Xa®™ + -+ + X\,a™) = 0 for some m, then in view of
(6.32), there can only be a finite number of such integers, say, mi,ma,...,m, €
{2,3,..., K}. Thus, we may choose by,, = nn, for i = 1,...,r, and b,, = 7, for
m € {2,3, ... K}\{ml,mg, mr} S0 as to satisfy the equation

2. - H (i Arat ) oy ---m, =0,  (6.33)

Ll ol =m;t=2,3,....m =1

and then determine bx41,bx+2,... by (6.31) in a unique manner to obtain

r K
G(z) =B+nz+ Y nm, 2™ + > 2™ + Z b 2™
j=1 m=2;m#mi,ma,...,mMy m=K+1

where 1 # 0 and m,, My - m,. are arbitrary complex numbers.

We now need to prove that (6.29) is convergent in a neighborhood of the origin.
First in view of (6.27), we see from Cauchy’s Estimation (Theorem 3.26)) that there
is some number p > 0 such that

|Cm| Spm_17 m= 2a37"' .

Introducing transformations 1 (z) = p~1¢(z/p) and G(z) = p~1F(z/p), we may
then see from (6.28) that

! <Z Ak¢(akz)> ;
h=1

which is of the same form as (6.28) but

G Y2)=pF Y z/p) = Z 2™

m=2
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and

<1, m=2,3,...

C
] = \ om_

Therefore, we may assume without loss of generality that |¢,,| < 1 for m > 2.
Consider the sequence u = {um },,n defined by ug = 0,

um:|n\, mzla

Um = |Tm|, 2<m <K,

and

1m
um:—Zug?7 m > K+ 1.
7=

Clearly, |by| = wm for m = 1,2, ..., K. Furthermore, in view of (6.31), (6.32) and
our assumptions on Aq, ..., An,

v [bry1| < ‘1 —c (>\104K+1 + Ap®NHD oy /\nOén(NH)) ‘ bR 1]

t n
S ] (zw |a|kli) o
= 1

li+lo+-+l=m;t=2,3,....m i=1 \k=

m t t
<y <|a|2|xk|> b))
2 k

t =1

>l
t=2

= YUK+1-

IN

IN

By induction, we may then easily show that |b,,| < u,, for m > 1. In other words,
the power series function u(z) = Z::o Umz™ is a majorant of the power series
function Y °_ by, 2™. We assert further that u(z) is convergent in a neighborhood
of the origin. To see this, note that Example 4.8 asserts that u(z) is a solution of
the implicit relation

1 uK+1

K
W7 = - - m m_— :Oa
) =u=lalz = 3 2" = 21—

and is analytic near 0. Thus we may conclude that ¢(z) = 3+ D7 _ by2™ is
analytic on a neighborhood of the origin. Since ¢(0) = 8 and ¢'(0) = n # 0, its
inverse ¢~1(z) is analytic in a neighborhood of 3. If we let

f(2) = dlag™(2)),

then we may easily verified that f is an analytic solution of (6.22) in a neighborhood
of 3. The proof is complete.
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Example 6.1. Consider the equation

fBz) = fz) =z =0. (6.34)

Let F(z) = z. Then F is analytic in C, F(0) = 0 and F'(0) = 1. Since o =
(1 + \/5) /2 is a root of the equation 22 — z — 1 = 0 and for m > 2,

) L)
()

> 1,
if we take 8 = 1, then the conditions in Theorem 6.5 are satisfied. Thus (6.34) has
an analytic solution of the form

f) =0 <1+T¢5¢1(2)> 7

where ¢(z) is an analytic solution of

é <1+\/5> . —¢<1+2\/52> — 6(2). (6.35)

-1

Let
)= bmz™ (6.36)
m=1

After substituting into (6.35), we obtain

2m m
[eS) 1+\/5 . o0 1+\/§ . o0 .
o (558) B () - B

m= m=1

2m m
<1+2\/5> _<1+2\/3> 1 $b, =0 mez".

If we take by = 1 # 0, then b, = 0 for m > 2, so that ¢(z) = nz. Since ¢~1(2) = z/n,
we see that

and

flz)= ! +2\/52.
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Example 6.2. Consider the equation

AR =M +0=N(z-08), 0<A<1, feC, (6.37)

which can be written as

) - oS =2 f (6.39)
Let Ay = =A/(1=X), A2 =1/(1—X) and F(z2) = z—f. Then \; + X2 =0, F(8) =0,
F'(8)=1and a = ()\ — m) /2 is a root of the equation
1,
1—X 1—A

«/AQ 41—\ A+2(1=X)—A
+ < + ) =1-A<1,

2

z—1=0.

Furthermore,

and

)\+41— 1
o] (] + [Aa]) = ¥ =2 (54 15)
B N/A2+4 T= N — A1+

1—A
<1

1—X1+XA 14
2 1-\ 2

z)=p+ Z by 2™
m=1

Let

be an analytic solution of

1 A
mfﬁ(a%) - ﬁ@“az) = ¢(z) — 8.

1
Then
1 2m >\ m _ —+
{I—Aa 1—)\a l}bm—07m€Z.
Since
1 2 1=0
TS N B S
and

1 5, A

T T1 ¢ —1#0
for m > 2, if we take by =7 # 0, then b, = 0 for m > 2. Thus ¢(z) = 8+ nz and
¢~ 1(z) = (2 — B)/n. This shows that

A2 + 4(A A2 +4(N—1
f(z) = ( v ) e
is an analytic solution of (6.38). In particular, when g = 0, we see that
A— /A2 4+4N -1
f() = G

is an analytic solution of

fB(z) = Af(2) + (1= N)f(2), A€ (0,1).
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6.1.3 FEquations of Invariant Curves

If we take f(z,y) = ¢ 4+ y and g(x,y) = y in (6.1), then it reduces to the Euler
equation

P(z + o(x)) = ¢(x).

If we take f(x,y) =z +y and g(x,y) = ¥(y), then (6.1) reduces to the functional
equation

¢ (x+¢(x) =v(o(x)). (6.39)
If we take f(z,y) =y and

g(e.y) = 2y — 2 — = (h(z) + h(y)).

2
then (6.1) reduces to the functional equation
1
¢(¢(x)) = 2h(z) -z — 5 (h(4(2)) + h(z)) - (6.40)

6.1.3.1 FEquation I

In this section, we prove a theorem concerning the existence of analytic solutions
of equation (6.39) in the complex field. More specifically, we consider the equation
[176]

¢ (z+0(2) =¢(6(x)), (6.41)

where ¢ (2) is the unknown function and ¢ (2) is a given complex-valued function
of a complex variable.
Suppose ¢ (z) is analytic on a neighborhood of zero, ¥ (0) = 0 and ¢’ (0) = «a.

Consider the following three cases (i) |a] > 1+2‘/5; (i) 0 < o] < 1; and (iil) e is a

Siegel number.

Theorem 6.6. Assume that one of the condition (i)-(iii) is fulfilled. Then equation
(6.41) has a solution which is analytic on a neighborhood of zero.

Observe that, if f(z) is an analytic solution of the equation

f(a®2) = faz) = (f (az) = f(2)) (6.42)
and f’(0) # 0, then the formula
¢(2)=f(af " (2) -2
defines an analytic function satisfying equation (6.41) on a neighborhood of the

origin. Thus our Theorem follows immediately from the following.

Theorem 6.7. Assume that one of the conditions (i)-(%i) is fulfilled. For any
n € C in the cases (i) and (i), and for n =1 in the case (i), equation (6.42) has
a solution f (z) which is analytic on a neighborhood of zero and f (0) = 0 as well
as f'(0) =n.
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Proof. Fix an n € C. If n = 0 then the zero function satisfies the assertion. So
assume that 1 # 0 and, in addition, n = 1 in the case (iii). Let

U(z) =22) =) eaz" (6.43)
n=0

where ¢y = 0 and ¢; = a. Since ¥ (z) is analytic on a neighborhood of zero, by
Cauchy’s Estimation (Theorem 3.26), there exists a positive number § such that
len| < B771 for n > 2. Observe that (6.42) is invariant with respect to the trans-
formations f (z) = f(82) /8 and ¥ (2) = ¥ (8z) /5. Consequently, in the sequel we
may assume that

len] <1, ne Zt. (6.44)
Let

f(2) =b(2) sz by = 0, (6.45)

be the expansion of a formal solution f (z) of equation (6.42). Inserting (6.43) and
(6.45) into (6.42), we see that

o® b—a-b=co(a-b—0b).
Thus
(&> —(1+e)a+e)b =0, (6.46)

and
t
(® = (1+c1)a™ +c1) by = > H ) by, (6.47)
li+-+li=n;t=2,3,....n k=1
for n > 2.
Since ¢; = a, a? — (1 +¢1) a+ ¢; = 0 so that we may choose by = 7 in (6.46).
Let a1 = by and let

(" —a)a, = thaﬁp, n > 2.
t=2

Then in view of (6.47), a, = (o™ — 1) b,, for n > 2.

Clearly, the sequence {ay},cz+ is uniquely determined. We shall prove the
convergence of the series > >~ | a,z™ for each z in a neighborhood of the origin.

In case (ii) where 0 < |a| < 1, for any v € (0, |a]), it is easy to find a positive
integer ¢ such that |a|" < |a| — v for every n > ¢. In case (i) or (iii), we choose
g = 7 = 1. Note that Example 4.8 asserts that a solution w(z) of the implicit
relation

1 wq‘H

R(zw)_w—|n\z—2|an|z =0

—w
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exists which is analytic on a neighborhood of the origin and

w(z) = Z Up2"

n=0

where u = {u,},c is determined by uo = 0, u1 = ||, up = |ax| for k = 2,...,q,
and

1
Up = — Z ul® n>q+1. (6.48)

If case (i) holds, then |a™ — a| > |o|™ —|a] > |o|*> —|a| > 1 for n > 2. If case (ii)
holds, then o2 — a| > |af — la|® >~ for n > ¢+ 1. Hence, using induction and the
inequality (6.44), we infer that |a,| < u, for n € Z*. Thus the series Y | a,z"
and, consequently, the series EZO:I b,2™ is convergent in a neighborhood of zero.

Now consider the case (iii). Since the series Y, u,2" converges in a neigh-
borhood of the origin, by Cauchy’s Estimation (Theorem 3.26), there is a positive
A such that u,, < A" for n € ZT. By Theorem 3.32, we see that there are positive
numbers § and N such that |a,| < MA"N"~'n=2% for n € Z*, and hence

bo] = |a" — | Han| < 2(n—1))° A"N" 1n=2 pn ezt
Thus the series > -, b,2™ converges for each z in a neighborhood of the origin.
This completes the proof.
6.1.3.2 FEquation II

In this section, we consider the equation (6.40) in the complex domain, that is,

Y (2) =2¢(2) -z - % (h((2)+h(2), z€C, (6.49)

where v is unknown and A is a given function which is analytic in a neighborhood
of 0 € C such that h (0) = 0 and its derivative h’ (0) = & # 0 (see [195]).

The existence of analytic solutions for (6.49) is accomplished by transforming
the equation to another functional equation without iteration

¢ (N2) =26 (Az2) — ¢ (2) — % (h(¢(A2) +h(e(2), =z€C, (6.50)

called the auxiliary equation of (6.49), where \ # 0 satisfies the algebraic equation
2X2 — (4= A+2+£=0, (6.51)

and by constructing analytic solutions for (6.50).

Theorem 6.8. Assume that 0 < |\ # 1. Then for any T € C, the auziliary equation
(6.50) has a solution ¢ (z) which is analytic on a neighborhood of the origin and
¢ (0) =0 as well as ¢' (0) =7.
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Proof. Clearly, if 7 = 0, (6.50) has a trivial solution. Assume 7 # 0. By our
assumption on h, we may let

= i anz", (6.52)
n=0

where ag = 0 and a3 = &. Since h is analytic in a neighborhood of the origin,
by Cauchy’s Estimation (Theorem 3.26), there exists a constant p > 0 such that
lan| < p"~ ! for n > 2. By means of the transformations ¢ (z) = p¢ (p~'z) and
h(z) = ph (p~'2), in view of (6.50), we see ¢ (2) satisfies

B2 =25 0) 3 () — 5 (R (609) +7(52))), zec,
which is of the same form as (6.50) but

G(z)=ph(p'z) =2+ anp' 2",
n=2

where obviously the coefficient |anp1_"| < 1 for n > 2. Thus, we may assume
without loss of generality that

lan] <1, n>2. (6.53)
Let
= B Z bp2™ (6.54)
where by = 0, be a formal solution of (6.50). Substituting it into (6.50), we have
/\_2-b:2)\-b—b—%ao(g-b)—%aob. (6.55)
Hence
(A% —2X\" +1) b, = Z arb®, n e ZF. (6.56)

In other words,
(/\ — 22+ 1+ (/\+ )g)b =0,
and

(XM N + 14 = ()\" +1) g) bn Z apb® n>2.  (6.57)

In view of (6.51), £ = =2 (A —1)* / (A + 1) . Hence the coefficient of b; is zero, and
(6.57) is reduced to

A+ (A +
S b n > 2. .
R YsUIy (>\"+1+/\”+/\ 3 Z"‘“ nin (6.58)
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Consequently, we may choose by = 7 # 0 and then determine the sequence {b,}, -,
by (6.58) recursively.

In what follows we prove the convergence of series (6.54) for each z in a neigh-
borhood of the origin. In view of our assumption that 0 < |\| # 1,

n A
i A+ (A" +1) _ sy 0 < Al < 1,
n—oo 2 (A" — ) (An+tL 4+ An + X — 3) 0, [A] > 1.
Hence there exists M > 0 such that
A+ (A" +1)
<M, n>2. 6.59
2O —A) (W A pa—g) = = (6.59)
From (6.58) and (6.53) we see that
[bn] < MY, n>2. (6.60)
k=2
Next, note that Example 4.8 asserts that
W2
W—|T|Z—M1_W:0 (6.61)

has a solution W(z) which is analytic on a neighborhood of the origin and

W (z) =Y Bn2", (6.62)

n=0
where By =0, B; = |7| and
By=M) B n>2
k=2

Furthermore,

lbn| < Bn, necZt. (6.63)

In fact |b1]| = |7| = Bi. For inductive proof we assume that |b;| < B; for j <n —1.
Then

bl < M3 PN <MY B® =B,
k=2 k=2
as required. In other words, ¢(z) is majorized by the analytic function W (z). The
proof is complete.

Theorem 6.9. Assume that A is a Siegel number. Then for any 7 € C with 0 <
|7] <1, the auziliary equation (6.50) has an analytic solution ¢ (z) in a neighborhood
of the origin such that ¢ (0) =0 and ¢' (0) = 7.
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Proof. As in the proof of the previous Theorem, we seek a power series solution
of (6.50) of the form (6.54). Choosing by = 7 as before and using the same arguments
as above we can uniquely determine the sequence b = {b,,}, . - Note that the Siegel
number A is equal to exp (27if) for some irrational number 6. Thus

[A — 3] = |cos (270) + isin (270) — 3| > 3 — cos (27w0) > 2

that is, N := |A — 3| — 2 > 0. From (6.58),

2Nt =1 (A =31 AT =)

< b|SF)
ATt =1 ( \)\ 3| — ZH

2t 3 bl (6.64)
k=2

IN

for n > 2. Clearly, the sequence b is majorized by the sequence u = {u,, }, . defined
by up =0, u1 = |7| and
2 el qPINS )
un:NP\ —1| Zun,nzz
k=2
Therefore it suffices now to show that w has a positive radius of convergence. To
this end, note that Example 4.8 asserts that the equation

V—z-= =0 (6.65)

has a solution V(z) which is analytic on a neighborhood of the origin and

z) = i Cnz",
n=0

where Cyp =0, C; =1 and

2 n
Nk:2

Furthermore, the Cauchy’s Estimation (Theorem 3.26) shows that there is some
T > 0 such that |V,| < T™ for n € N. Thus by Theorem 3.32, we see that the
radius of convergence of u is positive. The proof is complete.

Theorem 6.10. Assume that 0 < [A| # 1 or X is a Siegel number. Then Eq. (6.49)
has an analytic solution of the form ¥ (z) = ¢ ()\tb’l (2)) in a neighborhood of the
origin, where ¢ (z) is an analytic solution of the auxiliary equation (6.50).
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Proof. By Theorems 6.8 and 6.9, we can find an analytic solution ¢ (z) of the
auxiliary equation (6.50) in the form of (6.54) such that ¢ (0) = 0 and ¢’ (0) = 7 # 0.
Clearly the inverse ¢! (z) exists and is analytic in a neighborhood of the origin.
Let

¥ (x)=¢ (Mo (2)), (6.66)

which is also analytic on a neighborhood of the origin. From (6.50), it is easy to
see that

Y (2) =0 (Mo (0 (M (2)))) = 6 (N2 (2))
1

=26 (M7 (2) =9 (671 (2)) = 5 (R (¢ (A7 (2))) +1 (6 (67 (2))))

=2 () -2 3 W EDAG),

that is, the function ¢ in (6.66), defined on a neighborhood of the origin, satisfies
(6.49).

Example 6.3. Let

z - 2 n
h(z):2(1—e):—zﬁz. (6.67)
The algebraic equation corresponding to (6.51) is
2A0(A—=3) =0, (6.68)
which has a nonzero root A\; = 3. By Theorem 6.8, the auxiliary equation
1
¢(92) =20 (32) — ¢ (2) — 5 (h (¢ (32)) + h (¢ (2))) (6.69)
has a solution of the form (6.54) where by = 7 # 0 is arbitrary and bo, bs, .... are
determined by (6.58) recursively, i.e.,
3" +1 /1
bp=—"—"—"— — ) sk > 2. .7
(3n—1_1)3n+1kz_2(k!> n'> N Z (6.70)
In particular,
_¢"(0) 5,
S v
¢"" (0) 3 +1 b3 o
T T @\t e ) o

etc. Since ¢ (0) = 0, ¢’ (0) = 7 # 0 and the inverse ¢! (z) is analytic near the
origin, we can calculate

—1\/ _ _ _1
OO T T v 7
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!

