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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the first edition and there have been great changes
in the landscape of philosophical logic since then.

The first edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the first edition as ‘the best starting point
for exploring any of the topics in logic’. We are confident that the second
edition will prove to be just as good!

The first edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983-1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and artificial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
artificial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading figures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and artificial in-
telligence. It shows that the first edition is very close to the mark of what
was needed. Two topics were not included in the first edition, even though

D. Gabbay and F. Guenthner (eds.),
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viii

they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

e a chapter on non-monotonic logic
e a chapter on combinatory logic and A-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and A-calculus was too far re-
moved.! Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, fibring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the effective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, fifteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and artificial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a specification and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange benefits with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
artificial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1T am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the Al research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based effective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King’s College London
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NARCISO MARTI-OLIET AND JOSE MESEGUER

REWRITING LOGIC AS A LOGICAL AND
SEMANTIC FRAMEWORK

1 INTRODUCTION

The relationships between logic and computation, and the mutual interac-
tions between both fields, are becoming stronger and more pervasive than
they have ever been. In fact, our way of thinking about both logic and
computation is being altered quite strongly. For example, there is such
an increasingly strong connection—in some cases to the point of complete
identification—between computation and deduction, and such impressive
progress in compilation techniques and computing power, that the frontiers
between logical systems, theorem provers, and declarative programming lan-
guages are shifting and becoming more and more tenuous, with each area
influencing and being influenced by the others.

Similarly, in the specification of languages and systems there is an increas-
ing shift from mathematically precise but somewhat restricted formalisms
towards specifications that are not only mathematical, but actually logical
in nature, as exemplified, for example, by specification formalisms such as
algebraic specifications and structural operational semantics. In this way,
languages and systems that in principle may not seem to bear any resem-
blance to logical systems and may be completely “conventional” in nature,
end up being conceptualized primarily as formal systems.

However, any important development brings with it new challenges and
questions. Two such questions, that we wish to address in this paper are:

e How can the proliferation of logics be handled?

e Can flexible logics allowing the specification and prototyping of a wide
variety of languages and systems with naturalness and ease be found?

Much fruitful research has already been done with the aim of providing
adequate answers to these questions. Our aim here is to contribute in
some measure to their ongoing discussion by suggesting that rewriting logic
[Meseguer, 1992] seems to have particularly good properties recommending
its use as both a logical framework in which many other logics can be repre-
sented, and as a general semantic framework in which many languages and
systems can be naturally specified and prototyped.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 1-87.
© 2002, Kluwer Academic Publishers. Printed in the Netherlands.



2 NARCISO MARTI-OLIET AND JOSE MESEGUER

1.1  Rewriting logic as a logical framework

In our view, the main need in handling the proliferation of logics is primarily
conceptual. What is most needed is a metatheory of logics helping us to
better understand and explore the boundaries of the “space” of all logics,
present and future, and to relate in precise and general ways many of the
logics that we know or wish to develop.

Following ideas that go back to the original work of Goguen and Burstall
[1984] on institutions, we find very useful understanding the space of all log-
ics as a category, with appropriate translations between logics as the arrows
or morphisms between them. The work on institutions has been further
developed by their original proponents and by others [Goguen and Burstall,
1986; Goguen and Burstall, 1992; Tarlecki, 1984; Tarlecki, 1985], and has in-
fluenced other notions proposed by different authors [Mayoh, 1985; Poigné,
1989; Fiadeiro and Sernadas, 1988; Meseguer, 1989; Harper et al., 1989a;
Salibra and Scollo, 1993; Ehrig et al., 1991; Astesiano and Cerioli, 1993].
Some of the notions proposed are closely related to institutions; however, in
other cases the main intent is to substantially expand the primarily model-
theoretic viewpoint provided by institutions to give an adequate treatment
of proof-theoretic aspects such as entailment and proof structures. The
theory of general logics [Meseguer, 1989] that we present in summary form
in Section 2 is one such attempt to encompass also proof-theoretic aspects,
and suggests not just one space or category of logics, but several, depending
on the proof-theoretic or model-theoretic aspects that we wish to focus on.

In our view, the quest for a logical framework, understood as a logic in
which many other logics can be represented, is important but is not the
primary issue. Viewed from the perspective of a general space of logics,
such a quest can in principle—although perhaps not in all approaches—be
understood as the search within such a space for a logic F such that many
other logics £ can be represented in F by means of mappings £ — F that
have particularly nice properties such as being conservative translations.

Considered in this way, and assuming a very general axiomatic notion
of logic and ambitious enough requirements for a framework, there is in
principle no guarantee that such an F will necessarily be found. However,
somewhat more restricted successes such as finding an F in which all the
logics of “practical interest,” having finitary presentations of their syntax
and their rules, can be represented can be very valuable and can provide a
great economy of effort. This is because, if an implementation for such a
framework logic exists, it becomes possible to implement through it all the
other “object logics” that can be adequately represented in the framework
logic.

Much work has already been done in this area, including the Edinburgh
logical framework LF [Harper et al., 1993; Harper et al., 1989; Gardner,
1992] and meta-theorem provers such as Isabelle [Paulson, 1989], AProlog
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[Nadathur and Miller, 1988; Felty and Miller, 1990], and Elf [Pfenning,
1989], all of which adopt as framework logics different variants of higher-
order logics or type theories. There has also been important work on what
Basin and Constable [1993] call metalogical frameworks. These are frame-
works supporting reasoning about the metalogical aspects of the logics be-
ing represented. Typically, this is accomplished by reifying as “data” the
proof theory of the logic being represented in a process that is described
in [Basin and Constable, 1993] as externalizing the logic in question. This
is in contrast to the more internalized form in which logics are represented
in LF and in meta-theorem provers, so that deduction in the object logic
is mirrored by deduction—for example, type inference—in the framework
logic. Work on metalogical frameworks includes the already mentioned pa-
per by Basin and Constable [1993], who advocate constructive type theory
as the framework logic, work of Matthews, Smaill, and Basin [1993], who
use Feferman’s FSy [Feferman, 1989], a logic designed with the explicit pur-
pose of being a metalogical framework, earlier work by Smullyan [1961],
and work by Goguen, Stevens, Hobley, and Hilberdink [1992] on the 20BJ
meta-theorem prover, which uses order-sorted equational logic [Goguen and
Meseguer, 1992; Goguen et al., 2000].

A difficulty with systems based on higher-order type theory such as LF
is that it may be quite awkward and of little practical use to represent
logics whose structural properties differ considerably from those of the type
theory. For example, linear and relevance logics do not have adequate repre-
sentations in LF, in a precise technical sense of “adequate” [Gardner, 1992,
Corollary 5.1.8]. Since in metalogical frameworks a direct connection be-
tween deduction in the object and framework logics does not have to be
maintained, they seem in principle much more flexible in their representa-
tional capabilities. However, this comes at a price, since the possibility of
directly using an implementation of the framework logic to implement an
object logic is compromised.

In relation to this previous work, rewriting logic seems to have great
flexibility to represent in a natural way many other logics, widely different
in nature, including equational, Horn, and linear logics, and any sequent
calculus presentation of a logic under extremely general assumptions about
such a logic. Moreover, quantifiers can also be treated without problems.
More experience in representing other logics is certainly needed, but we are
encouraged by the naturalness and directness—often preserving the original
syntax and rules—with which the logics that we have studied can be repre-
sented. This is due to the great simplicity and generality of rewriting logic,
since in it all syntax and structural axioms are user-definable, so that the
abstract syntax of an object logic can be represented as an algebraic data
type, and is also due to the existence of only a few general “meta” rules of
deduction relative to the rewrite rules given by a specification, where such
a specification can be used to describe with rewrite rules the rules of deduc-
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tion of the object logic in question. In addition, the direct correspondence
between proofs in object logics and proofs in the framework logic can often
be maintained in a conservative way by means of maps of logics, so that an
implementation of rewriting logic can directly support an implementation
of an object logic. Furthermore, given the directness with which logics can
be represented, the task of proving conservativity is in many cases straight-
forward. Finally, although we do not discuss this aspect which is left for a
subsequent paper, externalization of logics to support metalogical reasoning
is also possible in rewriting logic.

Another important difference is that most approaches to logical frame-
works are proof-theoretic in nature, and thus they do not address the model
theories of the logics being represented. By contrast, several of the represen-
tations into rewriting logic that we consider—such as those for equational
logic, Horn logic, and linear logic—involve both models and proofs and are
therefore considerably more informative than purely proof-theoretic repre-
sentations.

The fact that rewriting logic is reflective [Clavel and Meseguer, 1996;
Clavel and Meseguer, 1996a] has very important practical consequences for
its use as a logical framework. Note that a representation map ¥ : £ —
RWlLogic for a logic L is by its very nature a metatheoretic construction
above the object levels of both £ and RWLogic. In particular, ¥ includes
as one of its key components a function ¥ty : Thy = Thrwregic trans-
lating theories in £ into rewrite theories. However, thanks to the fact that
the finitely presentable rewrite theories can be reified as an abstract data
type RWL-ADT, for £ a logic having a finitary presentation of its syntax and
its deduction rules, and such that ¥ maps finitely presented theories in £
to finitely presented rewrite theories, we can often reify a metatheoretic
construction such as ¥ inside rewriting logic by first defining an abstract
data type L£-ADT representing the finitely presentable theories of £, and then
reifying ¥ itself as an equationally defined function ¥ : £-ADT — RWL-ADT.
In this way, the translation ¥ becomes itself expressible and executable in-
side rewriting logic.

1.2 Rewriting logic as a semantic framework

As we have already mentioned, the distinction between a logical system and
a language or a model of computation is more and more in the eyes of the
beholder, although of course efficiency considerations and the practical uses
intended may indeed strongly influence the design choices. A good case in
point is the isomorphism between the Petri net model of concurrent compu-
tation [Reisig, 1995] and the tensor fragment of linear logic [Girard, 1987]
(see [Marti-Oliet and Meseguer, 1991] and references therein). Therefore,
even though at the most basic mathematical level there may be little dis-
tinction between the general way in which a logic, a programming language,
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a system, or a model of computation are represented in rewriting logic, the
criteria and case studies to be used in order to judge the merits of rewriting
logic as a semantic framework are different from those relevant for its use
as a logical framework.

One important consideration is that, from a computational point of view,
rewriting logic deduction is intrinsically concurrent. In fact, it was the
search for a general concurrency model that would help unify the somewhat
bewildering heterogeneity of existing models that provided the original im-
petus for the first investigations on rewriting logic [Meseguer, 1992]. Since
the generality and naturalness with which many concurrency models can
be expressed in rewriting logic has already been illustrated at length in
[Meseguer, 1992], only a brief summary is given in this paper. However,
the CCS [Milner, 1989] and the concurrent object-oriented programming
models are discussed in some detail to provide relevant examples.

Concurrent, object-oriented programming is of particular interest. Given
that the semantics of object-oriented programs is still poorly understood,
and that the semantics of concurrent object-oriented systems is even less
well understood, the ease with which rewriting logic can be used to give a
precise semantics to concurrent object-oriented programs and to make such
programs declarative is quite encouraging. In this paper, only the basic
ideas of such a semantics are sketched; a much more detailed account can
be found in [Meseguer, 1993].

The similarities between rewriting logic and structural operational se-
mantics [Plotkin, 1981; Kahn, 1987] already noted in [Meseguer, 1992] are
further explored in this paper. We give examples showing that different
styles of structural operational semantics can be regarded as special cases
of rewriting logic. The two main differences are the greater expressive power
of rewriting logic due to the ability for rewriting modulo user-definable ax-
ioms, and the fact that rewriting logic is a full-fledged logic with both a proof
and a model theory, whereas structural operational semantics accounts are
only proof-theoretic.

Deduction with constraints can greatly increase the efficiency of theo-
rem provers and logic programming languages. The most classical con-
straint solving algorithm is syntactic unification, which corresponds to solv-
ing equations in a free algebra, the so-called Herbrand model, and is used in
resolution. However, much more efficient deduction techniques than those
afforded by resolution can be obtained by building in additional knowledge
of special theories in the form of constraint solving algorithms such as, for
example, semantic unification, or equalities and inequalities in a numerical
domain. In the past few years many authors have become aware that many
constraint solving algorithms can be specified declaratively using rewrite
rules. However, since constraint solving is usually nondeterministic, the
usual equational logic interpretation of rewrite rules is clearly inadequate
as a mathematical semantics. By contrast, rewriting logic completely avoids
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such inadequacies and can serve as a semantic framework for logical systems
and languages using constraints, including parallel ones.

The frame problem in artificial intelligence is caused by the need, typical
of classical logic representations, to specify changes of state by stating not
only what changes, but also what does not change. This is basically due
to the essentially Platonic character of classical logic. Since rewriting logic
is by design a logic of change that allows sound and complete deductions
about the transitions of a system whose basic changes are axiomatized by
rewrite rules, the difficulties associated with the frame problem disappear
[Marti-Oliet and Meseguer, 1999]. In addition, the conservative mappings
of Horn logic with equality and of linear logic studied in Sections 4.2 and
4.3, respectively, directly show how other logics of change recently proposed
[Hélldobler and Schneeberger, 1990; GroBe et al., 1996; Grofie et al., 1992;
Masseron et al., 1990; Masseron et al., 1993] can be subsumed as special
cases. Added benefits include the straightforward support for concurrent
change and the logical support for object-oriented representation.

The paper begins with a summary of the theory of general logics proposed
in [Meseguer, 1989] that provides the conceptual basis for our discussion of
logical frameworks. Then the rules of deduction and the model theory of
rewriting logic are introduced, and the Maude and MaudeLog languages
based on rewriting logic are briefly discussed. This is followed by a section
presenting examples of logics representable in the rewriting logic framework.
The role of rewriting logic as a semantic framework is then discussed and
illustrated with examples. The paper ends with some concluding remarks.

2 GENERAL LOGICS

A general axiomatic theory of logics should adequately cover all the key
ingredients of a logic. These include: a syntaz, a notion of entailment of a
sentence from a set of axioms, a notion of model, and a notion of satisfaction
of a sentence by a model. A flexible axiomatic notion of a proof calculus, in
which proofs of entailments, not just the entailments themselves, are first
class citizens should also be included. This section gives a brief review of
the required notions and axioms that will be later used in our treatment of
rewriting logic as a logical framework; a more detailed account with many
examples can be found in [Meseguer, 1989)].

2.1 Syntaz

Syntax can typically be given by a signature ¥ providing a grammar on
which to build sentences. For first-order logic, a typical signature consists
of a list of function symbols and a list of predicate symbols, each with a
prescribed number of arguments, which are used to build up sentences by
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means of the usual logical connectives. For our purposes, it is enough to
assume that for each logic there is a category Sign of possible signatures
for it, and a functor sen assigning to each signature ¥ the set sen(X) of all
its sentences.

2.2  Entailment systems

For a given signature ¥ in Sign, entailment (also called provability) of a
sentence ¢ € sen(X) from a set of axioms I' C sen(X) is a relation I' F ¢
which holds if and only if we can prove ¢ from the axioms I using the rules
of the logic. We make this relation relative to a signature.

In what follows, |C| denotes the collection of objects of a category C.

DEFINITION 1. [Meseguer, 1989] An entailment system is a triple £ =
(Sign, sen, ) such that

e Sign is a category whose objects are called signatures,

e sen : Sign — Set is a functor associating to each signature ¥ a
corresponding set, of X-sentences, and

e I is a function associating to each ¥ € |Sign| a binary relation kg
C P(sen(X)) x sen(X) called X-entailment such that the following
properties are satisfied:

1. reflexivity: for any ¢ € sen(X), {¢} Fs ¢,
2. monotonicity: if kg p and TV D T then I' Fx ¢,

3. transitivity: if T' by @i, for all i € I, and T U {p; | i € I} Fx ¥,
then I' Fy 1,

4. F-translation: if T by ¢, then for any H : ¥ — ¥’ in Sign,
sen(H)(T) by sen(H)(p).

Except for the explicit treatment of syntax translations, the axioms are
very similar to Scott’s axioms for a consequence relation [Scott, 1974].

DEFINITION 2. [Meseguer, 1989] Given an entailment system &, its cat-
egory Th of theories has as objects pairs T = (X,T") with ¥ a signature
and T' C sen(X). A theory morphism H : (X,T) — (X',I) is a signature
morphism H : ¥ — X' such that if ¢ € T, then I'' by sen(H)(p).

A theory morphism H : (X,T) — (X', T") is called aziom-preserving if
it satisfies the condition that sen(H)(I') C I'. This defines a subcategory
Thy with the same objects as Th but with morphisms restricted to be
axiom-preserving theory morphisms. Notice that the category Thy does
not depend at all on the entailment relation .
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2.8 Institutions

The axiomatization of a model theory is due to the seminal work on insti-
tutions by Goguen and Burstall [1984; 1992].

DEFINITION 3. [Goguen and Burstall, 1984] An institution is a 4-tuple
7 = (Sign, sen,Mod, ) such that

e Sign is a category whose objects are called signatures,

e sen : Sign — Set is a functor associating to each signature X a set
of X-sentences,

e Mod : Sign — Cat®? is a functor that gives for each signature ¥ a
category whose objects are called X-models, and

e = is a function associating to each ¥ € |Sign| a binary relation =5
C |Mod(X)| x sen(X) called X-satisfaction satisfying the following
satisfaction condition for each H : ¥ — X' in Sign: for all M’ €
[Mod(X')| and all ¢ € sen(X),

M’ Ey sen(H)(p) < Mod(H)(M') ks ¢.

The satisfaction condition just requires that, for any syntax translation
between two signatures, a model of the second signature satisfies a translated
sentence if and only if the translation of this model satisfies the original
sentence. Note that Mod is a contravariant functor, that is, translations of
models go backwards.

Given a set of X-sentences I', we define the category Mod(X,T") as the
full subcategory of Mod(X) determined by those models M € |Mod(X)|
that satisfy all the sentences in T, i.e., M Eyx ¢ for each ¢ € T.

Since the definition above of the category of theories Thy only depends
on signatures and sentences, it also makes sense for an institution.

2.4 Logics
Defining a logic is now almost trivial.

DEFINITION 4. [Meseguer, 1989] A logic is a 5-tuple £ = (Sign, sen, Mod,
F, =) such that:

e (Sign, sen, ) is an entailment system,
e (Sign, sen, Mod, |=) is an institution,

and the following soundness condition is satisfied: for any ¥ € |Sign|,
I C sen(X), and ¢ € sen(X),

Fl_ztp — F|:th,
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where, by definition, the relation I' =5 ¢ holds if and only if M 5, ¢ holds
for any model M that satisfies all the sentences in I'.

The logic is called complete if the above implication is in fact an equiva-
lence.

2.5  Proof calculi

A given logic may admit many different proof calculi. For example, in first-
order logic we have Hilbert style, natural deduction, and sequent calculi
among others, and the way in which proofs are represented and generated
by rules of deduction is different for each of these calculi. It is useful to
make proofs relative to a given theory 7" whose axioms we are allowed to
use in order to prove theorems.

A proof calculus associates to each theory T' a structure P(T') of proofs
that use axioms of T' as hypotheses. The structure P(T') typically has an
algebraic structure of some kind so that we can obtain new proofs out of pre-
viously given proofs by operations that mirror the rules of deduction of the
calculus in question. We need not make a choice about the particular types
of algebraic structures that should be allowed for different proof calculi; we
can abstract from such choices by simply saying that for a given proof calcu-
lus there is a category Str of such structures and a functor P : Thy — Str
assigning to each theory T its structure of proofs P(T"). Of course, it should
be possible to extract from P(T) the underlying set proofs(T) of all the
proofs of theorems of the theory T', and this extraction should be functo-
rial. Also, each proof, whatever it is, should contain information about what
theorem it is a proof of; this can be formalized by postulating a “projection
function” mp (parameterized by T in a natural way) that maps each proof
p € proofs(T) to the sentence ¢ that it proves. Of course, each theorem of
T must have at least one proof, and sentences that are not theorems should
have no proof. To summarize, a proof calculus [Meseguer, 1989] consists of
an entailment system together with:

e A functorial assignment P of a structure P(T') to each theory T'.

e An additional functorial assignment of a set proofs(T") to each struc-
ture P(T).

e A natural function 7y assigning a sentence to each proof p € proofs(T')
and such that, for I' the axioms of 7', a sentence ¢ is in the image of
w7 if and only if I' - .

It is quite common to encounter proof systems of a specialized nature.
In these calculi, only certain signatures are admissible as syntax—e.g., fi-
nite signatures—, only certain sentences are allowed as axioms, and only
certain sentences—possibly different from the axioms—are allowed as con-
clusions. The obvious reason for introducing such specialized calculi is that
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proofs are simpler under the given restrictions. In computer science the
choice between an efficient and an inefficient calculus may have dramatic
practical consequences. For logic programming languages, such calculi do
(or should) coincide with what is called their operational semantics, and
mark the difference between a hopelessly inefficient theorem prover and an
efficient programming language. In practice, of course, we are primarily
interested in proof calculi and proof subcalculi that are computationally ef-
fective. This is axiomatized by the notion of an (effective) proof subcalculus
which can be found in [Meseguer, 1989].

2.6  Mapping logics

The advantage of having an axiomatic theory of logics is that the “space”
of all logics (or that of all entailment systems, institutions, proof calculi,
etc.) becomes well understood. This space is not just a collection of objects
bearing no relationship to each other. In fact, the most interesting fruit
of the theory of general logics outlined in this section is that it gives us
a method for relating logics in a general and systematic way, and to ex-
ploit such relations in many applications. The simplest kind of relation is a
sublogic (subentailment system, etc.) relation. Thus, first-order equational
logic and Horn logic are both sublogics of first-order logic with equality.
However, more subtle and general ways of relating logics are possible. For
example, we may want to represent the universal fragment of first-order
logic in a purely functional way by taking all the predicates and formulas to
be functions whose value is either true or false so that a universal formula
then becomes an equation equating a given term to true. The general way
of relating logics (entailment systems, etc.) is to consider maps that inter-
pret one logic into another. A detailed treatment of such maps is given in
[Meseguer, 1989]; here we summarize some of the key ideas.

Let us first discuss in some detail maps of entailment systems. Basically,
a map of entailment systems £ — £’ maps the language of £ to that of £’
in a way that respects the entailment relation. This means that signatures
of £ are functorially mapped to signatures of £, and that sentences of £
are mapped to sentences of £’ in a way that is coherent with the mapping
of their corresponding signatures. In addition, such a mapping « must
respect the entailment relations F of £ and F' of £, i.e., we must have
L'k = o) F alp). It turns out that for many interesting applications,
including the functional representation of first-order logic sketched above,
one wants to be more general and allow maps that send a signature of &€
to a theory of £'. These maps extend to maps between theories, and in
this context the coherence with the mapping at the level of signatures is
expressed by the notion of sensible functor defined in [Meseguer, 1989].
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DEFINITION 5. [Meseguer, 1989] Given entailment systems £ = (Sign,
sen,F) and &' = (Sign', sen’,F'), a map of entailment systems (®,a) :
& — &' consists of a natural transformation « : sen = ®;sen’ and an
a-sensible functor! @ : Thy — Thy, satisfying the following property:

ks = T'Uas((D) Fs as(y),

where, by convention, (X',T) = ®(%,T).
We say that (®,a) is a conservative map of entailment systems when the
above implication is an equivalence.

The property of being conservative may be essential for many applica-
tions. For example, since proof calculi are in a sense computational engines
on which the design and implementation of theorem provers and logic pro-
gramming languages can be based, we can view the establishment of a map
of proof calculi having nice properties, such as conservativity, as a proof
of correctness for a compiler that permits implementing a system based on
the first calculus in terms of another system based on the second. Besides
establishing correctness, the map itself specifies the compilation function.

A map of institutions> T — 7' is similar in its syntax part to a map
of entailment systems. In addition, for models we have a natural functor
B : Mod'(®(X)) — Mod(Z) “backwards” from the models in Z' of a
translated signature ®(X) to the models in Z of the original signature X,
and such a mapping respects the satisfaction relations |= of Z and ' of 7',
in the sense that M' =" a(p) <= B(M') E ¢.

DEFINITION 6. [Meseguer, 1989] Given institutions Z = (Sign, sen, Mod,
=) and 7' = (Sign’, sen’, Mod', =), a map of institutions (®,a,3) : T —
T’ consists of a natural transformation « : sen = ®;sen’, an a-sensible
functor ® : Thy — Thy, and a natural transformation 3 : ®°?; Mod' =
Mod such that for each ¥ € |Sign|, ¢ € sen(X), and M’ € [Mod'(®(%,0))]
the following property is satisfied:

M'Ey as(p) <= Buo(M) Es e,

where X' is the signature of the theory ®(X, ().

A map of logics has now a very simple definition. It consists of a pair
of maps: one for the underlying entailment systems, and another for the
underlying institutions, such that both maps agree on how they translate
signatures and sentences.

IWe refer to [Meseguer, 1989] for the detailed definition of a-sensible functor. Basi-
cally, what is required is that the provable consequences of the theory ®(3,T") are entirely
determined by ®(%, #) and by «(I"). Note that o depends only on signatures, not theories.

2Such maps are different from the “institution morphisms” considered by Goguen and
Burstall in [1984; 1992].
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DEFINITION 7. [Meseguer, 1989] Given logics £ = (Sign, sen, Mod, I, )
and £' = (Sign', sen’, Mod', F',|='), a map of logics (®,a,3) : L — L'
consists of a functor ® : Thy — Thy, and natural transformations « :
sen = ®; sen’ and 3 : ®°?; Mod' = Mod such that:

e (®,a) : (Sign,sen,F) — (Sign’,sen’,lF') is a map of entailment
systems, and

e (®,a,p) : (Sign, sen, Mod, =) — (Sign’, sen’,Mod', ') is a map
of institutions.

We say that (®,q,3) is conservative when if (®,«) is so as a map of
entailment systems.

There is also a notion of map of proof calculi, for which we refer the
reader to [Meseguer, 1989].

2.7 The idea of a logical framework

As we have already explained in the introduction, viewed from the perspec-
tive of a general space of logics that can be related to each other by means
of mappings, the quest for a logical framework can be understood as the
search within such a space for a logic F (the framework logic) such that
many other logics (the object logics) such as, say, £ can be represented in
F by means of mappings £ — F that have good enough properties. The
minimum requirement that seems reasonable to make on a representation
map £ — F is that it should be a conservative map of entailment sys-
tems. Under such circumstances, we can reduce issues of provability in £
to issues of provability in F, by mapping the theories and sentences of £
into JF using the conservative representation map. Given a computer im-
plementation of deduction in F, we can use the conservative map to prove
theorems in £ by proving the corresponding translations in F. In this way,
the implementation for F can be used as a generic theorem prover for many
logics.

However, since maps between logics can, as we have seen, respect addi-
tional logical structure such as the model theory or the proofs, in some cases
a representation map into a logical framework may be particularly informa-
tive because, in addition to being a conservative map of entailment systems,
it is also a map of institutions, or a map of proof calculi. For example, when
rewriting logic is chosen as a logical framework, appropriate representation
maps for equational logic, Horn logic, and propositional linear logic can be
shown to be maps of institutions also (see Section 4). In general, however,
since the model theories of different logics can be very different from each
other, it is not reasonable to expect or require that the representation maps
into a logical framework will always be maps of institutions. Nevertheless,
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what it can always be done is to “borrow” the additional logical struc-
ture that F may have (institution, proof calculus) to endow £ with such
a structure, so that the representation map does indeed preserve the extra
structure [Cerioli and Meseguer, 1996].

Having criteria for the adequacy of maps representing logics in a logical
framework is not enough. An equally important issue is having criteria
for the generality of a logical framework, so that it is in fact justified to
call it by that name. That is, given a candidate logical framework F,
how many logics can be adequately represented in F7? We can make this
question precise by defining the scope of a logical framework F as the class of
entailment systems £ having conservative maps of entailment systems &€ —
F. In this regard, the axioms of the theory of general logics that we have
presented are probably too general; without adding further assumptions it
is not reasonable to expect that we can find a logical framework F whose
scope is the class of all entailment systems. A much more reasonable goal
is finding an F whose scope includes all entailment systems of “practical
interest,” having finitary presentations of their syntax and their rules of
deduction. Axiomatizing such finitely presentable entailment systems and
proof calculi so as to capture—in the spirit of the more general axioms that
we have presented, but with stronger requirements—all logics of “practical
interest” (at least for computational purposes) is a very important research
task.

Another important property that can help measuring the suitability of a
logic F as a logical framework is its representational adequacy, understood as
the naturalness and ease with which entailment systems can be represented,
so that the representation & — F mirrors £ as closely as possible. That is,
a framework requiring very complicated encodings for many object logics of
interest is less representationally adequate than one for which most logics
can be represented in a straightforward way, so that there is in fact little or
no “distance” between an object logic and its corresponding representation.
Although at present we lack a precise definition of this property, it is quite
easy to observe its absence in particular examples. We view representational
adequacy as a very important practical criterion for judging the relative
merits of different logical frameworks.

In this paper, we present rewriting logic as a logic that seems to have
particularly good properties as a logical framework. We conjecture that
the scope of rewriting logic contains all entailment systems of “practical
interest” for a reasonable axiomatization of such systems.

2.8 Reflection

We give here a brief summary of the notion of a universal theory in a logic
and of a reflective entailment system introduced in [Clavel and Meseguer,
1996]. These notions axiomatize reflective logics within the theory of general
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logics [Meseguer, 1989]. We focus here on the simplest case, namely entail-
ment systems. However, reflection at the proof calculus level—where not
only sentences, but also proofs are reflected—is also very useful; definitions
for that case are also in [Clavel and Meseguer, 1996).

A reflective logic is a logic in which important aspects of its metatheory
can be represented at the object level in a consistent way, so that the object-
level representation correctly simulates the relevant metatheoretic aspects.
Two obvious metatheoretic notions that can be so reflected are theories
and the entailment relation . This leads us to the notion of a universal
theory. However, universality may not be absolute, but only relative to a
class C of representable theories. Typically, for a theory to be representable
at the object level, it must have a finitary description in some way—say,
being recursively enumerable—so that it can be represented as a piece of
language.

Given an entailment system £ and a set of theories C, a theory U is C-
universal if there is a recursive injective function, called a representation
function,

Lk U {T} x sen(T) — sen(U)
TeC
such that for each T € C, ¢ € sen(T),

Tty < UFTFo.

If, in addition, U € C, then the entailment system & is called C-reflective.
Note that in a reflective entailment system, since U itself is representable,
representation can be iterated, so that we immediately have a “reflective
tower”
Ty <<= UFrTlFyp <= UFUFTFp

3 REWRITING LOGIC

This section gives the rules of deduction and semantics of rewriting logic,
and explains its computational meaning. The Maude and MaudeLog lan-
guages, based on rewriting logic, are also briefly discussed.

3.1 Basic universal algebra

Rewriting logic is parameterized with respect to the version of the underly-
ing equational logic, which can be unsorted, many-sorted, order-sorted, or
the recently developed membership equational logic [Bouhoula et al., 2000;
Meseguer, 1998]. For the sake of simplifying the exposition, we treat here
the unsorted case.

A set ¥ of function symbols is a ranked alphabet ¥ = {¥,, | n € IN}.
A X-algebra is then a set A together with an assignment of a function
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fa: A" — A for each f € ¥, with n € IN. We denote by T the X-
algebra of ground X-terms, and by Tx(X) the Y-algebra of ¥-terms with
variables in a set X. Similarly, given a set E of Y-equations, T i denotes
the X-algebra of equivalence classes of ground Y-terms modulo the equations
E; in the same way, Tx g(X) denotes the X-algebra of equivalence classes
of ¥-terms with variables in X modulo the equations E. Let [t]g or just [t]
denote the E-equivalence class of t.

Given a term t € Tx({z1,...,2z,}) and terms us,...,u, € Tx(X), we
denote t(uy /1, ..., un/xy,) the term in Tx(X) obtained from ¢ by simulta-
neously substituting u; for z;,7 = 1,... n. To simplify notation, we denote a
sequence of objects ay, . ..,a, by @; with this notation, t(u1 /z1, ..., u,/y)
can be abbreviated to t(u/Z).

3.2 The rules of rewriting logic

A signature in rewriting logic is a pair (X, E) with ¥ a ranked alphabet
of function symbols and E a set of ¥-equations. Rewriting will operate on
equivalence classes of terms modulo the set of equations E. In this way, we
free rewriting from the syntactic constraints of a term representation and
gain a much greater flexibility in deciding what counts as a data structure;
for example, string rewriting is obtained by imposing an associativity axiom,
and multiset rewriting by imposing associativity and commutativity. Of
course, standard term rewriting is obtained as the particular case in which
the set E of equations is empty. Techniques for rewriting modulo equations
have been studied extensively [Dershowitz and Jouannaud, 1990] and can be
used to implement rewriting modulo many equational theories of interest.

Given a signature (X, E), sentences of rewriting logic are “sequents” of
the form [t|g — [t']g, where t and ¢’ are ¥-terms possibly involving some
variables from the countably infinite set X = {xy,...,zp,...}. A theory
in this logic, called a rewrite theory, is a slight generalization of the usual
notion of theory as in Definition 2 in that, in addition, we allow the axioms—
in this case the sequents [t|r — [t']z—to be labelled. This is very natural
for many applications, and customary for automata—viewed as labelled
transition systems—and for Petri nets, which are both particular instances
of our definition.

DEFINITION 8. A rewrite theory R is a 4-tuple R = (X, E, L, R) where
Y is a ranked alphabet of function symbols, E is a set of ¥-equations,
L is a set of labels, and R is a set of pairs R C L x Tx g(X)? whose
first component is a label and whose second component is a pair of E-
equivalence classes of terms, with X = {z1,...,2,,...} a countably infinite
set of variables. Elements of R are called rewrite rules®. We understand a

3To simplify the exposition the rules of the logic are given for the case of unconditional
rewrite rules. However, all the ideas presented here have been extended to conditional
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rule (r, ([t], [t'])) as a labelled sequent and use for it the notation r : [t] —
[t']. To indicate that {z1,...,z,} is the set of variables occurring in either
t or t', we write r : [t(z1,...,2,)] — [t'(z1,...,2,)], or in abbreviated
notation r : [t(ZT)] — [t'(T)].

Given a rewrite theory R, we say that R entails a sequent [t] — [t'] and
write R+ [t] — [t'] if and only if [t] — [t'] can be obtained by finite
application of the following rules of deduction:

1. Reflexivity. For each [t] € T g(X),

[t] —[t]
2. Congruence. For each f € ¥,,, n € IN,
] — ] ... [ta] — [t)]

[f(tl,---,tn)] — [f( I17"'vtln)]-

3. Replacement. For each rewrite rule in the theory R of the form
itz .. x,)] — [ (21, T0)],

[wi] — [wi] ... [wa] — [w)]
t(@/7)] — [t'(w'/7)]

4. Transitivity.
[ti] — [t2]  [t2] — [ts]

[t1] — [ts]

Equational logic (modulo a set of axioms E) is obtained from rewriting logic
by adding the following rule:

5. Symmetry.
[t1] — [t2]
[t2] — [t2]

With this new rule, sequents derivable in equational logic are bidirectional,
therefore, in this case we can adopt the notation [t] <> [t'] throughout and
call such bidirectional sequents equations.

A nice consequence of having defined rewriting logic is that concurrent
rewriting, rather than emerging as an operational notion, actually coincides
with deduction in such a logic.

DEFINITION 9. Given a rewrite theory R = (X, E, L, R), a (X, E)-sequent
[t] — [t'] is called a concurrent R-rewrite (or just a rewrite) if and only if
it can be derived from R by means of the rules 1-4, i.e., R + [t] — [t'].

rules in [Meseguer, 1992] with very general rules of the form

ret] — '] if [u1] — [v1] A A Jug] — [vr]-
This increases considerably the expressive power of rewrite theories, as illustrated by
several of the examples presented in this paper.
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3.8 The meaning of rewriting logic

A logic worth its salt should be understood as a method of correct reasoning
about some class of entities, not as an empty formal game. For equational
logic, the entities in question are sets, functions between them, and the
relation of identity between elements. For rewriting logic, the entities in
question are concurrent systems having states, and evolving by means of
transitions. The signature of a rewrite theory describes a particular struc-
ture for the states of a system—e.g., multiset, binary tree, etc.—so that
its states can be distributed according to such a structure. The rewrite
rules in the theory describe which elementary local transitions are possible
in the distributed state by concurrent local transformations. The rules of
rewriting logic allow us to reason correctly about which general concurrent
transitions are possible in a system satisfying such a description. Clearly,
concurrent systems should be the models giving a semantic interpretation
to rewriting logic, in the same way that algebras are the models giving a
semantic interpretation to equational logic. A precise account of the model
theory of rewriting logic, giving rise to an initial model semantics for Maude
modules and fully consistent with the above system-oriented interpretation,
is sketched in Section 3.5 and developed in full detail for the more general
conditional case in [Meseguer, 1992].

Therefore, in rewriting logic a sequent [t] — [t'] should not be read
as “[t] equals [t'],” but as “[t] becomes [t'].” Clearly, rewriting logic is a
logic of becoming or change, not a logic of equality in a static sense. The
apparently innocent step of adding the symmetry rule is in fact a very strong
restriction, namely assuming that all change is reversible, thus bringing us
into a timeless Platonic realm in which “before” and “after” have been
identified.

A related observation, which is particularly important for the use of
rewriting logic as a logical framework, is that [t] should not be understood as
a term in the usual first-order logic sense, but as a proposition or formula—
built up using the connectives in ¥—that asserts being in a certain state
having a certain structure. However, unlike most other logics, the logical
connectives ¥ and their structural properties E are entirely user-definable.
This provides great flexibility for considering many different state structures
and makes rewriting logic very general in its capacity to deal with many
different types of concurrent systems, and also in its capacity to represent
many different logics. For the case of concurrent systems, this generality is
discussed at length in [Meseguer, 1992] (see also [Marti-Oliet and Meseguer,
1999] for the advantages of this generality in the context of unifying AI log-
ics of action). In a similar vein, but with a broader focus, Section 5 discusses
the advantages of rewriting logic as a general semantic framework in which
to specify and prototype languages and systems. Finally, Section 4 explores
the generality of rewriting logic as a logical framework in which logics can
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be represented and prototyped.

In summary, the rules of rewriting logic are rules to reason about change
in a concurrent system, or, alternatively, metarules for reasoning about
deduction in a logical system. They allow us to draw valid conclusions
about the evolution of the system from certain basic types of change known
to be possible, or, in the alternative viewpoint, about the correct deductions
possible in a logical system. Our present discussion is summarized as follows:

State < Term < Proposition

Transition < Rewriting < Deduction

Distributed <+  Algebraic < Propositional
Structure Structure Structure

Section 4 will further clarify and illustrate each of the correspondences in
the last two columns of the diagram, and Section 5 will do the same for the
first two columns.

3.4  The Maude and MaudeLog languages

Rewriting logic can be used directly as a wide spectrum language support-
ing specification, rapid prototyping, and programming of concurrent sys-
tems. As explained later in this paper, rewriting logic can also be used
as a logical framework in which other logics can be naturally represented,
and as a semantic framework for specifying languages and systems. The
Maude language [Meseguer, 1993; Clavel et al., 1996] supports all these
uses of rewriting logic in a particularly modular way in which modules are
rewrite theories and in which functional modules with equationally defined
data types can also be declared in a functional sublanguage. The exam-
ples given later in this paper illustrate the syntax of Maude. Details about
the language design, its semantics, its parallel programming and wide spec-
trum capabilities, and its support of object-oriented programming can be
found in [Meseguer, 1992; Meseguer and Winkler, 1992; Meseguer, 1993;
Meseguer, 1993b]. Here we provide a very brief sketch that should be suffi-
cient for understanding the examples presented later.
In Maude there are three kinds of modules:

1. Functional modules, introduced by the keyword fmod,
2. System modules, introduced by the keyword mod, and
3. Object-oriented modules, introduced by the keyword omod.

Object-oriented modules can be reduced to a special case of system mod-
ules for which a special syntax is used; therefore, in essence we only have
functional and system modules. Maude’s functional and system modules
are respectively of the form
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e fmod £ endfm, and
e mod R endm,

for £ an equational theory and R a rewrite theory?. In functional mod-
ules, equations are declared with the keywords eq or ceq (for conditional
equations), and in system or object-oriented modules with the keywords ax
or cax. In addition, certain equations, such as any combination of associa-
tivity, commutativity, or identity, for which rewriting modulo is provided,
can be declared together with the corresponding operator using the key-
words assoc, comm, id. Rules can only appear in system or object-oriented
modules, and are declared with the keywords rl or crl.

In Maude a module can have submodules, which can be imported with ei-
ther protecting or including qualifications stating the degree of integrity
enjoyed by the submodule when imported by the supermodule.

The version of rewriting logic used for Maude in this paper is order-
sorted®. This means that rewrite theories are typed (types are called sorts)
and can have subtypes (subsorts), and that function symbols can be over-
loaded. In particular, functional modules are order-sorted equational theo-
ries [Goguen and Meseguer, 1992] and they form a sublanguage similar to
OBJ [Goguen et al., 2000].

Like OBJ, Maude has also theories to specify semantic requirements for
interfaces and to make high level assertions about modules. They are of the
three kinds:

1. Functional theories, introduced by the keyword fth,
2. System theories, introduced by the keyword th, and
3. Object-oriented theories, introduced by the keyword oth.

Also as OBJ, Maude has parameterized modules and theories, again of the
three kinds, and views that are theory interpretations relating theories to
modules or to other theories.