(e ) (e ) " (0) (7)) (0) 5

(@' (61 (0)))? (¢'(0)> 277

2
T 3677

etc. Furthermore,

!/

U (0)=¢' (3671 (0)) -3 (¢7") (0) =3¢ (0) (¢71) (0) = 37— =3,

0 (0)=96" (307 ) ((67) ©)) +30 (307 ) (67)" 0) =

! / "

v (0) = 219" (367 0)) ((67) (©)) +186" (367 0)) (67) ©0) (67)" (0)

! " n

+9¢" (3671 (0)) (#71) (0) (¢71)" (0) + 3" (3071 (0)) (¢7") " (0)

28
o2
etc. Thus near 0, Eq. (6.49) with h in (6.67) has an analytic solution of the form
5, 17 4
_ 52,175, 71
Y (2) 3z+92 +81Z + (6.71)

We remark that if h (z) in (6.49) is an analytic function near 0 with real coef-
ficients, and if aq = & satisfies £ < 0 or £ > 16, then by Theorem 6.8, Eq. (6.49)
has an analytic real solution. Indeed, the equation 2A% — (4 — &) A+ 2 + & = 0 now
has real roots A; and Aqe. Clearly by (6.58) where A = A1 or A2, we can define a real
sequence {b, }, -, and obtain a solution ¢ (z) of (6.50) with real coefficients. Since ¢
and its inverse are real valued functions, the function ¢ (z) = ¢ (A\;¢~" (2)) , where
j=1or 2, is also a real function and Theorem 6.8 implies its analyticity.

6.2 Equations with First Order Derivatives

The existence of solutions of differential equations of the form

2'(t) = f(t, (1))
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is of fundamental importance in the theory of ordinary differential equations. There
are, however, plenty of differential equations that are useful in modeling natural
processes, but cannot be written in the above form. For instance, Cooke in [41]
describes a model of infection, a prey-predator model, a respiration model and a
model in electrodynamics, all of them call for equations of the form

2 (t) = z(t — x(t))
or
2'(t) + ax(t — rz(t))) = 0.
Earlier Driver in [50] investigated an equation of the form

y'(t) = f (ty(t), y(g(t y (1)), v (9(t, y(1))))

which is related to the Dirac equation of classical electrodynamics without radiation
effect.

As a further example, consider a sequence of curves in the plane that can be
described by a sequence of functions xo(t), x1(t), z2(f),.... Suppose the slope of
each function zy(t) is related to its value at some u, that is

() = Lak(u),
for some real number L and w is calculated at xp_1(t), that is,
u = xp_1(t).

The question then arise as what are {zo(t),x1(t), z2(t), ...} . Such a family of func-
tions is naturally called a solution of the above relations. Such a problem can
be quite difficult, but one approach is to find a family of functions such that
xi(t) = xp41(t) for all large k (usually called a stationary solution). Then we
are led to

2/ (t) = Lz(z(t)).

6.2.1 FEquation I
Consider the following differential equation [185]
2’ (z) = 2™ (2) (6.72)

where m is a positive integer greater than or equal to 2, and z[™ (2), as defined
before, denotes the m-th iterate of the function z(z). We will find its solutions
which are analytic over a neighborhood of a complex number a which is a Siegel
number or satisfies 0 < |a| < 1.

To this end, we first seek a formal power series solution for the following equation

' (02) =~ ()y(a™), (6.73)
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subject to the initial condition
y(0) =« (6.74)

Then we show that such a power series solution is majorized by a convergent power
series. Finally, we show that

z(z) =y (ay™' (2)) (6.75)

is an analytic solution of (6.72) in a neighborhood of a.

Theorem 6.11. Suppose 0 < |a| < 1. Then for each complex number n # 0,
equation (6.73) has a solution of the form

y(z) =Y bnz" (6.76)
n=0

which is analytic on a neighborhood of the origin and satisfies by = o and by = 1.

Proof. Assume (6.73) has an analytic solution of the form y(z) = ?)\(z), where
b = {b,} € N satisfies by = a and b; = 7. Substituting (6.76) into (6.73), we see
that

g~Db:é(Db)*(ﬂ-b).

Hence the sequence b can be determined by
n—1

(@ —a) (n+ Dbprr =Y (k+1)a™" Fbyi1b, g, n € Z7, (6.77)
k=0
in a unique manner. Furthermore, there is some M > 0 such that
m(n—k)
(k+ 1o < 1 < i’
(n+1)(amtl —a)| ~ Jan =1 = M
Thus if we define a sequence {B,}.., by By = «a, By = |n| and B, =
M~1B, 1B, _ for n € Z*, then in view of (6.77),

|bn| < B, n€ZT,

n>20<k<n-1.

that is, b is majorized by the sequence {B,,},, - Therefore our proof will be com-
plete if we can show that the radius of convergence of {By}, . is positive. To this
end, note that the equation

G*(2) = MG(z) — M |n| z = 0,

being a special case of (4.10), has a solution
G(z) = Z gn2"
n=0

which is analytic on a neighborhood of the origin and the sequence g = {gn}, cn 18
given by go = 0, g1 = |n| and

gn+1 = M_lgn+lgn—ka n Z 1.
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Since By = go and By = g1, it is clear that {B,}, .y = g so that {B,} has a

positive radius of convergence. The proof is complete.

neN

Theorem 6.12. Suppose « is a Siegel number. If n = 1, then equation (6.73) has
a solution of the form (6.76) which is analytic on a neighborhood of the origin and
satisfies bg = o and by = 1.

Proof. As in the previous proof, assume the existence of an analytic solution
of the form (6.76) with by = « and by = 1. Then (6.77) holds again, so that

n—1

1
brg1] < o 1] > okl [kl , n e Z*. (6.78)
k=0

Note that the equation
G*(2)—G(2)+2=0

being a special case of (4.10), has a solution G(z) which is analytic on a neighbor-
hood of the origin and

G(z) = i Cpz"
n=0

where the sequence C' = {C,},, . is defined by Cp =0, C1 = 1 and
C,=0C% n>2.

As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (Theorem 3.31)
to conclude that the sequence b has a positive radius of convergence. The proof is
complete.

We now state and prove our main result in this section.

Theorem 6.13. Suppose 0 < |a| < 1 or « is a Siegel number. Then equation
(6.72) has a solution x(z) which is analytic on a neighborhood of a. Furthermore,
x(z) is of the form

2(z) =y (' (2)),

where y(z) is a solution of (6.78) that is analytic at 0 and satisfies y(0) = a.

Proof. It suffices to show that the power series function y(z) generated by
the sequence b defined by by = «, by = n # 0, and (6.77) satisfies (6.72). Indeed,
since 3’ (0) = 1 # 0, the function y~! (z) is analytic in a neighborhood of the point
y (0) = a. If we now define z (2) by means of (6.75), then

' (2) = ay' (ay™' (2)) (") (2)
1

=ay (ay™! (2)) —————
= (O )

=y (amy ! (2)) =al" (2),
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as required. The proof is complete.

We remark that in the above proof, since

y(ay™ (@) =y(a-0) =a,

« is a fixed point of the solution z (z).

We now show how to explicitly construct an analytic solution of (6.72) by means
of (6.77). Let a be a complex number which either satisfies 0 < |a| < 1 or is a
Siegel number. By means of the previous Theorem, equation (6.73) has an ana-
lytic solution of the form y(z) = g(z)7 where by = a,by = n # 0, and {b,},_, is
determined by (6.77). It is not difficult to calculate the coefficients b,, by means of
(6.77), indeed the first few terms are as follows:

y// (0) Omel 772

br="5" =3 (a—1)

po = Y(0) _ oD (@ 4 2)

3 3! -1 (a—1)"

by — y@ (0) _ a3m=3 (™ + 3) (@™ +2) (e — 1) + 3a™ (o — 1) | n*
4! A (a? —1) (a2 —1) (o —1)° '

Furthermroe, since y~! (2) is analytic in a neighborhood of the point y (0) = « it
can also be determined once its derivatives at « have been determined

—1n\/ _ 1 1 1
)@= Ty "o
() (@) = L @) )@ _ yOF )@  amt
¥ (y~1 (a)))” (v (0))? (a=1)n’

(yfl)/// (a)

{rrr @ [6) @] @) o) @ f I 6 @)
ly' (v~ ()]
@) () (@)-2y (v () y" (7 (o) (v™) (@
v (v~ ()]
_ WOn =m0 am (@ —Dnln* —n" (0)n "t - 2-ny" (0)n "
ly' (0)*

2= (3 — o™ + 1)
(a—1)>%(a+1)7

etc. Finally, we determine a solution z (z) of (6.72) by finding its derivatives at a:

z(a) =y (ay™" () =y(a-0) =,

2 (0) =y oy (@) o (¥ (@) = ay/ (0) () (a) = an- % —a,
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"

2 (0) = %y (o™ () [(57) (@] + v/ (057 (@) (™) (@) = @™
2 (@) =y oy~ (@) [a (r7) @]+ (00 (@) 20 (57) (@) -2 (57)" (@)

!/ " n

" (o™ (@) a(y™) (@ -a(y™) (@+y (ay™ (@) -aly™) (o)

2m—1 mo_
:w:a2m—l(am—l+---+a+l)7

a—1
etc. Thus, the desired solution of (6.72) is
m 2m—1 m
_ « 2, & (@™ —1) 3
z(z)=a+a(z—a)+ 51 (z—a) + 3o —1) (z—a)” + (6.79)

We remark that a simple program can be used to generate other terms in (6.79).
For instance, by means of the following Mathematica program:

num = 4;
b[0] = a;
b[1] = n;

Do[b[n + 1] = Sum[(k 4+ 1) * a”(m * (n — k) x b[k + 1] *« b[n — k], {k,0,n — 1}]/
((a"(n+1)—a)x(n+1),{n,1,num}|

y(0) = o

iy[z_] := InverseFunction|y][z]

Do|Derivative[n][y][0] = b[n] * n!, {n, 1, num}|

Dola[n] = Simplify[Dy[« * iy[x]], {z, n}]/.InverseFunction[y][z] — 0], {n, 1, num}];
Do[Print["a[”,i,”] =", a[i]], {i, 1, num}];

we may obtain

all] = «
a2l = a™
—14+2m -1 m
14+«
—243m(__ m\(_1 _ m 2m
a[4]:a (—14+a™)(—1—-3a+3a™ +a*™)

(-1+a)2(1+ )
so that afi] = 29 (a). By changing the value of num, we may obtain any a[num] as
desired.

6.2.2 FEquation IT

Next, we will be concerned with a more general class of equation of the form [181]

2 (2) = 1w (2) +eax® (2) + - enal™ (2), e+ e £0. (6.80)
where ci, ..., ¢, are complex numbers, and z* (z) denotes the k-th iterate of the
function x (z) . We will construct analytic solutions for our equation in a neighbor-

hood of a complex number of the form «/(¢1 + -+ + ¢,) where « either satisfies
0 < |a| <1 oris a Siegel number.
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We first seek a formal power series solution for the following initial value problem

Y (az) = éy’ (2) Z ciy (oziz) , (6.81)
vO) = o (6.82)

For the sake of convenience, we will set
C=ci1+-+cm.

Theorem 6.14. Suppose 0 < |a| < 1. Then for any complex number n # 0,
equation (6.81) has a solution of the form

(07

y(z) = i +nz+ ;bnz” (6.83)

which is analytic on a neighborhood of the origin.

Proof. We seek a solution of (6.81) in a power series of the form y(z) = 3(2’)
where by = «/C and by = 7. Substituting (6.83) into (6.81), we see that

1 o .
-Db= = (Db al-b .
o 00= (00« (St )

Hence the sequence {b,}, -, is successively determined by the condition

n—1 m
(" —a) (n+1)bpy1 = Z (k+1) Z i ™Mby by g, m € ZT. (6.84)
k=0 =1

in a unique manner. Since 0 < |a| < 1, there exists a positive number N such that
for n > N,

n+1

o™ <ol =~

for some v satisfying 0 < v < || . From (6.76), we see that

n—1
D bl bl -
k=0

Note that Example 4.14 asserts that the polynomial equation

N n—1
G2—lG+lnz+ lnn— el lim—k| | 2" =0
rehareill Z &l ; 70|

has a solution G(z) which is analytic on a neighborhood of the origin and

m

S

=1

Ylbatal < (Jal = ™) bnia| <

G(z) = i B,z"
n=0
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where {B,,}, .y is defined by By =0, By = ||,
B, = |nn| = bu|,n=2,...,N,

and
m n—1
Bpy1=~7" Zci Z Byi1Bnk,m > N.
i=1 | k=0

It is easy to show by induction that b, < B, for n > 1, and hence the radius of
convergence of b is positive. The proof is complete.

Theorem 6.15. Suppose « is a Siegel number. If n = 1, equation (6.81) has an
analytic solution of the form (6.83) in a neighborhood of the origin.

The proof is similar to the that of Theorem 6.12 and hence will be sketched
as follows. We first seek a power series solution of the form (6.83) where by =
af(c1 4 -+ ¢y) and by = 1. This leads to (6.84) again so that

n—1

1
b1 = ——— b bn—k|, n>1.
b1 |an_1|kZ:0| k1] on—kl, n

To show that the formal solution converges in a neighborhood of the origin, note
that the polynomial equation

C1G? (2) +2 =G (),

being a special case of (4.10), has a solution G(z) which is analytic on a neighbor-
hood of the origin and G(z) = ¥(z), where the sequence v = {v,,}, o is defined by
vg=0,v; =1 and

Upi1 = |C| v, n > 2.

As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (Theorem 3.31) to
conclude that the radius of convergence of b is positive.

Theorem 6.16. Suppose 0 < |a| < 1 or « is a Siegel number. Then equation
(6.80) has an analytic solution of the form

=g vl ) o (o) (-2)
i=1
+% (éciai1> <§;C¢O¢i (0/41 +ai2+~"+1)> (z- %)3

+§; L -2y (6.55)

in a neighborhood of a/C, where Ay, As, ... are constants.
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Proof. By the previous two results, (6.81) has an analytic solution of the form
(6.83) in a neighborhood of the origin. If we pick by = n # 0, then since 3’ (0) # 0,
the function y~! (z) is analytic in a neighborhood of the point by = ¥ (0) = a/C. If
we now define z (z) by means of

then

and

_ Zczy z 71 Zczx[z]

This shows that (6.80) has an analytic solution of the form
O a\"
A=+ XM (:-¢)

in a neighborhood of the number «/C.
To find out the first few terms of the coefficient sequence {\,}>2
the above approach. First we calculate from (6.84) that

y" (0) n’ - i—1
by = = i )
2T 790 T oa—) ; i

1 we follow

=250 i (S ) (S )

i=1
etc. Next, we determine y‘l (2) by calculating the first few terms of the its deriva-
tives at b :

(y™") (bo) = -

(yq)u (bo) = _ﬁ ;ciaiﬂ’

(Z/_l)m (bo) = (a—l) @t )y (ZQ ) (ch (3o — o +1)>

etc. Finally, we determine the first few derivatives of x (z) at by :

z (bo) =y (ay™" (bo)) =y (- 0) = by,
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/
x' (by) = a,

m
2 (bo) = Z cial,
i=1

z" (by) = (Z ciai1> (Z ca (@t a4 4 1)) ’
i=1 i=1

etc. The proof is complete.

As a final check of our derivation, note that the unique solution of

v (z) =cx(2), c#0,

e e
x|l—)=—,
c c
where « is arbitrary, is

QA o(z—2) _ O «a ca aN2  cfa a\3
R R S RY- 1 = s
c c c c

6.2.3 FEquation 111
We consider a class of functional differential equation of the form [180]
7'(2) = z(az + bx(z)). (6.86)

When ¢ = 0 and b = 1, equation (6.86) reduces to the iterative functional differential
equation z'(z) = xz(x(2)). When b = 0 and |a| < 1, equation (6.86) reduces to the
functional differential equation x'(z) = z(az).

When a # 1 and b # 0, we will construct analytic solutions for our equations
in a neighborhood of the complex number (5 — a)/(1 — a), where 8 either satisfies
0 < |8] <1 or is a Siegel number.

We first seek a formal power series solution for the following initial value problem

v (B2) = %y%z) [y (8%2) — ay (B2) + a} (6.87)
y(0) = f:z (6.88)

Then we show that such a power series solution is majorized by a convergent power
series. Then we show that
1 _ a
x(z) = Zy(ﬂy 1(z)) — EZ (6.89)
is an analytic solution of (6.86) in a neighborhood of (8 — a)/(1 — a). Finally, we
make use of a partial difference equation to show how to explicitly construct such
a solution.
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Theorem 6.17. Suppose 0 < |B] < 1 holds. Then for any nontrivial complex
number 1), equation (6.87) has a solution of the form

y(z) = ﬁ_ +nz+Zb 2" (6.90)

which is analytic on a neighborhood of the origin. Furthermore, there exists a posi-
tive constant M such that for z in this neighborhood,

- 1
) < |72 4 o

Proof. We seek a solution of (6.87) in a power series of the form y(z) = g(z)
where by = (8 — a)/(1 — a) and by = n. Substituting (6.90) into (6.87), we see that

Q-Dbz%(Db)* (3> b—aB-b+al.

Hence the sequence {b,,}5°, is successively determined by the condition

n—1

(8™ = B) (n+ Dbusr = > (k+1) (62("*’“) - aﬁH) bis1bn_p, n € ZT, (6.91)
k=0

in a unique manner. Furthermore, since 0 < k <n — 1, we see that
ﬁ2 n—k) l@n k
gt — g

for some positive number M.
Note that the equation

1+ |al
e -1

<M, n>2 (6.92)

1 1
G*(2) — MG(Z) + i Inlz =0,

being a special case of (4.10), has a solution

z) = i B,z"
n=0

which is analytic on a neighborhood of the origin and by = 0, b; = ||, and

n—1
By =M Z Byt1Bn_k, n € ZT.
k=0
Since it is easily checked that
bal < By

for n € Z*. We see that the sequence b has a positive radius of convergence.
Next, recall that the solution G(z) can be written as

G(2) = 337 {1 - VI= 2T}
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which converges for |z| < 1/(4M |n|). Since for |z| < 1/(4M |n)|),

I 2M 1+ 1—4M|17\|z|> 1
G(lzl)  1-\/1—4aM|n[]z| 2n| |z| = 2n| 2]
or
1 1
<2 <9 —
G(lzl) <2nllz| <200l == YTIREITR
thus

ﬁ_a - 5 - n
vl < [ T2 |+ el ot < |22+ 3 Bl
n=1 n=1

_|B—a B —
- |32 e < 1=

+m

as required. The proof is complete.

Theorem 6.18. Suppose 3 is a Siegel number. Then equation (6.87) has an ana-
lytic solution of the form

y(z) = 2= +z+zbz (6.93)

1—a

in a neighborhood of the origin, and there exists a positive constant § such that

B—
s |

Proof. As in the previous proof, we seek a power series solution of the form
(6.93). Then defining bg = (8 —a)/(1 —a) and b; = 1, (6.91) and (6.92) again hold
so that

n—1

1+a

|brg1] < Tz _| 1|| > " [bis1] [bnk] (6.94)
k=0

for n € Z*. Note that the equation
1+ a)G?(2) + 2 = G(2),

being a special case of (4.10), has a solution

ZC " 1+|a\) {1 1—4(1+\a|)z}

which is analytic on B(0;1/(4(1 + |a]))) and Cy =0, C; = 1 and

n—1

Cop1=(L+1a)) > Cer1Crg, n€ Z*.
k=0
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In view of the Cauchy Estimation (Theorem 3.26), there is some r > 0 such that
|Cy| < r™for n > 1. As in the proof of Theorem 3.32, we may apply Siegel’s Lemma
(Theorem 3.31) to conclude that there is ¢ > 0 such that

|bn| < r™ (255“)”71 n~2 neZt,

which shows that the series (6.90) converges for |z| < (r255+1)_1
Finally, when |z| < (r2%9%1)~1  we have

08—a " 8—a
< § <
|y(z)\ > a 4 1|bn||z| > ’1

+ > Cody |2["
n=1

ﬁ—a n n—1 _ n
< - + E r (255 1) n=2 |z|

5—0/ n n—1 _ —n
< T—a + E r (255 1) n 2‘5(1“25‘S 1)

@

|B-a 1 1

T l1—a +256+1ZW
n=1

as required. The proof is complete.

Theorem 6.19. Suppose 0 < || < 1 or (3 is a Siegel number. Then equation (6.86)
has an analytic solution x(z) of the form (6.89) in a neighborhood of (B—a)/(1—a),
where y(z) is an analytic solution of equation (6.87). Furthermore, when 0 < |G] < 1
holds, there is a positive constant M such that

el < (|522]+ 37) +15]

1-a
in a neighborhood of (8 — a)/(1 — a); and when (8 is a Siegel number, there is a
positive number § such that

p— a _
|z(2) |*|b| <’ QZ >+‘Z‘|Z|7Q_255+17

in a neighborhood of (8 —a)/(1 — a).

Proof. In view of the previous two results, we may find a sequence {b,}52,
such that the function y(z) of the form by (6.93) is an analytic solution of (6.87) in
a neighborhood of the origin. Since y’(0) = 1, the function y~!(2) is analytic in a
neighborhood of the point y(0) = (8 — a)/(1 — a). If we now define z(z) by means
of (6.89), then

/

W)= 2y By () - (57 () -
% {y (B°y~(2)) —ay (By~"(2)) +
() —ay (B )}

a 0, a
7= Y v (By~ (Z))'i—g
a} -
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and
z(az+bx(2)) == (az +b [%y (ﬁy_l(z)) - %z}) =z (y (ﬂy‘l(z)))
= 11)1/ (By~ ( (By(2)))) - %y By~ (2))
=—{y( (2)) —ay (By~" (2))}

as required.
Next, if 0 < |8] < 1, then

|2(2)| = % ly (By'(2)) —az| < |b| (Jy (By='(2))| + lal |2])
1 G8—a
Sm(m *m)%\'“

and if § is a Siegel number, then

lz(2)] = % ly (By~'(2)) —az| <

<L (|fze
“ bl \|l-a

The proof is complete.

o7 (1 (35~ )] + =)

1 & a
+§;W>+’E‘|Z|'

We now show how to explicitly construct an analytic solution of (6.86) by means
of (6.89). Since

#(2) = 33 (B (2) — 72,
thus

bl—a bl—a bl—-a b

,(B—a _ B—a 8—a
x(l_a)—x<a-l_a+bx(l_a)>
B B—a B—a\ [(B—a\ [—-a
_x<a'l—a+b' b )_x(l—a>_ b

By calculating the derivatives of both sides of (6.86), we obtain successively

2 (z) = 2/ (az + bx(2)) (a + ba'(2)),

2" (2) = 2" (az + bx(2)) (a + b2’ (2))° + 2/ (az + bx(2)) (b2 (2)),
so that

() = (o ot v (F22)) (arer (F22))

_ a g—a _ﬂ(ﬁ_a)
=pe (1—a>_ b

x(ﬁ_a>:%y(0) aﬁ—a_lﬁ—a_gﬁ—a_ﬁ—a.
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m(B—a o B B—a o B—a
o (=) = (=) e (1) o (50)

[B(8 —a) (8% + 8 —a)].

1
b

It seems from the above calculations that the higher derivatives ("™ (z) at z =
&= (B—a)/(1—a) can be determined uniquely in similar manners. To see this, let

us denote the derivative (a:(i) (az + bx(z)))(j) at z = £ by A;j, where 4,5 > 0. Note
that the two derivatives z(*) (z) and *)(az + bx(2)) are equal at the point z = &
since a& + bx(§) = £. In other words,

I(k)(g) = Ako-
Furthermore, in view of (6.86), we see that z(*+1)(2) = (x(az + bx(z)))(k) which
implies

Ak4+1,0 = Ao k-
Finally, since

(x(i)(az + bx(z)))

(3+1) ()

- (x(”l)(az +bx(2)) - (a+ bxl(z))>

i() a+ba'(z))W (x<i+1>(az+bx(z)))(j_k),

k=

we see also that

J

Aij+1 = Z (i) i1,k - (a+ bm’(z))(k)

k=0
e
= BAiv1,; + bz (k) Ait1,j—k A0,k
=1

for ¢,7 € N, where we have used the fact that Ay;1,0 = Ao in obtaining the last
equality. Clearly, if we have obtained the derivatives (9 (&) = Ao, ..., 2™ (&) =
Am0 = Ao,m—1, then by means of the above partial difference equation, we can
successively calculate

2=¢

Am—l,la Am—2,1a Am—2,2, [EES) A1la A12a EE) A1,m—1a AOm

in a unique manner. In particular, Aoy, = Am41,0 is the desired derivative (MmN (¢).
This shows that

x(’z):ﬁ;a‘*‘%(ﬂ—a) (z—ﬁ_a>+5(ﬂ_a) (Z_ﬁ—a>2

1—a

NCELCEY RS (Z_ﬂ—a>3+im (z_ﬂ—“)i.
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6.2.4 FEquation IV

Consider the equation [140]

7 (z) = x(xl(z)) (6.95)
If 271 (2) exists, and is substituted into both sides of (6.95), then by
'y — 1
TS e
we have
(@) (2(2)) = 22 (2)). (6.96)
Furthermore, from
L (™) @) = @ @) () = o' (al2)a (2),
we see that
(7" (2(2)) = 2 (2(2)).
By induction, we see that
(Y Noz=2"Vog (6.97)

for r > 2.
Consider an analytic solution of (6.95) which has a fixed point ¢ # 0. Such a
solution will be denoted by x¢ (2) so that

z¢ () =¢. (6.98)
If such a solution exists, then by (6.95),
1
2 (Q) = R (6.99)
In view of (6.98) and (6.99), we may then let
=) PalO-Q", (6.100)
n=0

where Py (¢) = ¢ and P, (¢) = 1/C.
To determine the remaining P, (¢), recall the n-th derivative of the composite
function h o g is, by Theorem 2.16, given by

n ). gpr)
(hog)™ :thog Zf’ (6.101)

r=1
where, throughout this section, Zm, is taken over Py +---+P. =nand Py, ..., P. €
(n)
Z*t. In (6.101) let h = xEl and g = x¢. Since (xgl o acg) =0 for n > 2 and since

(6.97) holds, if we evaluate both sides of the resulting equation at ¢, one obtains

0=2_;§Pr1 PIUACES AT (6.102)
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n (6.102), P, (¢) occurs only in the second summation when r = 1. Solving for
P, ({) yields the recursion formula

:——Z “Po1(C ZPPI Py, (Q)- (6.103)

We now note that for real ¢ > 0, P, (¢) = (—1)* " |P, (¢)] for s > 1. Indeed,
since P;(¢) = 1/¢, our assertion is true for s = 1. Assume our assertion is true for
s=1,2,...,n— 1. Then in view of (6.103), since (P, —1)+---+ (P-—1)=n—r,
one obtains

R0 ==Y Lipn o B OB @ (@100

r=2

Since all terms on the right are positive except for the factor (—1)™ ", our conclusion
follows.

Next, note that if { > 0 and x(z) in (6.100) converges for x € (( — R¢, ¢+ R¢),
then for any ¢’ > ¢, it converges for z € (¢’ — R¢/, (' + R¢r) where R > R Indeed,
since P (¢) = 1/¢, if ¢’ > ¢, then [Py ({')| < |P1(€)|. Assume |Ps (¢')] < |Ps ()|
for s =1,2,...,n — 1. Then in view of (6.104), z¢/(2) < x¢(2) for any real ¢’ > (.

Let wy = (1 + \/—) /2, we = ( \/_) /2. Tt may be verified that

Lawy (Z) B < \/_>( ) : Z(_H_\/g)/Q

2

and

Ly (2) - <1 _2\/5> (3+\/5)/2 : 2(717\/5)/2

are analytic solutions of (6.95) and (6.96) such that x,, (w1) = w1 and @, (wa) =
wsy. The binomial expansion of x,,, about w; will converge for |z — w1| < wy. If the
coefficients in this expansion are denoted by A, then by Theorem 3.8, it follows
that P, (w1) = A,. Hence for any { > w1, z¢(z) defined by (6.100) converges for
z € (( — R¢, ¢+ Re), where Re > Ry, = wy.

Theorem 6.20. Let w = (1+v/5) /2 and let ¢ € C such that || > wy. Then the
function x¢(z) defined by (6.100) converges for z € B(C;wn).

Indeed, note that (—1)" "' P, (¢) = ¢* 2, an (" where a,, , > 0 for n > 1. This
observation follows from Py ({) = ¢~! -1 and induction using (6.103). Thus if ¢ is
complex, then | P, ({)| < |P, (I¢])]-

We remark that if z¢(z) defined by (6.100) converges about z = ¢, then xgl
exists and is analytic about (. Let z.' () = Y07 Qn (¢) (z — ¢)" where by (6.100),
Qo (¢) = Q1 (¢) = ¢. We may show that Q. ({) = s 1P;_1(¢). For s = 1, this
follows from comparison of (6.100) and @1 (). To prove the general case, assume
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our assertion is true for s = 1,....,n — 1. Apply (6.102) to z,,;' - z¢ and evaluate at
¢, then

n

0= ZQT’(C)ZPZH (C)"'Ppr (©)-
r=1 n,r
Isolating Q,, (¢) yields, since P; (¢) = 1/¢,
n—1
Qn(Q)=-¢"D Q)Y P Q) B Q)
r=1 n,r

Substituting @, ({) = P-—1 (¢) /7, one obtains in view of (6.103), that
n 1 1 1
@00 =~ {~CPL (O~ TR1 () RO f = 1P 0.

Example 6.4. For example, the equation

has as solutions

z—>b
Jac+b = AT¢ 0 + b.

where gqcts (aC +b) = al +b.

6.2.5 First Order Neutral Equation

We will be concerned with analytic solutions of a iterative functional differential
equation related to a state dependent functional differential equation of the form

az + B2 (z) = z(az + b’ (2)), (6.105)

where «, 3, a,b are complex numbers.
Incasea=a =0, =1and b = 1, we obtain the functional differential equation

7' (z) = x(2'(2)). (6.106)
In case b = 0, a # 0 and B # 0, equation (6.105) changes into the functional
differential equation
az + B2’ (2) = z(az), (6.107)
and in case b =0, a # 0 and 8 = 0, into the functional equation
az = x(az). (6.108)

A distinctive feature of the equation (6.105) when b # 0 is that the argument of the
unknown function is dependent on the state derivative, and this is the case we will
emphasize.

It is easy to find some of the analytic solutions of (6.105) in various special cases.
For instance, equation (6.106) has the solution z(z) = pz — p? + p for any constant
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p, while (6.108) has the solution z(z) = az/a. In order to find an analytic solution
x = x(z) of (6.107), we formally assume that

z(z) =¢(z) = Z cnz™.
n=0

Then in view of (6.107), we will obtain
ah+BDc=a-c.
Hence
Ber = co, a0+ 2Bca = acy,
and
Bn+1)epy1 =a"c,, n> 2.

This leads to

oo

- 1
(2) = co+ %’z + %zﬂ + (oo — ) Y a0,

n=3
As can be verified easily, when 0 < |a| < 1, it is an entire solution of (6.107).
We now assume that b # 0. In order to construct analytic solutions of (6.105)
in a systematic manner, we first let

y(z) = az + ba'(2). (6.109)
Then for any number zg, we have
1 4
x(z) = 2(20) + 3 / (y(s) — as)ds, (6.110)
20
and
1 [y
o(y(2) = a(ea) + 5 [ (0l — as)is
20

Therefore, in view of (6.105), we have

y(z)
z(az +ba'(2)) = 2(y(2)) = z(20) + % / (y(s) — as)ds

20

=0z + Dy(2) —a2),

or

y(2)
bx(z0) + / (y(s) —as)ds = By(z) + (ba — af)z. (6.111)

20

In case zg is a fixed point of y(z), i.e., y(z0) = 20, we see that

y(20)
bx(zo) + / (y(s) — as)ds = By(zo) + (ba — af) 2o,

20
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or
2(z0) = % (b + (1 — a)B) z0. (6.112)

Furthermore, differentiating both sides of the equation (6.111) with respect to z,
we obtain an iterative functional differential equation
{y(y(2)) — ay(z) — B}y'(2) = ba — ap. (6.113)
There are two cases to consider: (i) ba —af = 0; and (ii) ba — af # 0. If the
first case holds, then we try to find analytic solutions of the equations
y'(2) =0 (6.114)

or

y(y(2)) —ay(z) — B =0. (6.115)

If the latter case holds, we try to find analytic solutions of the simultaneous equa-
tions

y'(z) = ba —af (6.116)
and

y(y(2)) —ay(z) - B -1=0, (6.117)

or, to find analytic solutions of the single equation (6.113). Once analytic solutions
y(z) and their fixed points are found, then analytic solutions of our original equation
(6.105) are easily calculated from (6.110) and (6.112).

The solutions of (6.114) are of the form y(z) = ¢. Since z = ¢ is the fixed point
of y(z), thus from (6.110) and (6.112), we see that when bao — a8 =0 and b # 0,

B 1 (ac? az?
x(z)—bc+b 5 ¢ + ez 5
is an entire solution of (6.105).
We are now left with the simultaneous equations (6.116) and (6.117), as well as
equations (6.113) and (6.115). Sufficient conditions and methods for constructing
some of their analytic solutions will be given below under the assumption that b # 0.

Analytic solutions of the simultaneous equations (6.116) and (6.117) are easily
found. We have the following result.

Theorem 6.21. Suppose ba — a3 # 0. Then the simultaneous equations (6.116)
and (6.117) has a solution if, and only if, ba — af = a. In case ba — a8 = a, the
function y(z) = az + B+ 1 is a solution.

Proof. Suppose y(z) is a solution of (6.116) and (6.117), then in view of (6.116),
y(z) = (ba — af)z 4+ C. Substituting it into (6.117), we see that

{(ba — aB)® —a(ba —aB)} z+ {ba—aB+1—a}C - B—1=0,
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or, equivalently, that

(b — aB)? = a(ba — af3),

(ba—af+1—a)C=0+1.
The above simultaneous equation has a solution if, and only if, bae — a3 = a and
C = [+ 1. The proof is complete.

We remark that the unique fixed point of y(z) =az+ 8+ 1is (6+1)/(1 — a).
Therefore, in addition to the conditions ba — a3 = a # 0 and b # 0, the additional
condition a # 1 is needed for constructing the analytic solution

2(2) = B+1 +w Z_ﬁ+1 B+l a+ﬁ+z_5+1
N l1—a b 1—a/) b l1—a l—a
of (6.105) from (6.110) and (6.112).

It is easy to see that if y(z) is an analytic solution of (6.115) with a fixed point
20, then zg = 8/(1 — a), provided a # 1. It is also easy to see that
p

1—a’

y(z) = a#1, (6.118)

and
y(z)=az+ 0 (6.119)
are solutions of (6.115). Indeed, these are the only analytic solutions defined in a

neighborhood of the fixed point zo = 8/(1 — a) when a # 0.

Theorem 6.22. Suppose a # 0,1. Then the only analytic solutions of (6.115)
defined in a neighborhood of the point zo = §/(1 — a) are those defined by (6.118)
or (6.119).