Maude can be further extended to a language called MaudeLog that uni-
fies the paradigms of functional programming, Horn logic programming,
and concurrent object-oriented programming. In fact, Maude’s design is
based on a general axiomatic notion of “logic programming language” based
on the general axiomatic theory of logic sketched in Section 2 [Meseguer,
1989; Meseguer, 1992b]. Technically, a unification of paradigms is achieved
by mapping the logics of each paradigm into a richer logic in which the

4This is somewhat inaccurate in the case of system modules having functional sub-
modules because we have to “remember” that the submodule is functional.

5The latest version of Maude [Clavel et al., 1996] is based on the recently developed
membership equational logic, which extends order-sorted equational logic and at the same
time has a simpler and more general model theory [Bouhoula et al., 2000; Meseguer, 1998].
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paradigms are unified. In the case of Maude and MaudeLog, what is done
is to define a new logic (rewriting logic) in which concurrent computations,
and in particular concurrent object-oriented computations, can be expressed
in a natural way, and then to formally relate this logic to the logics of the
functional and relational paradigms, i.e., to equational logic and to Horn
logic, by means of maps of logics that provide a simple and rigorous unifica-
tion of paradigms. As it has already been mentioned, we actually assume an
order-sorted structure throughout, and therefore the logics in question are:
order-sorted rewriting logic, denoted OSRWLogic, order-sorted equational
logic, denoted OSEqtl, and order-sorted Horn logic, denoted OSHorn.

The logic of equational programming can be embedded within (order-
sorted) rewriting logic by means of a map of logics

OSEqtl — OSRWLogic.

The details of this map of logics are discussed in Section 4.1. At the
programming language level, such a map corresponds to the inclusion of
Maude’s functional modules (essentially identical to OBJ modules) within
the language.

Since the power and the range of applications of a multiparadigm logic
programming language can be substantially increased if it is possible to solve
queries involving logical variables in the sense of relational programming, as
in the Prolog language, we are naturally led to seek a unification of the three
paradigms of functional, relational and concurrent object-oriented program-
ming into a single multiparadigm logic programming language. This unifi-
cation can be attained in a language extension of Maude called MaudeLog.
The integration of Horn logic is achieved by a map of logics

OSHorn — OSRWLogic

that systematically relates order-sorted Horn logic to order-sorted rewriting
logic. The details of this map are discussed in Section 4.2.

The difference between Maude and MaudeLog does not consist of any
change in the underlying logic; indeed, both languages are based on rewrit-
ing logic, and both have rewrite theories as programs. It resides, rather, in
an enlargement of the set of queries that can be presented, so that, while
keeping the same syntax and models, in MaudeLog we also consider queries
involving existential formulas of the form

3z [ (@)] — [n@)] A A ur(@)] — k(@)

Therefore, the sentences and the deductive rules and mechanisms that are
now needed require further extensions of rewriting logic deduction. In
particular, solving such existential queries requires performing unification,
specifically, given Maude’s typing structure, order-sorted E-unification for
a set E of structural axioms [Meseguer et al., 1989)].
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3.5 The models of rewriting logic

We first sketch the construction of initial and free models for a rewrite theory
R = (%, E, L, R). Such models capture nicely the intuitive idea of a “rewrite
system” in the sense that they are systems whose states are E-equivalence
classes of terms, and whose transitions are concurrent rewrites using the
rules in R. By adopting a logical instead of a computational perspective,
we can alternatively view such models as “logical systems” in which for-
mulas are validly rewritten to other formulas by concurrent rewrites which
correspond to proofs for the logic in question. Such models have a natu-
ral category structure, with states (or formulas) as objects, transitions (or
proofs) as morphisms, and sequential composition as morphism composi-
tion, and in them dynamic behavior exactly corresponds to deduction.

Given a rewrite theory R = (X, E, L, R), the model that we are seek-
ing is a category Tr(X) whose objects are equivalence classes of terms
[t] € Tx,g(X) and whose morphisms are equivalence classes of “proof terms”
representing proofs in rewriting deduction, i.e., concurrent R-rewrites. The
rules for generating such proof terms, with the specification of their re-
spective domain and codomain, are given below; they just “decorate” with
proof terms the rules 1-4 of rewriting logic. Note that we always use “dia-
grammatic” notation for morphism composition, i.e., a; 8 always means the
composition of a followed by 3.

1. Identities. For each [t] € T g(X),
[t]: 6] — [t

2. Y¥-structure. For each f € ¥,,, n € N,

ar:[t] — [th] -0 an: [ta] — [th]

flag, .. yan)  [flt, . t)] — [t 1))

3. Replacement. For each rewrite rule r : [t(z")] — [¢t'(Z")] in R,

on:[wi] —[wi] ... o [wa] — [wp]
rlon, ... an) : [H(W/7)] — [t'(w'/T)]

4. Composition.

a [tl] — [tz] ﬁ . [tz] — [tg]
a; 3z [th] — [ts] '

Convention. In the case when the same label r appears in two different
rules of R, the “proof terms” r(@&) can sometimes be ambiguous. We assume
that such ambiguity problems have been resolved by disambiguating the
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label r in the proof terms r(a) if necessary; with this understanding, we
adopt the simpler notation r(@) to ease the exposition.

Each of the above rules of generation defines a different operation taking
certain proof terms as arguments and returning a resulting proof term. In
other words, proof terms form an algebraic structure Pr(X) consisting of
a graph with nodes T g(X), with identity arrows, and with operations f
(for each f € X), r (for each rewrite rule), and _;_ (for composing arrows).

Our desired model Tr(X) is the quotient of Pr(X) modulo the following

equations®:

1. Category.
(a) Associativity. For all «, 3,7,
(o3 8);7 = o5 (B;7)-
(b) Identities. For each « : [t] — [t'],
a;[t'l=a and [t);a=a.

2. Functoriality of the Y-algebraic structure. For each f € X,
n € N,

(a) Preservation of composition. For all ay,...,a,,B1,..., B¢,
f(al;ﬂ:l’""an;ﬂn):f(a17"'7an);f(/617"'7ﬂn)'
(b) Preservation of identities.

f(tal, - [n]) = [f(f1, -5 t0)]

3. Axioms in E. For each axiom t(z1,...,z,) = t'(x1,...,2,) in E,
for all ay,...,an,,
tag, ..., an) =t (ag,...,qp).
4. Exchange. For each rule r: [t(zy,...,z,)] — [t'(21,...,2,)] in R,
ay :(w] — W] .. ap i [wy] — [w))]

r(@) = r(lwl]); (@) = t(@); r([w'])

6In the expressions appearing in the equations, when compositions of morphisms are
involved, we always implicitly assume that the corresponding domains and codomains
match.
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Note that the set X of variables is actually a parameter of these construc-
tions, and we need not assume X to be fixed and countable. In particular,
for X = ), we adopt the notation 7. The equations in 1 make Tz (X) a
category, the equations in 2 make each f € ¥ a functor, and 3 forces the
axioms E. The exchange law states that any rewrite of the form r(a)—
which represents the simultaneous rewriting of the term at the top using
rule r and “below,” i.e., in the subterms matched by the variables, using the
rewrites @—is equivalent to the sequential composition 7([w]); ' (@), corre-
sponding to first rewriting on top with r and then below on the subterms
matched by the variables with @, and is also equivalent to the sequential
composition t(a);r([w’']) corresponding to first rewriting below with @ and
then on top with r. Therefore, the exchange law states that rewriting at the
top by means of rule r and rewriting “below” using @ are processes that are
independent of each other and can be done either simultaneously or in any
order. Since [t(xy,...,2y)] and [¢t'(21,...,2,)] can be regarded as functors
Tr(X)™ — Tr(X), from the mathematical point of view the exchange law
just asserts that r is a natural transformation, i.e.,

LEMMA 10. [Meseguer, 1992] For each rewrite rule r : [t(z1,...,2,)] —

[t'(21,...,2p)] in R, the family of morphisms
{r(fw]) : t(@/2)] — [t'(@/7)] | [w] € Ts,p(X)"}
is a natural transformation r : [t(z1,...,zn)] = [t'(21, ..., 2, )] between the

functors [t(x1,...,z,)], [t'(z1,...,2,)] : TR(X)" — Tr(X).

The exchange law provides a way of abstracting a rewriting computation
by considering immaterial the order in which rewrites are performed “above”
and “below” in the term; further abstraction among proof terms is obtained
from the functoriality equations. The equations 1-4 provide in a sense the
most abstract “true concurrency” view of the computations of the rewrite
theory R that can reasonably be given.

The category Tr (X) is just one among many models that can be assigned
to the rewrite theory R. The general notion of model, called an R-system,
is defined as follows:

DEFINITION 11. Given a rewrite theory R = (X, E, L, R), an R-system
S is a category S together with:

e a (X, E)-algebra structure given by a family of functors
{fs:8" — S| feZ,neN}

satisfying the equations E, i.e., for any t(x1,...,2,) = t'(z1,...,2,)
in E we have an identity of functors ts = ts, where the functor ¢s is
defined inductively from the functors fs in the obvious way.

e for each rewrite rule r : [t(T)] — [t'(T)] in R a natural transformation
rs:ts = tfs.



24 NARCISO MARTI-OLIET AND JOSE MESEGUER

An R-homomorphism F : S — S’ between two R-systems is then a
functor F' : & — &’ such that it is a Y-algebra homomorphism—i.e.,
fs*F = F" x fo, for each f in ¥,,, n € IN—and such that “F preserves
R, i.e., for each rewrite rule r : [t(Z)] — [t'(Z)] in R we have the identity
of natural transformations” rs * F = F™ % rg/, where n is the number of
variables appearing in the rule. This defines a category R-Sys in the obvious
way.

The above definition captures formally the idea that the models of a
rewrite theory are systems. By a “system” we mean a machine-like entity
that can be in a variety of states, and that can change its state by performing
certain transitions. Such transitions are transitive, and it is natural and
convenient to view states as “idle” transitions that do not change the state.
In other words, a system can be naturally regarded as a category, whose
objects are the states of the system and whose morphisms are the system’s
transitions.

For sequential systems such as labelled transition systems this is in a sense
the end of the story; such systems exhibit nondeterminism, but do not have
the required algebraic structure in their states and transitions to exhibit
true concurrency. Indeed, what makes a system concurrent is precisely the
existence of an additional algebraic structure [Meseguer, 1992]. First, the
states themselves are distributed according to such a structure; for example,
for Petri nets [Reisig, 1995] the distribution takes the form of a multiset.
Second, concurrent transitions are themselves distributed according to the
same algebraic structure; this is what the notion of R-system captures, and
is for example manifested in the concurrent firing of Petri nets, the evolution
of concurrent object-oriented systems [Meseguer, 1993] and, more generally,
in any type of concurrent rewriting.

The expressive power of rewrite theories to specify concurrent transition
systems is greatly increased by the possibility of having not only transitions,
but also parameterized tramsitions, i.e., procedures. This is what rewrite
rules with variables provide. The family of states to which the procedure
applies is given by those states where a component of the (distributed) state
is a substitution instance of the lefthand side of the rule in question. The
rewrite rule is then a procedure which transforms the state locally, by replac-
ing such a substitution instance by the corresponding substitution instance
of the righthand side. The fact that this can take place concurrently with
other transitions “below” is precisely what the concept of a natural transfor-
mation formalizes. The following table summarizes our present discussion:

"Note that we use diagrammatic order for the horizontal, o * 3, and vertical, ; 6,
composition of natural transformations [Mac Lane, 1971].
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System +— Category

State +—  Object

Transition <— Morphism

Procedure <— Natural Transformation
Distributed Structure <+—  Algebraic Structure

A detailed proof of the following theorem on the existence of initial and
free R-systems for the more general case of conditional rewrite theories is
given in [Meseguer, 1992], where the soundness and completeness of rewrit-
ing logic for R-system models is also proved.

THEOREM 12. Tx is an initial object in the category R-Sys. More gen-
erally, Tz (X) has the following universal property: Given an R-system S,
each function F' : X — |S| extends uniquely to an R-homomorphism
F1:Tr(X) — S.

Preorder, poset, and algebra models

Since R-systems are an “essentially algebraic” concept®, we can consider
classes O of R-systems defined by the satisfaction of additional equations.
Such classes give rise to full subcategory inclusions ©® — R-Sys, and by
general universal algebra results about essentially algebraic theories [Barr
and Wells, 1985] such inclusions are reflective [Mac Lane, 1971], i.e., for each
R-system S there is an R-system Rg(S) € © and an R-homomorphism
pa(S) : § — Re(S) such that for any R-homomorphism F : § — D
with D € © there is a unique R-homomorphism F¢ : Rg(S) — D such
that F = pe(S); F¢. The assignment S — Rg(S) extends to a functor
R-Sys — 0, called the reflection functor.

Therefore, we can consider subcategories of R-Sys that are defined by
certain equations and be guaranteed that they have initial and free objects,
that they are closed by subobjects and products, etc. Consider for example
the following equations:

Vf,g € Arrows, f =g if 0o(f)=0o(g) A O1(f) = 01(9)
Vf,g € Arrows, f =g if Oo(f)=01(g9) A 01(f) = Do(g)
Vf € Arrows, do(f) = 01(f),

where 9y(f) and 0;1(f) denote the source and target of an arrow f respec-
tively. The first equation forces a category to be a preorder, the addition
of the second requires this preorder to be a poset, and the three equations

8In the precise sense of being specifiable by an “essentially algebraic theory” or a
“sketch” [Barr and Wells, 1985]; see [Meseguer, 1992] for more details.
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together force the poset to be discrete, i.e., just a set. By imposing the first
one, the first two, or all three, we get full subcategories

R-Alg C R-Pos C R-Preord C R-Sys.

A routine inspection of R-Preord for R = (X, E, L, R) reveals that its
objects are preordered Y-algebras (A4, <)—i.e., preordered sets with a X-
algebra structure such that all the operations in ¥ are monotonic—that
satisfy the equations E and such that for each rewrite rule r : [¢(Z)] —
[t'(Z)] in R and for each @ € A™ we have t4(a) < t/4(@). The poset case
is entirely analogous, except that the relation < is a partial order instead
of being a preorder. Finally, R-Alg is the category of ordinary X.-algebras
that satisfy the equations E U eq(R), where eq(r : [t] — [t']) = {t1 = t2 |
t1 € [t] and t2 € [t']}, and eq(R) = U{eq(r : [t] — [t']) | [t] — [t'] € R}.

The reflection functor associated with the inclusion R-Preord C R-Sys
sends TR (X) to the familiar R-rewriting relation® — (x) on E-equivalence
classes of terms with variables in X. Similarly, the reflection associated to
the inclusion R-Pos C R-Sys maps Tr(X) to the partial order < (x)
obtained from the preorder — (x) by identifying any two [t], [t'] such that
[t] = rx)[t'] and [t'] = »(x)[t]. Finally, the reflection functor into R-Alg
maps Tr(X) to Tr(X), the free X-algebra on X satisfying the equations
E U eq(R); therefore, the classical initial algebra semantics of (functional)
equational specifications reappears here associated with a very special class
of models which—when viewed as systems—have only trivial identity tran-
sitions.

4 REWRITING LOGIC AS A LOGICAL FRAMEWORK

The adequacy of rewriting logic as a logical framework in which other logics
can be represented by means of maps of logics or of entailment systems is
explored by means of relevant examples, including equational, Horn, and
linear logic, a general approach to the treatment of quantifiers, and a very
general method for representing sequent presentations of a logic.

4.1  Mapping equational logic

As mentioned in Section 3.2, one can get equational logic from rewriting
logic by adding the symmetry rule. Moreover, the syntax of rewriting logic
includes equations in order to impose structural axioms on terms. Therefore,
it should not be surprising to find out that there are many connections
between both logics.

91t is perhaps more suggestive to call — r(x) the reachability relation of the system

Tr(X).
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Even in the case of equational logic it can be convenient to allow some-
times a distinction between structural axioms and equations, so that an
equational theory can then be described as a triple (X, E,Q), with @ a
set of equations of the form [u]g = [v]g. This increases the expressiveness
of equational theories, because we can allow more flexible description of
equations—for example, omitting parentheses in the case when E contains
an associativity axiom—and also supports a built-in treatment of the struc-
tural axioms in equational deduction. Indeed, this is fully consistent with
the distinction made in OBJ3 and in Maude’s functional modules between
the equational attributes of an operator—such as associativity, commutativ-
ity, etc.—which are declared together with the operator, and the equations
given, which are used modulo such attributes.

In order to define a map of entailment systems

(®, ) : ent(OSEqtl) — ent( OSRWLogic)

in principle we need to map an equation [u]g = [v]g to a sequent, and
the obvious choices are either [u]gp — [v]g or [v]g — [u]g. However
this choice involves giving a fixed orientation to an equation, with the well-
known problems that this causes. To avoid this choice, we would like to give
the equation both orientations. We can achieve this by slightly generalizing
Definition 5 of map of entailment systems in such a way that a sentence is
mapped to a set of sentences'®. In our case, & maps an equation [u]g = [v]g
to the set of sequents {[u]lg — [v]Eg, [v]e — [u]g}, and & maps an equa-
tional theory T' = (2, E, Q) to the rewrite theory ®(T) = (%, E, L, a(Q)),
where a(Q) = J{a(e) | e € @}, and L is a labelling of the rewrite rules
such that, for example, each rule is labelled by itself. This map satisfies

(E>E7 Q) l_E'L e < (Ea E,L,CK(Q)) |_RL CM(@).

This can be easily proved by induction on the deduction rules of equational
logic, using the fact that all the rules of rewriting logic are also rules of
equational logic and the following lemma.

LEMMA 13.

(E,E,L,CM(Q)) l_RL [’LL] - [U] — (E,E,L,CM(Q)) |_RL [U] - [’LL]

Therefore, we have a conservative map of entailment systems.

In order to extend this map to a map of logics, a simple idea concerning
models is to send a ®(7T')-system C to Raig(C), where Raig is the reflection
functor associated with the inclusion ®(7T')-Alg C &(T')-Sys, as discussed

10This generalization is also very useful in relating other logics; see for example
[Meseguer, 1998].
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in Section 3.5. By definition, Raig(C) is a model of the equational theory
T. However, this map does not satisfy the condition in Definition 6 of map
of institutions. The difficulty is that, in general, from an equation ¢t = ¢’
one can deduce that there is a chain ¢t — t; < t3---t, < t', but not that
t — t', as the reader familiar with term rewriting knows. To solve this
problem, we consider a different quotient of the underlying (3, E)-algebra
|C] in which two objects A and B are identified if and only if there exist
morphisms f : A — B and g: B — A in C. In this way, we obtain a (X, E)-
algebra S (C) that satisfies all the sentences in (). Moreover, the condition
in Definition 6 of map of institutions holds for this map. In short, we have
obtained a conservative map of logics

(®,«,B) : OSEqtl — OSRWLogic.
There is also another map of logics
(', a',8") : OSEqtl — OSRW Logic

that, instead of sending equations to sequents, sends equations to equa-
tions. This requires making explicit the fact, left implicit in Section 3, that
equations can also be considered as sentences of rewriting logic, where, by
definition,

(E,E,L,R) I_RLt:t’ < EI_ELt:t,.

From this point of view, ®' maps an equational theory (X, E) to the rewrite
theory (X, E,(,0), and at the level of sentences o is just an inclusion,
trivially satisfying the requirement for a map of entailment systems. Note
that in this context the distinction between structural axioms and equations
is not necessary.

With respect to the models, 37 maps a (X, E,0,0)-system C to the un-
derlying (X, E)-algebra structure on |C|, trivially satisfying also the condi-
tion in Definition 6 and being therefore a map of institutions. Notice that
(®',a/, ") is conservative in a straightforward way.

On the opposite direction there is also a map of logics

(U,v,0) : OSRWLogic — OSEgqtl

mapping a rewrite theory (X, E, L, R) to the equational theory (X, E,y(R))
where v removes the labels from the rules and turns the sequent signs “—”
into equality signs. For the models, d is the inclusion R-Alg C R-Sys
defined in Section 3.5.

Notice that the composition of maps of logics (®,a, 8); (¥,7,9) is the
identity.
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4.2 Mapping Horn logic

Horn logic signatures are of the form (F, P), with F a set of function symbols
and P a set of predicate symbols. In the order-sorted case such symbols have
ranks f:s1...5, = s,and p: sy ...y, specified by strings of sorts in the
poset of sorts S. Models are F-algebras M together with, for each predicate
symbol p : s1...5y,, asubset ppr C Mg, X ...x M, , which can alternatively
be viewed as a characteristic function pps : Ms, % ... x My, — Bool to
the two element Boolean algebra Bool. Satisfaction of a Horn clause

ql(u_l)a tey qn(%) = p(f)

in a model M can be expressed as either the subset containment of the
intersection of the interpretations of g (@y), ..., ¢, (@y,) in M inside the cor-
responding interpretation of p(%), or, in a characteristic function description,
as the functional inequality

ai(wi)m and ... and qn(Tn)m < p(E)m

between the corresponding interpretations in M of the conjunction of the
premises and of the conclusion as characteristic functions, where the inequal-
ity between the functions means inequality of their values for each of the
arguments in the Boolean algebra ordering. A homomorphism f: M — M’
between two such models is an F-homomorphism which in addition satisfies
(fsy X-..X fs.)(prmr) € pu foreach p @ sy ... sy, or in characteristic function
form the functional inequality

pm < (for X oo X fo, )P

Horn logic is a particularly simple logic that does not use the full power
of classical first-order logic and is in fact compatible with a variety of other
nonclassical interpretations such as for example intuitionistic logic. It is
therefore reasonable to enlarge the class of models just described by keeping
the F-algebra parts as before, but allowing instead interpretations of the
predicate symbols p as “characteristic functions”

])]\4:]\4sl X...XMsn —)Mp,-op

into a partially ordered set A py,, of “propositions” which is not required
to be fixed, i.e., it can vary from model to model. We require of any
such poset the “bare minimum” structure of having a top element true:
Prop and a binary associative and commutative “conjunction” operator _, _:
Prop Prop — Prop that is monotonic and has true as its neutral element.
Of course, Bool is one such poset, where conjunction is interpreted as and.
Satisfaction of Horn clauses can be defined by a functional inequality just
as before, but changing Bool by the appropriate poset M py,, being chosen
for the model.
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The natural generalization of the notion of homomorphism f : M — M’
is to again require an F-homomorphism for the operations in F', whereas
for predicate symbols p : s1 ...s, we require the functional inequality

(T) pM;fPTOpS(fS1 X---stn);pM’

where fprop : Mprop — M }Dmp is an additional component of the homomor-
phism, namely, a monotonic function preserving ¢rue and conjunction “up
to inequality” between the posets of propositions M py,, and M }mp chosen
for the models M and M’, in the sense that we have fppop (truear) < truear,
and frrop(%,Y) < frrop(®) s frrop(y), for x,y € Mpyop. This defines a cate-
gory of models (F, P)-Mod.

In addition, we can consider the generalization to Horn theories of the
form (F,P,E, H) where E is a set of F-equations, and H is a set of Horn
clauses involving the predicates in P but not equations (again, equations
in E can be viewed as structural axioms forming part of the signature). A
model satisfies this theory when the underlying F-algebra satisfies all the
equations in E and the model satisfies the Horn clauses in H, defining in
this way a full subcategory (F, P, E, H)-Mod of (F, P)-Mod. We denote
by OSHorn™ the logic whose theories are such generalized Horn theories
(F,P,E, H) with equational axioms E, and whose models we have just
described.

The map of logics
(®,a,3) : OSHorn™ — OSRWLogic

that we define now is a considerable simplification and extension of the map
described in [Meseguer, 1992b).
A Horn theory (F, P, E, H) is mapped to a rewrite theory

®(F,P,E,H) = (FUP°, EUACI,{x}UH,{xprop — true} UH®),
where

e U P? is the order-sorted signature that extends F' by adding the
additional sort Prop, a constant true : Prop, a binary operator _,_ on
Prop, and, for each predicate symbol p : s1...s, in P, an operator
p:Si...Sy — Prop;

e ACI is the set of associativity, commutativity, and identity (true)
structural axioms for the conjunction operator _, _;

e “x” is the label for the rewrite rule zp,,, — true, where zpy,, is a

variable of sort Prop;

e H° is a set of rewrite rules labelled by the Horn clauses H themselves
in such a way that a Horn clause of the form ¢ (u71), - . ., qn (Un) = p(%)
labels the rewrite rule qi(uy), - .. ,qn(W,) — p(t), whereas a Horn
clause of the form p(%) labels the rewrite rule true — p(%).
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At the level of sentences, a maps each Horn clause to its corresponding
labelled rewrite rule in the above manner.

As to models, given a Horn theory T', a ®(T')-system consists of a cate-
gory Cs for each sort s in the poset S, and a category P for the sort Prop,
together with a collection of functors satisfying the equations in ®(7") and
natural transformations interpreting the rewrite rules in ®(7"). The func-
tor Br sends such a system to the T-model consisting of the underlying
(order-sorted) algebra structure on the family of sets {|Cs| | s € S}, and
the poset Rpos(P), where Rpos is the reflection functor associated to the
inclusion ®(7T')-Pos C ®(T')-Sys, discussed in Section 3.5. By definition of
this reflection functor, A < B in Rpos(P) if and only if there is a morphism
A — Bin P. Therefore, a Horn clause ¢; (uy), . . ., gn(U,) = p(t) is satisfied
by this T-model if and only if there is a morphism in P interpreting the
rewrite sequent q; (u1),...,qn(un) — p(t) if and only if this sequent is
satisfied by the original ®(T)-system. Thus, (®,a,3) is indeed a map of
institutions.

Notice that, by the conditions for R-homomorphisms in Definition 11,
for the homomorphisms in the image of Sy the functional inequality (f)
above becomes an equality. In addition, S7 maps free ®(7T')-systems to
(weakly) free Horn T-models; since the entailment relation coincides with
satisfaction in free models (see the proof of Theorem 3.13 in [Meseguer,
1992]), this provides a short proof of the fact that (®,«) is indeed a map of
entailment systems, and moreover, it is conservative.

The same discussion applies to the case of preorders instead of posets, by
considering the reflection functor associated to the inclusion ®(7)-Preord C
®(T')-Sys, which would have given a slightly more general notion of model
for a Horn theory in which propositions would form a preorder.

4.8 Mapping linear logic

In this section, we describe a map of logics LinLogic — OSRW Logic map-
ping theories in full quantifier-free first-order linear logic to rewrite the-
ories. We do not provide much motivation for linear logic, referring the
reader to [Girard, 1987; Troelstra, 1992; Marti-Oliet and Meseguer, 1991]
for example. We need to point out, nonetheless, the way linear logic sat-
isfies the conditions given in Definition 1 of entailment system. If one
thinks of formulas as sentences and of the turnstile symbol “F” in a se-
quent, as the entailment relation, then this relation is not monotonic, be-
cause in linear logic the structural rules of weakening and contraction are
forbidden, so that, for example, we have the sequent A - A as an ax-
iom, but we cannot derive either A,B F A or even A, A + A. The point
is that, for ¥ a linear logic signature, the elements of sen(X) should not
be identified with formulas but with sequents. Viewed as a way of gener-
ating sequents, i.e., identifying our entailment relation F with the closure
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of the horizontal bar relation among linear logic sequents, the entailment
of linear logic is indeed reflexive, monotonic, and transitive. This idea
is also supported by the categorical models for linear logic [Seely, 1989;
Marti-Oliet and Meseguer, 1991], in which sequents are interpreted as mor-
phisms, and leads to a very natural correspondence between the models of
rewriting and linear logic.

Ezxpressing linear logic in rewriting logic

We use the syntax of the Maude language to write down the map of en-
tailment systems from linear logic to rewriting logic. Note that any se-
quence of characters starting with either “~---” or “s*x*” and ending with
“end-of-line” is a comment. Moreover, we usually drop the equivalence
class square brackets, adopting the convention that a term ¢ denotes the
equivalence class [t]g for the appropriate set of structural axioms E.

We first define the functional theory PROPO[X] which introduces the syn-
tax of propositions as a parameterized abstract data type. The parameter-
ization permits having additional structure at the level of atoms if desired.
In order to provide a proper treatment of negation, only equations are given,
and no rewrite rules are introduced in this theory; they are introduced af-
terwards in the LINLOG[X] theory. The purpose of the equations in the
PROPO[X] theory is to push negation to the atom level, by using the du-
alities of linear logic; this is a well-known process in classical and linear
logic.

fth ATOM is
sort Atom .
endft

--- linear logic syntax
fth PROPO[X :: ATOM] is
sort Prop0 .
subsort Atom < Prop0 .
ops 1 0 L T : -> Prop0 .
op L Prop0 -> PropO .

op _®_ : Prop0 PropO -> Prop0 [assoc comm id: 1]
op _®_ : Prop0 Prop0 -> Prop0 [assoc comm id: 1]
op _@_ : Prop0 PropO -> Prop0 [assoc comm id: 0]
op _&_ : Prop0 Prop0 -> Prop0 [assoc comm id: T]

op !_ : Prop0O -> PropO .
op ?_ : Prop0 -> Prop0O .

vars A B : PropO .

eq (A ® B)* = at % BL .
eq (A B B = At ® B .
eq (A & B): = A+ @ B+ .
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eq (A ® B)* = at & B .
eq (!M* = 7(ahH
eq (7M)* = r(ah

qull=A.
eq 1t = L .
eq Lt =1 .
eq TH =0 .
eq 0L = T .
endft

Note that the equations can be used as oriented rules from left to right at
the implementation level in order to obtain a canonical form for expressions
in PropO.

The LINLOG[X] theory introduces linear logic propositions and the rules
of the logic. Propositions are of the form [A] for A an expression in Prop0.
All logical connectives work similarly for Prop0 expressions and for propo-
sitions, except negation, which is defined only for PropO expressions.

Some presentations of linear logic are given in the form of one-sided
sequents F I' where negation has been pushed to the atom level, and there
are no rules for negation in the sequent calculus [Girard, 1987]. In this
section, in order to make the connections with category theory and with
rewriting logic more direct, we prefer to use standard sequents of the more
general form I' F A. In a later section, we will also use one-sided sequents
just in order to reduce the number of rules.

The style of our formulation adopts a categorical viewpoint for the proof
theory and semantics of linear logic [Seely, 1989; Marti-Oliet and Meseguer,
1991]. This style exploits the close connection between the models of lin-
ear logic and those of rewriting logic which are also categories, as we have
explained in Section 3.5. Without going into details that the reader can
find for example in [Marti-Oliet and Meseguer, 1991] and the references
therein, the tensor and linear implication connectives are interpreted in a
closed symmetric monoidal category (C,®,—o). Negation is interpreted by
means of a dualizing object L and the definition A* = A—o L (with this
definition of negation, C becomes a *-autonomous category [Barr, 1979]).
The categorical product & interprets additive conjunction. The interpreta-
tion of the exponential ! is given by a comonad (!4,!4 — A 1A — ! A) that
maps the comonoid structure T «+ A — A& A into a comonoid structure
1+ 14 - 1A®!A via isomorphisms T 2 1 and [(A&A) = 1AR!A.

The dual connectives %, @, and 7 can be defined using negation: A%B =
(At @ BYYt = At—oB, A® B = (A*&B*)*, 74 = (14+)+. Without
negation, @ needs the presence of coproducts and ? is interpreted by means
of a monad with a monoid structure.

When seeking the minimal categorical structure required for interpreting
linear logic, an important question is how to interpret the connective %
without using negation, and how to axiomatize its relationship with the
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tensor ®. Cockett and Seely have answered this question with the notion of a
weakly distributive category [Cockett and Seely, 1992]. A weakly distributive
category consists of a category C with two symmetric tensor products ®, % :
C xC — C, and a natural transformation A® (B®¥C) — (A® B)®B (weak
distributivity) satisfying some coherence equations!!. Negation is added to
a weakly distributive category by means of a function (-)* : |C| — |C| on the
objects of C, and natural transformations 1 — A% A+ and A® AL+ — L
satisfying some coherence equations. Cockett and Seely then prove that the
concepts of weakly distributive category with negation and of *-autonomous
category are equivalent, providing in this way a categorical semantics for
linear logic in which the par connective % is primitive and is not defined in
terms of tensor and negation.

In the following theory, the rewrite rules for ®, %, and negation corre-
spond to the natural transformations in the definition of a weakly distribu-
tive category, as explained above. The rules for & (@, respectively) mirror
the usual definition of final object and product (initial object and coprod-
uct, respectively). Finally, the axioms and rules for the exponential ! (?,
respectively) correspond to the comonad with a comonoid structure (monad
with monoid structure, respectively). Note that some rules are redundant,
but we have decided to include them in order to make the connectives less
interdependent, so that, for example, if the connective & is omitted we do
not need to add new rules for the modality !.

--- linear logic rules

th LINLOG[X :: ATOM] is
protecting PROPO[X]
sort Prop .
ops 1 0 L T : -> Prop .
op _®_ : Prop Prop -> Prop [assoc comm id: 1]
op _&¥_ : Prop Prop -> Prop [assoc comm id: 1]
op _®_ : Prop Prop -> Prop [assoc comm id: 0]
op _&_ : Prop Prop -> Prop [assoc comm id: T]
op !_ : Prop -> Prop .
op 7_ : Prop -> Prop .

op [_] : Prop0 -> Prop .

vars A B : PropO .

ax [A ® B] = [A] ® [B] .
ax [A % B] = [A] & [B]
ax [A & B] = [A] & [B]
ax [A @ Bl = [A] & [B]

ax [!'A] = '[A]

1 Cockett and Seely develop in [1992] the more general case in which the tensor prod-
ucts are not assumed to be symmetric.
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ax [?74] = 7[A]

ax [1] =1 .
ax [1] = L .
ax [T]1 =T .
ax [0] =0 .

*¥x [_] is injective
cax A = B if [A] = [B]

*x* Rules for negation
rl 1 => [A] & [A*]
rl [A] ® [A*] => L .

vars P Q R : Prop .
*** Rules for ® and 2%
rlP® (@RDPR =>CPoQ TR .

*x** Rules for &
rl P=>T. *x*kx (1)
rlP & Q=P .
crlR=>P & Q if R =>P and R =>Q . =**xx (2)

*x* Rules for @
rl 0 =>P . *xx%  (3)
rl P=>P Q.

ctlP ® Q=R if P =>R and Q => R . =*xxx (4)

*x* Structural axioms and rules for !

ax '(P & Q) =!'P® !Q . k% (5)

ax !'T =1 . *xx% (6)

rl 'P =>P .

rl 'P => !IP .

rl 'P =>1 . *x* redundant from (1) and (6) above

rl 'P => !P ® !P . #*%x redundant from (2) and (5) above

**x* Structural axioms and rules for 7

ax ?(P ® Q) = 7P & 7Q . *xx (7)

ax 70 = L1 . *x*x* (8)

rl P => 7P .

rl ??P => 7P .

rl L => 7P . **x*x redundant from (3) and (8) above

rl ?P % ?P => 7P . *x* redundant from (4) and (7) above
endt

A linear logic formula is built from a set of propositional constants using
the logical constants and connectives of linear logic. Notice that linear
implication A—oB is not necessary because it can be defined as A*%B.
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Representing a linear logic theory in rewriting logic

A linear theory T in propositional linear logic consists of a finite set C' of
propositional constants and a finite set S of double-sided sequents of the
form Ay,..., A, - Bi,..., By, where each A; and Bj is a linear logic for-
mula built from the constants in C'. Given such a theory T, it is interpreted
in rewriting logic as follows.

First, we define a functional theory to interpret the propositional con-
stants in C. For example, if C' = {a, b, c} we would define

fth C is

sort Atom .

ops a b c : -> Atom .
endft

Then, we can instantiate the parameterized theory LINLOG [X] using this
functional theory, with the default view ATOM — C:

make LINLOGO is LINLOG[C] endmk

A linear logic formula A (with constants in C') is interpreted in LINLOGO as
the term [A] of sort Prop. For example, the formula (a®b)* @ ((a & c¢t))*
is interpreted as the term

[@a® b @& (& NI

which, using the equations for negation in PROPO[X] and the structural
axioms in LINLOG[X], is equal to the term

([a"1 B ') @ 7([a"] & [c]).
Finally, we extend the theory LINLOGO by adding a rule
rl [A1l ® ... ® [An] => [B1]1 &% ... % [Bm]

for each sequent A;,...,A, F Bi,..., By, in the linear theory T. For ex-
ample, if
T = {a®@blcdalta,(c®b)*t

a®b,?(ct) F (7B 1), a @ b},

the corresponding rewrite theory is

th LINLOG(T) is

including LINLOGO .

rl [a] ® [b] ® (1[c] @ [a]) => [a] B ([c'] & D) .

rl ([al & [b]) ® ?[c"] => (1[b"] ® ?[c™]) ¥ ([a]l @ [b]) .
endt
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Note that this technique can also be used to interpret quantifier-free first-
order linear logic formulas, where, instead of propositional constants, we
have literals built using functions and predicates. In general, we can allow
any abstract data type ADT defining constants, functions and predicates.
Then, we define the instantiation

make LINLOGO is LINLOG[ADT] endmk

which is finally extended with the corresponding rules to a theory LINLOG (T)
corresponding to the desired theory T'.
The main result is the following conservativity theorem.

THEOREM 14. Given a linear theory T', a sequent Ay,..., A, F By,..., By,
is provable in linear logic from the axioms in 7 if and only if the sequent

[A1]] ® ... ® [An] — [B1] % ... % [Bm]

is a LINLOG(T)-rewrite, i.e., it is provable in rewriting logic from the rewrite
theory LINLOG(T).

To show that a linear logic proof can be translated into a rewriting logic
proof, the idea is similar to the proof of the soundness theorem for the cat-
egorical semantics of linear logic, where a sequent is interpreted as a mor-
phism (see [Marti-Oliet and Meseguer, 1991, Theorem 40]). What is impor-
tant to realize is that the categorical constructions of these morphisms can
be seen as rewriting logic proofs; for example, functoriality corresponds to
the Congruence rule of rewriting logic, something made completely explicit
in the categorical semantics of rewriting logic, as outlined in Section 3.5 and
developed in detail in [Meseguer, 1992].

The map of logics

The fully detailed development in the previous sections provides a map
of entailment systems between linear logic and rewriting logic, which is
conservative because of Theorem 14. We have already discussed briefly the
models of linear logic in Section 4.3 by way of motivation to the rules in the
theory LINLOG[X]. Now, in order to complete the construction of the map
of logics LinLogic — OSRWLogic, we need a way of getting a (categorical)
model of a linear theory 7' from a rewrite system that is a model of the
rewrite theory LINLOG(T).

The first thing to note, recalling the definition of R-system in Section 3.5,
is that for each rewrite rule in R we require just a natural transformation in
the system, but we do not impose any coherence or uniqueness conditions
on these natural transformations. For this reason, a LINLOG(T)-system
interprets A& B as a weak product instead of a product, for example. A
way of obtaining uniqueness would be considering the generalized rewrite
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theories defined in [Meseguer, 1992b], but we do not need that for our
purposes here. On the other hand, the attributes of the operations, like
associativity or commutativity, are interpreted as identities, instead of the
more general natural isomorphisms, thus satisfying all coherence conditions
automatically.

In general, given a linear theory T' = (C,S), a LINLOG(T)-system con-
sists of an algebra A interpreting all the structure of the functional theory
PROPO[C], a category C with all the morphisms necessary to interpret the
rewrite rules in the theory LINLOG[C] and the rules corresponding to all the
sequents in S, and an injective homomorphism .4 — |C| that, without loss
of generality, we can consider to be an inclusion. Note that, as A is closed
under all the operations in the theory LINLOG[C], the full subcategory of
C generated by A has the same structure as C, and, in addition, there is
a function (.)* : A — A interpreting negation. Therefore, this full sub-
category is almost a weakly distributive category with negation, products,
coproducts, a comonad with a comonoid structure, and a monad with a
monoid structure. What is possibly missing is the satisfaction of a set of
equations between morphisms which ensure that all this structure is really
what we want.

Thus, in order to get a Girard category £ from the original LINLOG(T)-
system, we do the quotient of the full subcategory of C generated by A
by this set of equations. Clearly, there is a morphism A — B in £ if and
only if there is a morphism A — B in C, i.e., £ satisfies a linear sequent
if and only if C satisfies the rewriting logic version of that sequent. This is
true because the constants in C' are interpreted always as the corresponding
constants in A, and variables in a sequent are also interpreted as elements
of A (note that variables appear in a theory ADT that is used to instantiate
PROPO[X]). In summary, we have a conservative map of logics LinLogic —
OSRW LLogic.

4.4 Quantifiers

In Section 4.3 we have defined a map of logics between quantifier-free lin-
ear logic and rewriting logic. In this section, we show how to extend that
map at the level of entailment systems to quantifiers. The choice of linear
logic to illustrate the treatment of quantifiers is irrelevant; we could have
chosen any other logic. It has only the expository advantage of building
upon an example already introduced in this paper. In fact, our equational
treatment of quantification, inspired by ideas of Laneve and Montanari on
the definition of the lambda calculus as a theory in rewriting logic [Laneve
and Montanari, 1992; Laneve and Montanari, 1996], is very general and en-
compasses not only existential and universal quantification, but also lambda
abstraction and other such binding mechanisms.

The main idea is to internalize as operations in the theory the notions
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of free variables and substitution that are usually defined at the metalevel.
Then, the typical definitions of such notions by structural induction on
terms can be easily written down as equations in the theory, but, more
importantly, we can consider terms modulo these axioms and we can also
use the operation of substitution explicitly in the rules introducing or elim-
inating quantifiers. This is similar to the lambda calculus with explicit
substitutions defined by Abadi, Cardelli, Curien, and Lévy in [1991], and
to the work on binding structures by Talcott [1993].

We begin by presenting the example of the lambda abstraction binding
mechanism in the lambda calculus, as defined by Laneve and Montanari
in [1992] (see also [Laneve and Montanari, 1996], where this technique is
generalized to combinatory reduction systems). Since in this case the syntax
is much simpler, the main ideas can become more explicit and clearer to the
reader.