Proof. Let y(z) be an analytic solution of (6.115) such that y(z¢) = 2. In view
of (6.115), we see that

Y (y(2)y (2) — ay'(2) =0,

so that

(¥'(20))* — ay'(20) = 0.
Thus either y'(20) = 0 or ¥'(z0) = a. Differentiating (6.115) twice, we arrive at

Y (W))W () +3 (y(2)y" (2) — ay” () = 0,
so that
y"(20) [(4/(20))* + ¥/ (20) — a] = 0.

If y'(20) = 0, then y”’(29) = 0; while if y'(20) = a # 0, then 3”(29) = 0 also. We
assert that y(™(z9) = 0 for all n > 3. To see this, let

Moz = (v ()"
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Since
WEN" =0 W)Y ™ =3 0" ¢ wE)™ 6'E) ",
k=0
thus
)\O,n+1(ZO) = y/(zo)y(n+l)(zo) 4+04+---+0+ >\1n(zo)y’(zo).
But since

W)™ =" GE)y )Y Zﬂﬂ "N W)Y,

we see that
Atn(20) = 0+ -+ + 0+ A2,n-1(20)y'(20) = A2,n-1(20)y' (20)-
By induction, it is easy to see that
An(20) = Aon—1(20)9 (20) = Aan—2(20) (¥ (20))* = -+ = 4" (20) (3 (20))™-
Thus we have
y " (20) [(4'(20))" T + 4/ (20) — a] =0,

which shows that 3 +1)(z) = 0 for n > 2. The proof is complete.

We may now make use of the solutions just found to construct analytic solutions
of (6.105) by means of (6.110) and (6.112). Doing so, under the assumptions that
a#0,a# 1,ba—af =0 and b # 0, we see that the solution (6.118) leads to the
entire solution

_ B 1 Ja B ? 164 2 Bz az?
x(z)_b(l—a)+g{§(l—a> _(1—a> +1—a_7}’

while the solution (6.119) leads to the entire solution
_» g g
2(z) = b(1 —a) + b7 1-a
of (6.105).

To find analytic solutions of (6.113), we first seek an analytic solution g(z) of
the auxiliary equation

g (pz) {9 (122) — ag(pz) — B} = ¢'(2)(bo — af) (6.120)

satisfying the condition

9(0) = s,

where s is to be specified and p either satisfies 0 < |u| < 1 or is a Siegel number.
Then we show that (6.113) has an analytic solution of the form

y(2) =g (ng~"(2))
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in a neighborhood of the number s.

Theorem 6.23. Suppose that 0 < |u| < 1 and that ba — a8 # 0. Suppose further
that when a = 1, we have 8 # 0 and p = (af — ba)/B. Then for any nontrivial
complex number 1, equation (6.120) has an analytic solution of the form

g(z) =s+nz+ chz"7 (6.121)

n=2
where s is arbitrary when a =1, and
o Butba—as
(I—a)u
otherwise.

Proof. We seek a solution of (6.120) in a power series of the form
g(z) =¢(z) = chz". (6.122)
n=0

By letting ¢y = s and then substituting the subsequent power series into (6.120),
we see that

b - € * [ﬁ-c—aﬁ-c—ﬁ] = (ba — af)Dec.

Hence
B+ ba—af— (1 — a)ps] e =0,
and
n—1
(af —ba)(u" — 1)(n+ Depyr = Z(k +1) (/,LQ"_’“Jrl —ap™) cpyrnp,n € LT
k=0

(6.123)
In view of the definition of s, we see that Bu + ba — aff — (1 — a)us = 0 so that
we can choose ¢; to be 7. Once ¢y and ¢; are determined, the other terms of the
sequence {c,} can be determined successively from (6.123) in a unique manner.
We need to show that the subsequent power series (6.122) converges in a neigh-
borhood of the origin. First of all, note that

(k 4 1) (‘u2n—k+l _ aun+l)
(@B —ba)(n+1) (u" —1)

for some positive number M. Next recall that the equation,

<M, n>2,

1 1
G2(2) = MG(Z) M Inl z,

as a special case of (4.10), has a solution

G(z) = ﬁ {1 - 1—4M\77|z} - ian"
n=0
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on B(0;1/[4Mn]) where the sequence B = {B,}, . satisfies By = 0, By = || =
|c1| and

n—1

Byy1=M ZBk+an7k,n ez
k=0

Then in view of (6.123),
len| < Bp,n € ZT,

which implies that the power series (6.122) is also convergent for z < 1/(4M |n]).
The proof is complete.

Theorem 6.24. Suppose that p is a Siegel number and that bae — a3 # 0. Suppose
further that when a = 1, we have 8 # 0 and p = (aB—ba)/B. Then equation (6.120)
has an analytic solution of the form

g(z) = s—i—z—l—chz”, (6.124)
n=2

where s is the same number defined in the previous Theorem 6.23.

Proof. As in the previous proof, we seek a power series solution of the form
(6.122). Then defining ¢y = s and ¢; = 1, (6.123) holds again so that

1

1+ |a\ _1n

lenta] < TaB = ba] " =17 lengallen—il, n € Z7.
k=0

Recall that the equation

L+]al o
MG (2) + 2 =G(z),

as a special case of (4.10), has a solution

_ |aB = b A(L + |a])
G@—m{l‘ 1‘WZ}

o0
= E vp 2"
n=0

which is analytic on B(0; [af — ba| /(4 4 4]al)) and the sequence {v,}, . satisfies
vg=0,v; =1 and

1 n—1
Upt1 = Lo kaﬂ‘vnfm neZt.
[af — ba] &~

In view of the Cauchy Estimation (Theorem 3.26), there is some r > 0 such that
v, < 7" for n € Z™. Thus by Theorem 3.32, we may then easily see that there is
4 > 0 such that

len| < 7™ (25‘;“)“_1 n~® neZt.
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This shows that the power series (6.124) converges on a neighborhood of the origin.
The proof is complete.

Theorem 6.25. Suppose that 0 < |u| < 1 or u is a Siegel number, and that bow —
af3 # 0. Suppose further that when a = 1, we have 8 # 0 and pu = (af—ba)/ 5. Then
(6.113) has an analytic solution of the form y(z) = g(pg=1(2)) in a neighborhood
of the number s, where s is defined in Theorem 6.23, and g is an analytic solution
of the equation (6.120).

Proof. In view of the previous two results, the equation (6.120) has an analytic
solution g(z) in the neighborhood of the origin and g(0) = s as well as ¢’(0) # 0.
Thus the inverse function g=1(2) is analytic in a neighborhood of the point s, and
hence the composite function y(z) = g(ug~'(2)) is also analytic in a neighborhood
of the point s. Finally, note that

{y(y(2)) —ay(z) — B} y'(2)
= {9 (1?97 (2)) —ag (ng~'(2)) — B} 701

This shows that the composite function y(z) is a solution of (6.113) as desired. The
proof is complete.

= ba — af.

We remark that since g(0) = s, the point s is thus a fixed point of y(z).

In the above, we have shown that under the conditions that

(i) if a = 1, then 8 # 0 and Bu = aff — ba,

(ii) if @ = 1, then s is arbitrary, and

(iii) if @ # 1, then s = (Bu + ba — aB)/(1 — a)u, where 0 < |u| < 1 or p is a
Siegel number,
then equation (6.113) has an analytic solution y(z) = g(ug~1(2)) in a neighborhood
of the number s, where g is an analytic solution of (6.120). Since the function g(z)
in (6.122) can be determined by (6.123), it is possible to calculate, at least in theory,
the explicit form of y(z) and then under the additional condition that

(iv) b# 0 and ba — aff # 0,
an explicit analytic solution of (6.105) in a neighborhood of the fixed point s of
y(z) by means of (6.110) and (6.112). However, knowing that an analytic solution
of (6.105) exists, we can take an alternate route as follows. Assume that z(z) is of
the form

2(2) = 2(s) +2'(s)(z — s) + x"2(s) (z—8)+--
_ (ba+(1—a)B)s , x"(s)
—f-&-x(s(z—s)—k 5 (z—s)+---,

we need to determine the derivatives 2(")(s) for n € Z*. First of all, in view of
(6.109), we have




222 Analytic Solutions of Functional Equations

Next by differentiating (6.105), we see that
a+ pz"(z) =2’ (az + b2'(2)) - (a + bz"(2)),
so that
a+ B2 (s) = 2'(s)(a + ba"(s)),
and
(s) = ax’(s) — « _ a(l —a)s — ba _ ,u—a7
B —bx'(s) b8 —0b(l—a)s b

where the denominator 3— bz’ (s) cannot be zero in view of our assumptions (i)-(iv).

Similarly, if we differentiate (6.105) twice, we arrive at

Bz (2) = bx'(az + bz’ (2))2" (2) + 2" (az + b2’ (2)) - (a + ba" (2))?,
so that

iy~ b ()2 )
08— bx'(s) b(af — ba)
In general, we can show that z("t1)(s), where n > 3, depends only on the lower
derivatives at z = s. To see this, note that
(zlaz +ba'(2)"™ = (2 (az + ba'(2)) - (a + bz (2)) "V
= ba'(az + ba'(2))z" Y (2)

n—1
+3 0V (@ (az + ba! (2)) P (a + ba” (2)) 1R,
k=1

Thus differentiating (6.105) n times at z = s, we will end up with
B (s) = ba' (s)2" ) (s) + F(a(s), 2/ (5), ..., 2™ (s)),
where F(z(s),...,2("(s)) stands for terms involving the lower derivatives
z(s), ..., 2" (s). This shows that
F(2(s), ...,z (s))
B = ba'(s)

for n > 2. By means of this formula, it is then easy to write out the explicit form

x("“)(s) =

of our solution z(z) :

_(bat+(1-a)B)s (1-a)s p—a 2
x(z) = 2 + 2 (z—s)+ 5 (z—s)
1 (p — a) 1 (1 — a)(p* + 3p — 3a) 4
BT v LG M R v s - CRRC N

6.3 Equations with Second Order Derivatives

Iterative functional equations involving the second and higher derivatives of the
unknown function are not studied as much as the ones involving the first order
derivatives. Indeed, an earlier study of such an equation by Petuhov [151] which
appeared back in 1965. In this section, we will be concerned with four such equations
that allow analytic solutions.
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6.3.1 FEquation I

We first consider the following equation [119]
"(2) = ijx[j] (2), (6.125)
=0

where m is a positive integer greater than or equal to 2 and pqg, p1, .., pm are complex
numbers such that > |p;| # 0. We will look for analytic solutions of (6.125) which
satisfy the condition

z(a) = a2 (a) = a, (6.126)
or the condition
z(0) =0,2" (0) = o (6.127)

where 0 < |a] < 1 or a is a Siegel number.
In order to seek analytic solutions of (6.125), we first consider a related equation
of the form

2,1

?y" (a2)y (2) — ey (a2)y" (2) = (¥ (2))° ijy (a’2), (6.128)

under the condition

y(0) =,y (0) =, (6.129)

or the condition
y(0) =0,y (0) = 7. (6.130)

Theorem 6.26. Suppose 0 < |a| < 1. Then for any n # 0, equation (6.128) has a
solution y(z) of the form

=3 bp2", by =a,by =n, (6.131)
n=0

which is analytic near 0 (and satisfies (6.129)), where {by} —, is defined by the
recurrence relation

£
+
V)

) ( n+2 _ ) by
k

L (7, —+ 1 ]f + 1 Ui ]( k— )
= ~ 7 7 PR b1 b1 bp—p—i 6.132
k=0 =0 n—k+1 2:% e ( :

for n € N.

Proof. Note that equation (6.128) may be written in the form

ay’ (az)y (z) —y' (az)y" (2) 1, 2 C a (a? 2
v () = oV O 2w (e’s)
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or

V@) =y )+ 20 ) [ 7 &Y el ds. (6.133)
Let
= 3 Z by 2"
be a formal solution of (6.133). Then in view of (6.133), we see that

g-Db:DlH—é(Db)* ipj/(l)b)*(oz_j-b)
7=0

Since

(Db) * (O‘—J b) ={(n+Dbpt1},en * {O‘jnbn}neN

we see that
Db*/(Db)* (o - b)

@.
I M:
o

(i + 1)bi+1aj(ni)bni} R
keN

1 &, (i
= h{(n+1)bn},en * {pm—+1§ (i + Dbiyra’™ )b”_l}
neN

i=0
n 1 n—t

= R o VPR A TS

=hx {;(t+l)btpjn—t+1 g(ﬂ'l)bwwﬂ bn—t—l} EN.

Hence b, is arbitrary and

(n +2) (@"*? —a) byyo

m

7/+1 k+1) ]( —k—1i)
= o\ Y bry1bir1bn—p—i 6.134
= ; n—k+1 ;W bk (013

for n € N. If we set by = o and by = ¢y’ (0) = n # 0, then by (6.134), we may
determine {by,} -, uniquely in a recursive manner.

We need to show that y(z) defined by (6.131) has a positive radius of conver-
gence. To this end, note that

i+ E+1) j(n—
(n+2)(n—Fk+1)(a"*? —a) ijoz .

| |n+2 Z|p] )
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for 0 <k <nand 0 <i<n — k. Furthermore, since

im L -1
n—oo |O[| _ |a‘n+2 |O¢|7
there is M > 0 such that
i+ 1) (k+1)
G+ 1)(k+ Zp Ik | | < g (6.135)

(n+2)(n—k+1)( oz"+2—a

for n > 0.
Note that Example 4.15 asserts that the equation

MH?3(2) — 2M |o| H(2) + (M laf? - 1) H(z)+ |2+ o] =0

has a solution
o
= Z hp2"
n=0

which is analytic on a neighborhood of the origin and the sequence h = {hn}, o is
determined by ho = ||, h1 = |n| and

B = MZ (Z Pieg 1 i1 P o ) neN. (6.136)

In view of (6.132), (6.135) and (6.136), we may show by induction that
|bn| < P, 1> 0. (6.137)

Therefore, y (z) < H(z) so that y(z) is analytic on a neighborhood of the origin.
The proof is complete.

Theorem 6.27. Suppose 0 < |a| < 1. Then for any n # 0, equation (6.128) has a
solution y(z) of the form

= bp2", bo = 0,by =n, (6.138)

n=0

which is analytic near 0 (and satisfies (6.130)) and {b,}22, is determined by

- k- o
- Z n—Fk+2 ija](n_k_z—m) brbibn—k—i+2 (6.139)
; =

forn € N and ba,, =0 for m € Z7T.
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Proof. Let
z) = Z bp2"
n=0

be a formal solution of (6.133). As in the previous proof, we may see that by is
arbitrary, 2bsar = 2b and

n n—k+1
(n+2) ("2 —a) byis = Z Z k+2 ZPoﬂ(" F=142) ) bbby —j—ito

(6.140)
for n > 1. If we set bg = 0 and by = n # 0, then 2bsax = 2by implies by = 0. By
induction, we may then infer from (6.140) that bg,, = 0 for m > 1.

We now show that the formal solution y(z) has a positive radius of convergence.
To this end, note that Example 4.15 asserts that the equation

MH3(z) —H(2) +|nlz2=0

has a solution
oo
= E h,2"
n=0

which is analytic on a neighborhood of the origin and the sequence {h,}, n is
determined by hg = 0, h1 = ||, he = 0 and
n n—k+1

hpto = MZ Z hihihn—g—iv2, n € Z*.
k=1 i=1

for n > 1. By induction, it is easy to see that

|br| < hp, n>1.
Thus y(z) also has a positive radius of convergence. The proof is complete.
Theorem 6.28. Suppose « is a Siegel number. Suppose further that 0 <
Yoo lpil < 1. Then for 0 < |n| < 1, equation (6.128) has a solution y(z) of

the form (6.131) which is analytic near 0 (and satisfies (6.129)), where {b,},~, is
determined by (6.132).

Proof. As in the previous proof, equation (6.128) has a formal solution y(z) of
the form (6.131). We need to show that y(z) has a positive radius of convergence.
To the end, let us consider

=) unz" (6.141)
n=0

where ug =1, uy =1,

n n—k

Un+4+2 = Sn+1 E g Uk4+1Ui4+1Un—k—i,

k=0 i=0
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for n > 0. Since 0 < Z;’;O |P;| <1, we may show that
|br| < wp, n>0. (6.142)

Indeed, |bg| = |a] = 1 = ug and |by| = |n| < 1 = uy. Assume by induction that
|bj| <wj for j =2,3,...,n+ 1. Then from (6.132) and the fact that

m

i+1)(k+1 oo |
(n(+2)()n(—k+)1)zpjaj( OIS Il <,

=0 =0
for 0 <k <nand0<i<n-—k, wesee that

n n—=k

|brt2| < Sni1 E E Ukt 1 Ui 1Un—k—is
k=0 i=0

as desired. In other words, we have shown that y(z) < 1(z). Therefore we only
need to show that ¥ (z) has a positive radius of convergence. To this end, note that
Example 4.15 asserts that the equation

©3(2) = 20%(2) +2+1=0 (6.143)
has a solution
w(z)= Z U 2" (6.144)
n=0

which is analytic on a neighborhood of the origin and the sequence {v, },, . satisfies
vg=1,v; =1 and
n n—k
Unt2 = Z Z Vk+1Vj+1VUn—k—j,, N € N. (6.145)
k=0 j=0
In view of the Cauchy Estimation (Theorem 3.26), there is » > 0 such that v, <
r™ for n € Z*. As in the proof of Theorem 3.32, we may apply Seigel’s Lemma
(Theorem 3.31) to conclude that there is some ¢ > 0 such that
Uy < rn (256+1)

n—1 _
n 25, n > 2.

The proof is complete.

Theorem 6.29. Suppose « is a Siegel number. Suppose further that 0 < |n| < 1.
Then (6.128) has a solution y(z) of the form (6.138) which is analytic near 0 (and
satisfies (6.130)) where {b,},—, is determined by (6.139) for n € N and by, = 0
form e Z+.