We assume a parameterized functional module SET[X] that provides fi-
nite sets over a parameter set X with operations _U_ for union, _-_ for set
difference, {_} for singleton, emptyset for the empty set, and a predicate
_is—-in_ for membership.

--- variable names
fth VAR is

sort Var .

protecting SET[Var]

op new : Set -> Var .

var S : Set .

eq new(S) is-in S = false . #**x new variable
endft

--- lambda calculus syntax with substitution
fmod LAMBDA[X :: VAR] is

including SET[X]

sort Lambda .

subsort Var < Lambda . ***% variables

op A_._ : Var Lambda -> Lambda . **x lambda abstraction
op __ : Lambda Lambda -> Lambda . ***% application

op _[_/_]1 : Lambda Lambda Var -> Lambda . #*** substitution

op fv : Lambda -> Set . *xx free variables

vars X Y : Var .
vars M N P : Lambda .

*x*x Free variables

eq fv(X) = {X} .

eq fv(AX.M) = fv(M) - {X} .

eq fv(MN) = fv(M) U fv(N) .

eq fv(MIN/X]) = (fv(M) - {X}) U fv(N)
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*xx Substitution equatiomns
eq X[N/X] =N .
ceq YIN/X] =Y if not(X == 1Y)
eq (MN) [P/X] = (M[P/X]) (N[P/X])
eq (AX.M)[N/X] = XX.M .
ceq (AY.M)[N/X] = AY.(M[N/X])
if not(X == Y) and (not(Y is—in fv(N)) or not(X is-in fv(M)))
ceq (AY.M) [N/X] = A(new(fv(MN))).((M[new(£fv(MN)) /Y1) [N/X])
if not(X == Y) and Y is-in fv(N) and X is-in fv(M)
endfm

Note that substitution is here another term constructor instead of a meta-
syntactic operation. Of course, using the above equations, all occurrences
of the substitution constructor can be eliminated. After having defined in
the previous functional module the class of lambda terms with substitution,
we just need to add the equational axiom of alpha conversion and the beta
rule in the following module:

-—- lambda calculus rules
mod ALPHA-BETA[X :: VAR] is
including LAMBDA[X]
vars X Y : Var .
vars M N : Lambda .

*xx Alpha conversion
cax AX.M = AY.(M[Y/X]) if mnot(Y is-in fv(M))

*x* Beta reduction
rl (AX.M)N => M[N/X]
endm

In order to introduce quantifiers, we can develop a similar approach,
by first introducing substitution in the syntax together with the quantifiers,
and then adding rewrite rules for the new connectives. In the same way that
we had to duplicate the logical connectives in both theories PROPO[X] and
LINLOG[X] in Section 4.3 in order to have a correct treatment of negation,
we also have to duplicate the operations and equations for substitution in
the two modules FO-PROPO[X] and FO-LINLOG[X] below. This technicality,
due to the treatment of negation, makes the exposition somewhat longer,
but should not obscure the main ideas about the treatment of quantification
that have been illustrated more concisely before with the lambda calculus
example.

We assume an abstract data type ADT defining constants, functions and
predicates over a set Var of variable names. Substitution must also be de-
fined in this module. For example, we can have something like the following
module:
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fmod ADT[X :: VAR] is
including SET[X]
sort Term .
subsort Var < Term .

* %ok
* %k

terms
variables are terms

op ¢ : -> Term . *** constant symbol
op £ : Term Term -> Term . *x%x function symbol
sort Atom . **x*x atomic formulas
op p : Term Term -> Atom . *x* predicate symbol
op va : Term -> Set *** set of variables
op va : Atom -> Set *x%x set of variables
op _[_/_] : Term Term Var -> Term . #*** substitution
op _[_/_]1 : Atom Term Var -> Atom . #*** substitution
vars X Y : Var . vars T UV : Term .
var P : Atom .
**xx Set of variables
eq va(X) = {X} .
eq va(c) = emptyset
eq va(f(T,V)) = va(T) U va(V)
eq va(p(T,V)) = va(T) U va(V) .
eq va(VIT/X]) = (va(V) - {X}) U va(T)
eq va(P[T/X]) = (va(P) - {X}) U va(T)
*xx Substitution equatiomns
eq X[T/X] =T .
ceq Y[T/X] = Y if not(X == 1Y)
eq c[T/X] = c .
eq £(U,V)[T/X] = £(ULT/X],V[T/X])
eq p(U,V)[T/X] = p(ULT/X],V[T/X])
endfm
--- linear logic syntax with quantifiers
fmod FO-PROPO[X :: VAR] is
including PROPO[ADT[X]]
op _[_/_]1 : Prop0 Term Var -> Prop0 . #*** substitution
op fv : Prop0 -> Set *xx free variables
op V_._ : Var Prop0 -> PropO . *** universal quantifier
op d_._ : Var Prop0 -> PropO . *** existential quantifier
vars A B : Prop0 . vars X Y : Var .
var P : Atom . var T : Term .

*xx Negation and quantifiers
eq (VX.A)' = 3x.A*
eq (FX.M)* = vx.at

41
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*x* Free variables

eq fv(P) = va(P)

eq fv(l) = emptyset

eq ... **x similar equations for the other logical constants
eq fv(AL) = fv(A)

eq fv(A ® B) = fv(A) U £fv(B)

eq ... **x similar equations for the other logical connectives
eq fv(VX.A) = fv(h) - {X} .
eq fv(3X.A) = fv(hr) - {X} .

eq fv(A[T/X]) = (£v(d) - {X}) U va(T)

*x* Substitution equations
eq 1[T/X] =1
eq ... **%* similar equations for the other logical constants
eq AL [T/X]1 = AlT/X1*
eq (A ® B)[T/X] = A[T/X] ® BIT/X]
eq ... *** similar equations for the other logical connectives
eq (VX.A)[T/X] = VX.A .
ceq (VY.A)[T/X] = VY. (A[T/X])
if not(X == Y) and (not(Y is-in va(T)) or not(X is-in fv(4)))
ceq (VY.A)[T/X] =
V(new(va(T) U fv(A))).((Alnew(va(T) U £v(A))/Y])[T/X1)
if not(X == Y) and Y is-in fv(T) and X is-in fv(A)
eq ... **%* similar equations for the existential quantifier
endfm

mod FO-LINLOG[X :: VAR] is
including LINLOG[ADT[X]] . ***
protecting FO-PROPO[X] . *x* Note PROPO[ADT[X]] is shared

op _[_/_]1 : Prop Term Var -> PropO . *** substitution

op fv : Prop -> Set . *** free variables

op V_._ : Var Prop -> Prop . *** universal quantifier
op d_._ : Var Prop -> Prop . *xx existential quantifier
var P Q : Prop . var A : Prop0O .

var X : Var . var T : Term .

ax [VX.A] = VX.[A]

ax [3X.A] = JX.[A]

*x* Free variables

ax fv(l) = emptyset

ax ... *¥x similar axioms for the other logical constants
ax fv(P ® Q) = fv(P) U £v(Q)

ax ... **x* similar axioms for the other logical connectives
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ax fv(VX.P) = fv(P) - {X} .

ax fv(3X.P) = fv(P) - {X} .

ax fv(P[T/X]) = (£fv(P) - {X}) U va(T)
ax fv([A]) = fv(A)

*x*% Substitution axioms
ax 1[T/X]1 =1 .
ax . *x*% similar axioms for the other logical constants
ax (P ® Q[T/X] = P[T/X] ® QLT/X]
ax ... *¥x similar axioms for the other logical connectives
ax (VX.P)[T/X] = VX.P .
cax (VY.P)[T/X] = VY.(P[T/X]1)
if not(X == Y) and (not(Y is-in va(T)) or not(X is-in fv(P)))
cax (VY.P)[Q/X] =
V(new(va(T) U £v(P))).((PInew(va(T) U £v(P))/Y1) [T/X]1)
if not(X == Y) and Y is-in va(T) and X is-in fv(P)
ax ... **x similar axioms for the existential quantifier

ax [AT[T/X] = [A[T/X]]

**x*x Rules for quantifiers
rl VX.P => P[T/X]
rl P[T/X] => JX.P .
crl P => VXK.A &% Q
if P=>A % Q and not(X is-in fv(P ® Q))
crl P ® JX.A => Q
if P® A =>0Q and not(X is-in fv(P ® Q))
endm

In this way, we have defined a map of entailment systems
ent(FOLinLogic) — ent(OSRWLogic)

which is also conservative.

4.5  Mapping sequent systems

In Section 4.3, we have mapped linear logic formulas to terms, and linear
logic sequents to rewrite rules in rewriting logic. There is another map of
entailment systems between linear logic and rewriting logic in which lin-
ear sequents become also terms, and rewrite rules correspond to rules in
a Gentzen sequent calculus for linear logic. In order to reduce the num-
ber of rules of this calculus, we consider one-sided linear sequents in this
section, but a completely similar treatment can be given for two-sided se-
quents. Thus, a linear logic sequent will be a turnstile symbol “F” followed
by a multiset M of linear logic formulas, that in our translation to rewriting
logic will be represented by the term - M. Using the duality of linear logic
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negation, a two-sided sequent Ay,..., A, F By,..., By, can in this notation
be expressed as the one-sided sequent - Af, ..., AL By,..., Bp,.

First, we define a parameterized module for multisets. The elements in
the parameter are considered singleton multisets via a subsort declaration
Elem < Mset, and there is a multiset union operator _,_ which is associa-
tive, commutative, and has the empty multiset null as neutral element.
Note that what makes the elements of Mset multisets instead of lists is the
attribute comm of commutativity of the union operator _,_.

fth ELEM is
sort Elem .
endft

fmod MSET[X :: ELEM] is

sort Mset

subsort Elem < Mset

op null : -> Mset

op _,_ : Mset Mset -> Mset [assoc comm id: null]
endfm

Now we can use this parameterized module to define the main module
for sequents'? and give the corresponding rules. A sequent calculus rule of
the form

FMy,....,F M,
FM

becomes the rewrite rule

r1-ML ... F Mo =>FMNM.

»”

on the sort Configuration. Recalling that “---" introduces a comment,

this rule can be written as

rl FML ... F Mn

This displaying trick that makes it possible to write a sequent calculus
rule in a similar way to the usual presentation in logical textbooks is due
to K. Futatsugi.

12The multiset structure is one particular way of building in certain structural rules,
in this case exchange. Many other such data structuring mechanisms are as well possible
to build in, or to drop, desired structural properties. Appropriate parameterized data
types can similarly be used for this purpose. For example, we use later a data type of
lists to define 2-sequents in which exchange is not assumed.
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--- one-sided sequent calculus for linear logic
mod LL-SEQUENT[X :: VAR] is

protecting FO0-PROPO[X]

including MSET [FO-PROPO[X]]

--- a configuration is a multiset of sequents
sort Configuration .
op F_ : Mset -> Configuration .

op empty : -> Configuration .

op __ : Configuration Configuration -> Configuration
[assoc comm id: empty]

op 7_ : Mset -> Mset

vars M N : Mset

ax 7null = null

ax 7(M,N) = (?M,7N)

op fv : Mset -> Set

ax fv(null) = emptyset

ax fv(M,N) = fv(M) U fv(N)

var P : Atom . vars A B : PropO .
var T : Term . var X : Var .

*xx Identity

rl empty
=> ————————
+ p,pt
%k ok Cut
rl (F M,8) (- N,AD)
=> e
F M,N

*x*x Tensor
rl (F M,8) (- B,I)

*x* Par
rl F M,A,B

*x*x Plus
rl F M,A
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kK
rl

*okk
rl

*okk
rl

kK
rl

kK
rl

*okk
rl

kK
rl

kK
rl

*kk
crl
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With
(- M,A) (- M,B)

F M,A & B .

Weakening

FM

Contraction

F M,?7A,7A

F M,A

F 7M,A

FM

Universal
F M,A

F M,VX.A
if not(X is-in fv(M))
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*x*x Existential
rl F M,A[T/X]

endm

Note that in the module FO-PROPO [X] (via the reused theory PROPO[X])
we have imposed associativity and commutativity attributes for some con-
nectives, making syntax a bit more abstract than usual. However, in this
case, this has no significance at all, except for the convenient fact that we
only need a rule for & instead of two; of course, these attributes can be
removed if a less abstract presentation is preferred.

Given a linear theory T' = (C,S) (where we can assume that all the
sequents in S are of the form - Ay,..., A,), we instantiate the parame-
terized module LL-SEQUENT [X] using a functional module C that interprets
the propositional constants in C, as in Section 4.3, and then extend it by
adding a rule

rl empty => F A1,...,An .

for each sequent - Ay, ..., A, in S, obtaining in this way a rewrite theory
LL-SEQUENT(T).
With this map we have also an immediate conservativity result:

THEOREM 15. Given a linear theory T', a linear logic sequent - Ay, ... A,
is provable in linear logic from the axioms in T if and only if the sequent

empty — ~ Al,...,An

is provable in rewriting logic from the rewrite theory LL-SEQUENT(T).

It is very important to realize that the technique used in this conservative
map of entailment systems is very general and it is in no way restricted to
linear logic. Indeed, it can be applied to any sequent calculus, be it for
intuitionistic, classical or any other logic. In general, we need an operation

op _F_ : FormList FormList -> Sequent .

that turns two lists of formulas (multisets, or sets in some cases) into a term
representing a sequent. Then we have a sort Configuration representing
multisets of sequents, with a union operator written using empty syntax. A
sequent calculus rule
Gi+Dq,...,Go F D,
GFD

becomes a rewrite rule

rl (G1+D1) ... (Gn F Dn) => (G F D)
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on the sort Configuration, that we have displayed above also as

rl (G1 - D1) ... (Gn F Dn)

in order to make even clearer that the rewrite rule and the sequent notations
in fact capture the same idea. In the particular case of linear logic the
situation is somewhat simplified by the use of one-sided sequents. Notice
also that sometimes the rewrite rule can be conditional to the satisfaction of
some auxiliary side conditions like, for example, in the rule for the universal
quantifier in the module above.

As another example illustrating the generality of this approach, we sketch
a presentation in rewriting logic of the 2-sequent calculus defined by Masini
and Martini in order to develop a proof theory for modal logics [Masini,
1993; Martini and Masini, 1993]. In their approach, a 2-sequent is an ex-
pression of the form I' H A, where I' and A are not lists of formulas as
usual, but they are lists of lists of formulas, so that sequents are endowed
with a vertical structure. For example,

A B D
C + E,F
G

is a 2-sequent, which will be represented in rewriting logic as
A,B;C+D;E F;G.

In order to define 2-sequents, we first need a parameterized module for
lists, assuming a module NAT defining a sort Nat of natural numbers with
zero 0, a successor function s_, an addition operation _+_, and an order
relation _<=_, as well as a module BOOL defining a sort Bool of truth values
true, false and corresponding Boolean operations.

fmod LIST[X :: ELEM] is
protecting NAT BOOL .
sort List .
subsort Elem < List .
op nil : -> List .
op _;_ : List List -> List [assoc id: nil]
op length : List -> Nat .
op _in_ : Elem List -> Bool .

vars E E’ : Elem .
vars L L’ : List .
eq length(nil) = 0 .
eq length(E) = sO .
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eq length(L;L’) = length(L) + length(L’)
eq E in nil = false .
eq E in E’ = if E == E’ then true else false .
eq E in (L;L’) = (E in L) or (E in L’)
endfm

This module is instantiated twice in order to get the module of 2-sequents,
using a sort of formulas Form whose definition is not presented here, and
that should have an operation

op [1_ : Form -> Form .
corresponding to the modality O.

make 2-LIST is
LIST[LIST[Form]l*(op _;_ to _,_)]*(sort List to 2-List,
op length to depth)
endmk

Note that in the 2-LIST module the concatenation operation _;_ is re-
named to _,_ in the case of lists of formulas, whereas in the case of lists of
lists of formulas, called 2-lists, the notation _;_ is kept. Also, to empha-
size the vertical structure of 2-sequents, the operation length for 2-lists is
renamed to depth.

Now we can define 2-sequents as follows:

fmod 2-SEQUENT is

protecting 2-LIST .

sort 2-Sequent .

op _F_ : 2-List 2-List -> 2-Sequent .
endfm

The basic rules for the modality [ are

r

where I', I, A denote 2-lists, a, 3 denote lists of formulas, and the rule OJ-R
has the side condition that depth(T") < depth(A) + 1, i.e., the formula A is
the only formula in the last level of the 2-sequent.

These rules are represented in rewriting logic as follows.
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mod 2-SEQUENT-RULES is
protecting 2-SEQUENT .
sort Configuration .
subsort 2-Sequent < Configuration .
op empty : -> Configuration .
op __ : Configuration Configuration -> Configuration
[assoc comm id: empty]
vars R R> S : 2-List .

vars L L’ : List .

var A : Form .

rl R;L;L,A;R FS
= e

RFS; L,0A
if depth(R) <= s(depth(S))
endm

The dual rules for the modality ¢ are treated similarly.

This general method of viewing sequents as rewrite rules can even be
applied to systems more general than traditional sequent calculi. Thus, be-
sides the possibilities of being one-sided or two-sided, one-dimensional or
two-dimensional, etc., a “sequent” can for example be a sequent presenta-
tion of natural deduction, a term assignment system, or even any predicate
defined by structural induction in some way such that the proof is a kind
of tree, as for example the operational semantics of CCS given later in
Section 5.3 and any other use of the so-called structural operational seman-
tics (see [Hennessy, 1990] and Section 5.4 later), including type-checking
systems. The general idea is to map a rule in the “sequent” system to a
rewrite rule over a “configuration” of sequents or predicates, in such a way
that the rewriting relation corresponds to provability of such a predicate.

4.6 Reflection in rewriting logic

Clavel and Meseguer have shown in [1996; 1996a] that rewriting logic is
reflective in the sense of Section 2.8. That is, there is a rewrite theory U
with a finite number of operations and rules that can simulate any other
finitely presentable rewrite theory R in the following sense: given any two
terms ¢,¢ in R, there are corresponding terms (R,?) and (R,#') in U such
that we have

REt—t < ULF (RT)— (R,

Moreover, it is often possible to reify inside rewriting logic itself a repre-
sentation map £ — OSRWlLogic for the finitely presentable theories of L.
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Such a reification takes the form of a map between the abstract data types
representing the finitary theories of £ and of OSRWLogic. In this section
we illustrate this powerful idea with the linear logic mapping defined in
Section 4.3.

We have defined a linear theory T as a finite set C' of propositional
constants together with a finite set S of sequents of the form Ay,..., A,
By, ..., By, where each A; and Bj is a linear logic formula built from the
constants in C. Note that with this definition, all linear theories are finitely
presentable. First, we define an abstract data type LL-ADT to represent
linear theories. A linear theory is represented as a term <C | G>, where
C is a list of propositional constants (that is, identifiers), and G is a list of
sequents written in the usual way. Moreover, all the propositional constants
in G must be included in C. To enforce this condition, we use a sort constraint
[Meseguer and Goguen, 1993], which is introduced with the keyword sct
and defines a subsort LLTheory of a sort LLTheory? by means of the given
condition. In the functional module below, we do not give the equations
defining the auxiliary functions const that extracts the constants of a list
of sequents, and the list containment predicate _=<_. These functions are
needed to write down the sort constraint for theories.

fmod LL-ADT is
protecting QID .
sorts Ids Formula Formulas Sequent .
sorts Sequents LLTheory? LLTheory .

subsort Id < Formula .
ops 1 0 L T : -> Formula .

op _®_ : Formula Formula -> Formula .
op _7?_ : Formula Formula -> Formula .
op _®_ : Formula Formula -> Formula .
op _&_ : Formula Formula -> Formula .
op !_ : Formula -> Formula .
op ?_ : Formula -> Formula .
op _1 : Formula -> Formula .

subsort Formula < Formulas .

op null : -> Formulas .

op _,_ : Formulas Formulas -> Formulas [assoc comm id: nulll]
op (_F_) : Formulas Formulas -> Sequent .

subsort Id < Ids .
op nil : -> Ids .
op _,_ : Ids Ids -> Ids [assoc id: nil]

subsort Sequent < Sequents .
op nil : -> Sequents .
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op _,_ : Sequents Sequents -> Sequents [assoc id: nil]
op <_|_> : Ids Sequents -> LLTheory?

var C : Ids
var G : Sequents
sct <C | G> : LLTheory if const(G) =< C .

eq ...
*x* several equations defining the auxiliary operations
**¥*x "const'" and "_=<_" used in the sort constraint condition
eq ...

endfm

An order-sorted rewrite theory has much more structure, and therefore
the corresponding RWL-ADT is more complex, but the basic ideas are com-
pletely similar as we sketch here. First we have an order-sorted signature,
declaring sorts, subsorts, constants, operations, and variables. Then, in
addition, we have equations and rules. Thus, a finitely presentable rewrite
theory is represented as a term <S | E | R>, where S is a term representing
a signature, E is a list of equations, and R is a list of rules. In turn, the term
S has the form <T ; B ; C ; 0 ; V> where each subterm corresponds to
a component of a signature as mentioned before. In addition, several sort
constraints are necessary to ensure for example that the variables used in
equations and rules are included in the list of variables. Just to give the
flavor of the construction, here is a small fragment of the module RWL-ADT,
where we have omitted most of the list constructors, operations to handle
conditional equations and rules, and sort constraints.

sorts Sort Subsort Constant Op Var .
sorts Term Equation Rule Signature RWLTheory .

op sort{_} : Id -> Sort

subsort Sort < Sorts

op nil : -> Sorts

op __ : Sorts Sorts -> Sorts [assoc id: nil]
op (_<.) : Id Id -> Subsort

subsort Subsort < Subsorts

op (cons{_}:sort{_}) : Id Id -> Comstant

subsort Constant < Constants

op nil : -> Constants

op _,_ : Constants Constants -> Sorts [assoc id: nil]

op (op{_}:_->sort{_}) : Id Sorts Id -> Op .
subsort Op < Ops

op (var{_}:sort{_}) : Id Id -> Var .
subsort Var < Vars
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op <_;_;_;_;_> : Sorts Subsorts Constants Ops Vars -> Signature .
subsort Var < Term .
subsort Constant < Term .

subsort Term < Terms .

op nil : -> Terms .
op op{_}[_] : Id Terms -> Term .
op _,_ : Terms Terms -> Terms [assoc id: nil]

op (_=_) : Term Term -> Equation .

subsort Equation < Equations .

op (_=>_) : Term Term -> Rule .

subsort Rule < Rules .

op <_|I_I_> : Signature Equations Rules -> RWLTheory .

Having defined the abstract data types to represent both linear and
rewrite theories, we define a function ® mapping a term in LLTheory rep-
resenting a linear theory T to a term in RWLTheory representing the cor-
responding rewrite theory LINLOG(T) as defined in Section 4.3. First note
that the rewrite theory LINLOG presented in Section 4.3 gives rise to a term
in RWLTheory that we denote

<<Trr ; Brr ;3 Crr ;3 Ozr ;3 Ver> | Err | Rpr>.

The representation <C | F1 + G1,...,Fn F Gn> of a linear logic theory is
then mapped by @ to the following term

<<Trr ; Brr ;3 cons(C),Crr ; Orr 3 Vo> | Enp |
Rrr, ([tensor(F1)] => [par(G1)]),...,
([tensor(Fn)] => [par(Gn)])>

where the auxiliary operations cons, tensor and par are defined as follows,
and correspond exactly to the description in Section 4.3.

op tensor : Formulas -> Formula .
op par : Formulas -> Formula .
op cons : Ids -> Constants .

var F : Formula . vars F1 F2 : Formulas .
var I : Id . var L : Ids .

eq tensor(null) = 1 .

eq tensor(F) = F .

eq tensor(F1,F2) = tensor(F1) ® tensor(F2)
eq par(null) = 1 .

eq par(F) = F .

eq par(F1,F2) = par(F1) %% par(F2)

eq cons(nil) = nil .

eq cons(I,L) = (cons{I}:sort{Atom}),cons(L)
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We can summarize the reification ® : LL-ADT — RWL-ADT of the map of
logics ® : LinLogic — OSRW Logic we have just defined by means of the
following commutative diagram:

LL-ADT ® RWL-ADT

LinLogicTh ®

OSRW LogicTh

This method is completely general, in that it should apply to any ef-
fectively presented map of logics ¥ : L — RWLogic that maps finitely
presentable theories in £ to finitely presentable theories in rewriting logic.
Indeed, the effectiveness of ¥ should exactly mean that the corresponding
W : L-ADT — RWL-ADT is a computable function and therefore, by the
metatheorem of Bergstra and Tucker [1980], that it is specifiable by a finite
set of Church-Rosser and terminating equations inside rewriting logic.

5 REWRITING LOGIC AS A SEMANTIC FRAMEWORK

After an overview of rewriting logic as a general model of computation that
unifies many other existing models, the cases of concurrent object-oriented
programming and of Milner’s CCS are treated in greater detail. Structural
operational semantics is discussed as a specification formalism similar in
some ways to rewriting logic, but more limited in its expressive capabilities.
Rewriting logic can also be very useful as a semantic framework for many
varieties of constraint solving in logic programming and in automated de-
duction. Finally, the representation of action and change in rewriting logic
and the consequent solution of the “frame problem” difficulties associated
with standard logics are also discussed.

5.1 Generality of rewriting logic as a model of computation

Concurrent, rewriting is a very general model of concurrency from which
many other models can be obtained by specialization. Except for concur-
rent objet-oriented programming and CCS that are further discussed in
Sections 5.2 and 5.3, respectively, we refer the reader to [Meseguer, 1992;
Meseguer, 1996] for a detailed discussion of the remaining models, and
summarize here such specializations using Figure 1, where RWL stands for
rewriting logic, the arrows indicate specializations, and the subscripts (), AT
and ACI stand for syntactic rewriting, rewriting modulo associativity and
identity, and rewriting modulo associativity, commutativity, and identity,
respectively.
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Within syntactic rewriting we have labelled transition systems, which are
used in interleaving approaches to concurrency; functional programming (in
particular Maude’s functional modules) corresponds to the case of conflu-
ent'® rules, and includes the lambda calculus and the Herbrand-Godel-
Kleene theory of recursive functions. Rewriting modulo A yields Post
systems and related grammar formalisms, including Turing machines. Be-
sides the general treatment by ACI-rewriting of concurrent object-oriented
programming, briefly described in Section 5.2, that contains Actors [Agha,
1986), neural networks, graph rewriting, and the dataflow model as a spe-
cial case [Meseguer, 1996], rewriting modulo ACT includes Petri nets [Reisig,
1995], the Gamma language of Banatre and Le Metayer [1990], and Berry
and Boudol’s chemical abstract machine [1992] (which itself specializes to
CCS [Milner, 1989]; see [Berry and Boudol, 1992] and also the treatment in
Section 5.3), as well as Unity’s model of computation [Chandy and Misra,
1988].

The ACI case is quite important, since it contains as special subcases
a good number of concurrency models that have already been studied. In
fact, the associativity and commutativity of the axioms appear in some of
those models as “fundamental laws of concurrency.” However, from the per-
spective of this work the ACI case, while being important and useful, does
not have a monopoly on the concurrency business. Indeed, “fundamental
laws of concurrency” expressing associativity and commutativity are only
valid in this particular case. They are for example meaningless for the
tree-structured case of functional programming. The point is that the laws
satisfied by a concurrent system cannot be determined a priori. They es-
sentially depend on the actual distributed structure of the system, which is
its algebraic structure.

5.2 Concurrent object-oriented programming

Concurrent object-oriented programming is a very active area of research.
An important reason for this interest is the naturalness with which this style
of programming can model concurrent interactions between objects in the
real world. However, the field of concurrent object-oriented programming
seems at present to lack a clear, agreed-upon semantic basis.

Rewriting logic supports a logical theory of concurrent objects that ad-
dresses these conceptual needs in a very direct way. We summarize here
the key ideas regarding Maude’s object-oriented modules; a full discus-
sion of Maude’s object-oriented aspects can be found in [Meseguer, 1993;
Meseguer, 1993b].

An object in a given state can be represented as a term

13 Although not reflected in the picture, rules confluent modulo equations E are also
functional.
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<0D:Clal:vil, ... , an : vn >

where 0 is the object’s name, belonging to a set 0Id of object identifiers,
C is its class, the ai’s are the names of the object’s attributes, and the
vi’s are their corresponding values, which typically are required to be in a
sort, appropriate for their corresponding attribute. The configuration is the
distributed state of the concurrent object-oriented system and is represented
as a multiset of objects and messages according to the following syntax:

subsorts Object Message < Configuration .
op __ : Configuration Configuration -> Configuration
[assoc comm id: nulll

where the operator __ is associative and commutative with identity null
and is interpreted as multiset union, and the sorts Object and Message
are subsorts of Configuration and generate data of that sort by multiset
union. The system evolves by concurrent ACI-rewriting of the configuration
by means of rewrite rules specific to each particular system, whose lefthand
and righthand sides may in general involve patterns for several objects and
messages. By specializing to patterns involving only one object and one
message, we can obtain an abstract, declarative, and truly concurrent ver-
sion of the Actor model [Agha, 1986] (see [Meseguer, 1993, Section 4.7]).

Maude’s syntax for object-oriented modules is illustrated by the object-
oriented module ACCNT below which specifies the concurrent behavior of ob-
jects in a very simple class Accnt of bank accounts, each having a bal(ance)
attribute, which may receive messages for crediting or debiting the account,
or for transferring funds between two accounts. We assume an already de-
fined functional module INT for integers with a subsort relation Nat < Int
and an ordering predicate _>=_.

After the keyword class, the name of the class (Accnt in this case) is
given, followed by a “|” and by a list of pairs of the form a : S separated
by commas, where a is an attribute identifier and S is the sort inside which
the values of such an attribute identifier must range in the given class.
In this example, the only attribute of an account is its bal(ance), which is
declared to be a value in Nat. The three kinds of messages involving accounts
are credit, debit, and transfer messages, whose user-definable syntax is
introduced by the keyword msg. The rewrite rules specify in a declarative
way the behavior associated to the credit, debit, and transfer messages.

omod ACCNT is
protecting INT .
class Accnt | bal : Nat .
msgs credit debit : 0Id Nat -> Msg .
msg transfer_from_to_ : Nat 0Id 0Id -> Msg .

vars A B : 0Id .
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s M N N’ : Nat
credit(A,M) < A : Accnt | bal: N >
=> < A : Accnt | bal: N + M > .
debit(A,M) < A : Accnt | bal: N >
=> < A : Accnt | bal: N - M > if N >= M .
transfer M from A to B
< A : Accnt | bal: N > < B : Accnt | bal: N’ >
=> < A : Accnt | bal: N - M > < B : Accnt | bal: N> + M >
if N > M .

-

(

Peter:Accnt|bal:30
debit (Peter,200)

¢

debit (Paul,50)
Paul:Accnt|bal:250

)
)

N

debit (Peter,150)

(

credit (Paul,300)

Mary:Accnt|bal:1250
credit(Mary,100)

)

-

N

<Paul:Accnt|bal:200>

debit (Peter,150)

~

<Peter:Accnt|bal:100>

credit (Paul,300)

<Mary:Accnt|bal:1350>

/

Figure 2. Concurrent rewriting of bank accounts.
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The multiset structure of the configuration provides the top level dis-
tributed structure of the system and allows concurrent application of the
rules. For example, Figure 2 provides a snapshot in the evolution by concur-
rent rewriting of a simple configuration of bank accounts. To simplify the
picture, the arithmetic operations required to update balances have already
been performed. However, the reader should bear in mind that the values in
the attributes of an object can also be computed by means of rewrite rules,
and this adds yet another important level of concurrency to a concurrent
object-oriented system, which might be called intra-object concurrency.

Intuitively, we can think of messages as “traveling” to come into contact
with the objects to which they are sent and then causing “communication
events” by application of rewrite rules. In rewriting logic, this traveling is
accounted for in a very abstract way by the ACI structural axioms. This
abstract level supports both synchronous and asynchronous communication
and provides great freedom and flexibility to consider a variety of alternative
implementations at lower levels.

Although Maude provides convenient syntax for object-oriented modules,
the syntax and semantics of such modules can be reduced to those of system
modules, i.e., we can systematically translate an object-oriented module
omod O endom into a corresponding system module mod O# endm, where
O%# is a theory in rewriting logic. A detailed account of this translation
process can be found in [Meseguer, 1993].

5.3 CCS

Milner’s Calculus of Communicating Systems (CCS) [Milner, 1980; Milner,
1989; Milner, 1990] is among the best well-known and studied concurrency
models, and has become the paradigmatic example of an entire approach
to “process algebras.” We just give a very brief introduction to CCS, refer-
ring the reader to Milner’s book [1989] for motivation and a comprehensive
treatment, before giving two alternative formulations of CCS in rewriting
logic and showing the conservativity of these formulations.

We assume a set A of names; the elements of the set A = {a | a € A}
are called co-names, and the members of the (disjoint) union £ = AU A are
labels naming ordinary actions. The function a — @ is extended to £ by
defining @ = a. There is a special action called silent action and denoted T,
intended to represent internal behaviour of a system, and in particular the
synchronization of two processes by means of actions a and @. Then the set
of actions is LU {r}. The set of processes is intuitively defined as follows:

e 0 is an inactive process that does nothing.

e If o is an action and P is a process, a.P is the process that performs
a and subsequently behaves as P.
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e If P and @ are processes, P + () is the process that may behave as
either P or Q.

e If P and @) are processes, P|Q represents P and ) running concur-
rently with possible communication via synchronization of the pair of
ordinary actions a and @.

e If P is a process and f : £L — L is a relabelling function such that
f(@) = f(a), P[f]is the process that behaves as P but with the actions
relabelled according to f, assuming f(7) = 7.

e If P is a process and L C L is a set of ordinary actions, P\L is the
process that behaves as P but with the actions in L U L prohibited.

e If P is a process, I is a process identifier, and I =4 P is a defining
equation where P may recursively involve I, then [ is a process that
behaves as P.

This intuitive explanation can be made precise in terms of the following
structural operational semantics that defines a labelled transition system
for CCS processes.

Action:
a.P %P
Summation:
P2 P Q-5 Q'
P+Q -5 P P+Q -5 Q'
Composition:
P> P Q-5 Q'
PIQ 5 PQ PIQ 5 PIQ/
P-5P  Q-%Q
P|Q — P'|Q'
Relabelling:
PP
fla
P11 P
Restriction:

P2 p

—————— a¢LUL
P\L % P'\L



REWRITING LOGIC AS A LOGICAL AND SEMANTIC FRAMEWORK 61

Definition:
PP
j—y

I =4 P

We now show how CCS can be described and given semantics in rewriting
logic. The following modules have been motivated by, but are considerably
different from, the corresponding examples in [Meseguer et al., 1992].

fth LABEL is

sort Label . **x ordinary actions
op "_ : Label -> Label
var N : Label .
eq "N =N .
endft

-—- an action is the silent action or a label
fmod ACTION[X :: LABEL] is

sort Act

subsort Label < Act

op tau : -> Act . *xx silent action
endfm

fth PROCESSID is

sort ProcessId . *x*% process identifiers
endft
--- CCS syntax

fmod PROCESS[X :: LABEL, Y :: PROCESSID] is
protecting ACTION[X]
sort Process
subsort ProcessId < Process

op 0 : -> Process . *** inaction

op _._ : Act Process -> Process . **x prefix

op _+_ : Process Process -> Process [assoc comm idem id: 0]
*%*% summation

op _|_ : Process Process -> Process [assoc comm id: 0]
*** composition

op _[_/_]1 : Process Label Label -> Process

**+x relabelling: [b/a] relabels "a" to "b"
op _\_ : Process Label -> Process . ***x restriction

endfm

Before defining the operational semantics of CCS processes, we need an
auxiliary module in order to build contexts in which process identifiers can
be associated with processes, providing in this way recursive definitions
of processes. A sort constraint [Meseguer and Goguen, 1993], which is
introduced with the keyword sct and defines a subsort Context by means
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of a condition, is used to enforce the requirement that the same process
identifier cannot be associated with two different processes in a context.

--- defining equations and contexts

fmod CCS-CONTEXT[X :: LABEL, Y :: PROCESSID] is
protecting PROCESS[X,Y]
sorts Def Context Context? .
subsorts Def < Context < Context? .
op (L =def _) : ProcessId Process -> Def .
protecting LIST[ProcessId]l*(op _;_ to __)
protecting LIST[Def]l*(sort List to Context?)
op nil : -> Context .
op pid : Context? -> List .

var X : ProcessId . var P : Process
var C : Context . vars D D’ : Context? .

eq pid(nil) = nil .

eq pid((X =def P)) = X .

eq pid(D;D’) = pid(D) pid(D’)

sct (X =def P);C : Context if mot(X in pid(C))
endfm

The semantics of CCS processes is usually defined relative to a given con-
text that provides defining equations for all the necessary process identifiers
[Milner, 1989, Section 2.4]. The previous module defines the data type of
all contexts. We now need to parameterize the module defining the CCS
semantics by the choice of a context. This is accomplished by means of the
following theory that picks up a context in the sort Context.

fth CCS-CONTEXT*[X :: LABEL, Y :: PROCESSID] is
protecting CCS-CONTEXTI[X,Y]
op context : -> Context

endft

As in the case of linear logic, we have two possibilities in order to write
the operational semantics for CCS by means of rewrite rules. On the one
hand, we can interpret a transition P — P’ as a rewrite, so that the above
operational semantics rules become conditional rewrite rules. On the other
hand, the transition P —— P’ can be seen as a term, forming part of a
configuration, in such a way that the semantics rules correspond to rewrite
rules, as a particular case of the general mapping of sequent systems into
rewriting logic that we have presented in Section 4.5.

--- CCS transitions
mod CCS1[X :: LABEL, Y :: PROCESSID, C :: CCS—-CONTEXT*[X,Y]] is
sort ActProcess
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subsort Process < ActProcess .
op {_}_ : Act ActProcess -> ActProcess .
*+* {A}P means action A has been performed thus becoming process P

vars P P’ Q Q’ : Process . vars L M : Label .

var X : ProcessId . var A : Act .

**%* Prefix
rl A . P => {A}P .

*%*% Summation
crl P + Q => {A}p> if P => {A}P’

**x Composition
crl P | Q => {A}(P’> | Q) if P => {A}P’
crl P | Q => {tau}(P’ | Q’) if P => {L}P’ and Q => {"L}Q’

*x* Restriction
crl P \ L => {A}(P’ \ L)
if P => {A}JP’ and not(A == L) and not(A == "L)

*x* Relabelling
crl P(M / L] => {M}(P°M / L]) if P => {L}P’
crl P[M / L1 => {"M}(P’[M / L1) if P => {"L}P’
crl PIM / L1 => {A}(P’[M / L)

if P => {A}JP’ and not(A == L) and not(A

= L)

*xx Definition
crl X => {A}P> if (X =def P) in context and P => {A}P’
endm

In the above module, the rewrite rules have the property of being sort-
increasing, i.e., in a rule [t] — [¢] the least sort of [¢] is bigger than the
least sort of [t]. Thus, one rule cannot be applied unless the resulting term
is well-formed. This prevents, for example, rewrites of the following form:

{8} | @ — {A}({B}P’ | {C}Q")

because the term on the righthand side is not well formed according to the
order-sorted signature of the module CCS1[X,Y,C[X,Y]]. More precisely,
the Congruence rule of order-sorted rewriting logic, like the corresponding
rule of order-sorted algebra [Goguen and Meseguer, 1992], cannot be applied
unless the resulting term f(¢1,...,¢,) is well formed according to the given
order-sorted signature. To illustrate this point further, although A.P —»
{A}P is a correct instance of the Prefix rewrite rule, we cannot use the
Congruence rule to derive

(A.P) | @ — ({A}P) | Q



64 NARCISO MARTI-OLIET AND JOSE MESEGUER

because the second term ({A}P) | Q is not well formed.

The net effect of this restriction is that an ActProcess term of the form
{A1}...{Ak}P can only be rewritten into another term of the same form
{a1}...{Ak}{B}P’, assuming that P — {B}P’ is a CCS1[X,Y,C[X,Y]]-
rewrite. As another example, a process of the form A.B.P can be rewrit-
ten first into {A}B.P and then into {A}{B}P, but cannot be rewritten into
A.{B}P, because this last term is not well formed. After this discussion, it
is easy to see that we have the following conservativity result.

THEOREM 16. Given a CCS process P, there are processes Py, ..., Py_1
such that .
PP 5P, P

if and only if P can be rewritten into {al}...{ak}P’ using the rules in the
module CCS1[X,Y,C[X,Y]].

Note also that, since the operators _+_and _| _ are declared commutative,
one rule is enough for each one, instead of the two rules in the original
presentation. On the other hand, we need three rules for relabelling, due to
the representation of the relabelling function.

Let us consider now the second possibility, using the same idea described
in Section 4.5 for the linear logic sequent calculus, that, as we have al-
ready mentioned there, is applicable to many more cases, with a very broad
understanding of the term “sequent.”

--— CCS operational semantics
mod CCS2[X :: LABEL, Y :: PROCESSID, C :: CCS-CONTEXT*[X,Y]] is
sort Configuration .

op (_:_—=>_) : Act Process Process -> Configuration .
op empty : -> Configuration .
op __ : Configuration Configuration -> Configuration

[assoc comm id: empty]
***x a configuration is a multiset of transitions

vars P P’ Q Q’ : Process . vars L M : Label .

var X : ProcessId . var A : Act .