Proof. As in the previous proof, equation (6.128) has a formal solution of
the form (6.138). We will show that the formal solution has a positive radius of
convergence. Consider

b =z
n=1
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where u; = 1, up = 0 and

n n—=k

_ +
Unt2 = Spt1 E E Uk 1 Uit 1 Un—f—is T E L7,
k=0 i=0

It is easy to see that us,, = 0 for m € Z™, and that
|bn| < wp, n>1. (6.146)

In other words, y(z) < 1(z). It suffices to show that ¢(z) converges on a neighbor-
hood of the origin. To this end, note that Example 4.15 asserts that the equation

¢°(2) —(z) +2=0 (6.147)

has a solution

p(z) = vz
n=1

which is analytic on a neighborhood of the origin and the sequence {v, },, . satisfies
v9=0,v1 =1, v =0 and

n n—=k

Upt2 = Z Z Uk 1Vig10n—k—i, N € L.
k=0 i=0
In view of the Cauchy Estimation (Theorem 3.26), there is some r > 0 such that
v, < 71" for n € Z*. As in the proof of Theorem 3.32, we may apply Seigel’s Lemma
(Theorem 3.31) to conclude that there is some ¢ > 0 such that

Tl Ok MR )
The proof is complete.

Theorem 6.30. Suppose 0 < |a| < 1. Then equation (6.125) has a solution x(2)
which is analytic near 0 and satisfies (6.126).

Proof. By Theorem 6.26, for any n # 0, equation (6.128) has a solution y(z)
which is analytic near 0 and satisfies (6.129). This solution is of the form (6.131)
where {b,}, -, is defined by the recurrence relation (6.132). Since y'(0) = n # 0,
thus by the Analytic Inverse Function Theorem 4.2, the inverse function y~*(z) is
analytic in a neighborhood of the origin. Let

z(2) =y (ay™"(2)). (6.148)
Then
2 (2) = ay/ (ayil (Z))
D=
and
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Thus,

2 () = ——— {a%y (ay™ (=) ¥ (5™ () — o/ (o™ (2)) ¥ (v~ (2)))
)

Furthermore, note that y=! (o) =0, 3’ (0) = n # 0 and

z(a) =y (ay™" (o)) =y (0) =0,

! -1
7 (a) = O‘y/(o‘ff—l(o‘)) _on_
y' (=t (@) U
These show that x(z) is an analytic solution of (6.125). The proof is complete.
Theorem 6.31. Suppose 0 < |a| < 1. Then equation (6.125) has a solution which
1s of the form
() =y (g~ (2))

and is analytic in a neighborhood of the origin and satisfies (6.127), where y(z) is
an analytic solution (6.138) of (6.128) under the additional conditions n # 0 and
(6.130).

The proof is similar to that above. Note that y~1(0) =0, 3'(0) = n # 0 imply
z(0) =y (ay™ (0)) = y(0) =0,
_ _ «
2 (0) = ey oy O) o/ (v (0) =L = e

Theorem 6.32. Suppose « is a Siegel number. Suppose further that 0 <
Z;n:o Ipj| < 1. Then equation (6.125) has a solution of the form

z(2) =y (ay™" (2)),

which is analytic in a neighborhood of o and satisfies (6.126), where y(z) is an
analytic solution (6.131) of (6.128) under the additional conditions 0 < |n| <1 and
(6.129).

Theorem 6.33. Suppose « is a Siegel number. Suppose further that 0 <
E;nzo Ipj| < 1. Then equation (6.125) has a solution of the form

z(2) =y (" (2)),

which is analytic in a neighborhood of the origin and satisfies (6.127), where y(z) is
an analytic solution (6.138) of (6.128) under the additional conditions 0 < |n| <1
and (6.130).



230 Analytic Solutions of Functional Equations

Example 6.5. Consider the equation
2" (z) = px(x(2)), z € C, (6.149)
under the condition
z(0) =0,z (0) = « (6.150)

where p is a nonzero complex number. If 0 < |a] < 1, or, « is a Siegel number and
0 < |p| <1, then Theorem 6.31 or Theorem 6.33 assert that (6.149) has a solution
which is analytic on a neighborhood of the origin and satisfies (6.150). We may let

z (2) = (2),
where ¢p = 0 and ¢; = a. Substituting it into (6.149), we see that co = 0 and

m+2)(n+1)cpy2=p Z emc™, ne 7T, (6.151)

m=2
We remark that co, = 0 for £ > 1, as can be easily checked by induction, so that
x(z) is an odd function.

6.3.2 FEquation IT

We will be concerned with a class of iterative functional differential equation of the
form [189]

2"(2) = z(az + bx(2)). (6.152)

When a = 0 and b = 1, equation (6.152) reduces to the second-order iterative
functional differential equation

2"(2) = z(z(2)).
When b = 0, equation (6.152) changes into
2 (2) = x(az). (6.153)

In order to find an analytic solution z = z(z) of (6.153), we formally assume that

z(z) =¢(z) = Z cnz™.
n=0

Then in view of (6.153), we may obtain
D?*c=a-c.
Hence
2cy = o, 3 - 2c3 = acy
and

(n+2)(n+ 1)cpye = a"cn,n =2,3, ...
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This leads to
aF(k=1) oo k2

2k a 2k+1
+Clkz_2 2k

which, as can be verified by means of the ratio test, is an entire solution of (6.153)
when |a| < 1.

We now assume that b # 0. To find analytic solutions of (6.152), we first seek
an analytic solution y(z) of the auxiliary equation

x(z)—co—&-clz—i—gz —|——z —1—002

a?y"(az2)y'(2) = ay'(az)y" (2) + (¥ (2))*[y(a?2) — ay(az)] (6.154)
satisfying the initial value conditions
y(0) =1, ¥'(0) =n #0, (6.155)

where ~,7n are complex numbers, and « is either Siegel number or it satisfies 0 <
la| < 1.
Then we show that (6.152) has an analytic solution of the form

o) = 5 (o)~ a2 (6.156)

in a neighborhood of the number ~.

Theorem 6.34. Suppose 0 < |«| < 1. Then for any given complex numbers v and
n # 0, equation (6.154) has a solution of the form

2) = (z) Zb 2 by =, b1 = 1, (6.157)

which is analytic on a neighborhood of the origin.

Proof. If y(z) given by (6.157) is such a solution, then we may rewrite (6.154)
in the form

ay"(az)y'(z) — ay'(az)y"(2)

=9/'(2)[y(a?2) — ay(az
WO)? =y (2)[y(a”2) — ay(az)],
V) _
a( y,(z)> =y (2)ly(e”z) — ay(az)].

Since y'(0) = n # 0, we see further that
1 z
Y (az) =9/ (2) {1 + E/o y'(s) (y(a2s) —ay(as)) ds| . (6.158)
Substituting (6.157) into (6.158), we see that

g-Dszb—&—é(Db)*/(Db)*(a_z-b—ag-b).
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Hence the sequence {b,,}5° 5 is successively determined by the condition
(@™ —a)(n + 2)buiz

N (k4 D+ 1)@ — aan k)
n—k+1

(]

bri1bjy1bn kg, (6.159)

Il
<

k=0 j
for n > 0 in a unique manner.
It suffices now to show that the power series just determined converges in a
neighborhood of the origin. First of all, note that

: 2(n—k—j3) _ n—k—j
(k+1){ +1)(a aa" ki) Ltla
= lal = a2 =

(n+2)(n—k+1)(a"t?2 —a)
for some positive number M. Thus if we define a sequence {By}nen by By =
[v], B1 = In| and

n n—=k
Bryo = MZ Z Bii1Bj1Bn k—j,n €N,
k=0 j=0
then in view of (6.159),
|bn| < Bn,n €N,

so that { By, }nen is a majorant of {b,} Next, note that Example 4.15 asserts

that the equation

neN -

1 1
30 20y (L 2 L _
G*(2) - 21163 ~ (57 = b GG+ gyl + D =0, (6160)
has a solution
G(z) =) gnz" (6.161)
n=0
which is analytic on a neighborhood of the origin and go = ||, g1 = |n| and
n n—k
Bpya=M> > BrBj1Bs_jn€N.
k=0 j=0

Therefore, B,, = g,, for n € N and hence {B,, }en has a positive radius of conver-
gence. The proof is complete.

We remark that if v = 0 in (6.155), then by induction, it is not difficult to see
from (6.159) that

bor = 0, ke VAR
This shows that the desired solution (6.157) is an odd function.
Theorem 6.35. Suppose « is a Siegel number. Then given any complex number ~y

and 1 that satisfies 0 < |n| < 1, equation (6.154) has a solution of the form (6.157)
which is analytic on a neighborhood of the origin and satisfies by = v and by = 1.
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Proof. As in the previous proof, we seek a power series solution of the form
(6.157) with by = v and by = 5. (6.159) holds again so that

n n—k

1+|a
sl < oo 3 3 sl llbassh n€ . (6.162)
k=0 j=0

Note that Example 4.15 asserts that

G3(2) — 2|y|G? —( - 2>G + + 6.163
(2) =2hIG7() — | 7 a ") Gl + 1 a |(2 V) = (6.163)
has a solution
=) Cnz", (6.164)
n=0
which is analytic on a neighborhood of the origin and Cy = |y|, C1 = 1 and
n n—=k
Coy2=(1+1a)) YD Cr41Ci41Cn s, n€N. (6.165)
k=0 j=0

In view of the Cauchy Estimation (Theorem 3.26), there exists a positive constant
r such that

Cp < 1" (6.166)

for n € ZT. As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (The-
orem 3.31) to deduce a positive ¢ such that

|bn| < 7;n(255+1)nfln7267 ne VA

This shows that {b,}
plete.

nen has a positive radius of convergence. The proof is com-

Theorem 6.36. Suppose 0 < |a| < 1 or « is a Siegel number. Then equation
(6.152) has an analytic solution of the form (6.156) near ~, where y(z) is an analytic
solution of the initial value problem (6.154) and (6.155).

Proof. In view of the previous two results, we may find a sequence {b,}5,
such that the function y(z) of the form (6.157) is an analytic solution of (6.154) in
a neighborhood of the origin. Since 3'(0) = n # 0, the function y~1(2) is analytic
in a neighborhood of the y(0) = ~. If we now define x(z) by means of (6.156), then

P =2 y'(ay'(2) a

ay” (g~ (2))y' (v~ (2)) — ¥'(ey~ " (2))y" (v~ (2))

T =3 PICRIBIE
1
3

[y(a®y™(2)) — ay(ay™'(2))],
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as required.

We now show how to explicitly construct an analytic solution of (6.152) by
means of (6.156) in a neighborhood of «. Since

#(2) = 3 (ylay™ (2)) — a),

thus
z(y) = % (ylay™ (7)) —av) = £ _baw
Furthermore,
Py =@ V(@) a
boy(y =) b
2" (2) = z(az + bz(z)),
thus _a
7() = —
and (1 )
" _ —a)yy
() =

By calculating the derivatives of both sides of (6.152), we obtain
2" (2) = 2'(az + bz(2))(a + b2’ (2)),
2@ (2) = 2" (az + ba(2))(a + ba' (2))? + 2/ (az + ba(2))ba" (2),

so that

x”’(’y) — a(ab_ a)

and
W (y) = %(1 —a)(@® +a—a)y.
In general, we can use the Formula of Faa di Bruno to calculate
Ty, == 252 (4)
for £k > 1. By means of this formula, it is then easy to write out the explicit form
of our solution z(z):

— 1—-a 2
b b N+ 5 v)
loa) o, Qoo bazan
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6.3.3 FEquation II11

Consider the iterative functional differential equation [187]

2" (2) = x (az + b2’ (2)), (6.167)
where a and b # 0 are complex numbers. To find analytic solutions of (6.167), we
formally let

y(2) =az+bx' (2). (6.168)
Then
y'(z) —a=ba"(2),

and for any number zy, we have

2(2) = 2 (20) + % / (y (5) — as) ds. (6.169)
Thus K
) y(2)
e"(z) =2y () =z(20)+5 [ (y(s) —as)ds,
> ) ) y(2)
3 (v (2) —a) =z (20) + 5 / (y (s) — as)ds. (6.170)

If 2o is a fixed point of y(2), i.e., y(20) = 20, then substituting zo into the above
equality, we see that

1
z(20) = 3 (' (20) — a). (6.171)
Furthermore, differentiating both sides of (6.170) with respect to z, we obtain
¥ (2) =y (y (2)) —ay (2)]y' (2). (6.172)

Next, we first seek an analytic solution g (z) of the auxiliary equation
2
ag” (a2)g' () = g (@) g () + (¢ (=) ¢ (@) [g (a%2) —ag (az)]  (6.173)
satisfying the initial value conditions
9(0)=p, g'(0)=n#0, (6.174)

where u, 1 are complex numbers, and « is either a Siegel number of it satisfies
0 < |a| < 1. Then we show that (6.172) has an analytic solution of the form

9(2)g(ag™" (2)) (6.175)
in a neighborhood of p.

Theorem 6.37. Suppose 0 < |a] < 1. Then given any complex numbers p and
1 # 0, equation (6.173) has a solution of the form

9(2) =b(z) = > buz", bo = p,by =1, (6.176)

n=0
which is analytic near 0.
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Proof. Rewrite (6.173) in the form
ag”(az)g' (2) — ¢' (az) ¢" (2)
(9" ()"

=g (az) [g (a2z) —ag (ozz)} ,

or

(g;f(iff)/ =4 (az) [g (a®2) —ag (az)].

Therefore, if ¢’ (0) = n # 0, we have
g (az)=¢ (2) |1+ /g’ (as) (9 (®s) — ag (as)) ds| . (6.177)

0
By substituting (6.176) into (6.177), we see that

g~Db:Db+(Db)*/(g~Db)*(a_2~b—ag~b).

Hence the sequence {b,},~, is successively determined by the condition

(@™t = 1) (n+2) bpyo

n n— k —+ 1 ] + 1) (QQ(n—k)—j _ 0,0én_k)
2_%) Z% n—Fk+1 br+1bjp1bn—k—j, (6.178)

for n € N in a unique manner. We need to show that the resulting power series
(6.176) converges in a neighborhood of the origin. First of all, note that

(k+1)(j+1) (a?n=R=7 — gan=F) 1+ |¢ <M
n+2)(n—k+1)(artt —1) T ot —1| T
for some positive number M.
Next note that Example 4.15 asserts the implicit equation
1 1
652l 6* () - (37~ W) G )+ 7 Bl + b =0 (6179
has a solution of the form

n=0
which is analytic near 0 and {B,},, is determined by

n n—k

By = MZ Z Br1Bj1Bn k—j, n€N.
k=0 =0

In view of (6.178),

|br| < Bpn, n €N,
which shows that the sequence {b,} is majorized by {B,} . Thus {b,} has a positive
radius of convergence. The proof is complete.

Theorem 6.38. Suppose « is a Siegel number. Then if 0 < |n| < 1, equation
(6.173) has a solution of the form (6.176) which is analytic near 0.
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Proof. As in the previous proof, we seek a power series solution of the form
(6.176). Set bg = p and by = 1. Then (6.178) again holds so that

n n—=k
14+ |a
szl < oy 3 3 Il g ol n €N (0181
k=0 j=0

Next note that Example 4.15 asserts that the implicit relation

1 1
32 2o —— —u? S ar—— =0 6.182
W =2~ ( gy — P )+ gy () (6.152)

has a solution of the form

w(z)=|ul+z+> Cp", (6.183)

n=2
which is analytic near 0 and
n n—=k
Chia = (1 + |a\) Z Ok+1Cj+1Cn—k—j, n € N. (6.184)
k=0 j=0
Thus there is a positive constant 7' such that
C,<T", ncZt. (6.185)
Now by induction, we may prove that

|bn| < Chdp, n € Zt.

where the sequence d = {d, },, is defined in Siegel’s Lemma (Theorem 3.31). In
fact,

b1] = |n| <1 = Cida,

[ba| = (1 +al) [ = 17" [ba] - [br] - [bo]
< (1+]a)]a—1]""Cudy - Crdy - Co
< Cyla—17"To(d)
= Cydy.
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Assume that the above inequality holds for n = 1, ..., m. Then

m—1m—1—k

brsal < (U la) o = 1773 bl gl w15

k=0 j=0
m—1
= (U +fa] o™ ~ 1] (Z bk - om ] < Dol
k=0

m—2m—2—k
+3 0 D> bl bl - |bm—1—k—j|>
k=0 5=0

m—1

< (1+a]) ™ —1]7" <Z Crs1di+1Cm—rdm—1Co
k=0

m—2m—2—k
+Z Z Ck+1dk+lcj+ldj+10m—1—k—jdm—l—k—j)

k=0 ;=0
< (L+al) o™ =117 Y (d
k

m—1 m—2m—2—
X EC’k+1C'm—kCo+ E Cr41Ci41Cm—1-k—j
k=0 k=0 j=0
= m+1dm+1-

as desired. In view of (6.185) and Siegel’s Lemma (Theorem 3.31), we finally see
that there is § > 0 such that

by < T (250" % ezt

which shows that the power series (6.176) converges for

The proof is complete.

Theorem 6.39. Suppose 0 < |a| < 1 or « is a Siegel number. Then equation
(6.172) has an analytic solution of the form (6.175) in a neighborhood of the number
w, where g (z) is an analytic solution of (6.173).