*x*k Prefix
rl empty

**%* Summation
rl (A :P-->P)

(A :P+Q -->P?)
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kK
rl

rl

* %k
crl

kK
rl

rl

crl

* %k
crl

endm

Composition
(A : P-—>P)
=
@A:PlQ-—>P | Q
(L:P-->P)CL :Q -—> Q)
= -
(tau : P | Q --> P’ | Q)
Restriction
(A : P-—>P)
=>
(A :P \ L --> P’ \ L)
if not(A == L) and mnot(A == "L)
Relabelling
(L:P-—>P)
=
M:PM/ L] -->P[M /LD
"L P -——> P’)
=
("M : P[M /L] -->P°[M / L]
(A P -——> P’)
=
(A :PM/L] -—>P°[M/ L]
if mnot(A == L) and mnot(A == ~L)
Definition
(A : P-—>P)
=>

(A :X-->P)
if (X =def P) in context .
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Except for the difference in the number of rules for some operators, as
already pointed out above for the module CCS1[X,Y,C[X,Y]], this presen-
tation is closer to the original one, and therefore the following conservativity
result is immediate.

THEOREM 17. For CCS processes P and P’', a transition P A Pis
possible according to the structural operational semantics of CCS if and

only if

empty — (A : P -=> P’)

is provable in rewriting logic from the rewrite theory CCS2[X,Y,C[X,Y]].
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5.4 Structural operational semantics

Structural operational semantics is an approach originally introduced by
Plotkin [1981] in which the operational semantics of a programming lan-
guage is specified in a logical way, independent of machine architecture or
implementation details, by means of rules that provide an inductive defini-
tion based on the structure of the expressions in the language. We refer the
reader to Hennessy’s book [1990] for a clear introduction to this subject.
Within “structural operational semantics,” two main approaches coexist:

e Big-step semantics (also called natural semantics by Kahn [1987],
Gunter [1991], and Nielson and Nielson [1992], and evaluation se-
mantics by Hennessy [1990]). In this approach, the main inductive
predicate describes the overall result or value of executing a compu-
tation until its termination. For this reason, it is not well suited for
languages like CCS where most programs are not intended to be ter-
minating.

e Small-step semantics (also called structural operational semantics by
Plotkin [1981], and Nielson and Nielson [1992], computation semantics
by Hennessy [1990], and transition semantics by Gunter [1991]). In
this approach, the main inductive predicate describes in more detail
the execution of individual steps in a computation, with the overall
computation roughly corresponding to the transitive closure of such
small steps. The structural operational semantics of CCS presented
at the beginning of Section 5.3 is an example.

Both big-step and small-step approaches to structural operational seman-
tics can be naturally expressed in rewriting logic:

e Big-step semantics can be seen as a particular case of the mapping of
sequent systems described in Section 4.5, where semantics rules are
mapped to rewrite rules over a “configuration” of sequents or predi-
cates, and the rewriting relation means provability of such a predicate.

e Small-step semantics corresponds to the use of conditional rewrite
rules, where a rewrite ¢ — t' means a transition or computation step
from a state ¢ to a new state ¢’ as in the explanation of rewriting logic
given in Section 3.3. This is illustrated by the CCS1[X,Y,C[X,Y]]
example in Section 5.3. However, as the CCS2[X,Y,C[X,Y]] example
shows, the technique of sequent systems of Section 4.5 can also be
used in this case.

Since the CCS example has already been discussed in detail in Section 5.3,
we give here another example, describing the operational semantics of the
functional language Mini-ML taken with slight modifications from Kahn’s
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paper [1987]. The first thing to point out about this example is that the
specification of a language’s syntax is outside of the structural operational
semantics formalism. By contrast, thanks to the order-sorted type structure
of rewriting logic, such specification is now given by a functional module in
Maude, as follows:

fmod NAT-TRUTH-VAL is

sort Nat

op 0 : -> Nat

op s : Nat -> Nat

sort TruthVal

ops true false : -> TruthVal
endfm

--- syntax: values, patterns and expressions
fmod ML-SYNTAX[X :: VAR] is

protecting NAT-TRUTH-VAL

sorts Exp Value Pat NullPat Lambda .

subsorts NullPat Var < Pat

op () : -> NullPat

op (_,_) : Pat Pat -> Pat

subsorts TruthVal Nat NullPat < Value
op (_,_) : Value Value -> Value .
subsorts Value Var Lambda < Exp .

op s : Exp -> Exp .

op _+_ : Exp Exp -> Exp [comm]

op not : Exp -> Exp .

op _and_ : Exp Exp -> Exp .

op if_then_else_ : Exp Exp Exp -> Exp .
op (_,.) : Exp Exp -> Exp .

op __ : Exp Exp -> Exp .

op A_._ : Pat Exp -> Lambda .

op let_=_in_ : Pat Exp Exp -> Exp .

op letrec_=_in_ : Pat Exp Exp -> Exp .
endfm

--- environments are lists of pairs pattern-value
fmod AUX[X :: VAR] is

protecting ML-SYNTAX[X]

sort Pair .

op <_,_> : Pat Value -> Pair .
protecting LIST[Pair]#*(sort List to Env, op _;_ to __)
op Clos : Lambda Env -> Value

endfm

The following module constitutes a direct translation of the natural se-
mantics specification for Mini-ML given by Kahn in [1987], using the general
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technique for sequent systems introduced in Section 4.5. Note that the natu-
ral semantics rules are particularly well suited for Prolog search, and indeed
they are so executed in the system described in [Kahn, 1987].

-—- natural semantics a la Kahn
mod ML-NAT-SEMANT[X :: VAR] is
including AUX[X]
sort Config .

op (_I-_-->_) : Env Exp Value -> Config .

op empty : -> Config .

op __ : Config Config -> Config [assoc comm id: empty]
vars V W : Env . vars E F G : Exp .

vars X Y : Var . vars P Q : Pat .

vars A B C : Value . vars N M : Nat .

var T : TruthVal .

*** Variables
rl empty

((V <X,A>) |- X -—> Q).
crl VI-X-->14)

((V <Y,B>) |- X -—> A)
if not(X == 1Y)

rl (V <P,A> <Q,B> |- X -—> ©)
(Vv <(P,Q),(A,B)> |- X -=> ()

**x Arithmetic expressions
rl empty

Vi-0-->0
rl (V |- E --> 4)
(V I- s(E) -—> s(B))
crl (V|- E--> A |- F --> B)

(V I-E+F -->0)
if A+B=>C.

rl 0+ N=>N.
rl s(N) + s(M) => s(s(N + M))
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***x Boolean expressions

rl empty
=>
(V |- true --> true)
rl empty
= e

(V |- false --> false)
rl (V |- E -=> true)
(V |- not(E) --> false)
rl (V |- E --> false)
(V |- not(E) --> true)
crl (V|- E --> A)(V |- F --> B)

(V |- E and F --> C)
if (A and B) => C .

rl T and true => T .
rl T and false => false .

*xx Conditional expressions
rl (V |- E --> true)(V |- F -=> A)

(V |- if E then F else G ——> A)
rl (V |- E --> false)(V |- G -—> A)
(V |- if E then F else G --> A)

*xx Pair expressions
rl empty

wiI-0-->0)
rl (V |I-E--> A |- F -->B)
(Vv |- (E,F) --> (A4,B))

*x* Lambda expressions
rl empty

(V |- AP.E --> Clos(AP.E,V))

69
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rl (V |- E --> Clos(AP.G,W))(V |- F --> A) (W <P,A> |- G --> B)

**xx Let and letrec expressions
rl (VI|-F-—> A <P,A> |- E --> B)

(V|- 1let P=F in E --> B)
rl (V <P,A> |- F -=> A)(V <P,A> |- E --> B)

(V |- letrec P = F in E --> B)
endm

The following module gives an alternative description of the semantics of
the Mini-ML language in terms of the small-step approach. The rules can be
directly used to perform reduction on Mini-ML expressions, and therefore
constitute a very natural functional interpreter for the language.

--— sos semantics

mod ML-SOS-SEMANT[X :: VAR] is
including AUX[X]
op [[_.11_ : Exp Env -> Value .

vars V W : Env . vars EF G : Exp .
vars X Y : Var . vars P Q : Pat .
vars A B : Value .

*x* Variables

rl [[X]](V <X,A>) => A .

crl [[XI1(V <Y,B>) => [[X]1V if not(X == 1Y)

rl [[X1]1(V <(P,Q),(A,B)>) => [[X]]1(V <P,A> <Q,B>)

**x Arithmetic expressions

rl 0+ E=>E .

rl s(E) + s(F) => s(s(E + F))

rl [[011V => 0 .

rl [[s(E)11Vv => s([[E]]IV)

rl [[E + F11V => [[E]]1V + [[FI1V .

***x Boolean expressions
rl not(false) => true .
rl not(true) => false .
rl E and true => E .

rl E and false => false .
rl [[true]llV => true .

rl [[false]lV => false .
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rl [[not(E)]1V => not ([[E]]V)
rl [[E and F11V => [[E]]V and [[F]]V .

*x* Conditional expressions

rl if true then E else F => E .

rl if false then E else F => F .

rl [[if E then F else Gl1V => if [[E]]V then [[F11V else [[G]I1V .

**x Pair expressions
rl [[OIIV => O
rl [[(E,F)1IV => (L[E]]V, [[F11V)

**x Lambda expressions

rl [[AP.E]]V => Clos(AP.E,V)

rl [[E F11v => [[EI]1vV [[F11V .

rl Clos(AP.E,W) [[F11V => [[E]1]1(W <P, [[F11V>)

**x*x Let and letrec expressions
rl [[let P = E in F11V => [[F11(V <P, [[E]]V>)
crl [[letrec P = E in F]1V => [[F]](V <P,A>)
if [[EI1((V <P,A>) => A .
endm

This concludes our discussion of structural operational semantics. Com-
pared with rewriting logic, one of its limitations is the lack of support for
structural axioms yielding more abstract data representations. Therefore,
the rules must follow a purely syntactic structure, and more rules may in
some cases be necessary than if an abstract representation had been cho-
sen. In the case of multiset representations (corresponding to associativity,
commutativity, and identity axioms), this has led Milner to favor multiset
rewriting presentations [Milner, 1992] in the style of the chemical abstract
machine of Berry and Boudol [1992] over the traditional syntactic presen-
tation of structural operational semantics.

5.5 Constraint solving

Deduction can in many cases be made much more efficient by making use
of constraints that can drastically reduce the search space, and for which
special purpose constraint solving algorithms can be much faster than the
alternative of expressing everything in a unique deduction mechanism such
as some form of resolution.

Typically, constraints are symbolic expressions associated with a par-
ticular theory, and a constraint solving algorithm uses intimate knowledge
about the truths of the theory in question to find solutions for those ex-
pressions by transforming them into expressions in solved form. One of
the simplest examples is provided by standard syntactic unification—the



72 NARCISO MARTI-OLIET AND JOSE MESEGUER

constraint solver for resolution in first-order logic without equality and in
particular for Prolog—where the constraints in question are equalities be-
tween terms in a free algebra, i.e., in the so-called Herbrand universe. There
are however many other constraints and constraint solving algorithms that
can be used to advantage in order to make the representation of problems
more expressive and logical deduction more efficient. For example,

e Semantic unification (see for example the survey by Jouannaud and
Kirchner [1991]), which corresponds to solving equations in a given
equational theory.

e Sorted unification, either many-sorted or order-sorted [Walther, 1985;
Walther, 1986; Schmidt-Schauss, 1989; Meseguer et al., 1989; Smolka,
et al., 1989; Jouannaud and Kirchner, 1991], where type constraints
are added to variables in equations.

e Higher-order unification [Huet, 1973; Miller, 1991], which corresponds
to solving equations between \-expressions.

e Disunification [Comon, 1991], which corresponds to solving not only
equalities but also negated equalities.

e Solution of equalities and inequalities in a theory, as for example the
solution of numerical constraints built into the constraint logic pro-
gramming language CLP(R) [Jaffar and Lassez, 1987] and in other
languages.

A remarkable property shared by most constraint-solving processes, and
already implicit in the approach to syntactic unification problems proposed
by Martelli and Montanari [1982], is that the process of solving constraints
can be naturally understood as one of applying transformations to a set or
multiset of constraints. Furthermore, many authors have realized that the
most elegant and simple way to specify, prove correct, or even implement
many constraint solving problems is by expressing those transformations as
rewrite rules (see for example [Goguen and Meseguer, 1988; Jouannaud and
Kirchner, 1991; Comon, 1990; Comon, 1991; Nipkow, 1993]). In particular,
the survey by Jouannaud and Kirchner [1991] makes this viewpoint the
cornerstone of a unified conceptual approach to unification.

For example, the so-called decomposition transformation present in syn-
tactic unification and in a number of other unification algorithms can be
expressed by a rewrite rule of the form

rl f(t1,...,tn) =7= £(¢t’1,...,t’n)
=> (t1 =7= t’1) ... (tn =7= t’n)

where in the righthand side multiset union has been expressed by juxtapo-
sition.
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Although the operational semantics of such rewrite rules is very obvious
and intuitive, their logical or mathematical semantics has remained am-
biguous. Although appeal is sometimes made to equational logic as the
framework in which such rules exist, the fact that many of these rules are
nondeterministic, so that, except for a few exceptions such as syntactic uni-
fication, there is in general not a unique solution but rather a, sometimes
infinite, set of solutions, makes an interpretation of the rewrite rules as
equations highly implausible and potentially contradictory.

We would like to suggest that rewriting logic provides a very natural
framework in which to interpret rewrite rules of this nature and, more gen-
erally, deduction processes that are nondeterministic in nature and involve
the exploration of an entire space of solutions. Since in rewriting logic
rewrite rules go only in one direction and its models do not assume either
the identification of the two sides of a rewrite step, or even the possible
reversal of such a step, all the difficulties involved in an equational inter-
pretation disappear.

Such a proposed use of rewriting logic for constraint solving and con-
straint programming seems very much in the spirit of recent rewrite rule
approaches to constrained deduction such as those of C. Kirchner, H. Kirch-
ner, and M. Rusinovitch [1990] (who use a general notion of constraint lan-
guage proposed by Smolka [1989]), Bachmair, Ganzinger, Lynch, and Sny-
der [1992], Nieuwenhuis and Rubio [1992], and Giunchiglia, Pecchiari, and
Talcott [1996]. In particular, the ELAN language of C. Kirchner, H. Kirch-
ner, and M. Vittek [1995] (see also [Borovansky et al., 1996]) proposes an
approach to the prototyping of constraint solving languages similar in some
ways to the one that would be natural using a Maude interpreter.

Exploring the use of rewriting logic as a semantic framework for lan-
guages and theorem-proving systems using constraints seems a worthwhile
research direction not only for systems used in automated deduction, but
also for parallel logic programming languages such as those surveyed in
[Shapiro, 1989], the Andorra language [Janson and Haridi, 1991], concur-
rent constraint programming [Saraswat, 1992], and the Oz language [Henz
et al., 1995].

5.6 Action and change in rewriting logic

In the previous sections, we have shown the advantages of rewriting logic as a
logical framework in which other logics can be represented, and as a semantic
framework for the specification of languages and systems. We would like
the class of systems that can be represented to be as wide as possible, and
their representation to be as natural and direct as possible. In particular, an
important point that has to be considered is the representation of action and
change in rewriting logic. In our paper [Marti-Oliet and Meseguer, 1999], we
show that rewriting logic overcomes the frame problem, and subsumes and
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unifies a number of previously proposed logics of change. In this section,
we illustrate this claim by means of an example, referring the reader to the
cited paper for more examples and discussion.

The frame problem [McCarthy and Hayes, 1969; Hayes, 1987; Janlert,
1987] consists in formalizing the assumption that facts are preserved by an
action unless the action explicitly says that a certain fact becomes true or
false. In the words of Patrick Hayes [1987],

“There should be some economical and principled way of suc-
cintly saying what changes an action makes, without having to
explicitly list all the things it doesn’t change as well [...]. That
is the frame problem.”

Recently, some new logics of action and change have been proposed,
among which we can point out the approach of Hélldobler and Schneeberger
[1990] (see also [Grofle et al., 1996; GroBe et al., 1992]), based on Horn
logic with equations, and the approach of Masseron, Tollu, and Vauzeilles
[1990; 1993], based on linear logic. The main interest of these formalisms is
that they need not explicitly state frame axioms, because they treat facts as
resources which are produced and consumed. Having proved in Sections 4.2
and 4.3, respectively, that Horn logic with equations and linear logic can
be conservatively mapped into rewriting logic, it is not surprising that the
advantages of the two previously mentioned approaches are also shared by
rewriting logic. In particular, the rewriting logic rules automatically take
care of the task of preserving context, making unnecessary the use of any
frame axioms stating the properties that do not change when a rule is ap-
plied to a certain state.

We illustrate this point by means of a blocksworld example, borrowed
from [Holldobler and Schneeberger, 1990; Masseron et al., 1990].

fth BLOCKS is
sort BlockId .
endft

mod BLOCKWORLD[X :: BLOCKS] is
sort Prop .

op table : BlockId -> Prop . *x% block is on the table

op on : BlockId BlockId -> Prop . ***x block A is on block B

op clear : BlockId -> Prop . *x* block is clear

op hold : BlockId -> Prop . **%* robot hand is holding block
op empty : -> Prop . **% robot hand is empty

sort State .

subsort Prop < State .
op 1 : -> State .
op _®_ : State State -> State [assoc comm id: 1]
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Figure 3. Two states of a blocksworld.

vars X Y : BlockId .
rl pickup(X) : empty ® clear(X) ® table(X) => hold(X)
rl putdown(X) : hold(X) => empty ® clear(X) ® table(X)
rl unstack(X,Y) : empty ® clear(X) ® on(X,Y)
=> hold(X) ® clear(Y)
rl stack(X,Y) : hold(X) ® clear(Y)
=> empty ® clear(X) ® on(X,Y)
endm

In order to create a world with three blocks {a,b,c}, we consider the
following instantiation of the previous parameterized module.

fmod BLOCKS3 is

sort BlockId .

ops a b ¢ : -> BlockId .
endfm

make WORLD is BLOCKWORLD[BLOCKS3] endmk

Consider the states described in Figure 3; the state I on the left is the
initial one, described by the following term of sort State in the rewrite
theory (Maude program) WORLD

empty ® clear(c) ® clear(b) ® table(a) ® table(b) ® on(c,a)
Analogously, the final state F' on the right is described by the term
empty ® clear(a) ® table(c) ® on(a,b) ® on(b,c)

The fact that the plan

unstack(c,a) ;putdown(c) ; pickup(b) ;stack(b,c) ;pickup(a);stack(a,b)
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moves the blocks from state I to state F' corresponds directly to the following
WORLD-rewrite (proof in rewriting logic), where we also show the use of the
structural axioms of associativity and commutativity:

empty ® clear(c) ® clear(b) ® table(a) ® table(b) ® on(c,a)

empty ® clear(c) ® on(c,a) ® clear(b) ® table(a) ® table(b)

— Cong[Repl[unstack(c,a)], Refl]
hold(c) ® clear(a) ® clear(b) ® table(a) ® table(b)
— Cong[Repl[putdown(c)], Refl]

empty ® clear(c) ® table(c) ® clear(a) ® clear(b) ®
table(a) ® table(b)

empty ® clear(b) ® table(b) ® clear(c) ® table(c) ®
clear(a) ® table(a)

— Cong[Repl[pickup(b)], Refl]
hold(b) ® clear(c) ® table(c) ® clear(a) ® table(a)
— Cong [Repl[stack(b,c)], Refl]

empty ® clear(b) ® on(b,c) ® table(c) ® clear(a) ® table(a)

empty ® clear(a) ® table(a) ® clear(b) ® on(b,c) ® table(c)

— Cong[Repl[pickup(a)], Refi]
hold(a) ® clear(b) ® on(b,c) ® table(c)
— Cong[Repl[stack(a,b)], Refl]

empty ® clear(a) ® on(a,b) ® on(b,c) ® table(c)

empty ® clear(a) ® table(c) ® on(a,b) ® on(b,c)

Hopefully this notation is self-explanatory. For example, the expression
Cong [Repl [pickup(b)], Refl] means the application of the Congruence
rule of rewriting logic to the two WORLD-rewrites obtained by using Replace-
ment with the rewrite rule pickup (b) and Reflezivity. The Transitivity rule
is used several times to go from the initial state I to the final state F'.

GroBe, Holldobler, and Schneeberger prove in [1996] (see also [GroSe et
al., 1992; Holldobler, 1992]) that, in the framework of conjunctive planning,
there is an equivalence between plans generated by linear logic proofs as used
by Masseron et al. [1990; 1993], and the equational Horn logic approach of
Holldobler and Schneeberger [1990]. In the light of the example above, it is
not surprising that we can add to the above equivalence the plans generated
by proofs in rewriting logic [Marti-Oliet and Meseguer, 1999]. Moreover,
this result extends to the case of disjunctive planning [Briining et al., 1993;
Marti-Oliet and Meseguer, 1999]. In our opinion, rewriting logic compares
favorably with these formalisms, not only because it subsumes them, but
also because it is intrinsically concurrent, and it is more flexible and general,
supporting user-definable logical connectives, which can be chosen to fit the
problem at hand. In the words of Reichwein, Fiadeiro, and Maibaum [1992],
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“It is not enough to have a convenient formalism in which to
represent action and change: the representation has to reflect
the structure of the represented system.”

In this respect, we show in [Marti-Oliet and Meseguer, 1999] that the object-
oriented point of view supported by rewriting logic becomes very helpful in
order to represent action and change.

6 CONCLUDING REMARKS

Rewriting logic has been proposed as a logical framework that seems par-
ticularly promising for representing logics, and its use for this purpose has
been illustrated in detail by a number of examples. The general way in
which such representations are achieved is by:

e Representing formulas or, more generally, proof-theoretic structures
such as sequents, as terms in an order-sorted equational data type
whose equations express structural axioms natural to the logic in ques-
tion.

o Representing the rules of deduction of a logic as rewrite rules that
transform certain patterns of formulas into other patterns modulo the
given structural axioms.

Besides, the theory of general logics [Meseguer, 1989] has been used as
both a method and a criterion of adequacy for defining these representations
as conservative maps of logics or of entailment systems. From this point of
view, our tentative conclusion is that, at the level of entailment systems,
rewriting logic should in fact be able to represent any finitely presented
logic via a conservative map, for any reasonable notion of “finitely presented
logic.” Making this tentative conclusion definite will require proposing an
intuitively reasonable formal version of such a notion in a way similar to
previous proposals of this kind by Smullyan [1961] and Feferman [1989)].

In some cases, such as for equational logic, Horn logic with equality, and
linear logic, we have in fact been able to represent logics in a much stronger
sense, namely by conservative maps of logics that also map the models.
Of course, such maps are much more informative, and may afford easier
proofs, for example for conservativity. However, one should not expect
to find representations of this kind for logics whose model theory is very
different from that of rewriting logic.

Although this paper has studied the use of rewriting logic as a logical
framework, and not as a metalogical one in which metalevel resoning about
an object logic is performed, this second use is not excluded and is indeed
one of the most interesting research directions that we plan to study. For
this purpose, as stressed by Constable [1995], we regard reflection as a key
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technique to be employed. Some concrete evidence for the usefulness of
reflection has been given in Section 4.6.

The uses of rewriting logic as a semantic framework for the specification
of languages, systems, and models of computation have also been discussed
and illustrated with examples. Such uses include the specification and proto-
typing of concurrent models of computation and concurrent object-oriented
systems, of general programming languages, of automated deduction sys-
tems and logic programming languages that use constraints, and of logical
representation of action and change in Al

From a pragmatic point of view, the main goal of this study is to serve as
a guide for the design and implementation of a theoretically-based high-level
system in which it can be easy to define logics and to perform deductions in
them, and in which a very wide variety of systems, languages, and models
of computation can similarly be specified and prototyped. Having this goal
in mind, the following features seem particularly useful:

e Ezxecutability, which is not only very useful for prototyping purposes,
but is in practice a must for debugging specifications of any realistic
size.

o Abstract user-definable syntax, which can be specified as an order-
sorted equational data type with the desired structural axioms.

o Modularity and parameterization'*, which can make specifications very
readable and reusable by decomposing them in small understandable
pieces that are as general as possible.

e Simple and general logical semantics, which can naturally express both
logical deductions and concurrent computations.

These features are supported by the Maude interpreter [Clavel et al.,
1996). A very important additional feature that the Maude interpreter has
is good support for flexible and expressive strategies of evaluation [Clavel
et al., 1996; Clavel and Meseguer, 1996a], so that the user can explore the
space of rewritings in intelligent ways.

POSTSCRIPT (2001)

During the five years that have passed since this paper was last revised until
its final publication, the ideas put forward here have been greatly developed
by several researchers all over the world. The survey paper [Marti-Oliet
and Meseguer, 2001] provides a recent snapshot of the state of the art in
the theory and applications of rewriting logic with a bibliography including

l4Parameterization is based on the existence of relatively free algebras in rewriting
logic, which generalizes the existence of initial algebras.
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more than three hundred papers in this area. Here we provide some pointers
to work closely related to the main points developed in this paper, and refer
the reader to [Marti-Oliet and Meseguer, 2001] for many more references.

The paper [Clavel et al., 2001] explains and illustrates the main concepts
behind Maude’s language design. The Maude system, a tutorial and a
manual, a collection of examples and case studies, and a list of related
papers are available at http://maude.csl.sri.com.

The reflective properties of rewriting logic and its applications have been
developed in detail in [Clavel, 2000; Clavel and Meseguer, 2001]. A full re-
flective implementation developed by Clavel and Marti-Oliet of the map
from linear logic to rewriting logic described in Section 4.6 appears in
[Clavel, 2000]. Reflection has been used to endow Maude with a powerful
module algebra of parameterized modules and module composition opera-
tions implemented in the Full Maude tool [Duran, 1999]. Moreover, reflec-
tion allows Maude to become a powerful metatool that has itself been used
to build formal tools such as an inductive theorem prover; a tool to check
the Church-Rosser property, coherence, and termination, and to perform
Knuth-Bendix completion; and a tool to specify, analyze and model check
real-time specifications [Clavel et al., 2000; Clavel et al., 1999; Olveczky,
2000].

A good number of examples of representations of logics in rewriting logic
have been given by different authors, often in the form of executable specifi-
cations, including a map HOL — Nuprl between the logics of the HOL and
Nuprl theorem provers, and a natural representation map PTS — RWLogic
of pure type systems (a parametric family of higher-order logics) in rewriting
logic [Stehr, 2002].

Thanks to reflection and to the existence of initial models, rewriting logic
can not only be used as a logical framework in which the deduction of a logic
L can be faithfully simulated, but also as a metalogical framework in which
we can reason about the metalogical properties of a logic £. Basin, Clavel,
and Meseguer [2000] have begun studying the use of reflection, induction,
and Maude’s inductive theorem prover enriched with reflective reasoning
principles to prove such metalogical properties.

Similarly, the use of rewriting logic and Maude as semantic framework
has been greatly advanced. A number of encouraging case studies giv-
ing rewriting logic definitions of programming languages have already been
carried out by different authors. Since those specifications usually can be
executed in a rewriting logic language, they in fact become interpreters for
the languages in question. In addition, such formal specifications allow both
formal reasoning and a variety of formal analyses for the languages so spec-
ified. See [Marti-Oliet and Meseguer, 2001] for a considerable number of
references related to these topics.

The close connections between rewriting logic and structural operational
semantics have been further developed by Mosses [1998] and Braga [2001] in
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the context of Mosses’s modular structural operational semantics (MSOS)
[Mosses, 1999]. In particular, Braga [2001] proves the correctness of a map-
ping translating MSOS specifications into rewrite theories. Based on these
ideas, an interpreter for MSOS specifications [Braga, 2001] and a Maude
Action Tool [Braga et al., 2000; Braga, 2001] to execute Action Semantics
specifications have been built using Maude.

The implementation of CCS in Maude has been refined and considerably
extended to take into account the Hennessy-Milner modal logic by Verdejo
and Marti-Oliet [2000]. The semantic properties of this map from CCS
to rewriting logic have been studied in detail in [Carabetta et al., 1998;
Degano et al., 2000].
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DAVID BASIN, SEAN MATTHEWS

LOGICAL FRAMEWORKS

1 INTRODUCTION

One way to define a logic is to specify a language and a deductive system. For
example, the language of first-order logic consists of the syntactic categories of
terms and formulae, and its deductive system establishes which formulae are the-
orems. Typically we have a specific language in mind for a logic, but some flexi-
bility about the kind of deductive system we use; we are able to select from, e.g.,
a Hilbert calculus, a sequent calculus, or a natural deduction calcullzgical
frameworkis an abstract characterization of one of these kinds of deductive sys-
tem that we can use to formalize particular examples. Thus a logical framework for
natural deduction should allow us to formalize natural deduction for a wide range
of logics from, e.g., propositional logic to intuitionistic type-theories or classical
higher-order logic.

Exactly how a logical framework abstractly characterizes a kind of deductive
system is difficult to pin-down formally. From a high enough level of abstrac-
tion, we can see a deductive system as defining sets; i.e. we have a recursive set
corresponding to well-formed syntax, a recursive set corresponding to proofs, and
a recursively enumerable set of provable formula@ut this view is really too
coarse: we expect a logical framework to be able to capture more than just the sets
of well-formed and provable formulae associated with a logic. If this were all that
we wanted, then any Turing complete programming language would constitute a
logical framework, in so far as it can implement a proof-checker for any logic.

In this chapter we present and examine two different kinds of frameworks, each
representing a different view of what a deductive system-sframeworks (de-
duction interpreted as reasoning in a weak logic of implication) and ID-frameworks
(deduction interpreted as showing that a formula is a member of an inductively de-
fined set). Either of these can be used to formalize any recursively enumerable
relation. However, before calling a system a logical framework we will demand
that it preserves additional structure. Thus we first consider what are the important
and distinguishing characteristics of the different kinds of deductive systems, then
we examine frameworks based on different sorts of possiblalogiqor metathe-
ory) and we show that these are well-suited to representing the deductive systems
for certain classes ajbject logics(or object theories By providing procedures
by which the deductive system of any object logic in a class can be naturally en-
coded in some metalogic, we show how effective frameworks are for formalizing
particular logics.

Iwe make the assumption in this chapter that the property of being a well-formed syntactic entity
or a proof is recursive; i.e. we know one when we see it.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 89-163.
© 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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When we say that an encoding nsitural we shall mean not only that it is
high-level and declarative but also that there is an appropriate bijection between
derivations in the object logic and derivations manipulating the encoding in the
metalogic. For example, a Hilbert system can be naturally encoded using an in-
ductive definition where each rule in the object logic corresponds to a rule in the
metalogic. Similarly, there are natural encodings of many natural deduction sys-
tems in a fragment of the language of higher-order logic, which make use of a
simple, uniform, method for writing down rules as formulae of the metalogic, so
that it is possible to translate between natural deduction proofs of the object logic
and derivations in the metalogic.

The term ‘logical framework’ came into use in the 1980s; however the study of
metalogics and methods of representing one logic in another has a longer history
in the work of logicians interested in languages for the metatheoretic analysis of
logics, and computer scientists seeking conceptual and practical foundations for
implementing logic-based systems. Although these motivations differ and are, at
least in part, application oriented, behind them we find something common and
more general: logical frameworks clarify our ideas of what we mean by a ‘de-
ductive system’ by reducing it to its abstract principles. Thus work on logical
frameworks contributes to the work of Dummett, Gentzen, Hacking, Prawitz, and
others on the larger question of what is a logic.

1.1 Some historical background

Historically, the different kinds of deductive systems have resulted from different
views of logics and their applications. Thus the idea of a deductive system as an in-
ductive definition developed out of the work of Frege, Russell, Hilbert, PagtelG™

and Gentzen attempting to place mathematics on firm foundational ground. In par-
ticular, Hilbert's program (which @del famously showed to be impossible) was to
use the theory of proofs to establish the consistency of all of classical mathematics,
using only finitary methods. From this perspectiveyatatheory as proof theory

a deductive system defines a set of objects in terms of an initial set and a set of
rules that generate new objects from old, and a proof is the tree of rule applica-
tions used to show that an object is in the set. For Frege and Hilbert these objects
were simply theorems, but later Gentzen took them to be sequents, i.e. pairs of
collections of formulae. But, either way, a deductive system defines a recursively
enumerable set, which is suitable for analysis using inductive arguments.

How should the metatheory used to define these inductive definitions be char-
acterized? Hilbert required it to be finitary, so it has traditionally been taken
to be the primitive recursive fragment of arithmetic (which is essentially, e.g.,
what Gidel[1931] used for his incompleteness theorems). However, despite the
endorsement by Hilbert anda@él, arithmetic is remarkably unsuitable, in the
primitives it offers, as a general theory of inductive definitions. Thus, more re-
cent investigations, such as those of Smullya861] and Fefermah199d, have
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proposed theories of inductive definitions based on sets of strings or S-expressions,
structures more tractable in actual use.

A different view of deductive systems is found in work in computer science and
artificial intelligence, where logics have been formalized for concrete applications
like machine checked proof. The work of, e.g., de Brdilederpeltet al., 1994
does not attempt to analyze the meta-theoretic properties of deductive systems, but
concentrates rather on common operations, such as binding and substitution. The
goal is to provide an abstract characterization of such operations so that deductive
systems can be easily implemented and used to prove theorems; i.e. metatheory
is seen as providing anifying languagdor implementing, and ultimately using,
deductive systems. A result of this concern with ease in use (i.e. building proofs)
rather than ease of metatheoretic analysis (i.e. reasoning about proofs) is that work
has emphasized technically more complex, but more usable, notations such as nat-
ural deduction, and resulted in frameworks based on higher-order logics and intu-
itionistic type-theories instead of the inductive definitions of the older proof theory
tradition.

1.2 Focus and organization

This chapter presents the concepts underlying the various logical frameworks that
have been proposed, examining the relationship between different kinds of de-
ductive systems and metatheory. Many issues thus fall outside our scope. For
example, we do not investigate semantically based approaches to formalizing and
reasoning about logics, such as thstitutionsof Goguen and Burstall1997 or
thegeneral logicsof Meseguef1989. Even within our focus, we do not attempt
a comprehensive survey of all the formalisms that have been proposed. Neither do
we directly consider implementation questions, even though computer implemen-
tations now play an important role in the field. Further references are given in the
bibliography; the reader is referred in particular to the work of Avebal, Paul-
son, Pfenning, Pollack, and ourselves, where descriptions of first-hand experience
with logical frameworks can be found.

The remainder of this chapter is organized as follows§2nve briefly survey
three kinds of deductive systems, highlighting details relevant for formalizing ab-
stractions of them. 1§3 we consider a logic based on minimal implication as an
abstraction of natural deduction. It turns out that this abstraction is closely related
to a generalization of natural deduction due to Schroeder-Heisté# e con-
sider in detail a particular metatheory that formalizes this abstraction. We also
consider quantification and so-called ‘higher-order syntax’.§3rwe present a
case study: the problem of formalizing modal logics.§&hwe examine sequent
calculi and their more abstract formalization as consequence relatio§g. we
investigate the relationship between sequent systems and inductive definitions, and
present a particular logic for inductive definitions. Finally, we draw conclusions
and point to some current and possible future research directions.
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2 KINDS OF DEDUCTIVE SYSTEMS

Many different kinds of formalization of deduction have been proposed, for arange
of purposes. However in this chapter we are interested in deductive systems de-
signed for the traditional purposes of logicians and philosophers, of investigating
the foundations of language and reasoning; in fact we restrict our interest even fur-
ther, to three kinds of system, which are commonly calddert calculi, sequent
calculiandnatural deductionBut this restriction is more apparent than real since,
between them, these three cover the vast majority of deductive systems that have
been proposed. We describe only the details that are important here, i.e. the basic
mechanics; for deeper and more general discussion, the reader is referred to Sund-
holm’s articles on systems of deduction elsewhere in this handi283; 1986.

For the purposes of comparison, we shall present, as an example, the same sim-
ple logics in each style: propositional logics of minimal and classical implication.
The language we will work with then is as follows.

DEFINITION 1. Given a set of atomic propositio# the language of proposi-
tions, L, is defined as the smallest set containingwhere if A andB are inL,
then(A D B)isin L.

For the sake of readability we assume thatssociates to the right and omit
unnecessary parentheses; for example, we abbredate (B D ()) asA D
B D C. We now proceed to the different presentations.

2.1 Hilbert calculi

Historically, Hilbert calculi are the oldest kind of presentation we consider. They
are also, in some technical sense, the simplest. A Hilbert calculus defines a set
of theoremsin terms of a set ohxiomsAz and a set ofules of proof R. A

rule of proofis a relation between formulag, ... , A,, and a formulad. A rule

is usually written in a two-dimensional format and sometimes decorated with its
name. For example

A .. A,
name

says that by ruleame, givenAq, ... , A,, it follows that A. The set of formulae
defined by a Hilbert calculus is the smallest set containirgand closed under
R; we call this set @dheory, and the formulae in itheorems

The set of theorems in a logic of minimal implication can be defined as a Hilbert
calculus where the set of axioms contains all instances of the axiom schEmata

ADBDA
andsS

(ADB)D(ADBDC)DADC.
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We call these schemata becauseB andC stand for arbitrary formulae ifi. In
addition, we have one rule of proafetachmentwhich takes the form

ADB A
B

Det.

The Hilbert calculus defined by, S andDet is the set of theorems of the minimal
(or intuitionistic) logic of implication. We call this theor§J - .2

The set of theorems in a logic of classical implicati#i -, is slightly larger
thanHJ~. We can formalizéiK - by adding toHJ - a third axiom schema, for
Peirce’s law

(ADB)D A)D A. (1)

A proof in a Hilbert calculus consists of a demonstration that a formula is in
the (inductively defined) set of theorems. We can think of a proof as either a tree,
where the leaves are axioms, and the branches represent rule applications, or as
a list of formulae, ending in the theorem, where each entry is either an axiom, or
follows from previous entries by a rule. Following common practice, we use the
list notation here.

The following is an example of a proof af D A in HJ~ and thus also ifi{K~:

1.ADADA K
2.(ADADA)D(AD(ADA)DA)DADA S
3.AD(ADA4) DA K
4. (AD(ADA)DADADA Det2,1
5.4DA Det4,3

It turns out that proving theorems in a Hilbert calculus by hand, or even on a
machine, is not practical: proofs can quickly grow to be enormous in size, and it
is often necessary (e.g. in the proof we have just presented) to invent instances of
axiom schemata that have no intuitive relationship to the formula being proven.
However Hilbert calculi were never really intended to be used to build proofs, but
rather as a tool for the metatheoretic analysis of logical concepts such as deduction.
And from this point of view, the most important fact about Hilbert calculi is that
they are essentially inductive definitioAs;e. well-suited for arguments (about
provability) by induction.

2For the proof systems presented in this section, we follow the tradition where the first letter indi-
cates the kind of deduction systeff {or Hilbert, N for natural deduction, and for sequent calculus),
the second letter indicates the logik for minimal, or intuitionistic logic, and for classical logic),
and superscripts name the connectives.

3The two are so closely related that, e.g., A¢2677 identifies them.
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2.2 Sequent calculi

Useful though Hilbert calculi are, Gentz¢h934 found them unsatisfactory for
his particular purposes, and so developed a very different style that has since be-
come the standard notation for much of proof theory, and which is knovge-as
guent calculus

With a sequent calculus we do not define directly the set of theorems; instead
we define a binary ‘sequent’ relation between collections of formilaand A,
and identify a subset of instances of this relation with theorems. We shall write
this relation ag” - A, wherel' is called theantecedenandA thesuccedentThis
is often read as ‘if all the formulae i are true, then at least one of the formulae
in A is true’.

The rules of a sequent calculus are traditionally divided into two subsets con-
sisting of thelogical rules, which define logical connectives, and gtructural
rules, which define the abstract properties of the sequent relation itself. The basic
properties of any sequent system are given by the following rules which state that
F is reflexive for singleton collectionsBasic) and satisfies a form of transitivity
(Cut):

. F'FAA T/ AFA
—— Basic Cut 2)

AR A LT F A A

A typical set of structural rules is then

TFA TFA

- WL -

T,AFA TFAA

T,A,AFA TFAAA

2 T — 7T CR 3)
AR A TFAA

LA BI'FA L '-AA B,A

[B,AT'FA A, B,A A
which define- to be a relation on finite sets that is also monotonic in both argu-
ments (what we will later calbrdinary). The named¥L, CL and PL stand for
WeakeningContractionandPermutation Lefbf the sequent, whiléVR, CR and
PR name the same operations on the right.

We can give a deductive system for classical implication, which weldalf,
in terms of this sequent calculus by adding logical rulesSor

I'FAA 1“’,BFA’D s [LAFB,A
LIV ADBFAA I'-ADB,A

The names-L and D-R indicate that these are rules for introducing the impli-
cation connective on the left and the righttef We get a sequent calculus for
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minimal implication,L.J >, by adding the restriction o that its succedent is a
sequence containing exactly one forméila.

Like Hilbert proofs, sequent calculus proofs can be equivalently documented as
lists or trees. Since proofs are less unwieldy than for Hilbert calculi, trees are a
practical notation. A sequent calculus proofdf> A is trivial, so instead we take
as an example a proof of Peirce’s law (1):

—— Basic

AFA
— — WR

AFB,A

—D-R ——— Basic

F(ADB),A AFA
(ADB)DA)F A A
(ADB)DA)F A
F(ADB)DA) DA

Notice that it is critical in this proof that the succedent can consist of more than
one formula, and tha€R can be applied. Neither this proof (Sin€& is not
available), nor any other, of Peirce’s law is possibl&i’ .

Technically we can regard a sequent calculus as a Hilbert calculus for a binary
connective-; however the theorems of this system are in the language of sequents
over L, not formulae in the language @f itself. The set of theorems a sequent
calculus defines is taken to be the set of formulaim L such that- A is prov-
able, i.e., there is a proof of the sequént A, wherel" is empty, andA is the
singletonA.

2.3 Natural deduction

A second important kind of deductive system that GentE984 (and subse-
guently Prawitz/1965) developed wasatural deduction In contrast to the se-
guent calculus, which is intended as a formalism that supports metatheoretic anal-
ysis, natural deduction, as its name implies, is intended to reflect the way people
‘naturally’ work out logical arguments. Thus Gentzen suggested that, e.g., in order
to convince ourselves that tifeaxiom schema

(ADB)D(ADBDC)DADC

is true, we would, readin® as ‘implies’, informally reason as follows: ‘Assuming
A D B andthend D B D C we have to show thatt D C, and to do this, it
is enough to show that' is true assumingl. But if A is true then, from the first
assumptionp is true, and, given thad andB are true, by the second assumption
C is true. Thus the schema is true (under the intended interpretation)’.

4As aresult, inLJ- the structural rulesWR, CR and PR) become inapplicable, anfl = @ in
the logical ruleD-L.
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To represent this style of argumamtder assumptiomwe need a new kind of
rule, called aule of inferencethat allows temporary hypotheses to be made and
discharged. This is best explained by example. Consider implication; we can
informally describe some of its properties as: (i) if, assuming follows that B,
then it follows thatA D> B, and (ii) if A D B and A, then it follows thatB. We
might represent this reasoning diagrammatically as follows:

[A]
- A-B A E (4)
: 428 A
B
S5-I B
ADB

whereD-] andD-E are to be pronounced as ‘Implication Introduction’ and ‘Im-
plication Elimination’, since they explain how to introduce and to eliminate (i.e. to
create and to use) a formula with as the main connective.

We callA D B in D-F themajor premiseandA theminor premiseln general,
the major premise of an elimination rule is the premise in which the eliminated
connective is exhibited and all other premises are minor premises. Square brackets
around assumptions indicate that they are considered to be temporary, and made
only for the course of the derivation; when applying the rule we diacharge
these occurrences. Thus, when applyibgl, we can discharge (zero or more)
occurrences of the assumptidrwhich has been made for the purposes of building
a derivation ofB, which shows thatd > B. Of course, when applying the-1
rule, there may be other assumptions (so called open assumptions) that are not
discharged by the rule. Similarly, the two premises®BfE may each have open
assumptions, and the conclusion follows under the union of these.

To finish our account 0D, we must explain how these rules can be used to
build formal proofs. Gentzen formalized natural deduction derivations just like in
sequent and Hilbert calculi, as trees, explaining how formulae are derived from
formulae. With natural deduction though, there is an added complication: we also
have to track the temporary assumptions that are made and discharged. Thus along
with the tree of formulae, a natural deduction derivation hdseharge function
which associates with each nodéin the tree leaf nodes abové that the rule
application at nodéV discharges. Moreover, there is the proviso that each leaf
node can be discharged by at most one node. A proof, then, is a derivation where
all the assumptions are discharged (i.e. all assumptions are temporary); the formula
proven is a theorem of the logic.

A natural deduction proof, with its discharge function, is a complex object
in comparison with a Hilbert or sequent proof. However, it has a simple two-
dimensional representation: we just decorate each node with the name of the rule
to which it corresponds, and a unique number, and decorate with the same number
each leaf node of the tree that it discharges. In this form we can document the pre-
viously given informal argument of the truth of ttfeaxiom schema as a formal
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proof (we only number the nodes that discharge some formula):

[ADBDCla [A]s S [ADB]i [A]s 5

BD>C B

-E

D-F

D-I;
ADC

D
(ADBDC)DADC
(ADB)D(ADBDC)DADC

_12

o-I;

Once we have committed ourselves to this formalization of natural deduction,
we find that the two rules (4) together define exactly minimal implication, in a
deductive system which we call-.

While the claims of natural deduction to be the most intuitive way to reason
are plausible, the style does have some problems. First, there is the question of
how to encode classical implication. We can equally easily give a direct presenta-
tion of either classical or minimal implication, using a Hilbert or sequent calculus,
but not using natural deduction. WhileJ - is standard for minimal implication,
there is, unfortunately, no simple equivalent for classical implication (what we
might imagine callingNK"): the standard presentation of classical implication
in natural deduction is as part of a larger, functionally complete, set of connec-
tives, including, e.g., negation and disjunction, through which we can appeal to
the law of excluded middle. Alternatively we can simply accept Peirce’s law as
an axiom. We cannot, however, using the language of natural deduction, define
classical implication simply in terms of introduction and elimination rules for the
D connective.

A second problem concerns proofs themselves, which are complex in compar-
ison to the formal representations of proofs in Hilbert or sequent calculi. It is
worth noting that a Hilbert calculus can be seen as a special simpler case of nat-
ural deduction, since axioms of a Hilbert calculus can be treated as rules with no
premises, and the rules of a Hilbert calculus correspond to natural deduction rules
where no assumptions are discharged.

3 NATURAL DEDUCTION AND THE LOGIC OF IMPLICATION

Given the previous remarks about the complexity of formalizations of natural de-
duction, it might seem unlikely that a satisfactory logical framework for it is possi-
ble. In fact, this is not the case. In this section we show that there is an abstraction
of natural deduction that is the basis of an effective logical framework. Prelimi-
nary to this, however, we consider another way of formalizing natural deduction
using sequents.

51t may help the reader trying to compare this formal proof diagram with the previous informal
argument, to read it ‘bottom up’; i.e. upwards from the conclusion at the root.
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3.1 Natural deduction and sequents

We can describe natural deduction informally as ‘proof under assumption’, so the
basic facility needed to formalize such a calculus is a mechanism for managing
assumptions. Sequents provide this: assumptions can be stored in the antecedent
of the sequent and deleted when they are discharged. Thus, if we postulate a
relationt satisfying Basic and the structural rules (3), where the succedent is a
singleton set, then we can encdd#" using the rule$:

I,AFB I'FADB TFA
D-1 D-E (5)
'-ADB '+B
This view of natural deduction is often technically convenient (we shall use

it ourselves later) but it is unsatisfactory in some respects. Gentzen, and later
Prawitz, had a particular idea in mind of how natural deduction proofs should look,
and they made a distinction between it and the sequent calculus, using proof trees
with discharge functions for natural deduction, and sequent notation for sequent
calculus. We also later consider ‘natural’ generalizations of natural deduction that
cannot easily be described using a sequent notation.

3.2 Encoding rules using implication

The standard notation for natural deduction, based on assumptions and their dis-
charge, while intuitive, is formally complex. Reducing it to sequents allows us
to formalize presentations in a simpler ‘Hilbert’ style; however we have also said
that this is not altogether satisfactory. We now consider another notation that can
encode not only natural deduction but also generalizations that have been indepen-
dently proposed.

A natural ‘horizontal’ notation for rules can be based on l{sts, ... , 4,,) and
an arrow—. Consider the rules (4): we can write the elimination rule in horizontal
form simply as

ADB A
S = (ADB,A—~ B
B
and the introduction rule as
[4]
é = (At 5By ADB.
ADB

In the introduction rule we have marked the assumptowith the symboli to
indicate that it is discharged. But this is actually unnecessary; using this linear

SImportantly, we can prove that the relation defined by this encoding satisfigSitheule above;
it thus defines a consequence relation §&e
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notation, precisely the formulae (here there is only one) occurring on the left-hand
side of some—-connective in the premise list are discharged.

This new notation is suggestive: Gentzen explicitly motivated natural deduction
as a formal notation for intuitive reasoning, and we have now mapped natural lan-
guage connectives such as ‘follows from’ onto the symbolWhy not make this
explicit and read— as formal implication, and:. . )" as a conjunction of its com-
ponents? The result, if we translate into the conventional language of (quantifier
free) predicate logic, is just:

(T(ADB)&T(A)) - T(B) 6

(T(A) - T(B)) - T(ADB) ©)
which, reading the unary predicate symfahs ‘True’, is practically identical with
Gentzen’s natural language formulation.

What is the significance of this logical reading of rules? The casual relationship
observed above is not sufficient justification for an identification, and we will see
that we must be careful. However, after working out the details, this interpretation
provides exactly what we need for an effective logical framework, allowing us to
trade the complex machinery of trees and discharge functions for a pure ‘logical’
abstraction.

We separate the investigation of such interpretations into several parts. First,
we present a metalogic based on (minimal) implication and conjunction and give a
uniform way of translating a set of natural deduction rdtemto a set of formulae
R* in the metalogic. For an object logit presented by a set of natural deduction
rulesR, this yields a metatheorg* given by the metalogic extended wif*.
Second, we demonstrate that for any sughthe translation iadequate This
means thatC* is ‘strong enough’ to derive (the representative of) any formula
derivable in£. Third, we demonstrate that the translatiofiaghful. That is that
L* is not too strong; we can only derive 1 representatives of formulae that are
derivable inZ, and further, given such a derivation, we can recover a progf in

3.3 The metatheory and translation

We have previously defined natural deduction in terms of formula-trees and dis-
charge functions. We now describe the logic with which we propose to replace
it.

Thus we assume that and& have at least the properties they have in minimal
logic. Above we have provided three separate formalizations of (the implicational
fragment of) minimal logic: as a Hilbert calculus, as a sequent calculus, and as nat-
ural deduction. Since these all formalize the same set of theorems, we could base
our analysis on any of them. However, it will be convenient for our development

"Notice that this is a stronger requirement than the model-theoretic requirement of soundness, which
requires that we should not be able to prove anything false in the model, but not that we can recover a
proof of anything that we have shown to be true.
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to use natural deductichEven though this may seem circular, it isn’t: we simply
need some calculus to fix the meaning of these connectives and later to formalize
the correctness of our embeddings.

For the rest of this section, we will formalize deductive systems associated with
propositionallogics. We leave the treatment of quantifiers in the object logic,
for which we need quantification in the metalogic (here we need only, as we will
see, quantifier-free schemata), and a general theory of syntg4, téor now,
we simply assume a suitable term algebra formalizing the language of the object
logic. We will build formulae in the metalogic from the unary predicatand the
connectives» and&. To aid readability we assume thiatbinds tighter than-,
which (as usual) associates to the right. NowN&t™>* be the natural deduction
calculus based on the following rules:

[4, B]
A B :
) A& B C
A& B &-F
C
[A]
: A—-B A e
_)_
B B
—-1
A— B

We also formally define the translation, given by the mappirigftom rules
of natural deduction to the above language. Hérevaries over formulae in the
logic, and®; over the premises (along with the discharged hypotheses) of a rule

A
(A1, A\ (7)
~ T(A) & ---&T(A,) = T(A)
A
Note that axioms and rules that discharge no hypotheses constitute degenerate

cases, i.eA* ~» T(A). We extend this mapping to sets of rules and formulae,
ie.R*={0*|© e R}.

80ne reason is that we can then directly relate derivability in the metalogic with derivability in
the object logic. As is standaf®rawitz, 1965, derivability refers to natural deduction derivations
with possibly open assumptions. Provability is a special case where there are no open assumptions.
This generalization is also relevant to showing that we can correctly represent particular consequence
relations (seg6).
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3.4 Adequacy

If A is a theorem of an object logi€ defined by rulesk, then we would like
T'(A) to be provable in the metatheofyr = NJ7¢ 4+ R* (i.e. NJ™* extended
by the ruleskR*). More generally, ifA is derivable in{ under the assumptions
A ={4,,...,A,} then we would like fofl'(A) to be derivable irC* under the
assumptiong\*,

Consider, for example, the object logicover the languagé®, ®, x, +} de-
fined by the following rulesk:

[+]
+ +  ® X :
—a —f QA (8)
® X @ s
S
We can prove, for example; by:
[+ [+h
R
gl 9)
2
— 4
S
Under our proposed encoding, the rules are translated to the followifig'set
T(+) = T(®) ()
T(+) = T(x) (B*)
T(®) &T(x) = T(®) (")
(T(+) = T(®) » T(®) (07)

and we can prov&'(®) in the metatheory * = NJ™% + R* by:
[T(+)h

whereX is:
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Notice how assumptions ii are modeled directly by assumptiongdri, and how,
in general, a rule application if corresponds to a fragment of the derivation in
L*. We have, for instance, the equivalence

[T(+)h
[+] :
= T(®)
©® o* —)-11
- (T(+) = T(®)) - T(®) T(+) —» T(®)
D —-F

T(o)

Intuitively, then, we use»-F to unpack the rule, ands-I to gather together the
subproofs and discharged hypotheses.

We call the right-hand side of this the correspondih@racteristic fragment
for the ruled. In the same way there are characteristic fragments for each of the
other rules, and out of these we can build a meta-derivation corresponding to any
derivation in our original logic. Moreover, these characteristic fragments can be
restricted to have a special form. Given a natural deductiondulen® * (in the
general case) has the form

(T(Ar,) & -+ & T(Ar,) = T(A)) & -+
& (T(An,) & -+ & T(An,.) = T(An)) = T(A),
and we can show:

LEMMA 2. Given a rule®, there is a characteristic fragmet where forl <

i < n, atomic assumptioriE(4;,),...T(A; ) are discharged in subderivations
of T'(4;), and then these subderivations are combined together@itto prove
T(A). Further, if we insist also that the major premise of an elimination rule is
never the result of the application of an introduction rule (eI or &-1I), while

the minor premise is always either atomic or the result of the application of an
introduction rule, therk is unique.

Proof. By an analysis of the possible structure@f |
For a rule® that does not discharge assumptions, i.e., of the form
Ar... An
—a
the characteristic fragment is just a demonstration that, gd/grthe rule
T(Ay)...T(An)

T(4)
is derivable inL*. That is, there is a derivation &(A) where the only open
assumptions aré'(A;),... ,T(A,). Note that this standard notion of derivabil-

ity (see, e.g., Troelstrf1983 or Hindley and Seldif198€), can be extended
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(see Schroeder-HeistEr9841 and§3.6 below) to account for rules that discharge
assumptions; in this extended sense, each characteristic fragment justifies a derived
rule that allows us to simulaté-derivations inl*.

Given the existence of characteristic fragments, it is a simple matter to model
L-derivations inL*. To begin with, since our metalogic is a natural deduction
calculus, we can model assumptions in the encoded logic as assumptions in the
metalogic. Each such assumptiBn is modeled by an assumptidi(B;). Now,
given a derivation in the object logic, we can inductively replace rules by corre-
sponding characteristic fragments to produce a derivatiah*inFor example, in
(9) we provedp using four rule applications; after we gave a proofih of T'(®)
built from the four characteristic fragments that correspond to these applications.

In this form, however, this observation assumes not just a metaldgic ¢)
but also a particular proof calculus for the metalogic (natural deduction), which,
since we want a purely logical characterization, we want to avoid. It is easy to
remove this assumption by observing tiafollows from the assumptiond ; to
Ap, inNIJiff A & --- & A, — A follows without the assumptions. Thus we
have a Lheorem that states the adequacy of encodings of natural deduction calculi
iNNJ™%9

THEOREM 3 (Adequacy).For any natural deduction calculu$ defined by a set
of rules R, if the formula A is derivable under assumptioné,, ... , 4,, then
T(Ay) & --- & T(A,) — T(A) is provable inf* = NJ 7% 4+ R*,

Notice that the proof is based on translation, and hence is constructive: given a
derivation in the object logic we can construct one in the metalogic.

3.5 Faithfulness

In proving adequacy, we only used the metathefiyin a limited way where
derivations had a simple structure built by pasting characteristic fragments to-
gether. Of course, there are other ways to build proofsirand it could be that

this freedom allows us to derive representations of formulae that are not derivable
in £. We now show that our translation is faithful, i.e. this is not the case.

To see why we have to be careful about faithfulness, consider the following:
in the deductive systert¥J ™%, the — connective is minimal implication (the
logic is a conservative extension ¥l 7). But what happens if we strengthen the
metalogic to be classical, e.g. by adding classical negation or assuming Peirce’s
law? We can still show adequacy of our encodings, since derivatioNs ifi¢
remain valid when additional rules are present, but we can also use the encoding
to derive formulae that are not derivable in the original system. Consider what
happens if we try to prove something that is classically but not minimally valid,

9However notice that the translation is only defined on rules without side conditions, i.e. for ‘pure’
natural deduction; for more idiosyncratic logics, see the discussi®®.in
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like, for instance, Peirce’s law itself:
T((ADB)DA)DA). (10)
Using the axioms in (6), we can reduce this to the problem of proving
((T(A) — T(B)) » T(4)) = T(A). (11)

But this is itself an instance of Peirce’s law, and is provable ifs classical im-
plication. ThusT'(-) does not here define the set of minimal logic theorems.

If — is read as minimal implication, then the same trick does not work. We can
still reduce (10) to (11), but we are not able to take the final step of appealing to
Peirce’s law in the metalogic.

We now show that assuming to be minimal really does lead to a faithful pre-
sentation of object logics, by demonstrating a direct relationship between deriva-
tions of formula€el’'(A) in the £* and derivations ofl in L.

The desired relationship is not a simple isomorphism: we pointed out in dis-
cussing adequacy above, that for each natural deduction rule translated into our
logical language, it is possible to find a characteristic fragment, and using these
fragments we can translate derivationsdnnto derivations inL*. However an
arbitrary derivation inC* may not have a corresponding derivationdr(it is a
simple exercise to construct a proofBf®) that does not use characteristic frag-
ments). But if we look more carefully at the derivation®f@) we have given,
and the fragments from which it is constructed, we can see that it has a particu-
larly simple structure, and this structure has a technical characterization, similar
to that we used for the characteristic fragments themselves. The derivations we
build to show adequacy are in what is callexpanded normal forlENF): the
major premise of an elimination rule (i.ex-E or &-FE) is never the result of the
application of an introduction rule (i.e»>-I or &-I), and all minor premises are
either atomic or the result of introduction rules. Not all derivations are in ENF, but
any derivation can be transformed into one that is. We have the following:

FACT 4 (Prawitz[1971]). There is an algorithm transforming any derivation in
NJ~¥ into an equivalent derivation in ENF, and this equivalent derivation is
unique.

From this we get the theorem we need; again, like for the statement of ade-
guacy, we abstract away from the deductive system to get a pure logical character-
ization:

THEOREM 5 (Faithfulness) For any natural deduction systethdefined by a set
of rulesR, if we can provel'(A;) & - & T(A,) — T(A) in L*, thenA is
derivable in£ from the assumptiond,, ... , 4,.

Proof. The theorem follows immediately from the existence of ENF derivations
and Lemma 6 below. |
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LEMMA 6. There is an effective transformation from ENF derivationg inof
T'(A) from atomic assumptions, to natural deduction derivations i of A from
assumptiongB | T(B) € A}.

Proof. We prove this by induction on the structure of ENF derivations. Intuitively,
we show that an ENF derivation is built out of characteristic fragments, and thus
can easily be translated back into the original deductive system. Consider a deriva-
tion X of T'(A).

Base caseT'(A) corresponds to either an assumptiomAror a (premisless)
rule of the encoded theory. The translation then consists either of the assumption
A or of the corresponding premisless rule with conclusion

Step case: Since the derivation is in ENF and the conclusion is atomic, the last
rule applied is an elimination rule; more specifically, the derivation must have the
form

-5 - T
®: R
o* i (12)
F & - & F — T(A) & - & BF
_)_

T(4)
wheref consists only of applications éf-7 and® * is
Ol & - & D) — T(A)
for some ruled of the encoded system.

By the definition of the encoding, eadt}, derived by a prookE;, is then of the
form

Since the conclusion df ; proves an implication, and is in ENF, the last rule
applied must be~»-TI; thusX:; must have the form

[T(Ai)]-- - [T(Ai )]

m

. )Y

[T(Ai) & -+ & T(4; ) T(A;)
T(A;) :
—)'Il

T(Ay) & - &T(A; ;) — T(A)

with open assumptiond, wheref consists only of applications &¢-E, which
‘unpack’ the assumptiof’(A;,) & --- & T'(4; ;) into its component proposi-
tions. In other words, (12) corresponds to the characteristic fragmeét for

By induction we can apply the same analysis to e&¢htaking account not
only of the undischarged assumptiofAs but also the new atomic assumptions
A +{T'(A;),...,T(A;_,)} which have been introduced, and we are finished.
|
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3.6 Generalizations of natural deduction

The distinction we mentioned above (§3.1) that Gentzen and Prawitz make
between natural deduction and sequent calculi has recently been emphasized by
Schroeder-Heiste1984a; 1984h who has proposed a ‘generalized natural de-
duction’. This extension, which follows directly from Gentzen’s appeal to intu-
ition to justify natural deduction, is not formalizable using sequents in the way
suggested i§3.1°

Consider again Gentzen’s proposed ‘natural language’ analysis of logical con-
nectives. In these terms we can characterize Implication Elimination as

If AD BandA, then it follows thatB
which we formalize as:
ADB A
B
Now consider the slightly more convoluted

If A D B andassuming that if, given that frodhwe could deriveB,
we could derive”, then we can deriv€'.

which is also true. There is a natural generalization of rules that allows us to
express this in the spirit of natural deduction; namely,

A

B

: (13)

ADB C

C

where we can assume rules as hypotheses (and by generalization, have rules as hy-
potheses of already hypothetical rules, and so on). Schroeder-Heister shows that it
is quite a simple matter to extend the formula-tree/discharge-function formaliza-
tion to cope with this extension: we simply allow discharge functions to point to
subtrees rather than just leaves.

Why is such a generalization interesting? Schroeder-Heister uses it to analyze
systematically the intuitionistic logical connectives. However it has more general
use, and at least one immediate application: we can use it to encode Peirce’s law
without introducing new connectives, as

g

A

A

10Though see Avrof1994 for relevant discussion.
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which, in English, is equivalent to

if, by assuming that somB follows from A4, it follows that A, then it
follows thatA.

This provides, finally, a self-contained generalized natural deduction formulation
of classical implication. (At least in the sense that the meaning of implication can
be defined by rules involving no auxiliary connectives.)

The process of generalization can obviously be continued beyond allowing rules
as hypotheses, though. There is no reason why we cannot also have them as con-
clusions. Thus, for instance, it is clearly true that

ADB

A
B
(where round brackets do not, in the manner of square brackets, represent the

discharge of an assumption, but simply grouping), which might reasonably be read
as:

—)-EC

If A D BthenfromA it follows thatB.

By now, however, while our intuition still seems to be functioning soundly, the
formula-tree/discharge-function formalization is beginning to break down. It can
cope with rules as assumptions, but the more general treatment of both rules and
formulae in derivations that we are now proposing is more difficult. With our
proposed alternative of the metalo@id ™, on the other hand, the same problems
do not arise. In fact one way of looking at the faithfulness argument developed
above is as essentially a demonstration that this sort of ‘confusion’ can be unwound
for the purpose of recovering a proof in a system that does not in the end allow it.
The question then is, how closely does our logic match the traditional formulation?

In the most general case, allowing rules as both hypotheses and conclusions,
such a question is not quite meaningful, since we do not have a traditional for-
mulation against which we can compare. However if we limit ourselves to the
restricted case where we have rules as assumptions, it is still possible to be prop-
erly formal, since we can still compare our encoding to Schroeder-Heister's more
traditional formalization in terms of formula-trees and discharge-functions.

Such a formulation is enough to allow us, by a ‘natural’ generalization of the
encoding in (7), to formalize, for instance, (13) as

(T(ADB) & ((T(A) - T(B)) = T(C))) = T(C)
and—-E - as
T(ADB)—»T(A) - T(B).

It is now possible, by a corresponding generalization of the notion of deduction
(see Schroeder-HeistEr9841) to show adequacy and faithfulness for this larger
class of deductive systems.
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Generalized natural deduction and curryed rules

Until now we have been usinyJ ™ to encode and reason with deductive sys-
tems. If we want to show a direct relationship between the traditional notation of
natural deduction and our encoding, then we seem to need both trel& con-
nectives in the metalogic. However, compaseF and—-F ¢; while there seems
to be large differences between the two as rules, there is very little either in natural
language or in logical framework terms: one is simply the ‘curryed’ form of the
other; in this case the conjunction seems almost redundant.

On the other hand, one generalization that we have not made so far, and one
that is suggested b)J ™, is to allow a natural deduction rule with multiple
conclusions; e.g. assuming an ordinary conjunctiphave a (tableau-like) rule

Iw: &-Enc

corresponding to the natural language
If AA B thenitfollows thatd andB.
Both of which correspond to the framework formalization
T(AANB) - T(A) & T(B).

However, there seems to be less of a need for rules of this form: a single encoded
ruleC — A & B can be replaced by a pair —+ A andC — B.

If we are willing to accept this restriction to the language-efalone, then
we can simplify the metalogic we are using: if we have conjunctions only in the
antecedents of implications, they can always be eliminated by ‘currying’ the
formulae conjoined in the antecedent, allowing us to dispose of conjunction com-
pletely. For example, the curryed form of the axiom+efE in (6) is then

T(AD B) - T(4) - T(B).

Notice that this form of—-FE is indistinguishable from the encoding we give
above for—-FE~: we are no longer able to distinguish some different rules in
generalized natural deduction, and thus we lose the faithfulness/adequacy bijection
that we have previously demonstrated. However this problem is not serious: we
are only identifying proofs that differ in simple ways, e.g., by the application of
curryed versus uncurryed rules. Furthermore, this possible confusion arises in the
case ofgeneralizechatural deduction, but not in the traditional form.

In the next section we describe a full logical framework based on the ideas we
have developed here. In fact it turns out that we can adopt the same notation to
formalize not only deductive systems, but also languages, in a uniform manner.
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4 FRAMEWORKS BASED ON TYPE-THEORIES

In the last section we established a relationship between natural deduction and the
logic of implication. However we considered only reasoning about fragments of
propositional logic, and when we turn to predicate logics, we find that the mecha-
nisms of binding and substitution introduce some entirely new problems for us to
solve.

The first problem is simply how to encode languages where operators bind vari-
ables. Such variable binding operators include standard logical quantifiers, the
of the A-calculus, fixedpoint operators likein fixedpoint logics, etc. Until now
we have been using a simple term algebra to represent syntax, where, e.g. a binary
connective like implication is represented by a binary function. However, with
the introduction of binding and substitution this approach is less satisfactory. For
instancevz. ¢(x) andVy. ¢(y) are distinct syntactically, but not in terms of the
deductive system (any proof of one proves the other). Binding operators also com-
plicate operations performed on syntax; e.g. substitution. The second problem is
that proof-rules become more complex: the rules for quantifiers place conditions
on the contexts (e.g. insisting that certain variables do not appear free) in which
they can be applied.

Now we extend our investigation to deal with these problems, and complete
the development of a practicat-framework. We tackle the two problems of lan-
guage encoding and rule encoding together, by introducing\tbalculus as a
representation language into our system. This provides us with a way to encode
quantifiers usindnigher-ordersyntax and then to encode rules for these quanti-
fiers.

There are different ways that we can combineXhealculus with a metalogic.
One possibility is simply to add it to the term language, extending, e.g., the the-
ory NJ~ to a fragment of higher-order logic. Another, similar, possibility, and
one which offers some theoretical advantages, is to ugpeatheory We inves-
tigate the type-theoretic approach in this section. Type-theories based an the
calculus are well-known to be closely related to intuitionistic logics Nde™ via
‘Curry-Howard’ (see Howard198d), or propositions-as-typessomorphisms, a
fact which allows us to carry across much of what we already know about encod-
ing deductive systems froiNJ . Moreover, an expressive enough type-theory
provides a unified language for representing not just syntax, but also proof-rules
and proofs. Thus a type-theoretic logical framework can provide a single solution
to the apparently distinct problems of encoding languages and deductive systems:
The encoding problems are reduced to declaration of appropriate (higher-order)
signatures and the checking problems (e.g. well-formedness of syntax and the
correctness of derivations) to the problem of type checking against these signa-
tures.

llgee, e.g., Felt}1989, Paulsor{ 1994 or Simpsor{1994, for examples of this approach.
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4.1 Some initial observations

We begin by considering the problem of formalizing a binding operator, taking
as our example. Consider what happens if we follow through the analysis given
above for natural deduction in propositional logic. First we state, in Gentzen style
natural language, some of the propertie¥ oé.g.

if, for arbitraryt, it follows that¢(¢), then it follows thatvz. ¢(x)
and

if it follows that V.. ¢(z), then for anyt it follows thate(¢).
These are traditionally represented, in the notation of natural deduction, as

V.o
¢ V-1 and ——V-E
V. ¢ dlr + t

where, inV-1, the variabler does not appear free in any undischarged assump-
tion, and the notatiog[z <+ t] denotes the formula where the ternt has been
substituted through far (care being taken to avoid capturing variables). The re-
lationship between these rules and their informal characterizations is less direct
here than in the propositional case; for example, we model the statement ‘If, for
arbitraryt, it follows that¢(t)’ indirectly, by assuming that an arbitrary variable
can stand for an arbitrary term, then ensuring thegally is arbitrary by requiring
that it does not occur free in the current assumptions.

Consider how we might use a ‘logical’ language instead of rules by extending
our language based on minimal implication. To start with, we need a way of saying
that a term is arbitrary, which we can accomplish with universal quantification.
Furthermore, unlike in the propositional case, we have two syntactic categories.
As well as formulae fin), we now have termstfn), and we will use types to
formally distinguish between them. If we combine quantification with typing, by

writing (z:y) to mean ‘for allz of typey’, then a first attempt at translating natural
language into (semi)formal language results in the following:

T(Vz. p(z)) — (t:tm)T((t))
(t:tm)T (6(t)) — T (Vx. d(x))

However while this appears to capture our intuitions, it is not clear that it is for-
mally meaningful. If nothing else, one might question the cavalier way we have
treated the distinction between object-level and metalevel languages. In the fol-
lowing sections we show that this translation does in fact properly correspond to
the intuitive reading we have suggested.

(14)

4.2 Syntax as typed terms

We begin by considering how languages that include variable-binding operators
can be represented. We want a method of representing syntax where terms in the
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object logic are represented by terms in the metalogic. This representation should
be computable and we want too that it is compositional; i.e. that the representative
of a formula is built directly from the representatives of its subformulae.

Types provide a starting point for solving these problems. A type system can
be used to classify terms into types where well-typed terms correspond to well-
formed syntax. Consider the example of first-order logic; this has two syntactic
categories, terms and formulae, and, independent of whether we view syntax as
strings, trees, or something more abstract, we must keep track of the categories to
which subexpressions belong. One way to do this is to tag expressions with their
categories and have rules for propagating these tags to ensure that entire expres-
sions are ‘well-tagged’. Even if there is only one syntactic category we still need
some notion of well-formed syntax; in minimal logic, for instance, some strings
built from implication and variables, such as> v, are well-formed formulae,
while others, likep D> D1, are not.

In a typed setting, we can reduce the problem of syntactic well-formedness to
the problem of well-typedness by viewing syntax as a typed term algebra: we
associate a type of data with each syntactic category and regard operators over
syntax as typed functions. For instancecorresponds to a function that builds a
formula given two formulae, i.e., a function of type x fm — fm. Under this
reading, and using infix notatiog, D 1 is a well-typed formula provided that
andq) are both well-typed formulae of typge, whereas) DD is ill-typed.

This view of syntax as typed terms provides a formalization of the treatment
of propositional languages as term algebras that we have informally adopted up
to now. We will see that it also provides a basis for formalizing languages with
guantification. In fact the mechanism by which this is done is so flexible that it is
possible to claim:

THESIS 7. The typed-calculus provides a logical basis for representing many
common kinds of logical syntax.

Note that we do not claim that the typedcalculus, as we shall use it, is a
universal solution applicable to formalizing any language. We cannot, for instance,
formalize a syntax based on a non-context-free grammar. Neither can we give a
finite signature for languages that require infinitely many (or parameterized) sets
of productions. The notation is remarkably flexible nevertheless, and, especially
if we refine the type system a little further, can deal with a great many subtle
problems — a good example of this can be found in the analysis of the syntax of
higher-order logic developed by Harpatral. [1993.

The simply typed-calculus

We assume that the reader is familiar with the basics oAtbalculus, e.g. reduc-
tion (we denote one-step reduction by and its reflexive-transitive closure by
im) and conversion= 3), and review only syntax and typing here; further details
can be found in Barendret984; 199] or Hindley and Seldii1986. We now
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define a type theory based on this, calledgimeply typed\-calculus, or more suc-
cinctly X=. Our developmentis based loosely on that of Barendregt and anticipates
extensions we develop later.

We start by defining the syntax we use:

DEFINITION 8. Fix a denumerable set of variablésThe terms and types of*
are defined relative to a signature consisting of a non-empty $stsaf types, a
set ofconstantsC, and aconstant signatur&, whichisa sef ¢;:4; | 1 <i <
n,c; € K, A; € Ty }, where the;; are distinct, and:

e The set otypesTy is given by

Ty =B | Ty — Ty.

e The set ottermsT is given by
Ta=VI|K|TT WY T.

A variable xz occursboundin a term if it is in the scope of Az andzx
occursfree otherwise. We implicitly identify terms that are identical under
a renaming of bound variables.

e A typing contexis a sequence;:A4,... ,z,:A, of bindingswhere ther;
are distinct variables and; € Ty for (1 < i < n).

For convenience, we shall overload theelation, extending it from sets to
sequences in the obvious manner (i.e. sothal; € z1:A41,... ,x,:A, iff
1<i<n).

e A type assignment relatiok is a binary relation, indexed b¥, defined
between typing contexf§ and typing assertion&/: A whereM € T and
A € Ty, by the inference rules:

cAeY I,z:Ag M:B
assum abst
TE A It (A\z?. M):(A - B)
Ael ' MitA— B T'g N:A
hyp appl
g z:A 't (MN):B

This definition states that types consist of the closure of a set of base types under
the connective— and that terms are either variables, constants, applications or
(typed) A-abstractions. The rules constitute a deductive system that defines when
a term is well-typed relative to a context and a signature, which in turn assign
types to free variables and constants. Notice that we do not have to make explicit
the standard side condition fabst that the variable: does not appear free In,
since this is already implicitly enforced by the requirement that variables in a type
context must be distinct.
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As an example, if A, B} C Ty then

x:A€x:AyB
A y:BE x:A

AL NP B — A
Exzt \yP 24 - (B - A)

assum
abst (15)
abst

is a proof (for any®). Further, it is easy to see that:
FACT 9. Provability for this system (and thus well-typing) is decidable.

A Curry-Howard isomorphism fok~

The rules for\~ suggest the natural deduction presentatioNibr” (see§3.1): if
we rewrite all instances df k;, M:A in a proof inA~ asT', ¥ + M:A and uni-
formly replace each typing assertior, z: A, andM: A by the typeA, thenabst
andappl correspond te»-I and—-FE, while hyp andassum together correspond
to Basic. The following makes this correspondence more precise.

FACT 10.

1. There is a bijection between types)n and propositions ilNJ ~ where a
proposition inNJ ™ is provable precisely when the correspondimgtype
is inhabited (has a member).

2. There is a bijection between members of typesinand proofs of the cor-
responding propositions INJ .

Part 1 of this characterizes the direct syntactic bijection between types and proposi-
tions where base types correspond to atomic propositfosrsd the function space
constructor corresponds to the implication connective. The correspondence be-
tween provability and inhabitation then follows from the correspondence between
the proof-rules of the two systems. Then part 2 refines the bijection to the level of
inhabiting terms on the one hand, and proofs on the other.

Fact 10 states an isomorphism between types and propositions that we can char-
acterize as ‘truth is inhabitation’: i#/: A then the proposition corresponding4o
is provable and, moreover, there is a corresponding notion of reduction in the two
settings wherg-reduction ofM in the A-calculus corresponds to reduction of the
proof A (in the sense of Prawitz).

We exploit this isomorphism in reasoning about encodings in this chapter. In
this section we show the correctness of encodings by reasoning about normal forms
of terms in type-theory and i§b we will reason about normal forms of proofs.

12This fact holds for the pure version &f without constants. We also implicitly assume a bijection
between base types and propositional variables.
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REMARK 11. For reasoning about the correctness of encodings it is sometimes
necessary to use a more complex isomorphism based orlaottn-conversion.

It is possible to establish a correspondence between so calledsipingrmal
forms'3 and corresponding classes of derivationNih~. More details can be
found in[Harperet al, 1993.

Representation

In order to represent syntax X1’ we define a suitable signatu¥eand establish

a correspondence between terms in the metalogic and syntax in the object logic.
Our signature will consist of a base type for each syntactic category of the object
logic and a constant for each constructor in the object logic. We will see that we
do not need a typeariableto formalize variables in the object logic because we
can use instead variables of the metalogic. Syntax belonging to a given category in
the object logic then corresponds to terms in the metalogic belonging to the type
of that category.

This is best illustrated with a simple example: we represent the syntax of min-
imal logic itself. We follow Church’d1940 convention, where is the type of
propositions, so the signature is the (singleton) set of base fygeand the con-
stant signature is

Y ={imp: 0 — 0— o}. (16)

The constructoimp builds a proposition from two propositions. With respect to
this signaturejmp z (imp y z) is a term that belongs to whenz, y, andz
belong too; i.e. z:0,y:0, z:0 &, imp x (imp y z):0. This corresponds to the fact
thatz D (y D z) is a proposition of minimal logic provided that y, andz are
propositions.

Thus formulae of minimal logic correspond to well-typed terms of typEor-
mulating this correspondence requires some care though: we have to check ad-
equacy and faithfulness for the represented syntax; this amounts to showing that
(i) every formula in minimal logic is represented by a term of tgpand (i) that
every term of type represents a formula in minimal logic.

As a first attempt to establish such a correspondence, consider the following
mapping -7, from terms in minimal logic to\-calculus terms:

Tzl'==x
’_tl D tz_l = zmp I—tl—l rtz_l
As an example, under this representation the formula (y D z) corresponds

to the termimp = (imp y z). The representation function is an injection from
propositions to terms of typg provided that variables are declared to be of type

BAtermM = Az1 ...xn.xMj ... My, isinlongBn-normal form when 1) is anz;, a constant,
or afree variable oM, 2) x M ... M, is of base type (i.er is applied fully to all possible arguments)
and 3) eachV/; is in long 3n-normal form.
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o in the context. However, it is not surjective: there are too many terms of type
o. For example in a context wheteis of typeo — o andy is of typeo, thenz y

is of typeo, and so isimp ((Az°.z) y) y; but neither of these is in the image

of ™.7. The problem with the first example is that the variablis of higher type

(i.e. the function types — 0) and not a base type i. The problem with the
second example is that it is not in normal form. Any such term, however, has a
unique equivalens-normal form, which we can compute. In the above example
the term has the normal fortmp y y, which is™y D y™. Our correspondence

is thus a bijection when we exclude the cases above: we considefordymal

form terms where free variables are of type

THEOREM 12. "7 is a bijection between propositions in minimal logic with
propositional variables:y, . . . , z,, andg-normal form terms of type containing
only free variable:y, .. . ,z,, all of typeo.

First-order syntax

The syntax of minimal logic is very simple, and we do not need allloto encode

it. We can be precise about what we mean by ‘not all’ if we associate types with
orders: observe that any typehas a unique representation@as —» ... - a,, —

3, where— associates to the right artlis a base type. Now define tloeder of

v to be0 if n = 0, and1 + maz(Ord(ay), ... ,Ord(a,)) otherwise'* In our
encoding of minimal propositional logic we have used only the first-order fragment
of \=; i.e. variables are restricted to the base tyad the only function constant
imp is first-order (since its two arguments are of base type); this is another way of
saying that an encoding using a simple term algebra is enough.

This raises an obvious question: why adopt a full higher-order notation if a
simple first-order notation is enough? Indeed, in a first-order setting, results like
Theorem 12 are much easier to prove because there are no complications intro-
duced by reduction and normal forms. The answer is that the situation changes
when we introduce quantifiers and other variable binding operators. A ‘naive’
encoding of syntax is still possible but is much more complicated.

Consider, as an example, the syntax of first-order arithmetic. This is defined in
terms of two syntactic categories, terms and formulae, which are usually specified
as:

termsT ==z |0 |sT |T+T|T xT
formulaeF :=T =T | ~F | FAF|FVF|FDF|Vz.F | 3. F

How should we represent this? A possible first-order notation is as follows:
we define a base type of variables, in addition to typesfor terms (i.e. ‘indi-
viduals’) ando for formulae. Since variables are also terms, our signature re-
quires a ‘coercion’ function mapping elements of typ®e elements of typé The

14 Note that there is not complete agreement in the literature about the order of base types, which is
sometimes defined to e not0.
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rest of the signature is formalized as we would expect; @5 is a constant of
typei — i — i, atomic formulae are built from the equality relatieq of type
i — i — o, connectives are defined as propositional functions evend a quan-
tifier like V is formalized by declaring a function constaatit of typev — 0 — o
taking a variable and a formula to a formula.

This part of the encoding presents no difficulties. However the problems with
first-order representations of a language with binding are not directly in the repre-
sentation, but rather in the way we will use that representation. It is in the formal-
ization of proof-rules where we encounter the problems, in particular with substi-
tution. Consider, for instanc¥; E in (4.1), where we use the notatigf + t;
we need to formalize an analogue for our encoding, which we can do by introduc-
ing a ternary functionsub of typeo — i — v — o, wheresub(¢,t,z) = ¢ is
provable precisely wheg[z + t] = ¢. With this additionv-E is axiomatizable
as

Yo, v:0Vt:i.Vzw. (sub(p,t,z) =) = T'(all z ¢p) — T (V). a7

There are several ways we might axiomatize the detaids&f The most direct
approach is simply to formalize the standard textbook account of basic concepts
such as free and bound variables, capture, and equivalence under bound variable
renaming, which we can easily do by structural recursion on terms and formulae.
The definitions are well-known, although complex enough that some care is re-
quired, e.g. bound variables must sometimes be renamed to avoid capture. Note
too that in (17) we have used the equality predicate over formulae (not to be con-
fused with equality over terms in the object logic, ieg), which must either be
provided by the metalogic or additionally formalized. Examples of such equational
encodings of logics are given by Maf@liet and Meseguel2004.