Proof. In view of Theorems (6.37) and 6.38, we may find a sequence {b,} .,
such that the function g (2) of the form (6.176) is an analytic solution of (6.173) in
a neighborhood of the origin. Since ¢’ (0) = n # 0, the function g~!(z) is analytic
in a neighborhood of ¢ (0) = u. If we now define y (z) by means of (6.175), then

’ — ad (ag=) (= ~1(, /_ag/(agil(z))
Y (2) = ag’ (ag™" (2)) (97" (2)) = )

a?g” (ag™' (2)) —ag' (ag™' (2)) 9" (97" (2)) - 5=y

(¢ (971 (2)))°
ag’ (ag™t (2)) [g (P97 (2)) —ag (ag™ (2))]
g (971 (2)) ’

Y’ (2) =
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and
2)) —ay (2)]y (2) = [g (a?¢7 ' (2)) —ag (ag™! (2 —ag’(agfl(z))
_ag'(ag™' (2) [g(e?97" (2)) —ag (ag™" (2))]
9' (971 (2))

as required. The proof is complete.

Knowing that an analytic solution of (6.167) exists, we may assume that x (z)
is of the form
2" (1)
2!
we need to determine the derivatives 2(™ (1), n € N. First of all, in view of (6.171)
and (6.168), we have

z(2) =z (p)+a' (1) (z = p) + (z—u)+--;

and

respectively. Furthermore,

o () = a0’ ) = (a8 ) ) = 25

b b
Next by calculating the derivatives of both sides of (6.167), we obtain successively
2" (2) = 2 (az + b2’ (2)) (a + b2" (2)),
2@ (2) = 2 (az + ba' (2)) (a + bz” (2))° + 2/ (az + b2’ (2)) (2" (2)),
so that
2 (1) = @ (ap -+ ba' () (a+ ba" (1))
2@ (n) = 2" (p) o® + 2/ () [op (1 — a)]

Zla—aa+((1-ap’].

In general, we can use the Formula of Faa di Bruno to find (z (az + bz’ (z)))(m) and
then calculate

Ly 1= 2™ ()

for m € Z*. Tt is then easy to write out the explicit form of our solution z (z) :

p()= OO OOl oy Oty OO
+3 (- @a+ (G -aw?| - '
= Fm m
+ (m+2)!('z_“) i
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6.3.4 FEquation IV

In this section, we consider a class of iterative functional differential equations of
the form [188]

x” (ac[r] (z)) =coz 41 (2) + -+ emzl™ (2), (6.186)
where r and m are nonnegative integers, cg,ci,...,c,, are complex constants,
S, leil # 0, and 2l denotes the i-th iterate of 2. When 7 = 0, c2 # 0 and
ci=0(0<i<m, i#2), Eq. (6.186) reduces to the second-order iterative func-
tional differential equation x” (2) = cox (2 (2)) which has been discussed before.

To find analytic solution of (6.186), we first seek the analytic solution y (2) of
the companion equation

azy// (arJrlz) y/ (aTz) = Oéy/ (ar+lz) y/ (aTZ) lz cZy ot z 1 6 187)

satisfying the initial value conditions

y(0)=p, ¥ (0) =n+#0, (6.188)
where 1, 1) are complex numbers, and « satisfies |o| > 1 or 0 < |a| < 1 or is a Siegel
number. Then we show that (6.186) has an analytic solution of the form

z(2) =y (ay~' (2)), (6.189)
in a neighborhood of the number u. Finally, we make use of (6.189) to show how to

derive an explicit power series solution. First of all, suppose (6.187) has a solution
of the form

=Y bua", (6.190)
=0

which is analytic on a neighborhood of the origin and by = p and b; = n # 0. Then
we may rewrite (6.187) as

2 " 7‘+12 ’ a’z) — a / OéTJrlZ 12 a’z m ,
Y ) I [zy wZ)]

or

yl (ar+lz)>/ r—1,7 T [m i ]
— | =« (a"2) E cy(a'z)| .
( v (a72) sl | 2w le)

Since y' (0) = n # 0, we have
Y (@ tz) =y (a"2) [1+a" ! / Y (a”s) Z ciy (a's) ds] : (6.191)
0 i=0

By substituting (6.190) into (6.191), we see that
arnJrl ( n+l 1) (n + 2) bn+2

2—: (k+1)(j +1)ark+9) ST c;ot(n—k—3)
n—k+1

brs1bji1bn k; (6.192)
k=0 j=0
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for n > 1. So for by = p and by = n, the sequence {by,} —, is successively determined
by (6.192) in a unique manner. It suffices now to show that the power series just
derived is analytic at 0. To this end, we show that such a power series solution is
majorized by a convergent power series.

Theorem 6.40. Suppose « is a Siegel number. Then for any given compler num-
bers u and n that satisfies 0 < |n| < 1, Eq. (6.187) has a solution of the form

= anzn7 by = ,U/7b1 =1,
which is analytic near Q.

Proof. From (6.192), it follows that

(k+1)(j+ 1) ar+I) D oimo cia (k=) < Dioleil cN
n .
(n+2)(n—k+1)amtl(antl —1) | = |antl — 1]’
Thus
| | n n—k
bacel < 2 ngf’ “ 1 DD brsal byl bu-r—s], n €N (6.193)
k=0 j=0
Note that Example 4.15 asserts that
1 1
G®(2) = 2|u| G* (2) + (W - |U|2> G(z) - S Tall (Crz+|pul) =0
i=0 Ci i=0 Ci

has a solution

z) = i C,z"
n=0

which is analytic on a neighborhood of the origin and Cy = |u|, C; = 1 and

m n n—=k
Cn+2 = <Z |Ci|> Z Z CkJrleJrlCnf}cfj, n €N, (6.194)

i=0 k=0 j=0
In view of the Cauchy’s Estimation (Theorem 3.26), there exists a positive constant
r such that

C,<r", neZt. (6.195)

As in the proof of Theorem 3.32, we may apply Siegel’s Lemma (Theorem 3.31) to
deduce a § > 0 such that

|bn| < r™ (255“)”71 n~2° neczt,

so that {b,} has a positive radius of convergence. The proof is complete.

neN

Theorem 6.41. Suppose |a| > 1 and r > m. Then for any given complex numbers
wandn+#0, Eq. (6.187) has a solution of the form (6.190) which is analytic on a
neighborhood of the origin and by = p as well as by = 7.
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Proof. First of all, for » > m and 0 < k4 j < n, we have
(k+1) (G +1)a®FD 5 ol F=D | (R +1) (+1) Yy ca (k=)
(n+2)(n—k+1)a™ (art! —1) n+2)(n—k+1)a(ant! —1)

2io leil
>~ |O[n+1 _1‘ >

for n € N, where M is some positive number. Note that Example 4.15 asserts that

652l 6* () + (37~ W) G = 7 (il + b =0 (6190

has a solution
G(z) = Z D,z"
n=0

which is analytic on a neighborhood of the origin and Dy = |u|, D1 = |n|, as well
as

n n—k

Dnyo=MY > Dpy1Djy1Dpgj, n€N. (6.197)
k=0 j=0

Clearly, in view of (6.192)
|bn| < Dy, n € N.

Therefor the sequence {b,}, . has a positive radius of convergence. The proof is
complete.

Theorem 6.42. Suppose 0 < |a| < 1. Suppose further that 0 < r < m and ¢y =
0,....,¢,—1 =0, or, r = 0. Then for any given complex numbers p and n # 0, (6.187)
has a solution of the form (6.190) which is analytic on a neighborhood of the origin
and satisfies bg = p and by = 1.

The proof is similar to that of the previous Theorem and hence skipped.

Consider the following three hypotheses:
(i) o is a Siegel number;

(ii) || > 1 and r > m;
(i) 0<|al<1,0<r<mandcy=0,...,c_1 =0;
(iv)0<|a] <1land r=0.

Theorem 6.43. Suppose one of the above conditions (i)-(iv) is fulfilled. Then for
any given complex number u, Eq. (6.186) has a solution x (z) which is analytic on
a neighborhood of p and satisfies the conditions x (p) = p and 2’ () = . This
solution has the form x (z) = y (ay~' (z)), where y(z) is an analytic solution of
the nitial value problem (6.187),(6.188).
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Proof. In view of Theorems 6.40, 6.41 and 6.42, we may find a sequence {b,, }
such that the function y (2) of the form (6.190) is an analytic solution of (6.187) in
a neighborhood of the origin. Since y’ (0) = n # 0, the function y~! (z) is analytic
in a neighborhood of the y (0) = u. If we now define z (z) by means of (6.189), then

xll (i[r] (2)) _ 0623/// (ar+1y—1 (Z)) y/ (ary—l (Z)) _ ay/ (ar+ly—1 (Z)) y// (ary—l (Z))
[y’ (ary=" (2))]

= Zciy (a'y™(2) = Zciffm (2),
i=0 i=0

as required. The proof is complete.
We may now construct an analytic solution of (6.186) by means of (6.189) in a
neighborhood of u. Since
() =y (ay™" (1) =y (a-0)=p,
we may assume that z (z) is of the form

x(z)=p+a (1) (2 — p) +

We need to determine the derivatives (™) (1) for n € Z*. First of all, in view of
(6.189), we have

7= @)
Thus
o~ Wy W) ay' () _
TWE TSy v
and

2 (2l (1)) = ot 1w (1) + -+ + emal™ (1) = (Z ci) ..

Next, by calculating the derivatives of both side of (6.186), we obtain

x'" (x[r] (z)) x (a:[r_l] (z)) ceal (2 (2) 2 (2) = i cix! (I[i_l] (z)) cea (2 (2) 2 (2)
i=0

so that
2" ([ (W)=l (W)
i=0
and

ITPND ¥ 101 10 D ST
== oy o T
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In general, we can show by induction that

(1) = (00 ) o0 )
+7§P]€)n72 ((x[r] (z))/ . (x[ﬂ (2))(n_2)> zF+2) (mm (z)>
k=1

for n > 3, and

(x[a] (Z)) ® = le (1’10 (Z) ey (El,jfl (Z) ;s 10 (Z) s ...71'173‘71 (Z)) s

respectively, where z;; (2) = 2 (2U) (2)) and Pj, and Qj; are some polynomials
with nonnegative coefficients.
Moreover, if we write

Byt = Quy (& () o (10)30329) ()2 (1))
then differentiating (6.186) n — 2 times at z = u, we will end up with

n—3 m
(2" ()" "2 2™ () + Z P2 (Bris oy Brin—2) £*2) (n) = Z Cifin—2, n > 3.
k=1 =0
This shows that
m n—3
" 1
(E( ) (/j,) = m [Z Ci5i7n72 - Z Pk:,n72 (5r17 '“75r7n72) x(k:+2) (M)]
=0 k=1

for n > 3. By means of this formula, we may then write

S ciat !

T Gt D NS

p() = b a(e— )+ EEEG (o

6.4 Equations with Higher Order Derivatives

In some iterative functional differential equations, solutions in the form of elemen-
tary functions may exist. In this section, we show how power function solutions of
the form

z(z) = Az (6.198)
can be computed. We first illustrate this by considering an equation of the form
, k
2™ (2) = az? (ac[m] (z)) ) (6.199)

where k, m,n are positive integers, j is a nonnegative integer, a is a complex number,
2™ (2) is the n-th derivative of z(z) and z[™(z) is the m-th iterate of x(z). We
assume m > 2 and a # 0 to avoid trivial cases.

In the following discussions, recall the notation (in the first Chapter)

L), = p(p—1) - (p—n+1).
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Substituting (6.198) into (6.199), we obtain

A, 2" = NFQU ™) k™
This prompts us to consider the equations
A, = aAROFmt ™), (6.200)
and
k™ 475 =p—n. (6.201)
First of all, we assert that the polynomial
fR)=kz"—z4+n+j

does not have any real roots if m is even, and has exactly one real root if m is odd.
Indeed, for even m and real z, by solving

f(z) =kmz""' —1=0,

we see that the minimum of f occurs at the root p =1/ " ~Vkm € (0,1). Hence
1 1
f(Z)Zf(p):p(——l) +n+j> (——1) +n+j>0
m m

for all real z. If m is odd, then f’ has two zeros +p. Since

min f(z) = min{f(p), f(=p)} = f(p) > 0,

2Z2—p

f does not have any real roots greater than or equal to —p. Furthermore, since
f(=p) and f(—o0) have opposite signs, f has at least one real root in (—oo, —p).
Finally, since f'(z) > 0 for all z < —p, f is increasing in (—oo,—p). So f has
exactly one real root which is negative. As a consequence, the roots of f in either
case cannot be 0,1, ..., nor n — 1.

Next, we assert that f(z) has simple roots only. Suppose not, let r be a double
root of f, then it is a root of f’ and

[ = =1'(2) =

Hence (6.202) implies that » = m(n + j)/(m — 1) is real and positive, which is
impossible by our previous assertion.

Let p1, ..., tm be the roots of (6.201). In view of the above results, p1, ..., i, are
pairwise distinct and each one of them is different from 0, 1, ..., or n—1. Furthermore,
in view of (6.200) and (6.201), we have

1—-m

Z4n+]. (6.202)

N a\FA=1)/(=ps) — o\ (ktnti—p) /(1= ps)
for i = 1,...,m, from which we obtain

\_NlJn

a

(1—p3)/ (ki —1)
\i = {—} Li=1,..,m. (6.203)
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In other words, we have found m distinct solutions of the form:
xi(z) = N2t i =1,2,...,m, (6.204)

where p1, ..., iy, are roots of (6.201) and Aq, ..., A, are defined by (6.203).

To summarize, there exist m distinct (single valued and analytic) power func-
tions of the form (6.204) which are solutions of (6.199) defined on C\(—o0,0].

We remark that each solution z;(z) = A;z*¢ has a nontrivial fixed point «;.
Indeed, from Ao = a;, we find

o = AT = (g ], )V D 2, (6.205)
In terms of the fixed point a;, we may therefore write x;(z) in the form

zi(z) = a) Mk (6.206)

As a corollary, let uq,..., 4y, be the roots of (6.201), and aj,...,a,, given by
(6.205). Then in a neighborhood of each point «;, i = 1, ..., m, equation (6.199) has
an analytic solution of the form

i(pi — 1
@“i(z)=Oéi+ﬂi(z—ai)+w(z—ai)2+'“
2.041'
I"'uiJfl(Z—Oli)n"‘r"'
nlaf

Indeed, in view of (6.206),

Hi
1—10; ) z— Q4
zi(z) = M2t =y <1+ >
@

pi (z=ai\ | palpi—1) (2= ai\?
1+ = + 4+
1! a; 2! Q;

:ai

as required.

Example 6.6. Consider the equation

Then (6.201) is reduced to
p—p+1=0,

which has roots put+ = (1 + v/3i)/2. And from (6.200), we find \_ = ,ul,/ﬂ’ ~
2.145 — 1.238i, A\ = ui/‘“’ ~ 2.145 + 1.238i. Since |pu4| =1 and 8 =1, ay = ps
are roots of unity.
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6.4.1 FEquation I

In this section, we prove the existence of power solutions for the more general
equation

(n1) M (na) Neo i (plma] M [ Mo
(2 (pr2)) o (2 (paz)) T = A (ol (@) (20 (@02))
(6.207)
where a,b, N1,..., Ny, My,..., M, and nq,...,ng, mq,...,myp are positive integers
such that ny > ny > .-+ > n, and m; > mg > --- > my. The number j is
a nonnegative integer and A, p1,...,pPa, ¢1,---,Qp are nonzero complex numbers.

Note that by taking a =b =1, Ny =1, M; = k and p1 = ¢4 = 1 in (6.207), we
obtain (6.199).

Theorem 6.44. Put s(N,a) = N1+ ---+ N,, s(M,b) = My + --- + M, and
s(Nn,a) = Niny + -+ Ngng. Let p1,..., pm, where 1 < m < myq, be distinct
roots of the polynomial

f(z)=Mz™ + - 4+ Mpz™ — s(N,a) z+ s (Nn,a) + j. (6.208)
If s(N,a) < s(M,b), then (6.207) has m distinct, single-valued, nonzero, analytic

power solutions of the form

x; (2) = N2, i =1,2,...,m;z € C\(—00,0],

where
o | e (i), )
AH?:l szWi L -
B;
s = mal, ) D (el D (6.200)
and

L —p

Bi= s(M,b) + s(Nn,a) — s(N,a) +j°

Proof. Substituting z (2) = Az* into (6.207), we obtain
c,r s a s(N,a
QuANZ = B XN (Lel,,) e

X(L’U, - naJna_l—na

Na

)S(N,afl) . s(NJ)Zs(N,a)p,fs(Nn,a)

(L= n2l,, )

where
b

c= M(1+p+-+pmh),
=1

b

r= Z Ml/*l’ml +.77
=1
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a
_ Nip
Py =],
1=1

and
b
_ Myp™
Qu=[a :
1=1

This leads to two requirements

QMA/\C _ PM)\S(N’Q) (Lana)s(N,a)

< (L= nalp, ) N (=2, ) Y (6.210)

and

b
S(N,a)u—s(Nn,a):ZMl/ﬂ” + 7, (6.211)
1=1
or

f(p) =0.

Note that the polynomial f(z) does not have any nonnegative real roots if s (N, a) <
s (M,b). Indeed, f(0) =s(Nn,a)+j > 0. Forreal z > 1, from s (N, a) < s(M,b),
weget s(N,a)z < s(M,b)z < Myz™+ - +Mpz"™ and so f (2) > s(Nn,a)+j > 0.
For real z € (0,1), we have f (2) > 0—s(N,a) + s(Nn,a) + j > 0. Thus none of
[1, .-, fhm 18 a nonnegative real number. Substitute u = p; into (6.210), we may
then solve for A = \; # 0 and conclude that A\;z*¢ is a desired solution. The proof
is complete.

We remark that if the condition s (N,a) < s (M, b) fails to hold, the theorem is
not true as can be seen from the following example.

Example 6.7. Consider the equation

(3:(3) (2)) (sr:(l) (2))3 =zl (2).

Here s (N,2) =4 > s(M,1) =1, f(2) = 2z — 42 + 6 has a unique root u = 2 with
A = 0, yielding only the trivial power function solution.