Other encodings have also been explored: for instance we can use a representa-
tion of terms that finesses problems involving bound variable names by eliminating
them entirely. Such an approach was originally suggested by de Bagjrd who
represents terms with bound variables by replacing occurrences of such variables
with ‘pointers’ to the operators that bind them. A related approach has been pro-
posed by Talcott1993, who has axiomatized a general theory of binding structure
and substitution, which can be used as the basis for encoding logics that require
such facilities. Another recent development, which is gaining some popularity, is
to provide extensions of thie-calculus that formalize operators for ‘explicit sub-
stitutions’[Abadiet al,, 1991].

In all of these approaches, direct or indirect, there is considerable overhead,
and not only at the formalization stage itself: when we are building proofs, we
have to construct subproofs using the axiomatizatiosudfat every application
of V-E. Being forced to take such micro-steps in the metatheory simply to apply a
rule in the object logic is both awkward and tedious. And there is another serious
problem that appears when we consider a rule Yikein (4.1), where we have
a side condition thathe variablexz does not appear free in any undischarged
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assumption There is no direct way, in the language we have been developing, to
complete the formalization of this: we cannot reify the semiformal

V¢:0.¥z:v. z not free in contexts T'(¢) — T(all z ¢) (18)

into a formal statement (we cannot, in general, refer to contexts in this way).

Again there are ways to get around the problem by complicating the formaliza-
tion. For instance while we cannot tell which variables are free in the context, we
can, under certain circumstances, keep track of those that might be. We can define
a new typesv, of sets of variables, with associated algebra and predicates, where,
e.g.,notin(zx, ¢) is a predicate on typesandsv that is true iffx does not occur in
the sete, andunion is a function of typesv — sv — sv that returns the union of
its arguments. In this setting we can then expaiid so that rather than being a
predicate om, it is a predicate on andsv; this yields the formalization

Vo:0.Va:w.Ve:sv. notin(x, ¢) = T(¢,¢) = T(all z ¢,¢) .

In addition, we have, of course, to modify all the other rules so they keep track
of the variables that might be added to the context; for instameEnow has the
formalization

Vo, p:0e:sv. (T(¢, ¢) = T(y, union(c, fu(¢)))) = T(imp i), c),

wherefuv returns the set of variables free in a formula (i.e.<fove have added all
the free variables af to the free variables in the context).

Clearly, first-order syntax in combination witk is becoming unacceptably
complicated at this point, and is far removed from the ‘sketched’ characterization
in (14). If part of the motivation of a logical framework is to provide a high-level
abstraction of a deductive system, which we can then use to implement particular
systems, then, since substitution and binding are standard requirements, we might
expect them to be built into the framework, rather than encoded from scratch each
time we need them. We thus now examine a very different sort of encoding in
terms of\~ that does precisely this.

Higher-order syntax

When using a first-order encoding of syntax, each time we apply a proof-rule like
V-E, we must construct a subproof about substitution. Butinwe already have

a substitution mechanism available that we can exploit if we formalize variable
binding operators a bit differently. The formalization is based on what is now
commonly callechigher-ordersyntax.

We start by observing that ix® the A operator binds variablegi-reduction
provides the sort of substitution we want, and we have a built-in equivalence that
accounts for renaming of bound variables. Higher-order syntax is a way of exploit-
ing this, using higher-order functions to formalize the variable binding operators of
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an encoded logic directly, avoiding the complications associated with a first-order
encoding.

The idea is best illustrated with an example. If we return to the problem of how
to encode the language of arithmetic, then, using higher-order syntax our signature
need contain only the two sorts, for terms and formulaefi.e. {i, o}.

We do not need a sort corresponding to a syntactic category of variables, be-
cause now we will represent them directly using variables of the metalogic itself,
which are either declared in the context or bound\tig the metalogic. The sig-
natureX is then

{0:4,5:0 — i, plus:i — i — i, times:i — i = i,eq:i = i — o,
falsum:o,neg:0 — 0, 0r:0 = 0 — 0,and:0 = 0 — o,
imp:o = 0 — o,all:(i = 0) — o, exists:(i = 0) = o}. (19)

In this signaturezll and ezists no longer have the (first-order) type— o — o;
instead they are second order, taking as their arguments predicate valued functions
(which have first-order types).

Using higher-order syntax, an operator that binds a variable can be conceptually
decomposed into two parts. Firstgifs an encoded formula, i.e. of typepossibly
including a free metavariable of types, thenAz?. ¢ is the abstraction op over
x, wherez is now bound. The result is, however, of type— o, not of typeo.
Second, we convepz®. ¢ back into an object of type, and indicate the variable
binding operator we want, by applying that operator to it. For example, applying
all to \z'. ¢ yields the termall (Az*. ¢) of type o. Similarly, for a substitution
we reverse the procedure. Giveli (\z¢. ¢), for which we want to generate the
substitution instance[z < t], we first strip off the operatarll and apply (in\~)
the result tot, to get(A\z?. ¢)t. Butin A~ this reduces t@[z <« t]. Hence, we
needn’t formalize explicitly any substitution mechanism for the object logic since
we can exploit the substitution that is (already) formalized for the metalogic.

Of course we must check that all of this works. But it is easy to extend adequacy
(Theorem 12) for this signature to show that the terms and formulae of first-order
arithmetic are correctly represented by normal form members of typesl o
respectively.

Now we can formalizé/-E andV-1 in a way that directly reflects the sketch
in (14):

Yo' 70 (T (all ¢) — Va'. T(¢ 7))
Voi=o (Va'. T (¢ ) — T(all ¢)) (20)

If we compare this with (18) above, we can see how, by using metavariables as
object variables, we are able to formalize the side conditiomot free in context’
in (20) by havinge bound directly by a universal quantifier at the metalevel.

In conclusion, higher-order syntax provides strong supporting evidence for The-
sis 7 by providing a mechanism for using thef the metatheory to provide di-
rectly the machinery needed for variable binding, substitution, variable renaming,
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and the like, which are typically needed for representing and using object logics
that contain variable binding operators.

4.3 Rules of proof and dependent types

We have shown how we can use a type-theory to represent syntax, reducing the
problem of syntactic well-formedness to the problem of decidable well-typing.
We now extend the language we are developing so that we can do the same with
proof-rules.

We can use\” as a representation language for proofs too, but it is too weak
to reduce proof checking to type checking alone. To see why, consider the two
function symbolgimes andplus in the signature defined in (19). Both are of type
i — i — 1, which means that as far as the typing enforced\byis concerned,
they are interchangeable; i.e.tiis a well-typed term ir\~, and we replace every
occurrence of the constatiines with the constanplus, we get a well-typed term
t'. If t is supposed to represent a piece of syntax, this is what we want; for instance
if we have used the type-checking bf to show thatt = eq (times 0 (s0)) 0 is
a well-formed formula, i.e. thato, then we immediately know that is a well-
formed formula too. Unfortunately, what is useful for encoding syntax makes it
impossible to define a type of proofs: in arithmetic we wanbut nott’, to be
provable, but we cannot make this distinction\in: we cannot define a typer
such thata:pr iff a is the encoding of a proof, since we would not be able to tell
whether a ‘proof’ is oft or of ¢'.

This observation may seem at odds with the relationship betwden and
X~ established ir§3, since we have already usadd ~ to encode (propositional)
proofs. But in our discussion of the Curry-Howard isomorphism, we were care-
ful to talk about thepropositional fragmenof NJ ', but in order to encode even
propositional proofs ilNJ ~ we have used the languagemfantifier-free predi-
catelogic, not propositional logic, and in order to encode the rules for quantifiers,
we needed explicit quantification.

To represent proofs we proceed by extendimgwith dependentypes, that is,
with types that can depend on terms. Specifically, we introduce a new opé&rator,
where, if A is a type, and for every € A, B[z < t] is a type, then so iHz 4. B.

In other words, we usH to build families of typesB[z « t], indexed byA. II

is sometimes called a dependent function space constructor because its members
are functionsf where, for every € A, f(t) belongs to the typ®[z « t]. The
addition of dependent types generali2es since whene does not occur free in

B, the typellz“. B is simply A — B because its members are just the functions
from A to B that we have im\~.

Given dependent function types, we can define the provability relation for a
logic as a type-valued function: instead of havimgbe a single type, we index
it over the formulae it might prove, i.e. we define it to be a function from objects
¢ of typeo (i.e. formulae) to the type of proofs gf Using this, we define typed
function constants that correspond to rules of proof. For example, we can now
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formalize implication elimination as
impe:Ilz° . Iy°. pr(imp z y) — pr(z) — pr(y)

i.e., impe is a function which, given formulag andy (objects of typev), and
terms provinge O y andz, returns a term proving.

We now provide the formal details of an extensior\ofin which we can build
dependent types, and show that the approach to representing deductive systems
using type systems actually works the way we want.

The metalogic\®

The particular theory we present, which we cal| is closely related to the Edin-

burgh LF type-theoryHarperet al, 1993 and thel fragment of the AUTOMATH

language AUT-P[de Bruijn, 1980. Our presentation is based on a similar presen-

tation by Barendredt1991; 1992, which we have chosen for its relative simplicity.
We define the expressions and typesifogether as follows:

DEFINITION 13 (Pseudo-Terms). L&t be an infinite set of variables ardbe
a set of constants that contains at least two elemerdasd O, which are called
sorts A set ofpseudo-term§ is described by the following grammar

Ta=VI|K|TT|WVW.T v T
IT binds variables exactly lika. Substitution (respecting bound variables) and

bound variable renaming are defined in the standard manner.

DEFINITION 14 (A deductive system for®). We define, together, judgments for
avalid signatureavalid contextand avalid typing In the following,s ranges over

{x O}

¢ A signatureis a sequence given by the grammar

Tu=0)]3,ecA
wherec ranges ovelC. A signatureX is valid when it satisfies the relation
I defined by:
EY k Ais c&dom(X)
m EX, cA

e A contextis a sequence given by the grammar
=) |Tz:A

wherezx ranges oved). A context is validwith respect to a valid signature
¥ when it satisfies the relationdefined by:

ED TE Ass z¢dom(T)
ED,z:A

oT
N
v
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¢ A type assignment relatiol, indexed by a valid signaturg, is defined
between valid typing contexis and typing assertions B wherea, B € T
is given by the rules:

'k A« T,xz:Ak B:s
axiom T form
Ik «0O I'i; IIz”. B:s
cAEY [,z:AL b:B Tk Iz B:s
assum abst
Tk cA Uk Azt b1z, B
v AeTl Tt fIlz*.B Tk aA
yp appl
Ik z:A 'k f(a):Blz < d]
l'caB T'gB:s B=3B
conv
L'k a:B'

We use the two sorts andO to classify entities iri/” into levels. We say that
x IS the set of types and is the set of kinds. As i\~, terms, which are here a
subset of the pseudo-terms, belong to types; unlikeintypes, which are here
also pseudo-terms, belong4oFor example, ib is a type (i.eo:x), thenAz °. z is
a term of typellz°. o, which we can abbreviate as— o, sincex does not occur
free ino. It is possible to build kinds, in limited ways, using the constgnin
particular, the rules we give allow the formation of kinds with rarge.g.o —
but exclude kinds with domain, e.g.* — o. Hence we can form kinds like
o — * that have type-valued functions as members, but we cannot form kinds by
guantifying over the set of types.

We state without proof a number of facts about this system. They have been
proven in the more general setting of the so-calexlibe (a family of eight related
type systems) and generalized type systems examined by Bareft®edt 1992,
but see also Harpet al. [1993 who show that the closely related LF type-theory
has similar properties.

FACT 15. Term reduction i\ is Church-Rosser: gived, B, B’ € T, then if
A %5 BandA 55 B’ there exist€) € T where bothB 55 C andB' %5 C.

FACT 16. Terms in¥’ are strongly normalizing: if’ i, A:B, thenA andB are
strongly normalizing (alB-reductions starting withl or B terminate).

FACT 17. W satisfies unicity of types: If i; A:B andI' i; A:B’, thenB =3 B'.
From the decidability of these operations it follows that:
FACT 18. All judgments of\* are decidable.

Relationship to other metalogics

The proof-rules for\’? extend the rules given fox~ in Definition 8. The rules
for A= essentially correspond to the identically named rules\forestricted so
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that in every typing assertianB, a is a term ofA~ andB is a simple type. The
correspondence is not quite exact sincafinve have to prove that a signature, con-
text, and type are well-formed (i.e., the first three parts of Definition 8), whereas
this is assumed to hold in>. The need for this explicit demonstration of well-
formedness is also reflected in the second premise offtlmele for abstraction.

An example should clarify the connection between the two systentd..2nwe
gave a signatur® for minimal logic

{imp:o—>0—0}.
In I’ we have
Y = ok, imp:o = 0 = 0.

According to this, ifz is of typeo, then we can show iaP thatimp z z is a
well-formed proposition, i.el i, imp x x:0 wherel' = z:0, as follows:

imp:o—0—>0€EY ro€e?l
assum hyp
' imp:o—=0—o0 I'k z:0 o€l
, app hyp
'k imp z:0 = o £ a:
appl

' impz z:0

However, the rules of® formalize a strictly more expressive type-theory than
A~, and correspond, via a Curry-Howard isomorphism, to a more expressive logic.
Terms are built, as we have already seen, by declaring function constants that form
typed objects from other typed objects, emup = = above corresponds to a
term of typeo. An n-ary predicate symbaP, which takes arguments of types
$1,...,8pn, has the kinds; — ... — s, — . Thell-type constructor corre-
sponds either to universal quantification or (in its non-dependent form) implica-
tion. For example, given the signature

Y = S1:%, S9ik, PiS] —> So —> *
we can show that there istauch that
£ t:(Hz™  My®2. p(z,y)) — My Oz p(x,y),
which corresponds to demonstrating the provability of the formula

ks (Vz.Vy.p(z,y)) = Vy.Ve.p(z,y)

in a traditional sorted first-order setting.

In \* we generalize\™ so that types can depend on terms. We have not carried
through this generalization to allow, e.g., types depending on types, which would
allow impredicative higher-order quantification. As a result, and given the above
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discussion, logics likew and the LF are often described as first-order. Alterna-
tively, since we can also quantify over functions (as opposed to predicates) at all
types, some authors prefer to talk about minimal implicational predicate logic with
guantification over all higher typdSimpson, 199P, orw-order logic ¢h*) [Felty,
1991], to emphasize that these logics are more than first-order, but are not fully
higher-order.

4.4 Representation W

We have reached the point where the intuitions we have formulated about the rela-
tionship between natural deduction calculi and the logic of implication are reduced
to a single formal system, the type-thed® In this system, the problems of en-
coding the syntax and proof rules of a deductive system are reduced to the single
problem of providing a signatue and the problems of checking well-formedness

of syntax and proof checking are reduced to (decidable) type-checking. We will
expand on these points with two examples.

A simple example: minimal logic

A deductive system is encoded)p by a signature that encodes
1. The language of the object logic and
2. The deductive system.

In §4.3 we gave a signature suitable for encoding the language of minimal logic.
As we have seen, this consists first of an extension of the signature with types
corresponding to syntactic categories and then with function constants over these
types. The encoding of the deductive system also proceeds in two stages. First, we
represent the basic judgments of the object Idg§id@o do this, for each judgment

we augment the signature with a function from the relevant syntactic categories to
a type. For minimal logic we have one judgment, that a formula is provable, so we
add to the signature a functign, of kindo — =, where for any propositiop € o,

pr(p) should be read as saying that the formula representgddprovable. Sec-

ond, we add constants to the signature that build (representatives of) proofs. Each
constant is associated with a type that encodes (under the propositions-as-types
correspondence) a proof rule of the object logic. For minimal logic we add con-
stants with types that encode the formulae given in (6) f§8r8, which axiomatize

the rules for minimal logic.

I5Recall thatjudgmentsare assertions such as, e.g., that a proposition is provable. Typically, a
logic only has a single judgment, but not always; for instakcself, in our presentation, has three
judgments: a signature is well-formed, a context is well-formed, and a typing assertion is provable
relative to a well-formed signature and context. The reader should be aware of the following possible
source of confusion. By using a metalogic we have judgments at two levels: we use the judgment in
AP that a typing assertion is provable relative to a signature and a context to demonstrate the truth of
judgments in some object logic.
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Putting the above pieces together, minimal logic is formalized by the following
signature.

Y = 0%, pr:o — x,imp:0 = 0 = 0,
impi:ITA°B°. (pr(A) — pr(B)) — pr(imp A B),
impe:ILA°B°. pr(imp A B) — pr(A) — pr(B)

It is an easy exercise to prove A that this is a well-formed signature.

Now consider how we use this signature to prove the proposition A. We
encode this agnp A A and prove it by showing that the judgmeni(imp A A)
has a member. We require, of course, thas a proposition and we formalize this
by the contextd:o, which is well-formed relative t&. (In the following proof we
have omitted rule names, but these can be easily reconstructed.)

Part I:

impi:ITA°B°. (pr(A) — pr(B)) = pr(impAB) € ¥ A0 € Ao
Ao k5 impi:ITA°B°. (pr(A) — pr(B)) = pr(imp AB) A:ok Ao A:0 € Ao

A:o kg impi A:IIB. (pr(A) — pr(B)) — pr(imp A B) Aol Ao
Aol impi A A:(pr(A) — pr(A)) = pr(imp A A)

Part Il:
y:pr(A) € A:o,y:pr(A)
A:o,y:pr(A) k5 yipr(A) Aol pr(A) — pr(A):x
Ao kg /\ypr(A).y:pr(A) — pr(4)

(We have elided the subproof showing thatA) — pr(A) is well-formed, which
is straightforward using the formation ruferm.) Putting the two parts together
gives:
Part | Part Il
Aok impi AA (MyP™ W y):pr(imp A A)

Note that the reader interested in actually using a metalogic for machine sup-
ported proof construction should not be frightened away by the substantial ‘meta-
level overhead’ that is associated with carrying out a proof of even very simple
propositions likeA D A. Real implementations of logical frameworks can hide
much of this detail by partially automating the work of proof construction. Be-
cause all the judgments af are decidable, the well-formedness of signatures and
contexts can be checked automatically, as can the typing of the terms that encode
proofs!6

16This second point is not so important: Although the decidability of syntactic well-formedness is
important, in practice, a framework is not used to decide if a given proof is valid, but as an interactive
tool for building proofs.
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This example shows how both well-formedness and proof checking are uni-
formly reduced to type checking. With respect to well-formedness of syntax, a
proof that the typepr(imp A A) is inhabited is only possible ifmp A A is of
typeo, i.e. it represents a well-formed proposition. That members of dyjeally
represent well-formed propositions follows from adequacy and faithfulness of the
representation of syntax, which for this example was argued\(fdiin §4.2. With
respect to proof checking, we have proven that the tenmi A A (\y?" (4. y) in-
habits the typer(imp A A). In the same way that a term of typeepresents a
proposition, a term of typgr(p) represents a proof @f In this example, the term
represents the following natural deduction proofloD A.

[Aly
ADA

The exact correspondence (adequacy and faithfulness) between terms and the
proofs that they encode can be formalized (see Haepat. [1993 for details),
though we do not do this here since it requires first formalizing natural deduc-
tion proof trees and the representation of discharge functions. The idea is simple
enough though: the proof ru@-I is encoded using a constamtpi, and a well-
typed application of this constructs a proof-term formalizing the operation of dis-
charging an assumption. Specifically;pi builds an object (proof representative)
of the type (propositionpr(imp A B) given an object of typer(A4) — pr(B),

i.e. a proof that can take any object of prge{ A) (the hypothesis), and from it
produce an object of typer(B).

In the example above the function must construct a propf-Gf) from pr(A4),
and\y?"(4) y does this. In general, the question of which occurrences (f)
are discharged and how the proof Bfis built is considerably more complex.
Consider for example

-1,

impi A (imp B A) (/\;rp’"(A) .impi B A ()\y’""(B). x)), (21)

which is a member of the type-(imp A (imp B A)) in a context whered:o and

B:o. This term represents a proof where Implication Introduction has been applied
twice and the first (reading left to right) application discharges an assumption
and the second discharge @fis vacuous. This proof-term corresponds to the
following natural deduction proof.

(22)

A larger example: first-order arithmetic

A more complex example of a theory that we can easily formaliz&iris first-
order arithmetic, and in fact we can define this as a direct extension of the system



126 DAVID BASIN, SEAN MATTHEWS

oril:IIA°B°. pr(A) — pr(or A B)

orir:IIA°B°.pr(B) — pr(or AB)

ore:ITA°B°C°. pr(or AB) — (pr(A) — pr(C))

= (pr(B) = pr(C)) = pr(C)

raa:ILA°. (pr(imp A falsum) — pr(falsum)) — pr(A)

alli:ITA"~° . (Iz". pr(A(z))) — pr(all(4))

alle:ITA"™°z". pr(all(A)) — pr(A(z))
existsi:IIA"™° 2" pr(A(z)) — pr(exists(A))
existse:lLA° . 11C°. pr(exists(A)) — (Ilz*. pr(A(z)) — pr(C)) — pr(C)

ind:ITA*7° . pr(A(0)) — (Ilz*. pr(A(z)) — pr(A(sz))) — pr(all(A))

Figure 1. Some proof-rules for arithmetic

we have already formalized. We extend the signature with the formalization of the
syntax of arithmetic that we developedja.2 then we formalize the new rules,
axioms and axiom-schemas that we need.

We have formalized some of the proof-rules in Figure 1 and most are self-
explanatory. The first five extend minimal logic to propositional logic by adding
rules for disjunction and falsum. We use the consfabtum to encodel (from
which we can define negationast A = imp A falsum).

In our rules we assume a ‘classical’ falsum, i.e. the rule:

[AD 1]

i
i

encoded agaa. If we wanted an ‘intuitionistic’ falsum, we would replace this
with the simpler rule encoded by

ITA°. pr(falsum) — pr(A).

For the quantifier rules we have not only given the rules for universal quan-
tification (alli andalle) but also the rules for existential quantification, given by
existsi andexistse.

(4]
Alz +t] .
. A F dx. A C
C

These come with the usual side conditionsY#d, =z cannot be free in any undis-
charged assumptions on whieghdepends and, faf-E, = cannot be free irf' or
any assumptions other thahupon which (in the subderivatiod) depends.

3-F
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Object Logic Metalogic
Syntactic Categories Base Types
terms, individuals ~ {iz%, 0:% }
Connectives & Constructors First-Order Constants
V ~ or:o —+0—o0
Variable Binding Operators Higher-Order Constants
v ~ all:(i — o) — o
Judgment Type Valued Functions
Fop ~r pr.o — x
Inference Rule Constant Declaration
V-IL ~  oril:IIA°B°.pr(A) — pr(or A B)
AV B
Deductive System Signature Declaration
Deduction Typing Proof

Figure 2. Correspondence between object logics and their encodings

If we stop with the quantifier rules, the result is an encoding of first-order logic
over the language of arithmetic. We have to add more rules to formalize the theory
of equality and arithmetic. Thus, for example formalizes the induction rule

(4]

Alx < 0] Az « sz
Vz. A

and enforces the side condition thatloes not occur free in any assumptions other
than those discharged by the application of the rule. The other rules of arithmetic
are formalized in a similar fashion.

4.5 Summary

Figure 2 contains a summary. It is worth emphasizing that there is a relationship
between the metalogic and the way that it is used, anebgramework like\P is
well-suited to particular kinds of encodings. The idea behind higher-order syntax
and the formalization of judgments using types is to internalize within the meta-
logic as much of the structure of terms and proofs as possible. By this we mean
that syntactic notions and operations are subsumed by operations provided by the
framework logic. In the case of syntax, we have seen how variable binding in
the object logic is implemented by-abstraction in the framework logic and how
substitution is implemented by-reduction. Similarly, when representing proof-
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rules and proof-terms, rather than our having to formalize, and then reason explic-
itly about, assumptions and their discharging, this is also captured directly in the
metalogic. Support for this sort of internalization is one of the principles behind
the design of these framework logics. The alternative (also possibig)irs to
externalizei.e., explicitly represent, such entities. The external approach is taken
when using frameworks based on inductive definitions, which we will consider in
87.

5 ENCODING LESS WELL BEHAVED LOGICS

So far, we have restricted our attention to fairly standard, e.g. intuitionistic or clas-
sical, logics. We now consider how an-framework can treat the more ‘uncon-
ventional’ logics that we encounter in, for example, philosophy or artificial intel-
ligence, for which such simple calculi are not available. As previously observed,
most metalogics (and all the examples examined in this chapter) are ‘universal’ in
the sense that they can represent any recursively enumerable relation, and thus any
logic expressible in terms of such relations. However, there is still the question of
how effective and natural the resulting encodings are.

We take as our example one of the more common kinds of philosophical logics:
modal logic, i.e. propositional logic extended with the unargonnective and the
necessitatiomule (see Bull and Segerbelt984). Modal logics, as a group, have
common features; for example, ‘canonical’ presentations use Hilbert calculi and,
when natural deduction presentations are known, the proof-rules typically are not
encodable in terms of the straightforward translation presentg8.?n In§7 we
will see how Hilbert presentations of these logics can be directly encoded as in-
ductive definitions. Here we consider the problem of developing natural deduction
presentations in ar»-framework. We explore two different possibilitidabelled
deductive systemamdmultiple judgment systemsonsider how practical they are,
and how they compare.

5.1 Modal logic

We consider two modal logics in this sectidd:and an important extensioi4.
A standard presentation &f is as a Hilbert system given by the axiom schemata

(ADB)D(ADBDC)DADC
ADBDA
(AD1)D1)DA
O(ADB)DOADOB

and the rules

ADB A A
—— Det and —— Nec
B a
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The first of these rules is just the rule of detachment f6@x, and the second is
called necessitation. We g&t from K by adding the additional axiom schemata:

0A D OOA4
OADA

As noted above, we can see a Hilbert calculus as a special case of a natural de-
duction calculus, where the rules discharge no assumptions and axioms are premis-
less rules.

There is an important difference between Hilbert and natural deduction calculi
however, which is in the nature of what they reason about: Hilbert calculi manipu-
late formulae that are true in all contexts, i.e. valid (theorems), in contrast to natural
deduction calculi, which typically manipulate formulae that are true under assump-
tion. This difference causes problems when we try to give natural deduction-like
presentations of modal logics, i.e. presentations that allow reasoning under tempo-
rary assumptions. The problem can be easily summarized:

PROPOSITION 19.The deduction theorem (s&é.3) fails forK andS4.

Proof. First, observe (e.g., semantically using Kripke structures;s5e® that
A D OAis not provable ik or S4. However, if the deduction theorem held, we
could derive this formula as follows: assume then, by necessitation, we have
OA, and by the deduction theorem we would have thad O A is atheorem. This
is a contradiction. |

The deduction theorem is a justification for the natural deduction®ule but this
in turn is precisely the rule that distinguishes natural deduction-like from Hilbert
calculi: without it, one collapses into the other.

The problem of natural deduction encodings of modal logics is well known,
and various fixes have been proposed. In some of these, theduleand D-F
are kept intact by extending the language of natural deduction itself. For instance
if we allow global side conditions on rules then (following Praw[it969) for S4
we have the rules

DX OA

A and —0O-F
—0O-I A

oA

wherex means thaall undischarged assumptions are boxed; i.e. of the forkh
Notice that given this side condition, the argument we have used to illustrate the
failure of the deduction theorem no longer works. But the language dbes not
provide the vocabulary to express this side conditionleh, so we cannot encode
such a proof rule in the same fashion as proof-rules were encod8din
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5.2 A Kripke semantics for modal logics

A common way of understanding the meaning of formulae in a modal logic is
in terms of theKripke, or possible worldssemantics (see KripkEL1963 or van
Benthem 1984 for details). We shall use this style of interpretation in developing
our encodings.

A Kripke model (W, R, V') for a modal logic consists of a nonempty set of
worldsW, a binaryaccessibilityrelation R defined ove#¥, and avaluationpred-
icateV overW and the propositional variables. We then defirferaing relation
IF between worlds and formulae as follows: I+ A iff V(a, A) for A atomic;
alk AD Biff alk Aimpliesa I+ B; anda IF OA iff forall b € W if a R bthen
bk A.

Using the Kripke semantics, we can classify modal logics by the behavi@r of
alone. For instance we have

FACT 20. LetR be the accessibility relation of a Kripke model.

e A formula A is a theorem oK iff A is forced at all worlds of all Kripke
models.

e A formula A is a theorem of4 iff A is forced at all worlds of all Kripke
models whereR is reflexive ¢ R x) and transitive (ift R y andy R z,
thenz R z).

It is now possible to see why the deduction theorem fails. Consider a Kripke
model (W, R,V') and a formulad D B. In the deduction theorem we assume,
for the sake of argumen#f as a new axiom, and show th&tis then a theorem;

i.e. assuming/a € W.a I+ A, we show thatva € W.a I B. But it does not
follow from this thatA O B is atheorem;i.e.thata € W.a I A D B.

It is however easy to find a correct ‘semantic’ analogue of the deduction theo-

rem:

FACT 21. For any Kripke mod€liV, R, V')
VYVaeW.(alFA—alk B)—>alt ADB.

The problem of providing a natural deduction encoding of a modal logic can be
reduced to the problem of capturing this semantic property af rules that can
be directly encoded in the language of implication. We will consider two ways
of doing this, which differ in the extent to which they make the Kripke semantics
explicit.

5.3 Labelled deductive systerhs

The above analysis suggests one possible solution to our problem: we can inter-
nalize the semantics into the deductive calculus. Hence, instead of reasoning with

17The work described in this section was done in collaboration with Luca \digan®
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formulae, we reason about formulae in worlds; i.e. we work with paisswhere
a is aworld andA is a formula.

Taking this approach, the rules

e = R
B y:-A
D-1 a-1
:ADB x:0A
[£:A D 1]
: v ADB z:A z:OA z Ry
. — D> F —0O-F
vy~ 1L-E x:B y:A
x:A

define a natural deduction calculus, which we &a}]. (We also require the side
conditions that ind-1I y is different fromz and does not occur in the assumptions
on whichy:A depends, except those of the formR y that are discharged by
the inference.) These rules formalize the meaning of botAndO in terms of
the Kripke semantics; i.e., we locate application®ef in some particular world,
and take account of the other worlds in defining the behaviorand_L (where it
suffices to derive a contradiction in any world). We can show:

FACT 22 (Basiret al.[1997d). a:A is provable inK j, iff A is true in all Kripke
models, and therefore, by the completenes&ofvith respect to the set of all
Kripke models, iffA is a theorem oK.

As an example of a proof il ;, of a K theorem, we show that distributes
overD.

[GCD(A D B)]1 [(l R b]3 D_E [GZDA]Q [a R b]3 O E

b:AD B b:A )
S5-E

a:0(AD B) D> 0OAD OB

Further, and essential for our purpose, there are no new kinds of side condi-
tions on the rules oK ;,, so we have no difficulty in formalizing these in an-
framework!® The following is a signature fdK ;, in )’ (note that for the sake of

18There is of course the side condition @n/. But this can be formalized in the same way that
eigenvariable conditions are formalized in logics with quantifiers, by using universal quantification in
the metalogic.
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readability we write £ and R in infix form):

Y, = wk, 0%, ‘Tw =0 =%, Rw— w— %,
falsum:o, imp:0 — 0 — o, box:o — o,
FalseE:ITAz"y". (z:imp A falsum — y:falsum) — x:A,
impl:ITA°B°z". (x:A — z:B) — x:imp A B,
impE:IIA°B°z" . 2:A — xximp A B — x:B,
boxI'TTA°z™. (My"Y.x Ry — y:A) — x:box A,
bor E:ITAzVyY . x:box A - x Ry — y:A

The signature reflects that there are two types, a type of warldsd type of
formulaeo, and two judgments; one about the relationship between worlds and
formulae, asserting that a formula is true at that world, and a second, between
two worlds, asserting that the first accesses the second. Adequacy and faithfulness
follow by the style of analysis given i§83.

K, as a base for other modal logics

We can now také ;, as a base upon which to formalize other modal logics. Since
modal logics are characterized, in terms of Kripke models, purely in terms of their
accessibility relations, to get other modal logics we must simply modify the be-
havior of R in our encoding. Thus, sincgt corresponds to the class of Kripke
models with transitive and reflexive accessibility relations, we can enrich our sig-
nature with:

Refllz".z R x

w

Trans:z"y" 2z . 2Ry > yRz—> xR 2

Again, we can shoWBasinet al, 19974 that this really formalizeS4.

The limits ofK,

It might appear from the discussion above that we can implement any modal logic
we want, simply by adding the axioms for the appropriate accessibility relation to
K. Thatis, we represent a logic by embedding its semantics in the metalogic,
a formalization technique that is sometimes callechantic embeddin@ee van
Benthem[1984 or Ohlbach[199]3 for details on this approach). We must be
careful though; not every embedding based on labelling accurately captures the
semantics and different kinds of embeddings capture more structure than others.
ConsiderK ;, again: the rules fob andO reflect the meaning that the Kripke
semantics gives the connectives. On the other hand, the semantics does not ex-
plicitly state how the rules fot. should function using labels. Following from the
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rules forD, a plausible formalization is
[z:A D 1]

.’L’:-J_
— 1-F -
A

which, like the rule for implication, stays in one world and ignores the existence
of different possible worlds. But if we investigate the logic that results from using
this rule (instead of_- ), we find that it is not complete with respect to the Kripke
semantics.

An examination of the Gentzen-style natural language characterizatian of
shows where the problem lies:

If the assumption thatl D L in world z is inconsistent with the
interpretation, them is true in worldz.

This says nothing about where the inconsistency might be and specifically does
not say that it should be in the worlditself. The role of negation in encoding

the semantics of logics is subtle and we lack space to develop this topic here. We
therefore restrict ourselves to a few comments; much more detail can be found in
[Basinet al, 19974. In K, we assumed that it is enough to be able to show that
the inconsistency is in some world. It turns out that this is sufficient for a large
class of logics; but again this does not reflect the complete behavibr 8ome
accessibility relations require a richer metalogic than one based on minimal im-
plication and this may in turn require formalizing all of first or even higher-order
logic. In such formalizations, we must take account of the possibility that the
inconsistency of an assumption about a world might manifest itself as a contradic-
tion in the theory of the accessibility relation,\dce versa It is possible then to

use classical first (or higher-order) logic as a metatheory to formalize the Kripke
semantics in a complete way, however the result also has drawbacks. In particular,
we lose structure in the proofs availableln,. In K, we reason in two separate
systems. We can reason in just the theory of the accessibility relation and then use
the results of this in the theory of the labelled propositions; however, we cannot
go in the other direction, i.e. we cannot use reasoning in the theory of labelled
propositions as part of an argument about the relations. This enforced separation
provides extra structure that we can exploit, e.g., to bound proof search (see, e.g.,
[Basinet al, 19971). And in spite of enforcing this separatid,; is a sufficient
foundation for a very large class of standard logfi¢s.

191n [Basinet al, 19974 we show that it is sufficient to define almost all the modal logics of the
so-called Geach hierarchy, which includes most of those usually of interedt,i’€, S4, S5, etc.,
though not, e.g., the modal logic of provabili§y[Boolos, 1993
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5.4 Alternative multiple judgment systems

Using a labelled deductive system, we built a deductive calculus for a modal logic
based on two judgments: a formula is true in a world and one world accesses
another. But this is only one of many possible presentations. We now consider
another possibility, using multiple judgments that distinguish between truth (in
a world) and validity that is due originally to Avroet al. [1997 (and further
developed ifAvronet al, 1999).

Validity

Starting withK, we can proceed in a Gentzen-like manner, by writing down the
behavior of the logical connectives as given by the Kripke semantics. If we abbre-
viate ‘A is true in all worlds’ toV'(A4) (A is valid; i.e. A is a theorem), then we
have

V(ADB) V(4) V(A)

D-Ey and
V(B) V(OA)

O-Iy ) (23)

which can be easily verified against the Kripke semantics (they directly reflect the
two rules Det and Nec). Since the deduction theorem fails, we do not have an
introduction rule forD in terms ofV/, neither do we have a rule far.

Thus the first part of the signature firsimply records the rules (23):

Y1 = o, Vio — %,
False:o, imp:o — 0 — o, box:o — o,
impEy:ITA°B°. V(A) - V(imp A B) —» V(B),
boxIy:IIA°. V(A) = V(box A)

And, as observed above, we have

LEMMA 23. The rules encoded ik, are sound with respect to the standard
Kripke semantics dK, if we interpretV (A) asVa. a IF A.

Therest of V. The rest of the details abolit(-) could be summarized simply by
declaring all the axioms dK to be valid. In this cas& () would simply encode a
Hilbert presentation oK. However there is a more interesting possibility, which
supports proof under assumption.

Truth in a world

As previously observed we do have a kind of semantic version of the deduction
theorem relativized to any given world. We can use this to formalize more about
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the meaning of implication and. If we abbreviate A is true in some arbitrary
but fixed worldc’ to T'(A4), then we have:

[T(4)] [T(4 > 1)
= DTL?;) " om 1(8) , (1) .
Tasm " T@ T

When we talked above about validity we did not have a rule for introducing
implication, or reflecting the behavior af. Similarly, when we are talking about
truth in some world, we do not have a rule reflecting the behaviar,aince that
is not dependent on just the one world. Thus for instance, there is no introduction
(or elimination) rule for this operator. All we can say is that

T(O(AD B)) T(OA)
T(OB)

Norm

And again we can verify these rules against the semantics.
Thus the second part of the signature is

Yo =T:0 — %,
impE:IIA°B°. T (imp A B) — T(A) —» T(B),
impl:ITA°B°.(T(A) - T'(B)) — T(imp A B),
FalseE:ITA°. (T (imp A falsum) — T (falsum)) — T'(A),
norm:1IMA°B°. T (box (imp A B)) — T (box A) — T (box B)

and we have

LEMMA 24. The rules encoded iR, X, are sound with respect to the standard
Kripke semantics dK, if we interpretV’(A) as in Lemma 23 an@'(A) asc IF A
wherec is a fixed constant.

Connecting andT

We have now formalized two separate judgments, defined by the predicaies
T, which we have to connect together. To this end, we introduce two r@les,
and R, which intuitively allow us to introduce a validity judgment, given a truth
judgment, and eliminate (or use) a validity judgment.

C states that if4 is true in an arbitrary world, then it is valid.

T,
V(4)
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For this rule to be sound, we require that the world whéiis true really is arbi-
trary, and this will hold so long as there are no other assumpfigals) current
when we apply it. It is easy to see that this condition is ensured for any proof of
the atomic propositiod’(A4), so long a<” is the only rule connectin@ andV/
together, since the form of the rules then ensures that there can be no hypotheses
T(A") at a place wher€' is applied.

The addition ofC' yields a complete inference system for reasoning about valid
formulae. However, the resulting deductive system is awkward: once we end up
in the V' fragment of the system, which by itself is essentially a Hilbert calculus,
we are forced to stay there.

We thus extend our system with an elimination ruleifgrto allow us to return
to the natural deduction-liKE fragment. Important to our justification of the rule
C was that the premise followed in a@mbitrary world. Any further rule that we
add must not invalidate this assumption. However we observe that giyen,
then, sinced is valid, itis true in an arbitrary world, so addirig(A) as an open
assumption to an application 6fdoes not harm the semantic justification of that
rule application. We can encode this as the following fdle

T(4)]

V(4) V(B)
V(B)
Taken together, these rules complete our proposed encodig of

YKy = X1, X2,
CHTTA°. T(A) - V(A),
RIIA°B®. V(A) — (T(A) - V(B)) = V(B)

To establish correctness formally, we begin by proving that:

PROPOSITION 25.1f A is a theorem oK, thenV (A) is a theorem of the proof
calculus encoded a8k, .

Proof. We observe that i is one of the listed axioms df, then we can show
that7'(A), and thus, by, thatV'(A4). Therefore we need not declare these to be
‘valid’. These, and the rules encodedn allow us to reconstruct any proof in
Hilbert K (see also the remarks after Lemma 23 above). |

Next that:

PROPOSITION 26.If V' (A) is a theorem of the proof calculus encodedss,,,
thenA is a theorem oK.

We prove a slight generalization, for which we need
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LEMMA 27. For an arbitrary setl’ of theorems oK, if T'(A) is a theorem of
Yk, extended with the axiom sefl’(z) | z € I }, thenA is a theorem oK.

Proof. First notice that only the rules encodedaspl, impE, FalseE and
norm can occur in a proof of'(A). By Lemma 24, readin@'(A4) asc I+ A, only
theorems ofK follow from this fragment of the proof calculus extended with
wherel consists of theorems @f. |

The generalization of Proposition 26 is then

LEMMA 28. For an arbitrary setl" of theorems oK, if V(A) is a theorem of
the proof calculus encoded &%« ,,, extended wit{ T'(z) | z € T }, thenAd is a
theorem of.

Proof. The proof is by induction on the size of a pradfof V(4). We need
to consider three cases: (i) The last rule in the proof is an application of one of
the rules encoded i&; from theorems/(4;), in which case, by appeal to the
induction hypothesis4; are theorems of K and thu4 is a theorem of. (i)
The last rule is an application @1, in which case the sub-proof is a proof of the
theoremI'(A) (there are no undischarged assumptions for the thebré#) and
henceT'(A)) and by Lemma 27A is a theorem ofK. (iii) The last rule is an
application ofR to proofsII; of V(B) from T'(A) andII, of the theorenV (A).
Sincell, is smaller tharll, by the induction hypothesid is a theorem of.
Then we can transforifi; into a proof of the theorerit (B) in the proof calculus
formalized as¥k,,, extended with{ T'(z) | « € ' U {A} } by replacing any
appeal to a hypothesiB(A) in II; by an appeal to the axioffi(A). Since the
result is a proof no bigger thdi,, which in turn is smaller thall, by appeal to
the induction hypothesid} is a theorem oK. |

We can combine Propositions 25 and 26 as
THEOREM 29. A is a theorem oK iff V(A) follows fromXk,,, .

Encoding other modal logics

We can extend the encoding of K easily to deal vith there are in fact several
ways we can do this: one possibility (see Avieral. [1994 for more discussion)
is to add the rules

[V(04)

: and ved) O-Ey
e, V(4)
vaaoB) "

(given these rules we can show that fferm + rule is redundant). This produces
an encoding that is closely related to the versioB4suggested by Prawitz.
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An alternative view oK ;5

We have motivated and developed tKg,; presentation oK using a Kripke se-
mantics, as a parallel witH ;. Unlike K ;,, however, the interpretation is implicit,

not explicit (there is no mention of particular worlds in the final proof calculus)
so we are not committed to it. In fact, and importantly, this presentation can be
understood from an entirely different perspective that uses just the Hilbert axiom-
atization itself, as follows.

We observe i7 that it is possible to prove a deduction theorem for classical
propositional logic, justifying the>-I rule by proof-theoretic means in terms of
the Hilbert presentation. If we examine that proof, then we can see that it is easily
modified for the fragment of (our Hilbert presentation Efwithoutthe rule Nec.

But this is precisely the fragment &f that is defined by th& fragment ofK ;.
Equally, the system defined By, can be seen as the full Hilbert calculus.

Thus we can alternatively view the two judgmentskof,; not as indicating
whether we are speaking of truth in some world, or truth in all worlds, but rather
whether or not we are allowed to apply the deduction theorem. This perspective
provides the possibility of an entirely different proof of the correctness of our
encoding, based on the standard Hilbert encoding, and without any intervening
semantic argument.

5.5 Some conclusions

We have presented two different encodings of two well-known modal logics in
this section as examples of approaches to representing nonstandard logics in an
—-framework. Which approach is preferable depends, in the end, on how the
resulting encoding will be usedK ;, andS4;, make the semantic foundation of
the presentation more explicit. This is advantageous if we take for granted the
view that modal logics are the logics of Kripke models since the user is able to
exploit the associated intuitions in building proofs. On the other hand this may be
a problem if we want to use our encoding in circumstances where our intuitions are
different. The opposite holds f&t 57y andS4 5;: it is more difficult to make direct

use of any intuitions we might have from the Kripke semantics, but, since the proof
systems involve no explicit, or even necessary, commitment to that interpretation,
we have fewer problems in assuming anotier.

The solutions we have examined, while tailored for modal logics, do have some
generality. However, each different logic must be considered in turn and the ap-
proaches presented here may not always be applicable, or the amount of effort in
modifying them may be considerable. For instance it is possible to interpret rel-
evance logics in terms of a Kripke semantics that can be adopted as the basis of

20In fact it would be fairly easy to adapt a multiple judgment presentatiofi4ofo the different
circumstances of say relevance, or linear, propositional logic, which share many properties with tradi-
tional S4. Such a project would be considerably more difficult, not to mention questionable, starting
from S4;,. This issue of commitment to a particular interpretation is discussed at length with regard to
labelled deductive systems in general by Gaijhag4.
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a labelled deductive system, similar in style to (though considerably more com-
plex than)K ;, (see Basiret al.[19984). But such an implementation is tricky to

use and we reach, eventually, the limits of encodings that are understandable and
usable by humans.

6 CONSEQUENCE RELATIONS

In the previous sections we considered an abstraction of natural deduction calculi
and in the following section we will consider an abstraction of Hilbert calculi.
Here, we consider the third style of proof calculus we mention in the introduction:
the sequent calculus. It turns out that, unlike the other two, little work has been
done on systems that directly abstract away from sequent calculi in a way that we
can use as a logical framework. This certainly does not mean that there has been
no work on the principles of the sequent calculus, just that work has concentrated
not on the concrete implementational aspects so much as on the abstract prop-
erties of the sequent relation, which when investigated in isolation is called a
consequence relation

Consequence relations provide a powerful tool for systematically analyzing
properties of a wide range of logics, from the traditional logics of mathematics
to modal or substructural logics, in terms that we can then use as the starting point
of an implementation. In fact it is often possible to encode the results of a sequent
calculus analysis directly in ap-framework.

What, then, is a consequence relation? There are several definitions in the liter-
ature (e.g. Avror1991; 1992, Scott[1974 and Hacking1979); we adopt that
of Avron, along with his vocabulary, where possible.

DEFINITION 30. Aconsequence relatias a binary relation between finite mul-
tisets of formulad’, A, usually writtenl’ - A, and satisfying at leagBasic and
Cut in (2) andPL and PR in (3).2!

This is, however, a very general definition. In fact most logics that we might
be interested in encoding have natural presentations in terms of more constrained
ordinary consequence relatioris:

DEFINITION 31. A consequence relation is said todrdinary if it satisfies the
rules WL, CL, WR and CR of (3).

Examples of ordinary consequence relationdare andLK - defined in§2.2,

211n the rules given ir§2.2, the antecedent and succedentsarguencesf formulae whereas here
they aremultisets In practice, the permutation ruld3l and PR are often omitted and multi-sets are
taken as primitive, as here. This is not always possible though, e.&., where the ordering in the
sequence matters. Note also that this definition does not take account of variables; for an extension to
that case, see Avrdi997.

22\We do not have space to consider the best known exceptioaybisructuralogics, e.g. relevance
and linear logic. However what we say in this section generalizes, given a suitably modified
framework, to these cases. Readers interested in the (non-trivial) technical details of this modification
are referred tdCervesato and Pfenning, 1996d, especiallyishtiaq and Pym, 1998
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as is the encoding in terms bfof NJ- in §3.1 (even thougtCut is not a basic
property of this presentation, we can show that it is admissible; i.e. we do not
change the set of provable sequents if we assume it). Most of the traditional logics
of mathematics can be presented as ordinary (in fagk ordinary, see below)
consequence relations.

6.1 The meaning of a consequence relation

While it is possible to treat a consequence relation purely in syntactic terms, often
one can be understood, and may have been motivated, by some idea of the ‘mean-
ing’ of the formulae relative to one another. For instance we can read a sequent
I + A of LK- as ‘if all the formulae inl" are true, then at least one of the for-
mulae inA is true.” Because they have this reading in terms of truth, we call the
systems defined byJ 2, LK~ andNJ- ‘truth’ consequence relations. Notice that
the meaning of ‘truth’ here is not fixed: when we say that something is true we
might mean that it is classically true, intuitionistically true, Kripke-semantically
true, relevance true, or even something else more exotic.

We can derive a different sort of consequence relation from a Hilbert calculus:
if we assume (1pBasic, i.e. thatd A, (2) that if A is an axiom thed’ - A4, and
(3) that for each rule of proof

A A,
—
we have that
I FA ... Ty A,
Iy,...,T,FA

then it is easy to show that the resulting system satigfigs and that- A iff A is
a theorem. This is not a truth consequence relation: the natural reading of
is ‘if T" aretheoremsthen A is atheorem We thus call- avalidity consequence
relation.

Of course truth and validity are not the only possibilities. We can define conse-
guence relations any way we waitthe only restriction we might impose is that
in order to be effectively mechanizable on a computer, the rel&tishould be
recursively enumerable.

6.2 Ordinary pure consequence relations andframeworks

Part of the problem with mechanizing consequence relations, if we formalize them
directly, is their very generality. Many systems are based on ordinary consequence
relations, and if an encoding forces us to deal explicitly with all the rules that

23For some examples of other consequence relations which can arise in the analysis of a modal logic,
see Fagiret al.[1997.



LOGICAL FRAMEWORKS 141

formalize this, then proof construction will often require considerable and tedious
structural reasoning. This may explain, in part, why there has been little practical
work on logical frameworks based directly on consequence relafibidowever
another reason is that an-framework can very effectively encode many ordinary
consequence relations directly. In the remainder of this section we explore this
reduction, which clarifies the relationship between consequence relations-and
frameworks as well as illuminating some of the strengths and weaknesses of
frameworks.

In order to use an»-framework for representing consequence relations, it helps
if we impose a restriction in addition to ordinaryness.

DEFINITION 32. We say that a consequence relatiopuigeif, given that
mkEA ... TpFA,
Ty F Ao

holds, then there arE}, Al, which are sub-multisets df;, A;, such that for
arbitraryI', AY

DT FALAY L. T T E AL AL
To. T - A, AL

Notice that the consequence relations discussed at the beginning of this section
all satisfy the definition of purity; this is also the case for most of the logics we
encounter in mathematics. In order to find counterexamples we must look to some
of the systems arising in philosophical logic. For instance in modal logic§&ee
and the discussion by Avroii991]) we get a natural truth consequence relation
satisfying the rule

FA
FOA

but not, for arbitrany’,
A

04

We shall not, here, consider frameworks that can handle general impure conse-
guence relations satisfactorily.

Single conclusioned consequence

As we said earlier, most of the standard logics of mathematics have intuitive pre-
sentations as ordinary pure consequence relations. Ai®81] adds one more
restriction before claiming that

24There are, however, many computer implementations of particular sequent calculi, e.g. the PVS

system for higher-order logic, by Owet al.[1999, not to mention many tableau calculi, which are,
essentially, sequent calculi.
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Every ordinary, pure, single-conclusioned [consequence relation] sys-
tem can, e.g., quite easily be implemented in the Edinburgh LF.

We begin by considering the single conclusioned case, and then follow it with
multiple conclusioned consequence relations and systems based on multiple con-
sequence relations.

The encoding is uniform and consists of two parts. We first explain how to
encode sequents and then rules. We can encode

Al,... A A
as
T(A) = - = T(A,) = T(A4)

and it is easy to show that this satisfies Definition 31 of an ordinary consequence
relation (in this case, single conclusioned). Notice how the structural properties of
the consequence relation are directly reflected by the logical properties of

We can then represent basic and derived rules expressed in terms of such a
consequence relatioassuming it is pures follows. Consider a rule of such a
consequence relationy where, forarbitrary T';:

Fl,A(l,l);--- ’A(l,m) FA - Fm,A(mJ),... ’A(m,nm) A,
Fl, PP ,Fm, A(0,1)7 PP 7A(0,n0) l_ AO

We can encode this as

(T(Aqy) = = T(Au ) = T(A1) = -
= (T(A@m,1) = = T(Apnn,.)) = T(An))
= T(A,1)) = - = T(An,)) = T(Ao)
leaving thel'; implicit (the condition of purity is important because it allows us to

do this).
As an example, consid&rJ > from §2.2, for which we have the rules

'-A I'B-C I AFB
>L — D
T ADBFC '-ADB

We can encode these rules (assuming a suitable formalization of the language) as
T(A) - (T'(B) - T(C)) > T(AD B) - T(C) (24)
and

(T(A) — T(B)) - T(A D B). (25)
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Then we can simulate the effect of applyingL, i.e.
F,....,F, v A G,,...,G,,B-C
Fi,...,Fn,Gi,...,Go,ADBFC’

encoded as (24), to the encoded assumptions
T(F) = - = T(Fn) = T(A) (26)
and
T(Gh)—=---—=T(G,) = T(B)=>T(C). (27)
By (26) and (24) we have
T(F) == T(Fn) = (T(B) > T(C)) = T(A>B) = T(C) (28)
which combines with (27) to yield
T(F)— - —=T(Fp) —=T(G)—> --—=-T(G,) =-T(ADB)—=T(C),

which encodes the conclusion Df L.
From this, it is easy to see that our encoding.df’ is adequate. We show
faithfulness by a modification of the techniques discussed above.

An observation about implementations

Note that the last step, ‘combining’ (28) with (27), actually requires a number of
steps in the metalogic; e.g. shuffling around formulae by using the fact that, in
the metalogic of the framework itself;(4) — T(B) — T(C) is equivalent to

T(B) — T(A) — T(C). But such reasoning must come out somewhere in any
formalism of a system based on consequence relations. There is no getting around
some equivalent of structural reasoning; the question is simply of how, and where,
it is done, and how visible it is to the user.

In fact in actual implementations ef:-frameworks, e.g., Isabell€Paulson,
1994, the cost of this structural reasoning is no greater than in a custom imple-
mentation since the framework theory itself will be implemented in terms of a
pure, ordinary single conclusioned consequence relation; i.e. as a sequent or natu-
ral deduction calculus. If we write the consequence relation of the implementation
as—, then it is easy to see that an encoded sequent such as (26) can be quickly
transformed into the logically equivalent

at which point it is possible to ‘piggy-back’ the rest of the proof off-e$, and
thus make use of the direct (and thus presumably efficient) implementation of its
structural properties.
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Multiple conclusioned consequence

Having examined how we might encode ordinary pure single conclusioned conse-
guence relations in ar-framework, we now consider the general case of multi-
ple conclusioned relations, which occur in standard presentations of many logics
(e.g.LK" described ir§2.2).

There is no obvious correspondence between such relations and formulae in the
language of—. However, by refining our encoding a little, we can easily extend
Avron’s observation to the general case and thereby give a direct and effective
encoding of multiple conclusioned consequence relations. We take as our example
the systenLK . For larger developments and applications of this style, the reader
is referred td Pfenning, 2000

A multiple conclusioned consequence relation is a pair of multisets of formulae,
which we can refer to as ‘left’ and ‘right’; i.e.

left right

Ai,... ,ApFBi,... ,Bp. (29)

To encode this we need not one judgménbuttwo judgments which we call';,
andT'r; we also define a new propositional constBntWe can encode (29) in an
—-framework as

Tr(A) = - > Tr(Ay) > Tr(By) = -+ > Tr(Bn) > E.
This is not quite enough to give us a consequence relation though; unlike in the
single conclusioned case, we do not automatically get/aaic is true. However
we can remedy this by declaring that
TL(A) — TR(A) — F

and then we can show that the encoding defines an ordinary consequence relation.

We can then extend the style of encoding described to define, e.qg., the right and
left rule for implication inLK -, which are

(TL(A) - Tgr(B) > E) > Tr(ADB) - E

and

(TR(A) - E) » (Tr.(B) = E) > Tr(ADB) - E.

As in the single conclusioned case, a necessary condition for this encoding is that
the consequence relation is pure. It is also easy to show that the encoding is ade-
quate and faithful with respect to the derivability of sequentshn.
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Multiple consequence relation systems

Finally, we come to the problem of how to formalize systems based on more than
one consequence relation. Here we will briefly consider just the single conclu-
sioned case; the same remarks, suitably modified, also apply to the multiple con-
clusioned case.

One approach to analyzing a formal system (and quite useful if we want the
analysis to be in terms of pure consequence relations) is, rather than using a single
relation, to decompose it into a set of relatiohsto I-,,. We can encode each of
these relations, and their rules, just like in the single relation case, using predicates
Ti toT,;i.e.

Ay, A F A
as

We encounter a new encoding problem with multiple consequence systems.
These typically (always, if they are interesting) contain rules that relate conse-
guence relations to each other, i.e., rules where the premises are built from dif-
ferent consequence relations than the conclusion. Consider the simplest example
of this, which simply declares that one consequence relation is a subrelation of
another (what we might call &idge rule):

' A
'k A

bridge

We can encode this as the pair of schemata
Ti(A) = Ty (A) (30)
and
(T (A) = Ta(B)) — Tx(A) — T»(B) (32)
and show that the resulting encoding is properly closed. That is, given
T (A)) = --- = T1(4,) —» T1(B)
by (30) we get
T (A)) = -+ = T1(4,) = Tx(B)
then byn applications of (31) we eventually get
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As this example shows, working with a multiple consequence relation system
in an —-framework may require many metalevel steps to simulate a proof step
in the object logic (here the number depends on the size of the sequent). More
practical experience using such encodings is required to judge whether they are
really usable in practice as opposed to just being a theoretically interesting way of
encoding multiple consequence relation systems in the logie.of

In fact we have already encountered an example of this kind of an encoding:
the multiple judgment encoding of modal logic developedAwron et al., 1992;
Avron et al, 1994, described ir§5.4, can be seen as the encoding of a two conse-
guence relation system for truth and validity whéreis T', T, is V andbridge is
implemented by? andC.

7 DEDUCTIVE SYSTEMS AS INDUCTIVE DEFINITIONS

In the introduction we discussed two separate traditions of metatheory: metatheory
as a unifying language and metatheory as proof theory. We have shown too how
—-frameworks fit into the unifying language tradition, and the way different logics
can be encoded in them and used to carry out proofs. Howevéirameworks are
inadequate for proof theory: in exchange for ease of reasonitign a logic,
reasoningaboutthe logic becomes difficult or impossible.

In order better to understand this point, and some of the subtleties it involves,
consider the following statements about the (minimal) logi©of

1. A D Ais atheorem.
2. AD B D (C'istrue on the assumptionthBtD A D C'is true.
3. The deduction theorem holds i ~.

4. The deduction theorem holds for all extension&ldf’ with additional ax-
ioms.

Statement 1 can be formalized in a metalogic as a statement about provability
in any complete presentation of the logic of e.g.NJ~, LJ° or HJ”. As a
statement about provability we might regard it as, in some sense, a proof-theoretic
statement. But as such, it is very weak since, by completeness, it must be provable
irrespective of the deductive system used.

Statement 2 expresses a derived rule of the logie.adits formalization requires
that we can reason about the truth of one formula relative to others. As explained
in §6, representing this kind of a (truth) consequence relation can easily be reduced
to a provability problem in ap»-framework. For example, in the> encoding of
NJ- we prove that the typHA°B°C°.pr(B D AD C) = pr(AD BD () is
inhabited.
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As with statement 1, the metalogic must be able to build proofs in the object
logic (in this case though under assumptions, encoded usingthe metalogic),
but proofs themselves need not be further analyzed.

Statement 3 (which we prove in this section) is an example of a metatheoretic
statement that is more in the proof theory tradition. In order to prove it we must
analyze the structure of arbitrary proofs in the deductive systeiiiJot using
an inductive argument. The difference between this and the previous example is
important: for a proof of statement 2 we need to know which axioms and rules
are available in the formalized deductive system, while for a proof of statement 3
we also need to know that no other rules are present, since this is what justifies an
induction principle over proofs (the rules HiJ - can be taken as constituting an
inductive definition). An—-framework like\P contains no provisions for carrying
out induction over the structure of an encoded deductive system.

Statement 4 is an extension of statement 3, which introduces the problem of
theory structuring Structuring object theories to allow metatheoretic results to be
‘imported’ and used in related theories is not a substantial problem in the kinds of
metamathematical investigations undertaken by proof theorists, who are typically
interested in proving particular results about particular systems. However, for com-
puter scientists working on formal theorem proving, it is enormously important: it
is good practice for a user reasoning about complex theories to formalize a col-
lection of simpler theories (e.g. for numbers and arithmetic, sequences, relations,
orders, etc.) that later are combined together as needed. So some kind of theory
structuring facility is practically important and many systems provide support for
it. 2

Unfortunately, hierarchical structure i»-frameworks is the result of an as-
sumption (necessary anyway for other reasons) that the languages and deductive
systems of encoded logics are ‘open to extensions’ {etbelow), something
that automatically rules out any arguments requiring induction on the structure of
the languag® or proofs of a theory, e.g. the deduction theorem. If we ‘close’ the
language or deductive system by explicitly adding induction over the language or
proofs, in order to prove metatheorems, it is unsound later to assume those theo-
rems in extensions of the deductive system or languagg?.t we suggest that
there is a way to avoid this problem if we formulate metatheorems in a metalogic
based on inductive definitions.

These examples illustrate that there are different sorts of metatheoretic state-
ments, which are distinguished by how conscious we have to be of the metathe-
oretic context in order to prove them. The central role of induction in carrying

25 For example HOL[Gordon and Melham, 1993Isabelle[Paulson, 1994and their predecessor
LCF [Gordonet al,, 1979 support simple theory hierarchies where theorems proven in a theory may
be used in extensions.

26 An example of a metatheorem for which we need induction over the language, not the derivations,
is thatIn classical logic, a propositional formula that contains only tae connective is valid if and
only if each propositional variable occurs an even number of times



148 DAVID BASIN, SEAN MATTHEWS

out many kinds of the more general metatheoretic arguments is the reason we now
consider logical frameworks based on inductive definitions.

7.1 Historical background: From Hilbert to Feferman

What kind of a metalogic is suited for carrying out metatheoretic arguments that
require induction on the language or deductive system of the object logic? To
answer this question we draw on experience gained by proof theorists dating back
to Hilbert, in particular Post andd@&lél, and later Feferman, who have asked very
similar questions. We can also draw on practical experience over the last 30 years
in the use of computers in work with formal systems.

The work of Post and &lel

In the early part of this century, Pobt943 (see Davigd1989 for a short sur-

vey of Post’s work) investigated the decidability of logics like thateincipia
MathematicaHe showed that such systems could be formalized as (what we now
recognize as) recursively enumerable classes of strings and that this provided a
basis for metatheoretic analysis. Although Post’s work is a large step towards an-
swering our question, one important aspect, from our point of view, is missing
from his formalization. There is no considerationfafmal metatheory. Post was
interested in a formal characterization of deductive systems, not of their metathe-
ories; he simply assumed, reasonably for his purposes, that arbitrary mathematical
principles could be adopted as necessary for the metatheory.

We cannot make the same assumption with a logical framework: we must de-
cide first which mathematical principles we need, and then formalize them. The
work of Post is thus complemented, for our purposes, bydbs [1931] work
on the incompleteness of systems like Principia Mathematica, which shows that
a fragment of arithmetic is sufficient for complex and general metatheory. Logi-
cians have since been able to narrow that fragment down to the theory of primitive
recursive arithmetic, which seems sufficient for general syntactic metatfeory.

The natural numbers, although adequate fod&'’s purposes, are too unwieldy
to use as a logical framework. Indeed, a large part ofl&S paper is taken up
with a complicated technical development showing that arithmetic really can rep-
resent syntax. The result is unusable in a practical framework: the relationship
between syntax and its encoding is only indirectly given by (relatively) compli-
cated arithmetic functions and the numbers generated in the encoding can be enor-
mous. This is in contrast to Post's strings (further investigated in the early sixties
by mathematicians such as Smullyld®61]), which have a simple and direct cor-
respondence with the structures we want to encode, and a compact representation.

27This is a thesis, of course, not a theorem; and exceptions have to be made for, e.g., proof normal-
ization theorems, for which (as a corollary of Godel's result itself) we know there can be no single
general metatheory.
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S-expressions ariS,

Itis possible to build a formal metatheory based on strings, in the manner of Post.
However, experience in computer science in formalizing and working with large
symbolic systems has shown that there is an even more natural language for mod-
eling formal (and other kinds of symbolic) systems. The consensus of this ex-
perience is found in LispMcCarthy, 1981; Steele Jr. and Gabriel, 1996hich

for more than 30 years has remained the most popular language for building sys-
tems for symbolic computatioff. Further, Lisp is not only effective, but its basic
data-structure, which has, in large part, contributed to its effectiveness, is remark-
ably simple: theS-expressionThis is the data-type freely generated from a base
type by a binary function ‘Cons’. Experience with Lisp has shown that just about
any syntactic structure can be mapped directly onto S-expressions in such a way
that it is very easy to manipulate. In fact, we can even restrict the base type of
S-expressions to be a single constant (often caltét)) ‘and still get this expres-
siveness. Further evidence for the effectiveness of Lisp and S-expressions is that
one of the most successful theorem proving systems ever built, NQTBter

and Moore, 198], verifies recursive functions written in a version of Lisp that uses
precisely this class of S-expressions.

An example of a theory that integrates all the above observatidffsgsdue to
Feferman. This provides us with a language in which we can define exactly all the
recursively enumerable classes of S-expressions. Moreover, it permits inductive
arguments over these inductively defined classes, and thus naturally subsumes both
the theory of recursively enumerable classes and primitive recursive arithmetic. It
has proved usable too in case-studies of computer supported metatheory, in the
proof-theoretic tradition (see MattheWs992; 1993; 1994; 1991h In the rest of
this chapter we will use a slightly abstracted versiof'®f, for our discussion.

7.2 Atheory of inductive definition$:S,

FSy is a simple minimal theory of inductive definitions, which we present here in
an abstract form (we elide details in order to emphasize the general, rather than
the particular, features). A full description of the theory is provided by Fefer-
man[199d, while an implementation is described by Matthel#994.

FSy is a theory of inductively defined sets, embedded in first-order logic and
based on Lisp-style S-expressions. The class of S-expressions is the least class
containingnil and closed under the pairingofus) operator, which we write as an
infix commay(-, -), such thatnil # (a,b) for all S-expressiona andb; we also
assume, for convenience, that comma associates to the right, $o,tfiat)) can

28This does not mean that there have not been successful programming languages that use strings as
their basic data-structure; the SNOBOL faniiGriswold, 1981 of languages, for example, is based
on the theory of Markoff string transformation algorithms. However it is significant that SNOBOL, in
spite of its mathematical elegance in many ways, has never been seen as a general purpose symbolic
programming language like Lisp, or been adopted so enthusiastically by such a large and influential
programming community.
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be abbreviated t¢a, b, c). We then have functionsr and cdr, which return the
first and second elements of a pair.
Comprehension over first-order predicates is available. We write

r €S & P(x) or S={z|P(x)}

to indicate a sef so defined. Such definitions can be parameterized and the pa-
rameters are treated in a simple way, thus, for example, we can write

x € S(a,b) & (z,a) €b.

We can also define sets explicitly as inductive definitions using the) con-
struction: if A andB are sets, thefi( A, B) is the least set containing and closed
under the rule

t1 2
t

where(t, t1,t2) € B. Note that we only have inductive definitions with exactly
two ‘predecessors’, but this is sufficient for our needs here and, with a little more
effort, in general.

Finally, we can reason about inductively defined sets using the induction prin-
ciple

Base CS —-Va,b,c.(beS—>ceS—
(a,b,c) € Step — a € S) — I(Base, Step) CS. (32)

This says that a s&& contains all the members of a d€tBase, Step) if it contains

the members oBase and whenever it contains two elemeht@ndc, and(a, b, ¢)

is an instance of the rul8tep, then it also containg. This induction principle
applies to sets, not predicates, but it is easy, by comprehension, to generate one
from the other, so this is not a restrictiéh.

7.3 A Hilbert theory of minimal implication

Having sketched a theory of inductive definitions, we now consider how it might
actually be used, both to encode an object logic, and to prove metatheorems. As
an example, we encode the the®ty- (of §2.1) and prove a deduction theorem.

The definition ofHHJ

The language Ly; We define an encoding ™ of the standard language of im-
plicational logicLyy (as usual we distinguish metaleveb] from object level O)

29In FSp comprehension is restricted to essentidlfy predicates with the result that the theory is
recursion-theoretically equivalent to primitive recursive arithmetic.
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implication) as follows. We define two distinct S-expression constants £&.g.

and(nil, nil)) which we callatom andimp, then we have

r,7

a (atom,Ta™) (a atomic)

raD b7 = (imp,"a™,"b7)

(assuming™a ™ for atomica to be already, separately, defined). It is easy to see
that™ 7 is an injection fromLy; into the S-expressions, on the assumption that
™.7Tis. For the sake of readability, in the future we will abuse notation, and write
simplya D b when we mean the scherfiamp, a, b); i.e.a andb here are variables

in the theory of inductive definitions, not propositional variables in the encoded
languagd.y;.

Thetheory HJ We now define a minimal theory of implicatioH,J, as follows.
We have two classes of axioms

r€ K& da,b.e=(aDbDa)
and
ze€S<da,bccx=((aDb)D(@aDdDbDec)Ddadc)
and a rule of detachment
xz € Det & Ja, b.z = (b,(a D b),a)
from which we define the theoijJ to be
HJ = I(K U S, Det) .

UsingHJ

We can now usélJ to prove theorems of the Hilbert calcullii] ~ in the same

way that we would use an encoding to carry out natural deduction proofsisan
framework. One difference is that we do not get a direct correspondence between
proof steps in the encoded theory and steps in the derivation. However, in this case
it is enough to prove first the following lemmas:

adbDacHJ (33)
(aDdb)D(@DdDbDec)DadDceHJ (34)
a€H] - (aDb)eH] > beHI (35)

Here, and in future, we assume theorems are universally closed. From these, it
follows that if A is a theorem of minimal implication, thérd™ € HJ.
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For example, we show

a>acHJ (36)

with the derivation
l.adaDacHJ by (33)
2.aD(aDa)DacHH] by (33)
3.(adada)yd(@ad(@aDda)Dda)DdDaDdacHJ by (34)
4. (aD(aDa)Da)dDaDdDac€H] by (35),1,3
5.aDa€HJ by (35),2,4

The steps of this proof correspond, one to one, with the steps of the proof that we
gave forHJ~ in §2.1. As this example suggests, at least for propositional Hilbert
calculi, inductive definitions support object theory where proofs in the metatheory
closely mirror proofs in the object theory. (For logics with quantifiers the relation-
ship is less direct, since we have to encode and explicitly reason about variable
binding and substitution.)

Proving a deduction theorem fatJ

Let us now consider an example that requires induction over proofs themselves:
the deduction theorem fdilJ. We only sketch the proof; the reader is referred
to Basin and Matthewk200d for details. Informally, the deduction theorem says:

If B is provable inHJ with the additional axiom4 thenA D B is
provable inHJ.

Note that this theorem relates different deductive systdiisand its extension
with the axiomA. Moreover, asd andB are schematic, ranging over all formulae
of HJ, the theorem actually relates provabilitylid with provability in infinitely
many extensions, one for each propositibn

To formalize this theorem we define

HJ[[] = I(KUSUT, Det); (37)

i.e.HJ[I'] is the deductive systeitiJ where the axioms are extended by all formu-
lae in the clas§. Now we can formalize the deduction theorem as

be HIJ[{a}] = (aDb) € HI, (38)
which inFSq can be transformed into
I(KUuSU{a},Det) C{z|(aDz)cHI}.

This in turn can be proved by induction on the inductively defined 68t U S U
{a}, Det) using (32). The proof proceeds as follows:
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Basecase We havetoshowKuUSU{a} C{z| (a Dz) e HJ}. Thisreduces,
viaz € KUSU{a} — (a D z) € HJ, to showing thafa O x) € HJ given either
(i) x € KUS or (i) z € {a}. For (i) we haver € HJ and(z D a D z) € HJ,
and thus, byDet that(a D x) € HJ. For (ii) we haver = a and thus have to
show that{a D a) € HJ, which we do following the proof of (36) above.

Step case There is only one ruleRet) and thus one case: givéne { z |
(a Dz) e HI }and(b D ¢) € {z | (a D z) € HJ }, prove thate €
{z | (e D z) € HI }. This reduces to proving, givefu O b) € HJ and
(a DbDc) e Hlthat(a D ¢) € HJ. This in turn follows by observing that
((aD>b) D(aDbDc)DaDec) e HI by (34), from which, by (35) twice with
the hypothesega D ¢) € HJ.

Once we have proved the deduction theorem we can use it to build proofs where
we reason under assumption in the style of natural deduction. This is useful, indeed
in practice essential, if we really wish to use Hilbert calculi to prove anything.
However it is also limited since this metatheorem can be appliégo HJ. Thus,
we next consider how this limitation can be partially remedied.

7.4 Structured theory and metatheory

At the beginning of this section, we discussed two examples of the deduction theo-
rem (statements 3 and 4) where the second stated that the deduction theorem holds
not justinHJ - but also in extensions. We return to this example, which illustrates

an important difference between ID-frameworks aneframeworks.

Structuring in—-frameworks

Let us first examine how theories can be structuredskframeworks. Consider
the following: we can easily encod®] - as (assuming the encoding of the syntax
is given separately) the axiom d&f;;- .

T(ADBDA)
T(ADB)D(ADBDC)DADCO)
T(A) - T(AD B) = T(B)
Then A is a theorem oflJ - iff Tyy;> - T(A), i.e., T(A) is provable in the

metalogic under the assumptiofig;>. Now consider the deduction theorem in
this setting; we would have to show that

Tyyo b (T(A) > T(B)) » T(AD B). (39)

This is not possible, however.
In an —-framework, a basic property of is weakening; i.e. i’ F ¢ then
A F ¢. This is very convenient for structuring theories: a theorem proven
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under the assumptiomsholds under extension with additional assumptiang-or
example A might extend our formalization diJ - to a classical theory ab or
perhaps to full first-order logié? By weakening, givei ;> - ¢ we immediately
havel'y;>, A F ¢. Thus we get a natural hierarchy on the object theories we
define: theoryI’ is a subtheory of theor¥ when its axioms are a subset of those
of T. This allows us to reuse proven metatheorems since anything proven for a
subtheory automatically follows in any supertheory.

Consider, on the other hand, the extensiog consisting of the axioms

T(A) — T(OA)
T(0OA D O(A D B) D OB)

with which we can extenBl; ;- to a fragment of the modal logl€. The deduction
theorenmdoes nofollow in K; therefore, since by faithfulness we have

Ty, Ax ¥ (T(A) - T(B)) - T(AD B),
we must also have, by weakening and contraposition,
Cup ¥ (T(A) - T(B)) = T(AD B).

This suggests that there is an either/or situation: we can have either hierarchi-
cally structured theories, as in an-framework, or general inductive metatheo-
rems (like the deduction theorem), as in an ID-framework, but not both. In fact,
as we will see, in an ID-framework things are not quite so clear-cut: there is the
possibility both to prove metatheorems by induction and to use them in certain
classes of extensions.

Structuring in an ID-framework

Part of the explanation of why we can prove (38), but not (39), is that it is not
possible to extend the deduction theoremHdr to arbitrary supertheories: (38)
is a statement aboutJ and it tells us nothing about anything else. However a
theorem abouilJ alone is of limited use: in practice we are likely to be interested
in HJ- as a fragment of some larger theory. We know, for instance, that the
deduction theorem follows for many extensionstf (e.g. extensions to larger
fragments of intuitionistic or classical logic). The problem is that the induction
principle we use to prove the theorem is equivalent to a closure assumption, and
such an assumption means that we are not able to use the theorem with extensions.
We seem to have confirmed, from the other side, the trade-off we have doc-
umented above fors-frameworks: either we can have induction and no theory
structuring (as theories are ‘closed’), or vice versa. However, if we look harder,

30 An extension of the deduction theorem to first-order logic, however, is not trivial—we have to treat
a new rule, which introduces complex side conditions to the statement of the theorem [K&&ghe
discusses one way to do this).
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there is sometimes a middle way that is possible in ID-frameworks. The crucial
point is that an inductive argument does not always relglbthe closure assump-

tions of the most general case. Consider the assumptions that are made in the proof
of (38):

e The proof of the base case relies on the fact that the axioms O a and
a D a are available ifHJ.

e The proof of the step case relies on the fact thatahly rule that can be
applied isDet, and that the axiom

(adb)D(@DbDe)Dadec
is available.

What bears emphasizing is that we do not need to assume that no axioms other
than those explicitly mentioned are available, only that no rules otherllaaare
available.

We can take account of this observation to produce a more general version of
(38)

be HII'U{a}] — (a D b) € HI[T, (40)

which we can still prove in the same way as (38). We call this versjpmn-ended
since it can be used with any axiomatic extendioaf HJ. In particular (38) is
just (40) where we takE to bef.

Structuring theories with the deduction theorem Unlike (38), we can make
effective use of (40) in a hierarchy of theories in a way similar to what is possible
in an —-framework. The metatheorem can be applied to any exteri$igh]
wherel is a collection of axioms. The fact that in the-framework we can add

new rules, not just new axioms, is not as significant as it at first appears, so long as
we have that

T(A) - T(B) iff T(AD B) (41)

since we can use this to find an axiomatic equivalent of any rule schema built from
— andT in terms ofD.

The above observation, of course, only holds for theories that can be defined in
terms of a single predicafé and which include a connective for which (41) is
true3!

31 And, of course, some encodings use more than one metalevel predicate §6.4.vre introduce a
second predicat®” for which there is no equivalent of (41). For these systems we have rules for which
no axiomatic equivalent is available. This does not, however, mean that ID-frameworks are necessarily
less effective for structuring collections of theories; it just means that we have to be more sophisticated
in the way we exploit (41). See, e.g., Matthel#8974 for discussion of how we can do this by
introducing an ‘extra’ layer between the ID-framework and the theory to be encoded.
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A further generalization of the deduction theorem

We arrived at the open-ended (40) by observing that other axioms could be present.
And as previously observed, no such generalization is possible with arbitrary rules,
e.g., the deduction theorem does not holHifwhich requires extensions by rules,
as opposed to axioms). However, a more refined analysis of the step case of the
proof is possible, and this leads to a further generalization of our metatheorem.

In the step case we need precisely that the theory is closed under

ADB ADC
BE
for each instance of a basic rule
B C

D

In the case ofDet (the only rule inHJ~) we can show this by a combination of
Det and theS axiom.

Using our ID-framework we can explicitly formalize these statements as part
of the deduction theorem itself, proving a further generalization. If we extend the
notation of (37) with a parametéx for rules, i.e.,

HJ[,A] = I(KUSUT, Det UA) (42)
then for the base case we have
be HITU{a},A] — (a D b) € HI[T, A] (43)
and
(aDa) € HIT, A (44)
while for the step case
(d,b,c) € A = (a D b) € HI[[', A]
— (aD¢) € HI[T,A] - (a D d) € HI[T,A]. (45)

The formulae (43) and (44) follow immediately for aHy [T, A], but (45) isn’t
always true. Thus, our third deduction theorem has the form

(@5)— b e HI[T U {a},A] = (a D b) € HIT, A], (46)

which can be proved in the same way as (40). Note too that this metatheorem
generalizes (40), since (40) is just (38) whéxés () and the antecedent, which is
therefore true, has been removed.
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The deduction theorem can even be further generalized, but doing so would
take us too far afield. IhBasin and Matthews, 200@ve show how a further
generalization of (46) can be specialized to modal logics that ex@éndThis
generalization allows us to prove

b e S4[T'U{a}] = (da D b) € S4[I.

That is, inS4 we can prove a deduction theorem that allows us to reason under
‘boxed’ assumption8§la.

7.5 Admissible and derived rules

Our examples suggest that inductive definitions offer considerable power and sim-
plicity in organizing metatheories. Each metatheorem states the conditions an ex-
tension has to satisfy for it to apply; so once proved, we need only check these
conditions before making use of it. Most metatheorems require only that certain
axioms and rules are available and therefore hold in all extensions with additional
axioms and rules. Others depend on certain things being absent (e.g. rules that
do not satisfy certain properties, in the case of the deduction theorem); in such
cases, we can prove more restricted theorems that are still usable in appropriate
extensions.

How does this kind of metatheory compare with what is possible in theorem
provers supporting hierarchical theories? We begin by reviewing the two standard
notions of proof-rules. Our definitions are those of Troel§t®82,§ 1.11.1] trans-
lated into our notation, wherg[I', A] is a deductive systefi extended with sets
of axiomsI" and rulesA, e.g. (42).

Fix a language of formulae. Aule is ann + 1-ary relation over formulae
(F1,...,Fy, Foe1) where theFy ... | F, are thepremiseandF,, 1 theconclu-
sion A rule isadmissibleor 7 iff

Frio0 F1 = - = Friee Fn = Fro,0) Frtr, (adm
andderivablefor 7T iff
VI l_T[F,(Z)] Fr—=-— l_T[F,lZ)] F, = I_T[F,Q)] Fn+1 : (der)

It follows immediately from the definitions that derivability implies admissibil-
ity; however, the converse does not always hold. It is easy to show that Troel-
stra’s definition of derivability is equivalent to that of Hindley and Selfi984;
i.e.Frir,... k.10 Fre1, and thatif a rule is derivable it holds in all extensions
of 7 with new axioms and rules.

Whereas in—-frameworks we can only prove derived rules, logical frameworks
based on inductive definitions allow us to prove that rules are admissible, as well
as reason about other kinds of rules not fitting the above categories. For example,
the languages or deductive systems for Ehecan be different, like in the various
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versions of the deduction theorem that we have formalized; our deduction the-
orems are neither derived nor admissible since their statements involve different
deductive systems.

7.6 Problems with ID-frameworks

Our examples provide evidence that a framework based on inductive definitions
can serve as an adequate foundation for carrying out metatheory in the proof the-
ory tradition and can be used to structure metatheoretic development. However,
some aspects of formal metatheory are more difficult than withsafinamework.

The most fundamental difficulty, and one that is probably already clear from our
discussion in this section, is the way languages are encoded. This is quite primitive
in comparison to what is possible in an-framework: for the propositional exam-
ples that we have treated here, the view of a language as a recursively enumerable
class is direct and effective. But this breaks down for logics with quantifiers and
other variable binding operators where the natural equivalence relation for syn-
tax is no longer identity but equivalence under the renaming of bound variables
(a-congruence). We have shown {A.2) that language involving binding has a
natural and direct treatment in an-framework as higher-order syntax. Nothing
directly equivalent is available in an ID-framework; we are forced to build the
necessary facilities ourselves.

Since the user must formalize many basic syntactic operations in an ID-frame-
work, any treatment of languages involving variable binding operators will be
more ‘primitive’ than what we get in an»-framework, but how much more prim-
itive is not clear. So far, most experience has been adgthocimplementations of
binding (e.g.[Matthews, 199] but approaches that are both more sophisticated
and more modular are possible, such as the binding structures proposed by Tal-
cott[199d, a generalization of de Bruijn indices as an algebra. As yet, we do not
know how effective such notations are.