In certain cases, the number of solutions can be strengthened to mq as follows:
In addition to the hypotheses in Theorem 1, suppose mq,...,mp are all even, or,
mq is odd but my,...,mp are even. Then there exist m; distinct, single-valued,
nonzero, analytic power function solutions.

Indeed, in the proof above, we already have f(z) > 0 for each z > 0. If
mi,...,myp are even, then Descartes’ rule of sign (see e.g. page 171 in Barbeau
[14]), tells us that f (z) has no negative real root, while if m4 is odd but ma, ..., mp
are even, then f (z) has at most one negative real root. In either case, f (z) cannot
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have repeated roots, other roots being complex conjugates. Hence, all m; roots of
f (2) are distinct.

Observe that each solution z;(z) = A;z* has a nontrivial fixed point «; of the
form

—1 1
ai — A*l_”i — Ais(l\l,b)+s(Nn.a)7s(N,a)+j 7é 0’

3
thus we may write each solution z;(z) as

1— s g1

zi(z) = a; Mzt

Expanding such solution about its fixed point, we immediately get the following
consequence: Let p1, ...,y be the distinct roots of (6.211), and

1
T
=X ", i=1,2,...,m,

where ); is defined by (6.209). Then in a neighborhood of each point «;, the iterative
functional differential equation (6.207) has an analytic solution of the form

I_:U’iJl(Z_ L:U’iJ2(Z_ai)2_|_”_ Lu‘lJn

xi(2) = a; + T ;) + Nor, + n!a?_l( —a)" +
6.4.2 FEquation IT
The following equation
1
1) —
' (z) = ) (6.212)

has been discussed earlier. Nontrivial power function solutions can also be found for
(6.212). Indeed, let us seek solutions of the form x(z) = Az* where A # 0. Setting
it into (6.212), we obtain

it = A~ —p®
We are led to the equations
pPATTH =1, (6.213)
and
pr 4 —1=0. (6.214)

Since the two distinct roots uy and p_ are

—1++5
Pt = ——,

2
we can then solve from (6.213) to find
Ay = Iugiti—l)/@—#i—#z) _ #ii_l7 (6.215)

and two corresponding distinct solutions of (6.212) of the form

x4 (2) = Apzh*. (6.216)



250 Analytic Solutions of Functional Equations
On the other hand, we may try to find power solutions of the form x(z) = A\z#,
where A # 0, for the iterative functional differential equation
2'(z) = Az(z), A#0. (6.217)
Substituting z(z) = Az* into (6.217), we see that \uz#~—! = AXzH, so that

p=p—1
A= AN

But then p cannot exist as expected.
The above approach prompts us to consider more general iterative functional
differential equations. Let

N := (N1,Na,...,Ng), M := (M1, Ms,....; My), T := (T1,Ts,...,T¢)
be vectors with nonnegative integer components. Let
n = (N1,N2, ..., Ng), M := (M1, Ma,...,myp), t:= (t1,ta, ..., tc)
be vectors with nonnegative integer components such that
Ny >MNg > >MNg, My > Mg > >Mp, b1 >1T2 > > 1.

Recall that the 1-norm of a vector v = (v1, vz, ..., vx) is denoted by |v], , that is,
lv]; = Zle |v;] . In this section, for the sake of convenience, we will use |v| instead
of |v]; and use

J
ol ; ==Y vl
i=1
for the 1-norm of the subvector (vy, v, ..., v;) of v. The inner product of two vectors
u=(uy,..,ux) and v = (vy,...,vg) is
UV = UV + * * + URV.-

Consider iterative functional differential equations of the form [31]

Ty T
(x(m) (p1z)> A (a:(na) (paz))Na =A (=] (le))M e (alted (re2)) 7
(x[mﬂ (Chz)) 1o (x[mb] (sz)) b
(6.218)
where A, p1,...,Pa,T1,---,T¢, q1,- - -, Qp are nonzero complex numbers.

In order that (6.218) is a true differential equation, it is natural to assume
Nen > 0 (so that [N| > 0 and some n;N; > 0). We will make such an assumption for
the moment and comment on the other cases later. We remark that if |T'| = |[M| = 0,
the right hand side of (6.218) becomes A. The resulting equation does not contain
any iterates of the unknown function and perhaps it is not appropriate to call it an
iterative functional equation. We will, however, consider such a possibility as well.
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We will seek nontrivial power function solutions of (6.218). By substituting
x(z) = Az#, where A # 0, into (6.218), we obtain

AF NEuprtd
= Pu@QuANC ((u),)

X(Lu - naJna_l—na)IN‘a_l :

[N,

(L 2]y, ) V2N (6.219)

where

a

b c
._ Nip — Myp™t ._ Tyt
Po=Ip™, Qu=11a™" " Bu=TI0"™
=1 =1

=1

b c
Cui=> M(I4p+-+p™), Byi=) Ti(l+p+--+ph),
=1 I=1

and

b c
==Y My™, =) Tt
=1 =1

This leads to two requirements

_ N
AF, = PMQM)‘INHC“ Eu (\_NJna)‘ .
(L= na) )Nt (=2l ) (6.220)
and
c b
IN|p—Nen=> Tiu" = > Myu™. (6.221)
=1 =1
Let
b c
B(p) = My™ = Tip" + |[N|u— Nen, (6.222)
=1 =1

which may be called a ‘characteristic polynomial’ of (6.218). First of all, it is
possible that ®(u) is a constant polynomial. Indeed, this is true only if

IN|p+ Myp™ + Tepte = 0.

In such a case, the only possible root of ® is 0. However, substituting z(z) = A\2° = X
into (6.218), we obtain AT =0, which shows that the only possible power function
solution is trivial. In general, ®(u) may be a nonconstant polynomial.

Theorem 6.45. Suppose ® is not a constant polynomial and p is a root which does
not belong to the set {0,1,...,max{1,n1 — 1}}. Suppose further that |T|+ |M]| >0
and

IN| 4+ C,, — E,, #0. (6.223)
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Then (6.218) has at least one single-valued, nontrivial, analytic power solution of
the form

x(2) = Azt z € C\(—00,0],

where
A‘N|+C#_E# — AF'“ 1
= .
P (Lo, )™ (U= mad )Mot (L= ma )V
(6.224)
Indeed, if @& is not a constant polynomial with  root

pwe{0,1,...,max{l,ny — 1}}, then

[Nl
(L)) (Lt = 1L,y )t (s = ma )P 0. (6.225)
We may thus substitute p into (6.220), solve for A as given by (6.224), show X is
well defined and then check directly that Az* is a desired solution.

Observe that for the above arguments to hold, three points should be noted:

1. the exponent of NN+ —Eu in (6.220) must be non-zero,

2. the condition that ®(u) does indeed determine the values of u, which is
equivalent to ®(u) being non-constant, and
3. the  condition  (6.225) must  hold, which is  true if

wé{0,1,... ,max{1l,ny — 1}}.

The restriction p ¢ {0,1,...,max{1,n; — 1}}, however, can sometimes be re-
laxed as shown in the following examples.

Example 6.8. Consider the iterative functional differential equation
zl2(2)
Here N=(N1)=(1), T=(T1)=(1), M= (M;)=(1),and n = (n1) = (1), t =
(t1) = (1), m = (m1) = (2). Hence (6.220) becomes
ARy =1 (6.226)

7(2) =

and
(D(,U,) = ,LLQ - 1a

which has roots ps = £1. Since

INI+Cuy = Epy =170,
in view of Theorem 6.45, we see that our equation has a nontrivial solution. In
fact, if we substitute A = A4 into (6.226), we see that A = 1 or —1, and we can find
solutions z(z) = z and x(z) = —z. On the other hand,

INI+Cyu — E, =0,

thus our Theorem 6.45 does not guarantee a nontrivial solution. Indeed, substitut-
ing p = p— into (6.226), we see that —1 = 1, which is impossible.
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Example 6.9. If ®(u) has a root at g = 1, then for (6.225) to hold under the
condition |N|, > 0, there are only two possibilities:

l.a=1,ny =1, Ny > 0 and (6.218) takes the form

Te

o ,
W (py 2 Ny 4 (x[tl] (riz)) " - (x[ ] (re2)) |
( (p )> (x[ml] (qlz))Ml (x[mb] (qbz))Mb

which has the solution z(z) = Az! where

c T,
AN1+Mem—Tet _ Alliy
b )
P Il ™ (w)y"
or
2. Ny=---=N,1=0, N, >0, n, =1 and (6.218) takes the form

T.

™ .
D)) = A (@] (ry2)) ™ - (20 (r2))
) A T )

which has the solution z(z) = Az' where

Mb’

T
N\Na+Mem—Tet _ A chzl r
= TN.1qb M, \N.°
Pa Hl:l q, l(ﬂ)l

Example 6.10. In (6.218), let my > 0, t = (1) = (0) and T = (T1) = (j) where
j > 0. Then we are considering

(+7 (m2)

M ( (ma) ( ))NQ =A &
Pa - (a:[ml] (qlz))Ml (x[mb] (qbz))Ml”

(6.227)

If [M| > Nen — |N| + j, then the characteristic polynomial

b
O(p) =Y My™ —j+|N|p— Nen
=1
does not have any roots in {0} U[1,00) (since ®(0) = —Nen —j < —Nen < 0, and
since ®(u) > |M|—j+|N|—Nen > 0 for > 1). Thus, under the conditions stated
above, Theorem 6.45 asserts the existence of nontrivial power function solutions for
(6.227).

If, in addition, all my, ma, ..., my; are even, or all odd, then (6.227) will have at
least my distinct nontrivial solutions. Indeed, we have already shown that ®(u) > 0
for p > 1. If my,ma,...,mp are even, then Descarte’s rule of sign (see, e.g. page
171 of [14]), tells us that ®(p) has at most one negative real root and at most one
positive real root in (0,1), while if mq,ma,...,mp are all odd, then ®(u) has no
negative real root and at most one positive real root. In either cases, ®(u) cannot
have repeated roots, other roots being complex conjugates. Hence all m; roots of
®(u) are distinct and they yield at least m; distinct nontrivial solutions.
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Example 6.11. In (6.218), let |T| = 0, mp = 0 and M, = k > 0. Then we are
considering
(n1) i () )N“ _ 1 ,
(m (p1z)) 2" (paz) Azk () (qrz) ™ - (zlmo—r] (g_y2)) M
(6.228)
As in the previous example, if ‘Z?:_ll Ml‘ > Nen — |N| — k and if Nen — k #£ 0,
then the corresponding characteristic polynomial

b—1
O(p) =Y My™ +k+|N|p— Nen
=1
does not have any roots in {0} U[1, c0). Thus Theorem 6.45 will imply the existence
of nontrivial power function solutions for (6.228). Furthermore, a statement similar
to that in Example 6.10 can also be made when my,...,mp_1 are all even, or, all
odd.

Example 6.12. Consider an iterative functional differential equation of the form

(a:("l) (plz)> N, (I(na) (paz)> Na — A (I[tﬂ (qlz)>T1 (aj[tb] (qbz))Tb

where a,b, N1,...,Ng,T1,..., Ty and nq, ..., ng, t1,...,t, are positive integers such
that ny > no > .-+ > ng, t1 > to > --- > t,. The number j is an integer
and A, p1,...,Pa,q1,---,q are nonzero complex numbers. By reasons explained in

Example 6.10, if |[N| < |T'|, Nen + j # 0 and
b
O(p) = Tip" — [N|p+ Nen + j (6.229)
=1

has a root pu, then Theorem 6.45 asserts the existence of at least one nontrivial
solution of the form z(z) = Az* in C\(—o0,0].

The case |T'| = |[M| =0 is treated in our next result.

Theorem 6.46. Suppose |T| = |M| = 0 and J‘VJ\',T ¢ {0,1,...,max{1,ny — 1}}.

Then (6.218) has at least one single-valued, nonzero, analytic power solutions of
the form

x(z) = Azt z € C\(—00,0],

where
= Nen
IN|
and
v A4 1 (6.230)

P, (LMJ%)‘M“ (| — ”aJna,ﬁna)‘NI“‘l (- ”2Jn17n2)|N‘1



Functional Equations with Iteration 255

Indeed, since |T'| = |M|=0,thus Q,=F,=1,C, =E, =0,
(1) = |N| i — Non,
and (6.219) becomes

PN (gt ) (L= 0],y )Mot (= a2 )Y = A (6.231)

Since ® now has the unique root y = Nen/|N|, and since it does not belong to
{0,1,...,max{1,n1 — 1}}, thus X is a well defined root of the equation (6.231) and
we may check directly that Az* is a desired solution.

Again, we may find |N| distinct roots of (6.231) and they yield |N| distinct
solutions of (6.218).

As in Example 6.9, the restriction p ¢ {0,1,...,max{1,n; —1}} in Theorem
6.46 can also be relaxed.

Example 6.13. If ®(x) has a root at u = 1, then for (6.225) to hold under the
condition |N|, > 0, there are only two possibilities:
1.a=1,n; =1,N; >0 and (6.218) takes the form

(x(l) (p12)> M = A,

which has the solution z(z) = Az! where

P S
Py (L) )M
or
2. Ny=---=N4_1=0,N, >0,n, =1 and (6.218) takes the form

Na
(x(l)(paz)> = A,
which has the solution x(z) = Az' where
N A
Ao = e
pa (Ln)y)Ne

We have assumed that Nen > 0. The reason is that otherwise (6.218) reduces
to

(2t (rlz))Tl o (alte] (rcz))Tc
(m[mll (qlz))Ml cee (l‘[mb] (qbz))]wb’

1=A (6.232)

or to
Te

(x[tl] (rlz))Tl PN ("E[tC] (rcz))
M

N U) R CR (7)

Since derivatives are missing in both cases, it is not appropriate to call them differ-

(x(pr2)™ = A (6.233)

My *

ential equations.
However, we may try to find solutions of the form z(z) = Az#* anyway.
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For instance, suppose |N| = 0 and ® is not a constant polynomial with a root
u. Note that ®(u) is then given by

b c
O(u) =Y My™ =) Ty,
=1 =1

and (6.219) becomes
QN Fe = AF,.
Substituting the root p into (6.234), we obtain

AF,

NGB = :
i

(6.234)

Thus if |T| > 0 and if C, — E,, # 0, then we may find a solution X from (6.234)
which yields a nontrivial solution of (6.232).

As for equation (6.233), the development leading to Theorems 6.45 and 6.46 still
apply.

Theorem 6.47. Suppose
b c
O(p) = Nip+ Dy Myp™ = Tip"
I=1 1=1
is mot a constant polynomial and p is a root. Suppose further that |T'| > 0 and

Ny +C, —E, #0.

Then (6.218) has at least one single-valued, nontrivial, analytic power solution of
the form

x(2) = Azt z € C\(—00,0],
where

)\N1+C’,L—E,L _ AF#
~ .
pl 1HQH

We remark that if |T'| = |M| = 0, then equation (6.233) becomes
(2(p12)™ = A.

Assuming x(z) = Az* where \ # 0, we easily find that g = 0 and AN = A. Thus,
z(z) = AYN1 is a solution.
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6.5 Notes

Equation (6.11) and the corresponding Theorems 6.1 and 6.2 are in Li and Cheng
[120]. Equation (6.22) and the corresponding Theorems 6.3, 6.4 and 6.5 are in Si
[186]. Besides equations (6.11) and (6.22), there are several other Babbage type
equations which have been studied. See for exampe Bessis et al. [17], Pfeiffer [156],
Issacs [83], Wagner [219], Myberg [144], Sarkovskii [168], Rice [162], Rice et al.
[163], Si [175], Mai and Liu [133], Si and Zhang [196], Liu [129, 130], Liu and Mai
[131]. In particular, Sarkovski in [168] considered the equation

z(f(z(t) =gx@),

where z(t) is the unknown function; Rice in [162] considered the iterative square
roots of Chebysev polynomials; Rice et al. [163] show that a quadratic polynomial
does not allow iterative square roots.

The invariant curve equation (6.41) and the corresponding existence theorems
are contained in Si [176], while equation (6.49) and the corresponding results are in
Si and Zhang [195]. For other invariant curve equations, the readers may consult
Nitecki [148], Anosov [4], Brydak [20, 21], Dhombres [46, 47], Ng and Zhang [147],
Si et al. [194], Li et al. [124].

Equation (6.72) and the corresponding existence results are contained in Si et al.
[185]; equation (6.80) and the corresponding existence results are contained in Si and
Cheng [181]; equation (6.86) and the corresponding existence results are contained
in Si and Cheng [180]; equation (6.95) and the corresponding existence results are
contained in McKiernan [140]; and equation (6.105) and the corresponding existence
results are contained in Si et al. [192]. Two other equations similar to equation
(6.80) are studied recently by Wang and Si [222] and Xu et al. [229)].

The equation (6.95) (studied by McKiernan [140]) is associated with

the asymptotic behavior of Golomb’s sequence {F (n)} —, : 1,2,2,3,3,4,
4,4,5,5,5,6,6,6,6,... . Golomb’s self-describing sequence is a monotone non-

decreasing sequence of positive integers with the property that for each n > 1,
F(n) is equal to the number of (not necessarily consecutive) occurences of the inte-
ger n in the sequence. Golomb’s sequence is proposed by Golomb in Problem 5407
in [70] who asked for an asymptotic formula for the sequence. Marcus [134] showed
that as n — oo, the n-th term of the Golomb’s sequence tends to the solution of
(6.95). That is F'(n) ~ x (n) (n — oo) where z is a positive solution of (6.95). He
also gave 1 (2) = >~ %2%~1 where ¢ = (\/5—1— 1) /2 is the golden number, as a
positive solution to (6.95). The asymptotic behavior of Golomb’s sequence is also
studied in Petermann [152, 153] and Petermann and Remy [155, 154]. Two other
similar equations are studied recently by Si and Zhang [197] and Si et al. [202].

For additional motivation and results related to iterative differential equations
of the form

o' (t) = f (t ),z (a(t,z(t)), 2" (B (¢, 2(1))),
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the readers may consult Driver [49-51, 53, 54], Dunkel [56], Eder [58], Grimm [71],
Gusarenko [72], Hsing [80], Hoag [79], Jackiewicz [86, 87], Oberg [149], Shi and Li
[171, 172], Tavernini [215], Wang [217], Wu [226, 227], Xiang [228].

Equation (6.125) and the corresponding existence results are contained in Li
[119]; equation (6.152) and the corresponding existence results are contained in Si
and Wang [189]; equation (6.167) and the corresponding existence results are con-
tained in Si and Wang [187]; and equation (6.186) and the corresponding existence
results are contained in Si and Wang [188]. Other equations involving second order
derivatives of the unknown function can be found in Si and Wang [190], Si and
Zhang [199], Liu and Li [128] and Li and Liu [123].

Power functions solutions for iterative functional equations were noted by T. T.
Lu in a note to one of the authors (Cheng) before [122] was written. Since then
several papers [121, 214, 31] were written, all based on similar ideas. In particular,
equation (6.218) and the corresponding results are contained in Cheng et al. [31].
The same idea is also applied by Si and Zhang [199] to obtain power functions
solutions of

2 (z)=0 (x[m]>T + 2P

where 0,7, 7,3 € C\{0} and m € ZT. It is expected similar solutions can be found
for several other iterative functional equations.



Appendix A

Univariate Sequences and Properties

We summarize some of the notations and facts related to basic univariate sequences
and their associated operations.

The set of real numbers is denoted by R, the set of all complex numbers by C, the
set of integers by Z, the set of positive integers by ZT, and the set of nonnegative
integers by N. The imaginary unit is denoted by i. IN is the set of all (real or
complex) sequences of the form {fi},cn = {fo0,f1, f2,...}. Therefore, sequences
a,b, ... in IN are assumed to have the form {ar},c.n » {0k }pen » - respectively.

A.1 Common Sequences

e Let a € C, the sequence {«,0,0,...} is denoted by @ and is called a scalar
sequence.

e The sequences {0,0, ...} and {1,0,...} is denoted by 0 and 1 respectively.

e For any number A € C, the geometric sequence {\"} where A € C, is
denoted by A.

neN

—1={+1,-1,41,-1,..}, 1 ={1,1,1,...} which is also denoted by o
i={1,i,-1,~i,1,i,~1, —i,.. and —i= {1, ~i,~1,i,1,—i,—1,i,...}.
The arithmetic sequence {0,1,2,3, ...} is denoted by 7.

The difference sequence {1,—1,0,0,...} is denoted by 4.

The exponential sequence {1/0!,1/11,1/21,1/31,1/4!, ...} is denoted by w.
The Dirac sequence h{"™ € IN, where m € N, is defined by

h<m>— 1 k=m
o0 k#m

The sequence A" is also written as A.
e The jump (or Heaviside) sequence H™), where m € N, is defined by

m)y JO 0<k<m
H, _{1 k>m

259
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e The factorial sequence |z| € IN, where z € C, is defined by
2] ={1,2,2(z — 1), 2(z — 1)(2 — 2), ...} .
Thus [z], = 1 and
2], =2(z=1)(z2=2)---(z—m+1), meZ".

Note that [0], = 0! = 1, |n]
n € N.
e The sequence [z] € [N, where z € C\{—1, -2, -3, ...}, is defined by

1 1
[21 = {1’ PR (z+1)(z+2)""}'
Thus [z], =1 and

1
— ,meZr.
= ey Grm) ™
Note that the fraction 1/(z+1)(z+2)--- (2+m), when m € Z, is defined
if z#£—-1,-2,...,—m.
e The binomial sequence C?) € [N for any z € C, is defined by

C(z):{l 2 2(z—1) z(z—l)(z—2)7m}7

o1 2t 7 3!

so that C(()Z) =1 and
o) _ 2(z=1)---(z—=m—1)

m

' ,meN,zeC.
m!

In particular, for 7,5 € N such that j < i, Cj@ is the usual binomial
coefficient.

A.2 Sums and Products

e Let f,g € IN. Their (termwise) sum is

f+g={fo+g0, fi+91,f2+92...}.
e Let a € C and f € IN. The a multiple of f is

af ={afo,afi,aafa, ..., }.
e Let f,g € IN. The termwise product of f and g is

f-g= {fogo, J191, f292, "'}keN :

The products f- f, f- f- f,... will be denoted by f2, f3, ... respectively. We
define f! = f and f° = o. The sequence fP is called the p-th termwise
(product) power of f. The k-th term of the sequence f? is (f?), , which is
written as f7.
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e Let f,g € IN. The convolution product of f and g is
k

(f*9k=>_ fe-igi keN.
i=0

The products f = f, f* f* f,... will be denoted by f(#, f®) .. respectively.
We define f( = f and f{% = T. The sequence f® is called the p-th
convolution (product) power of f. The k-th term of the sequence f(®) is
(f), , which is written as f,im.

o Let f,gcIN.If

k )
i o) — ()
k{ﬂ;();fzgn ;fzgn < o0, n€N,
then the the composition product of f and g is
fog= {Zfigﬁ}
i=0
The products fo f, fo fof,..., will be denoted by f[2, £ .. respectively.

We also define fll = f and fl% = k. The sequence f[! is called the p-th
composition (product) power of f.

neN

A.3 Quotients

e Let f,g € IN.If go # 0, then there is a unique sequence z = {z;} € IN
such that g« = f. This sequence is also denoted by the quotient f/g.

o Let g € IN. If go = 0 and g; # 0, then there is a unique sequence x € [N
such that z o g = h. This sequence is also denoted by gl=1].

o Let g € IN.If g; # 0 for i € N, then there is a unique sequence x € [N such

that 2 - ¢ = 1. This sequence is also denoted by ¢~ '.

A.4 Algebraic Derivatives and Integrals

e Given a sequence f € [N, we define the algebraic derivative of f by

Df ={(k+1)fr1)}iZo:

The higher algebraic derivatives D™ f are defined recursively by D" f =
D(D™1f). Thus we have

D{fo, f1, f2, ..} = {f1,2f2,3f3, ...},

and

Df ={(k+1)--(k+n)fein}
for n € Z*. It is natural to define D°f = f and D'f = Df.
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e Let ¢ be a sequence. If there is a sequence ¥ such that Dy = ¢, then 1
is called the primitive of ¢. In particular, given ¢ = {¢o, ¢1, p2,...}, the

primitive
0.9 o1 2 03
9 1 ) 2 9 3 9 4 90t

is called the algebraic integral of ¢ and is denoted by [ ¢. Hence

. o
/¢_h {k"_l}keN.

A.5 Tranformations

e Given f € IN, the first difference of f is Af = {f1 — fo, fo — f1,...}. The
higher differences A™ f, m = 2,3, ..., are defined recursively by A™f =
A (Am’lf). Furthermore, A%f = f and Alf = Af.

e The shifted sequences E™ f and E~™ f, where m > 1, are respectively

Emf = {ferk}keN’

and

k>m
1<k<m’

(Eimf)k _ { f—76L+k

We also define E°f = f and Ef = E'f. Note that A{™ x f = E~"f for
m € N.
e Given f € [N, the partial sum sequence generated from f is

k
{}:ﬁ} =0 f.
1=0 kEN

e Given f € [N, the absolute sequence of f is

|1 =Alfol 1Al s 1 f2l 5}

e Given f € [N, the positive and negative parts of f are
1
fr= 5 (F1+1)
and
_ 1
fr=5010=10-
Similarly, other transformations can be obtained by termwise operation, e.g.

In f = {In fk}keN

provided the transformed sequence is in [N,



Univariate Sequences and Properties 263

A.6 Limiting Operations

e For each j € N, let fU) € IN. The sequence {f(j)}jeN (of sequences in IV)
is said to converge (pointwise) to the limit sequence f € I if

lim f¥) = f, €C, keN.
Jj—o0

e The infinite sum of a sequence { ()} jen of sequences is the limit sequence

of the partial sum sequence {Z?:o fu )} :
neN

if(j) = lim Zn:f(j).
=0 =0

If such a limiting sequence exists, we say that the series Z;’;O @) converges.
Note that Z;io 1) converges if, and only if, Z;io ,(Lj ) converges for each
n € N; furthermore,

S f(j) _ S fT(Lj) _ c- fT(Lj) ,

neN
that is, the k-th term of the series is obtained by ‘adding’ all the k-th terms
of the individual sequences.

A.7 Operational Rules

e Equipped with the termwise addition and the convolution product, IN is a
commutative ring with no zero divisor, i.e. f*g =0 implies f =0 or g = 0,
and the additive and multiplicative identities are 0 and 1 respectively.

e For any f,g € IN,

k
(F+ ) =3 O 0w gt 9 keN.
i=0
o Let f,g €N and )\, u € C. Thenf-g:g-ﬁA-H:)\M,Q-f:%7l~f:f,
and A- (f+g9)=A-f+A-g.
o Let f = {fx} € IN.If fo = 0, then the first n, where n > 1, terms of
the n-th convolution power f{" are equal to zero, that is, f,gm = 0 for
k=0,1,...,n—1; and fém = f{'. Furthermore, since

fi<n>: Z Jorfos -+ fo, = Z Ju fus

1+ U =501, 0 EN li4-Fln=il1,...,ln€ZT

for each j € {0,...,k}, the term f,iﬁ involves f1, ..., fr—1 only and can be
expressed as

I§j> :P(f17"'7fk—1)a k2270§] Sk;
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where P depends on j and k and is a (n—1)-variate polynomial with positive
coefficients. Hence the conditions fo =0, fi = p and the iteration formula

fe=F (57 i) k22,

will define f in a unique manner.

o Let f € IN.If fy = f1 = 0, then the first 2n terms of the convolution
product £ are equal to zero.

o Let f,g€IN. Then \-(fxg) = (A- f)*(A-g) for A € C. Hence (]‘-A)m> =

A fim m e N.
e Let f,g,p,q € N such that gg # 0 and gy # 0. Then
fxp_f.p
g*q g

e Let f,g € IN such that gy # 0. Then (f/g){™ = £ /g™ for n € N.
e For , € C and f,g € IN,

D(af + Bg) = aDf + 3Dy,
D(f*g)=f*Dg+gxDf,

D(f-g)=(Df)-Eg=(Ef)-Dg

and
D f :g*Df—f*Dg
g g(2 ’
where we recall that f/g is only defined when the zeroth term of g is not 0.
e For f € IN,
D' f={(k+1)-(k+n)frn}, n€Z".
hxDf ={kfi},
R s DM f = {[k+n—m], fron-m}, n>m>0,
DfiW = (Vs Df 4 f« D" = ... =qx OV« Df one ZT,

D" <h<m> *f) =K s {lm+ k|, fr}, m>n> 1

e If Dp =0, then ¢ is a scalar sequence.
e For any f,g € IN and any o, 3 € C,

Jessom=a[i+5 [0

e Let f be a sequence in IN, Af its first difference, and fy the sequence
{£0,0,0,...}. Then it is easily checked that & * f = Af + fo — 6 * (Af) =
fo+hx(Af).
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Let a,b € IN such that by = 0. Then bﬁp =0 for n € {0, ...,i}. Thus
) N ) — ) 0 n=0
;azbn Zalbn {Zn b(’L> n>1 .

i=0 i=1 %i0n
Let g € LN such that gy = 0. Then

g - {3
i=m neN

If {fW} en and {g}en are two sequences of sequences which converge
to f and g respectively, then

lim (af® +Bg0) =af + g, a5 € C,
j‘)OO

lim (f(j) .g(j)) =f-g,

j—00

lim f(j) >,<g(j) =fxg,
j—o0

lim DfY) =D (hm f(j)>

j—o00 j—o0
and

lim [ f9 = / lim fO).

J—00 J—00

If the composition product f o g of f,g € [N is defined, then
fog= {Z figfﬁ} =D fig.
=0 neN =0

If the infinite sums Z;’O:O 9 and E;’O:O g of two respective sequences
{fPD}en and {g(j)}jeN of sequences in [N converge, then

3 (afm +5g<j>) - aif(j) +5i9(j)7 a,feC,
j=0 =0

Jj=0

in(j) - D if(j) ;
§=0 §=0
and

g/fm:/ gf(j)

If the infinite sum Z;io 1) of the sequence {f(j)}jeN of sequences in [N
converge, then for any g € IV,

if(j)'g: if(j) g
=0 =0

and
oo

if(j)*g: Zf(j) % g.

Jj=0 Jj=0
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A.8 Knowledge Base

[ ] h<0> = {170707~.~}7 h<1> = {07170707"‘}7 h<2> = {0707170707"'} = h* h’
h® ={0,0,0,1,0,0,...} = hix hix h, etc.

. %(%Jr;?) = {1,0,-1,0,1,0,-1,0,...}

e e

e LA-Z1) = {0.1.0.1.0,1,0.1, .}.
l1-"1

[ )
Q

@ {51} = (b Dyen = U+ U by
om = {%}k N for n € N.
€

(n—1)!
6% ={1,-2,1,0,..}.
5 — (—1)F |n], /k!}ken for n € ZT.
For a € C, Da = 0.
DA™ = phin=1) for n € ZT.
D& = —ng" Y for n € ZF.
Do = {(k+1)(k +2)--- (k+ 1)}y for n € Z*.
For any o € C,

e For any 5 # 1,

e For any c € C,

(©F =(c-0)#(c- o) =c o = {cF [k +1],},
e For any 5 # 1,
T kel .
il e U R ST
e For any v # 0,
1 E+n—1],1 .,
CE A e SR
e For any v # 1,
T o Lk+n_1jn—lk
(T—Th)w_{ (n—=1)! 7}’nez+'

N :{k'}keN = hx* 0'<2>.
e Dn={(k+1)*}ren implies
{(k+ 12 =D(h*o?)=h+Do® + 6@ =2+ ® + o,

{(k+1)3}=D (h* D (h* o'<2>)) =6h'? x oW 4 6hx0® + 0@

etc.
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e Since 2 = ¢ and 2 =0 for i €N and n € Z*+, we see that

1
(w06)0=1+c+5c2+m=ec
and

(woe), =0,necZ".

A.9 Analytic Functions

Let a € IN with positive (or infinite) radius of convergence

1

pla) =

* limsupy_ . Jax7*

Then the function @ defined by

o0 n
a0 =Y = lim S (A-a). A < pla).

k=0 k=0
is called the power series function generated by a. A function f = f()\) is said to
be analytic at 0 if it is (equal to) a power series function (near 0) generated by a
sequence with positive radius of convergence. A function g is said to be analytic at
c if it is the ‘translation’ of an analytic function at 0.

Some analytic functions that are analytic at 0 and generated by common se-

quences are:

e a(\)=0a, acC.

e 0(N)=14+A+ A+ X+ = L

e 5(\)=1- X\

e TA) =1+ A+ FA2 4+ FA3+--- =¢r

o M (\) =A™ for m € N.

o HIOW(N) = A p XL L AmH2 = A (14 A A2 ) = AT /(1))
for m € N.

o COVN) =1+ 2N+ A2 o p A" = (14 \)" for n € N.

e Let a=1 (i+—i). Then a-w(z) = cosz.

e Let a=1(i— —i). Then a-w(z) =sinz.

e Let a=1(1+ —1). Then a- w(z) = cosh 2.

e Let a=1(1——1). Then a- w(z) = sinh .

A.10 Operations for Analytic Functions

Analytic functions can be combined, decomposed, or transformed.
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Let @ and b be analytic at 0. For any «,( € C, the linear combination
aa+ Bb and the product ab are analytic at 0. Furthermore, for A sufficiently
near to 0,

(aa + ﬂE) () = (aa + Bb)(N).

Let @ and b be analytic at 0. Then the product function ab is analytic at
0. Furthermore, for A sufficiently near to 0,

—

(a@) (\) = GVB(N) = a * b())

Let @ be analytic at 0. Then @™, where m € N, is analytic at 0. Furthermore,
for A sufficiently near to 0,

—

am(A) = alm ().

Let @ be analytic at 0. Then a(™), where m € N, is analytic at 0. Further-
more, for A sufficiently near to 0,

@™ () = Dma())

Let @ be analytic at 0. Then the Cauchy integral fOA a(w)dw, as a function
of ), is analytic at 0. Furthermore, for A sufficiently near to 0,

—

/O)\a(w)dw = /a.

Let @ be analytic at 0 and ag # 0. Then the quotient function 1/a, is
analytic at 0. Furthermore, for A sufficiently near to 0,

(1/@)(A) = T/a(¥).

Let @ be analytic at 0 such that a(0) = 0 and @’(0) # 0. Then its inverse
function @~ ! is analytic at 0. Furthermore, for A sufficiently near to 0,

a L) = al-U ().

Let @ and b be analytic at 0 and oo o |bnA™| < pla) for [A| < p(b). Then
the composite function @ o b is analytic at 0. Furthermore, for A sufficiently
near to 0,

a(b(\) = aob(\).

where we recall that a o b is the composition product defined by (a0b), =
Yoco ;b for n €N.
Let @ be analytic at 0 and 8 € C. Then for A sufficiently near to 0,

—

a(BN) = B-alN).
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e Let a be analytic at 0. Then for nonzero i sufficiently near 0, the sequence

b= {Z C’k A " }
is well defined and for A sufficiently near 0,

a(\) = b\ — p).

e Let @ and b be analytic at 0 such that a(A) = b(A) for all A in an open ball
sufficiently near 0, then a = b.

keEN

In case each term ay, in the sequence a € [N is not zero, the ratio test for series
also yields

< p(a) < limsup

n—oo

lim inf
n—oo

Ap+1 Ap+1

We remark that the series A - (a o b) is the power series which arises by substi-
tuting w = b(A) into a(w) and then formally expand the resulting expression and
rearranging terms in increasing powers of A.
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