The other property of ID-frameworks that might be criticized is that they are
biased towards Hilbert calculi, which are recognized to be difficult to use. But
metatheorems, in particular the deduction theorem, can play an important role in
making Hilbert calculi usable in practice. And, if a Hilbert style presentation is
not suitable, it may be possible to exploit a combination of the deduction theorem
and the intuitions of»-frameworks to provide direct encodings of natural deduc-
tion [Matthews, 1997b The same provisos about lack of experience with effective
notations for handling bindings apply here though, since this work only discusses
the propositional case.

8 CONCLUSIONS

This chapter does not try to give a final answer to the question of what a logical
framework might be. Rather it argues that the question is only meaningful in terms
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of some particular set of requirements, and in terms of ‘goodness of fit’; i.e. the
relationship between the properties of a proposed metalogic and logics we want to
encode.

Our central theme has been the relationship between different kinds of deduc-
tive systems and their abstractions as metatheories or metalogics, which we can
use to encode and work with instances of them. We have showed that a logic of
minimal implication and universal quantification can be used to encode both the
language and the proof-rules of a natural deduction or sequent calculus, and then
described in detail a particular logic of this typ€,. As a contrast, we have also
considered how (especially Hilbert) calculi can be abstracted as inductive defini-
tions and we sketched a framework based on this vigdy,. We then used the
metatheoretic facilities that we get with an ID-framework likg, to explore the
relationship between metatheory and object theory, especially in the context of
structured collections of theories.

The simple binary distinction between ID angframeworks, which we make
for the sake of space and explication, of course does not describe the whole range
of frameworks that have been proposed and investigated. It does, however, help to
define the space of possibilities and current research into frameworks can mostly
be categorized in its terms.

For instance, research into the problem of the ‘goodness of fit’ relation between
the metalogic and the object logic, especially-ferframeworks, can be separated
into two parts. We have shown that natural deduction calculi for standard math-
ematical (i.e., classical or intuitionistic, first or higher-order) logics fit well into
an—-framework. But the further we diverge from standard, mathematical, logics
into philosophical (i.e. modal, relevance, etc.) logic the more complex and arti-
ficial the encodings become. In order to encode modal logics, for instance, we
might introduce either multiple-judgment encodings or take explicit account of a
semantics via a labelling. The particular encodings that we have described here
are only some among a range of possibilities that could be imagined. A more
radical possibility, not discussed here, can be found in, éMatthews, 1997h
where the possibility of extending a framework directly with a modal ‘validity’
connective is explored. However we do not yet know what the practical limits of
these approaches afe.A similar problem of goodness of fit is also encountered
in ID-frameworks, where the ‘natural’ deductive systems are Hilbert calculi and
the ‘obvious’ encodings of consequence style systems are impractically unwieldy.
Matthews[19971 suggests how we might encode pure ordinary consequence re-
lation based systems in such a framework in a way that is more effective than, and
at least as intuitive as, the ‘naive’ approach of using inductively defined classes.

The particular problems of substructural logics (e.g. linear or relevance logics)
have been the subject of substantial research. The consequence relations associ-
ated with these logics are not ordinary and hence cannot be encoded using tech-

32This is essentially a practical, not a theoretical question, since, as we pointed out earlier, an
framework can be used as a Turing complete programming language, so with sufficient ingenuity any
deductive system can be encoded.
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niques such as those suggestegbnWhile labelled or multiple judgment presen-
tations of these logics in ar-framework are possible, they seem to be unwieldy;
i.e. they 'fit’ particularly badly. An alternative approach has been explored where
the framework itself is modified: minimal implication is replaced or augmented in
the framework logic with a substructural or linear implication, which does permit

a good fit. In Ishtiag and Pyii1994 and Cervesato and Pfennifitp9d, systems

are presented that are similar¥bexcept that they are based on linear implication,
which is used to encode variants of linear and other relevance logics. There is also
work that, rather than employing either or ID-frameworks, attempts to combine
features of both (e.g. McDowell and Millé1.997 and Despeyrougt al. [1996).

In short, then, there are many possibilities and, in the end, no absolute solu-
tions: the suitability of a particular logical framework to a particular circumstance
depends on empirical as well as theoretical issues; i.e. before we can choose we
have to decide on the range of object logics we envision formalizing, the nature of
the metatheoretic facilities that we want, and the kinds of compromises that we are
willing to accept.

David Basin
University of Freiburg, Germany.

Sedn Matthews
IBM Unternehmensberatung GmbH, Frankfurt, Germany.
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GORAN SUNDHOLM

PROOF THEORY AND MEANING

Dedicated to Stig Kanger on the occasion of his 60th birthday

The meaning of a sentence determines how the truth of the proposi-
tion expressed by the sentence may be proved and hence one would expect
proof theory to be influenced by meaning-theoretical considerations. In the
present chapter we consider a proposal that also reverses the above prior-
ities and determines meaning in terms of proof. The proposal originates
in the criticism that Michael Dummett has voiced against a realist, truth-
theoretical, conception of meaning and has been developed largely by him
and Dag Prawitz, whose normalisation procedures in technical proof theory
constitute the main technical basis of the proposal.

In a subject not more than 20-30 years old, and were much work is cur-
rently being done, any survey is bound to be out of date when it appears.
Accordingly I have attempted not to give a large amount of technicalities,
but rather to present the basic underlying themes and guide the reader to the
ever-growing literature. Thus the chapter starts with a general introduction
to meaning-theoretical issues and proceeds with a fairly detailed presenta-
tion of Dummett’s argument against a realist, truth-conditional, meaning
theory. The main part of the chapter is devoted to a consideration of the
alternative proposal using ‘proof-conditions’, instead of truth-conditions, as
the key concept. Finally, the chapter concludes with an introduction to the
type theory of Martin-Lof.

I am indebted to Professors Dummett, Martin-Lof and Prawitz, and to
my colleague Mr. Jan Lemmens, for many helpful conversations on the
topics covered herein and to the editors for their infinite patience. Dag
Prawitz and Albert Visser read parts of the manuscript and suggested many
improvements.

1 THEORIES OF MEANING, MEANING THEORIES AND TRUTH
THEORIES

A theory of meaning gives, one might not unreasonably expect, a general
account of, or view on, the very concept of meaning: what it is and how it
functions. Such theories about meaning, however, do not hold undisputed
rights to the appellation; in current philosophy of language one frequently
encounters discussions of theories of meaning for particular languages. Their
task is to specify the meaning of all the sentences of the language in question.
Following Peacocke [1981] I shall use the term ‘meaning theory’ for the
latter, language-relative, sort of theory and reserve ‘theory of meaning’ for

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 165—198.
© 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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the former. Terminological confusion is, fortunately, not the only connection
between meaning theories and theories of meaning. On th contrary, the
main reason for the study and attempted construction of meaning theories is
that one hopes to find a correct theory of meaning through reflection on the
various desiderata and constraints that have to be imposed on a satisfactory
meaning theory. The study of meaning theories, so to speak, provides the
data for the theory of meaning. In the present chapter we shall mainly treat
meaning theories and some of their connection with (technical) proof theory
and, consequently, we shall only touch on the theory of meaning in passing.
(On the other hand the whole chapter can be viewed as a contribution to
the theory of meaning.)

There is, since Frege, a large consensus that the sentence, rather than
the word, is the primary bearer of (linguistic) meaning. The sentence is the
least unit of language that can be used to say anything. Thus the theory of
meaning directs that sentence-meaning is to be central in meaning theories
and that word-meaning is to be introduced derivatively: the meaning of a
word is the way in which the work contributes to the meaning of the sen-
tences in which it occurs. It is natural to classify the sentences of a language
according to the sort of linguistic act a speaker would perform through an
utterance of the sentence in question, be it an assertion, a question or a
command. Thus, in general, the meaning of a sentence seems to comprise
(at least) two elements, because to know the meaning of — in order to
understand an utterance of — the sentence in question one would have to
know, first to what category the sentence belongs, i.e. one would have to
know what sort of linguistic act that would be performed through an utter-
ance of the sentence, and secondly one would have to know the content of
the act.

This diversity of sentence-meaning, together with the idea that word-
meaning is to be introduced derivatively (as a way of contributing to sentence
meaning), poses a certain problem for the putative meaning-theorist. If sen-
tences from different categories have different kinds of meaning, it appears
that the meaning of a word will vary according to the category of the sen-
tences in which it occurs: uniform word-meanings are ruled out. But this is
unacceptable as anyone familiar with a dictionary knows. The word ‘door’,
say, has the same meaning in the three sentences ‘Is the door open?’, ‘The
door is open.’, and ‘Open the door!’. This prima facie difficulty is turned
into a tool for investigating what internal structure ought to be imposed on
a satisfactory meaning theory.

A meaning theory will have to comprise at least two parts: the theory of
sense and the theory of force. The task of the latter is to identify the sort
of act performed through an utterance of a sentence and the former has to
specify the content of the acts performed. In order to secure the uniformity
of word meaning the theory of sense has to be formulated in terms of some
on key concept, in terms of which the content of all sentences is to be given,
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and the theory of force has to provide uniform, general, principles relating
speech act to content. The meaning of a word is then taken as the way
in which the word contributes to the content of the sentences in which it
occurs (as given by the key concept in the theory of sense).

The use of such a notion of key concept also allows the meaning theories
to account for certain (iterative) unboundedness-phenomena in language,
e.g. that whenever A and B are understood sentences, then also ‘A and
B’ would appear to be meaningful. This is brought under control in the
meaning theory by expressing the condition for the application of the key
concept P to ‘A and B’ in terms of P applied to A and P applied to B.

The most popular candidate for a key concept has undeniably been truth:
the content of a sentence is given by its ‘truth-condition’. One can, indeed,
find many philosophers who have subscribed to the idea that meaning is
to be given in terms of truth. Examples would be Frege, Wittgenstein,
Carnap, Quine and Montague. It is doubtful, however, if they would accept
that the way in which truth serves to specify meaning is as a key concept
in a meaning theory (that is articulated into sense and force components
respectively). Such a conception of the relation between meaning and truth
has been advocated by Donald Davidson, who, in an important series of
papers, starting with [1967], and now conveniently collected in his [1984],
has proposed and developed the idea that meaning is to be studied via
meaning theories. Davidson is quite explicit on the role of truth. It is going
to take its rightful place within the meaning theory in the shape of a truth
theory in the sense of Tarski [1956, Ch. VIII]. Tarski showed, for a given
formal language L, how to define a predicate ‘Truer,(z)’ such that for every
sentence S of L it is provable from the definition that

(1) Truey(S) iff £(S).

Here ‘S’ is a name of, and f(S) a translation of, the object-language sentence
W in the language of the meta-theory (= the theory in which the truth
definition is given and where all instances of (1) must hold). Using the
concept of meaning (in the guise of ‘translation’ from object-language to
meta-language) Tarski gave a precise definition of what it is for a sentence
of L to be true. Davidson reverses the theoretical priorities. Starting with a
truth theory for L, that is a theory the language of which contains Truey, (x)
as a primitive, and where for each sentence S of L

(2) True(S) iff p.

holds for some sentence p of the language of the truth theory, he wanted to
extract meaning from truth. Simply to consider an arbitrary truth theory
will not do not capture meaning, though. It is certainly true that

(3) Snow is white is true-in-English iff snow is white

but, unquestionably and unfortunately, it is equally true that
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(4) Snow is white is true-in-English iff grass is green

and the r.h.s. of (4) could not possibly by any stretch of imagination be
said to provide even a rough approximation of the meaning of the English
sentence

Snow is white.

Furthermore, a theory that had all instances of (2) as axioms would be
unsatisfactory also in that it used infinitely many unrelated axioms; the
theory would, it is claimed, be ‘unlearnable’.

Thus one might attempt to improve on the above simple-minded (2)
by considering truth theories that are formulated in a meta-language that
contains the object-language and that give their ‘T-theories’ (the instances
of (2)), not as axioms, but as derivable from homophonic recursion clauses,

e.g.
for all A and B of L,
Truer, (A and B iff Truer, (A and Truer,(B)

for all A of L,
Truer, (not-A iff not-Truer, (A).

Here one uses the word mentioned in the sentence on the l.h.s. when giving
the condition for its truth on the r.h.s.; cf. the above remarks on the iterative
unboundedness phenomena.

The treatment of quantification originally used Tarski’s device of ‘satis-
faction relative to assignment by sequences’, where, in fact, one does not
primarily recur on truth, but on satisfaction, and where truth is defined as
satisfaction by all sequences. The problem which Tarski solved by the use
of the sequences and the auxiliary notion of satisfaction was how to cap-
ture the right truth condition for ‘everything is A’ even though the object
language does not contain a name for everything to be considered in the
relevant domain of quantification. Another satisfactory solution which goes
back to Frege, would be to use quantification over finite extensions LT of L
by mans of new names. The interested reader is referred to [Evans, 1977,
Section 2] or to [Davies, 1981, Chapter VI] for the (not too difficult) tech-
nicalities. A very extensive and careful canvassing of various alternative
approaches to quantificational truth-theories is given by Baldwin [1979].
If we bypass the problem solve by Tarski and consider, say, the language
of arithmetic, where the problem does not arise as the language contains
a numeral for each element of the intended domain of quantification the
universal-quantifier clause would be
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for all A of L,

(7)  Truey(for every number z, A(z)) iff for every numeral F,

Truer, (A(k/z)).

(here ‘A(k/z)’ indicates the result of substituting the numeral k for the
variable x.)

Unfortunately it is still not enough to consider these homophonic, finitely
axiomatised truth theories in order to capture meaning. The basic clauses
of a homophonic truth theory will have the form, say,

for any name f of L,

Truer, (¢ is red) iff whatever ¢ refers to is red.
If we now change this clause to

for any ¢ in L,

Truey (¢ is red) iff whatever ¢ refers to is red and grass is green

and keep homophonic clauses for Truej with respect to ‘and’ ‘not’, etc., the
result will still be a finitely axiomatised and correct (‘true’) truth theory
for L. We could equally well have chosen any other true contingent sentence
instead of ‘grass is green’.) Seen from the perspective of ‘real meaning’ the
truth condition of the primed theory is best explained as

(10) Truep,(S) iff S and grass is green.

The fact that a true, finitely axiomatised, homophonic truth-theory does not
necessarily provide truth conditions that capture meaning was first observed
by Foster and Loar in 1976. Various remedies and refinements of the original
Davidsonian programme have been explored. We shall briefly consider an
influential proposal due to John McDowell [1976; 1977; 1978].

The above attempts to find a meaning theory via truth start with a (true)
truth theory and go on to seek further constraints that have to be imposed
in order to capture meaning. McDowell, on the other hand, reverses this
strategy and starts by considering a satisfactory theory of sense. Such a
theory has to give content-ascriptions to the sentences S of the language L,
say in the general form

(11) Sis Q iff p,

where p is a sentence of the meta-language that gives the content of S, and,
furthermore, the theory has to interact with a theory of force in such a
way that the interpreting descriptions, based on the contents as assigned
n (11), do in fact make sense of what speakers say and do when they
utter sentences containing S. A meaning theory, and thus also its theory
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of sense, is part of an overall theory of understanding, the task of which
is to make sense of human behaviour (and not just these speech-acts). If
the theory of sense can serve as a content-specifying core in such a general
theory, then (11) guarantees that the predicate @) is (co-extensional with)
truth. But not only that is true; the pathological truth-theories that were
manufactured for use in the Foster—Loar counter-examples are ruled out
from service as theories of sense because their use would make the meaning
theory issue incomprehensible, or outright false, descriptions of what people
do. A theory of sense which uses a pathological truth-theory does not make
sense. Thus we see that while an adequate theory of sense will be a truth
theory, the opposite is false: not every truth theory for a language will be
a theory of sense for the language.

In conclusion of the present section let us note the important fact that the
Tarski homophonic truth-theories are completely neutral with respect to the
underlying logic. The T-theorems are derivable from the basic homophonic
recursion clauses using intuitionistic logic only (in fact even minimal logic
will do).

No attempt has been made in the present section to achieve either com-
pleteness or originality. The very substantial literature on the Davidsonian
programme is conveniently surveyed in two texts, [Platts, 1979] and [Davies,
1981], where the latter pays more attention to the (not too difficult) tech-
nicalities. Many of the important original papers are included in [Evans
and McDowell, 1976], with an illuminating introduction by the editors, and
[Platts, 1980], while mention has already been made of [Davidson, 1984]’s
collection of essays.

2 INTERMEZZO: CLASSICAL TRUTH AND SEQUENT CALCULI

(Intended for readers of the method ‘semantic tableaux’, cf. Section 6 of
Hodges’ chapter or section 3 of Sundholm’s chapter, both in Volume 1 of
this Handbook:.)

It is by now well-known that perhaps the easiest way to prove the com-
pleteness of classical predicate logic is to search systematically for a counter-
model (or, more precisely, a falsifying ‘semi-valuation’, or ‘model set’) to the
formula, or sequent, in question. This systematic search proceeds according
to certain rules which are directly read off as necessary conditions from the
relevant semantics. For instance, in order to falsify Vz A(z) — B, one needs
to verify Yz A(x) and falsify B, and in order to verify Yz A(x) one has to
verify A(t) for every t, etc. Thus the rules for falsification, in fact, also con-
cern rules for verification and vice versa (consider verification of, e.g. —B),
and for each logical operator there will be two rules regulating the system-
atic search for a counter-model, one for verification and one for falsification.
These rules turn out to be identical with Gentzen’s [1934-1935] left and
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right introduction rules for the same operators. In some cases the search
needs to take alternatives into account, e.g. A — B is verified by falsifyng
A or verifying B. Thus one has two possibilitieis. The failure of the search
along a possibility is indicated by that the rules would force one to assign
both truth and falsity to one and the same formula. This corresponds, of
course, to the axioms of Gentzen’s sequent calculi. This method, where
failure of existence of counter-models is equivalent to existence of a sequent
calculus proof-tree, was discovered independently by Beth, Hintikka, Kanger
and Schiitte in the 1950s and a brilliant exposition can be found in [Kleene,
1967, Chapter VI|, whereas [Smullyan, 1968] is the canonical reference for
the various ways of taking the basic insight into account. Prawitz [1975]
is a streamlined development of the more technical aspects which provides
an illuminating answer to the question as to why the rules that generate
counter-models turn out to be identical with the sequent calculus rules.
There one also finds a good introduction to the notion of semi-valuation
which has begun to play a role in recent investigations into the semantics of
natural language (cf. [van Benthem and van Eijck, 1982] for an interesting
treatment of the connection between recent work on ‘partial structures’ in
the semantics of natural language and the more proof-theoretical notions
that derive from the ‘backwards’ completeness proofs).

These semantical methods for proving completeness also lend themselves
to immediate proof-theoretical applications. The Cut-free sequent calculus
is complete, but cut is a sound rule. Hence it is derivable. A connection
with the topic of our chapter is forged by reversing these proof-theoretic uses
of semantical methods. Instead of proving the completemess via semantics,
one could start by postulating the completeness of a cut-free formalism, and
read off a semantic from the left and right introduction rules. (Proof theory
determines meaning.) Such an approach was suggested by Hacking [1979]
in an attempt towards a criterion for logical constanthood. Unfortunately,
his presentation is marred by diverse technical infelicities (cf. [Sundholm,
1981]), and the problem still remains open how to find a workable proposal
along these lines.

3 DUMMETT’S ARGUMENT AGAINST A TRUTH-CONDITIONAL
VIEW ON MEANING

In the present section I attempt to set out one version of an argument due
to Michael Dummett to the effect that truth cannot adequately serve as a
key concept in a satisfactory meaning theory. Dummett has presented his
argument in many places (cf. the note at the end of the section) and the
presentation I offer is not to be attributed to him. In particular, the empha-
sis on manifestation that can be found in the present version of Dummett’s
argument I have come to appreciate through the writings of Colin McGinn
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[1980] and Crispin Wright [1976]. Dummett’s most forceful exposition is
still his [1976], which will be referred to as “WTM2”.

Dummett’s views on the role and function of meaning theories are only
in partial agreement with those presented in section 1. The essential differ-
ence consists mainly in the strong emphasis on what it is to know a language
that can be found in Dummett’s writings, and as a consequence his mean-
ing theories are firmly cast in an epistemological mould: “questions about
meaning are best interpreted as qeustions of understanding: a dictum about
what the meaning of a sentence consists is must be construed as a thesis
about what is is to know its meaning” (WTM2, p. 69). The task of the
meaing theoerist is to give a theeoretical (propositional) representation of
the complex practical capacity one has when one knows how to speak a
language. The knowledge that a speaker will have of the propositions that
constitute the theoretical representation in question will, in the end, have to
be imp ‘licit knowledge. Indeed, one cannot demand that a speaker should
be able to articulate explicitly; those very principles that constitute the
theoretical representation of his practical mastery. Thus a meaning theory
that gives such a theoretical representation must also comprise a part that
would state what it is to know the other parts implicitly.

The inner structure of a meaning theory that could serve the aims of
Dummett will have to be different from the simple bipartite version con-
sidered in section 1. Dummett’s meaning theories are to be structured as
follows. There is to be (ia) a core theory of semantic value, which states
the condition for the application of the key concept to the sentences of the
language, and, furthermore, there must be (ii) a theory of force, as before.
In between these two, however, there must be (ib) a theory of sense, whose
task it is to state what it is to know what is stated in the theory of semantic
value, i.e. what it is to know the condition for the application of the key con-
cept to a sentence. Thus the theory of sense in the proposals from section 1
does not correspond to the theory of sensep — ‘D’ for Dummett — but to
the theory of semantic value. (The Fregean origin of Dummett’s tripartite
structure should be obvious. For further elaboration cf., his [1981].) The
theory of sensep has no matching part in the theories from section 1. The
corresponding match is as follows:

Dummett (Davidson-)McDowell

(ia) Theory of semantic value (i) Theory of sense
(applies key concept to
sentences)
(iv) Theory of sensep (states
what it is to know the the-
ory of sematnc value)

(i)  The theory of force (ii) The theory of force
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This difference is what lies at the heart of the matter in the discussion
between Dummett and McDowell of whether a theory of meaning ought
to be ‘modest’ or ‘fullblooded’ (cf. [McDowell, 1977, Section X]: should
one demand that the mreaning theory must give a link-up with practical
capacities independently of, and prior to, the theory of force?.

One should also note here that the right home for the theory of sensep
is not quite clear. Here I have made it part of the meaning theory. It
could perhaps be argued that a statement of wherein knowledge of meaning
consists is something that had better be placed within a theory of meaning
rather than in a meaning theory. Dummett himself does not draw the
distinction between meaning theories and theories of meaning and one can,
it seems to me, find traces of both notions in what Dummett calls a ‘theory
of meaning’.

Dummett’s argument against the truth-theoretical conception of mean-
ing makes essential use of the assumption that the meaning theories must
contain a theory of sensep, which Dummett explicates in terms of how it
can be manifested: since the knowledge is implicit, possession thereof can be
construed only in terms of how one manifests tht knowledge. Furthermore,
this implicit knowledge of meaning, or more precisely, of the condition for
applying the key concept to individual sentences, must be fully manifested
in use. This is Dummett’s transformation of Wittgenstein’s dictum that
meaning is use. Two reasons can be offered (cf. [McGinn, 1980, p. 20]).
First, knowledge is one of many propositional attitudes and these are, in
general, only attributed to agents on the basis of how they are manifested.
Secondly, and more importantly, we are concerned with (implicit) knowledge
of meaning and meaning is, par ezxcellence, a vehicle of (linguistic) commu-
nication. If there were some componenets of the implicit knowlege that did
not become fully manifest in use, they could not matter for communication
and so they would be superfluous.

It was already noted above that the Tarskian truth-theories are com-
pletely neutral with respect to the logical properties of truth. What laws are
obeyed is determined by the logic that is applied in the meta-theory, whereas
the T-clauses themselves offer no information on this point. Dummett’s ar-
gument is brought to bear not so much against Tarskian truth as against the
possibility that the key concept could be ‘recognition-transcendent’. Classi-
cal, bivalent truth is characterised by the law of bivalence that every sentence
is either true or false independently of our capacity to decide, or find out,
whichever is the case. Thus, in general, the truth-conditions will be such
that they can obtain without us recognising that they do. There are a num-
ber of critical cases which produce such undecidable truth-conditions. (It
should be noted that ‘undecidable’ is perhaps not the best choice here with
its connotations from recursive function theory.) Foremost among these is
undoubtedly quantification over infinite or unbounded domains. Fermat’s
last theorem and the Reimann hypothesis are both famous examples from
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mathematics and their form is pruely universal Vo A(z), with decidable ma-
trix A(z). An existential example would be, say, ‘Somewhere in the universe
there is a little green stone-eater’. Other sorts of examples are given by, re-
spectively, counterfactual conditionals and claims about sentience in others,
e.g.- ‘Ronald Reagan is in pain’. A fourth class is given by statements about
(remote) past and future time, e.g. ‘A city will be built here in a thousand
years’, or ‘Two seconds before Brutus stabbed Casesare thirty-nine geese
cackled on the Capitol’.

The knowledge one has of how to apply the key concept cannot in its
entirety be statable, explicit knowledge and so the theory of sensep will
have to state, for at least some sentences, how one manifests knowledge
of the condition for applying the key concept to them, in ways other than
stating what one knows eplicitly. Let us call the class of these ‘the non-
statable fragment’. (Questions of the ‘division of linguistic labour’ may
arise here. Is the fragment necessarily unique? Cf. [McGinn, 1980, p. 22].)

Assume now for a reductio that bivalent, possibly recognition-transcendent,
truth-conditions can serve as key concept in a (Dummettian) meaning the-
ory. Thus the theory of sensep has to state how one fully manifests knowl-
edge of possibly recognition-transcendent truth-conditions. The ‘possibly’
can be removed: there are sentences in the non-statable fragment with un-
decidable truth-conditions. In order to see this, remember the four classes
of undecidable sentences that were listed above. Demonstrably, undecidable
sentences are present in the language and they must be present already in
the non-statable fragment, because “the existence of such sentences cnnot
be due solely to the occurrence of sentences introduced by purely verbal
explanations: a language all of whose sentences were decidable would con-
tinue to have this property when enriched by expressions so introduced”
(WTM2, p. 81). An objection that may be (and has been) raised here is
that one could start with a decidable fragment, e.g. the atomic sentences
of arithmetic and get the undecidability through addition of new sentence-
operators such as quantifiers. That is indeed so, but is not relevant here,
where one starts with a larger language that, as a matter of fact contains
undecidable sentences and then isolates a fragment within this language
that also will have this property. Decidable sentences used for definitions
could only provide decidable sentences and hence some of the sentences of
the full language would be left out. Also it is not permissible to speak of
adding, say, the quantifiers as their nature is sub judice: the meaning of a
quantifier is not something independent of the rest of the language but, like
any other word, its meaning is the way it contributes to the meaning of the
sentences in which it occurs.

Now the argument is nearly at its end. The theory of sensep would
be incomplete in that it could not state what it is to manifest fully implicit
knowledge of the recognition-transcendent truth-condition of an undecidable
sentence. If the theory attempted to do this, an observational void would
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exist without observational warrant. We, as theorists, would be guilty of
theoretical slack in our theory, because we could never see the agents man-
ifest their implicit knowledge in response to the truth-conditions obtaining
(or not), because ez hypothesi, they obtain unrecognisably. The agents, fur-
thermore, could not see them obtain and so, independently of whether or
not the theorist can see them response, they cannot manifest their knowl-
edge in response to the truth-condition. (This is a point where the division
of linguistic labour may play a role.)

Before we proceed, it might be useful to offer a short schematic summary
of Dummett’s argument as set out above. (Page refrences in brackets are
to WTM2.)

1. To understand a language is to have knowledge of meaning. (p. 69)
2. Knowledge of meaning must in the end be implicit knowledge. (. 70)

3. Hence the meaning theory must contain a part, call it theory of sensep,
that specifies ‘in what having this knowledge consists, i.e. what counts
as a manifestion of that knowledge. (pp. 70-71 and p. 127)

4. There are sentences in the language such that the speaker manifests
his knowledge of their meaning in ways other than stating the meaning
in other words. (The non-statable fragment is non-empty.) (p. 81)

5. Assume now that bivalent truth can serve as key concept. Bivalent
truth-conditions are sometimes undecidable and hence recognition-
transcendent. (p. 81)

6. Already in the non-statable fragment there must be sentences with
recognition-transcendent truth-conditions. (p. 81)

7. Implicit knowledge of recognition-transcendent truth-conditions can-
not be manifested, and so the theory of sensep is incomplete. (p.
82)

Supplementary notes concerning the argument:

a. Dummett’s argument is quite general and does not rest at all on any
specific features of the language concerned. When it is applied to a
particular area of discourse, or for a particular class of statements,
it will lead to a metaphysical anti-realism for the area in question.
Many examples of this can be found in Dummett’s writings. Thus
[1975] and [1977] both develop the argument within the philosophy of
mathematics. The intuitionistic criticism of classical reasoning, and
the ensuing explanations of the logical constants offered by Heyting,
provided the main inspiration for Dummett’s work on anti-realism. It
should be stressed, however, and as is emphasised by Dummett himself
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in [1975], that the semantical argument in favour of a constructivist
philosophy of mathematics is very far from Brouwer’s own position.

In Dummett [1968-1969] another one of the four critical classes of
sentneces is studied, viz. those concerning time, and in WTM2, Section
3, a discussion of counterfactual conditionals can be found, as well as a
discussion of certain reductionist versions of anti-realism. They arise
when the truth of statement A is reduced to the (simultaneous) truth
of a certain possibly infinite class of reduction-sentences M. If it
so happens that the falsity of the conjunction A\ M4 dos not entail
the truth of the conjunction M\ M -4, then bivalence will fail for the
statement A. Examples of such reductionist versions of anti-realism
can be found in phenomenalistic reductions of material objects or of
sentience in others.

It should be noted that Dummett’s anti-realism, while verificationist
in nature, must not be conflated with logico-empiricist verificationism.
With a lot of simplification the matter can be crudely summarised by
noting that for the logical empiricists classical logic was sacrosanct and
certain sentences have non-verifiable classical truth-conditions. Hence
they have no meaning. Dummett reverses this reasoning: obviously
meaningful sentences have no good meaning if meaning is construed
truth-conditionally. Hence classical meaning-theories are wrong.

. As one should expect, Dummett’s anti-realist argument has not been

allowed to remain uncontroverted. JohnMcDowell has challenged the
demand that the meaning theories should comprise a theory of sensep.
In his [1977] and [1978] the criticism is mainly by implication as he
is there more concerned with the development of the positive side of
his own ‘modest’ version of a meaning theory, whereas in [1981] he
explicitly questions the cogency of Dummett’s full-blooded theories.
McDowell’s [1978a] is an answer to Dummett’s [1969], and McDowell
in his turn has found a critic in Wright [1980a].

Colin McGinn has been another persistent critic of Dummett’s anti-
realism and he has launched counter-arguments against most aspects
of Dummett’s position, cf. e.g. his [1980], [1979] and [1982].

Crispin Wright [1982] challenges Dummett by observing that a Strict
Finitist can criticise a Dummettian constructivist in much the same
way as a Platonist and so the uniquely priviliged position that is
claimed for constructivism (as the only viable alternative to classical
semantics) is under pressure.

Another sort of criticiam is offered by Dag Prawitz [1977, 1978], who,
like Wright, is in general sympathy with large parts of Dummett’s
meaning-theoretical position. Prawitz questions the demand for full
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manifestation and suggests that the demand for a theory of sensep be
replaced by an adequacy condition on meaning theories 7"

if T is to be adequate, it must be possible

to derive in T the impliction

if P knows the meaning of A, then P shows behaviour B 4.
Prawitz [1978, p. 27]

(Here “B4” is a kind of behaviour counted as a sign of grasping the
meaning of A.)

The difference between this adequacy criterion and the constraints
that McDowell imposes on his modest theories is not entirely clear to
me. Only if the behaviour is to be shown before, and independently
of, the theory of force (whose task it is to issue just the interpret-
ing descriptions that tell what behaviour was exhibited by P) could
something like a modification of Dummett’s argument be launched
and even then it does not seem certain that the desired conclusion
can be reached.

e. In the presentation of Dummett’s argument I have relied solely on
WTM2. The anti-realist argument can be found in many places
though, e.g. [1973, chapter 14], [1969], [1975] and [1975a] as well as the
more recent [1982]. It should be noted that Dummett often cf. e.g.,
[1969], lays equal or more stress on the acquisition of knowledge rather
than its manifestion. Most of the articles mentioned are conveniently
reprinted in TE.

Wright [1981], a review of TE, gives a good survey of Dummett’s
work. Similarly, in his book [1980] Wright offers extensive discussion
of anti-realist themes.

The already mentioned McGinn [1980] and Prawitz [1977], while not
in entire agreement with Dummett, both give excellent expositions of
the basic issues. It is a virtually impossible task to give a complete
survey of the controversy around Dummett’s anti-realist position. In
recent years almost every issue of the Journal of Philosophy, Mind
and Analysis, as well as the Proceedings of the Aristotelean Society,
contains material that directly, or indirectly, concerns itself with the
Dummettian argument.

4 PROOF AS A KEY CONCEPT IN MEANING THEORIES

As was mentioned above the traditioal intuitionistic criticism of clasical
mathematical reasoning, cf. e.g., van Dalen (see Volume 5 of the second
edition of this Handbook) was an important source of inspiration for Dum-
mett’s anti-realist argument and it is also to intuitionism that he turns in
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his search for an alternative key-concept ot be used in the meaning theories
in place of the bivalent, recogntion-transcendent truth-conditions.

The simplest technical treatment of the truth-conditions approach to
semantics is undoubtedly provided by the standard truth-tables (which,
of course, are incorprated in the Tarski-treatment for, say, full predicate
logic) and it is the corresponding constructive ‘proof-tables’ of Heyting that
offer a possibility for Dummett’s positive proposal. Heyting’s explanations
of the logical constants, cf. his [1956, Chapter 7] and [1960], can be set out
roughly as follows:

A proof of the is given by

proposition
AANB a proof of A and a proof of B
AV B a proof of A or a proof of B
A— B a method for obtaining proofs of B from
proof of A
L nothing

Vo € DA(x)  a method which for every individual d
in D provides a proof of A(d)

Jz € DA(z)  an individual d in D and a proof of
A(d).

There are various versions of the above table of explanations, e.g. the one
offered by Kreisel [1962], where ‘second clauses’ have been included in the
explanations for implication and universal quantification to the effect that
one has to include also a proof that the methods really have the properties
required in the explanations above. The matter is dealt with at length in
[Sundholm, 1983], where an attempt is made to sort out the various issues
involved and where extensive bibliographical information can be found, cf.
also Section 7 below on the type theory of Martin-Lof.

In the above explanations the meaning of a proposition is given by its
‘proof condition’ and, as was emphatically stressed by Kreisel [1962], in
some sense, ‘we recognise a proof when we see one’. Thus it seems that the
anti-realistic worries of Dummett can be alleviated with the use of proof
as a key concept in meaning theories. (I will return to this question in
the next section.) Independently of the desired immunity from anti-realist
strictures, however, there are a number of other points that need to be taken
into account here.

First among these is a logical gem invented by Prior [1960]. In the Heyt-
ing explanations the meaning of a proposition is given by its proof-condition.
Conversely, does every proof-condition give a proposition? A positive an-
swer to this question appears desirable, but the notion ‘proof-condition’
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needs to be much more elucidated if any headway is to be made here. Prior
noted that if by ‘proof-conditions’ one understands ‘rules that regulate de-
ductive practice’ then a negative answer is called for. Let us introduce a
proposition-forming operator, or connective ‘tonk’ by stipulating that its
deductive practice is to be regulated by the following Natural Deduction
rules (I here alter Prior’s rules inessentially):

A B
tonk I
Atonk B A tonk B
Atonk B A tonk B
tonk F .

A B

As Prior observes one then readily proves false conclusion from true premises
by means of first tonk I and then tonk E. In fact, given these two rule any
two propositions are logically equivalent via the following derivation:

Al B?
—  (tonk I) —  (tonk I)
A tonk B A tonk B
B A
1,2(<)1
A< B

Thus tonk leads to extreme egalitarianism in the underlying logic: from a
logical point of view there is only one proposition. This is plainly absurd
and something has gone badly wrong. Hence it is clear (and only what could
be expected) that some constraints are needed for how the proof-conditions
are to be understood; ‘rules regulating deductive practice’ is simply too
broad. There is quite a literature dealing with tonk and the problems it
causes: [Stevenson, 1961; Wagner, 1981; Hart, 1982] and, perhaps most
importantly from our point of view, [Belnap, 1962], more about which below.
The relevance of the tonk-problem for our present interests, was as far as I
know, first noted by Dummett [1973, Chapter 13].

A second point to consider is the so-called paradoz of inference, cf. Cohen
and Nagel [1934, pp. 173-176]. This ‘paradox’ arises because of the tension
between (a) the fact that the truth of the conclusion is already contained
in the truth of the premises, and (b) the fact that logical inference is a way
to gain ‘new’ knowledge. Cohen and Nagel formulate it thus:

If in an inference the conclusion is not contained in the premise,
it cannot be valid; and if the conclusion is not different from the
premise, it is useless; but the conclusion cannot be contained in
the premises and also possess mowvelty; hence inferences cannot
be both wvalid and useful [1934, p. 173]
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So there is a tension between the legitimacy (the validity) and the utility
of an inference, and one could perhaps reformulate the question posed by
the ‘paradox’ as: How can logic function as a useful epistemological tool?
For an inference to be legitimate, the process of recognising the premises as
true must already have accomplished what is needed for the recognition of
the truth of the conclusion, but if it is to be useful the recognition of the
truth of the conclusion does not have to be present when the truth of the
premises is ascertained. This is how Dummett poses the question in [1975a).

How does one use reasoning to gain new truths? By starting with known
premises and drawing further conclusions. In most cases the use of valid
inference has very little to do with how one would normally set about to
verify the truth of something. For instance, the claim that I have seven
coins in my pocket is best established by means of counting them. It would
be possible, however, to deduce this fact from a number of diverse premises
and some axioms of arithmetic. (The extra premises would be, say that
I began the day with a £50 note, and I have then made such and such
purchases for such and such sums, receiving such and such notes and coins
in return, etc.) This would be a highly indirect way in comparison with the
straightforward counting process. The utility of logical reasoning lies in that
it provides indirect means of learning the truth of statements. Thus in order
to account for this usefulness it seems that there must be a gap between the
most direct ways of learning the truth and the indirect ways provided by
logic. If we now explain meaning in terms of proof, it seems that we close
this gap. The direct means, given directly by the meaning, would coincide,
so to speak, with the indirect means of reasoning. The indirect means have
then been made a part of the direct means of reasoning. (One should here
compare the difference between direct and indirect means of recognising the
truth with the solution to the ‘paradox’ offered by Cohen and Nagel [1934]
that is formulated in terms of a concept called ‘conventional meaning’.)

The constraints we seek on our proof-explanations thus should take into
account, on the one hand, that one must not be too liberal as witnessed by
tonk, and, on the other hand, one must not make the identification between
proof and meaning so tight that logic becomes useless.

Already Belnap [1962] noted what was wrong with tonk from our point
of view. The (new) deductive practice that results from adding tonk with
its stipulative rules, is not conservative over the old one. Using Dummett’s
[1975] terminology, there is no harmony between the grounds for asserting,
and the consequences that may be drawn from, a sentence of the form A tonk
B. The introduction and elimination rules must, so to speak, match, not
just in that each connective has introduction and elimination rules but also
in that they must not interfere with the previous practice. Hence it seems
natural to let one of the (two classes of) rules serve as meaning-giving and
let the other one be chosen in such a way that it(s members) can be justified
according to the meaning-explanation. Such a method of proceeding would
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also take care of the ‘paradox’ of inference: one of the two types of rules
would now serve as the direct, meaning-given (because meaning-giving!)
way of learning the truth and the other would serve to provide the indirect
means (in conjunction with other justified rules, of course).

The introduction rules are the natural choice for our purpose, since they
are synthesising rules; they explain how a proof of, say A$B , can be formed
in terms of given proofs of A and of B, and thus some sort of composition-
ality is present (which is required for a key concept). Tentatively then, the
meaning of a sentence is given by what counts as a direct (or canonical)
proof of it. Other ways of formulating the same explanation would be to say
that the meaning is given by the direct grounds for asserting, or by what
counts as a direct verification of, the sentence in question. An (indirect)
proof of a sentence would be a method, or program, for obtaining a direct
proof.

In order to see that a sentence is true one does not in general have to
produce the direct grounds for asserting it and so the desired gap between
truth and truth-as-established-by-the-most-direct-means is open. Note that
one could still say that the meaning of a sentence is given by its truth-
condition, although the latter, of course, has to be understood in a way
different from that of bivalent, and recognition-transcendent, truth: if a
sentence is true it is possible to give a proof of it and this in turn can be
used to produce a direct proof. Thus in order to explain what it is for a
sentence to be true one has to explain what a direct proof of the sentence
would be and, hence, one has to explain the meaning of the sentence n order
to explain its truth-condition.

All of this is highly programmatic and it remains to be seen if, and how,
the notion of direct (canonical) proof (verification, ground for asserting) can
be made sense of also outside the confined subject-matter of mathematics.
In the next section I shall attempt to spell out the Heyting explanations once
again, but now in a modified form that closely links up with the discussion in
the present section and with the so-called normalisation theorems in Natural
Deduction style proof theory.

5 THE MEANING OF THE LOGICAL CONSTANTS AND THE
SOUNDNESS OF PREDICATE LOGIC

In the present section, where knowledge of Natural Deduction rules is pre-
supposed, we reconsider Heyting’s explanations and show that the intro-
duction and elimination rules are sound for the intended meaning.

Thus we assume that A and B are meaningful sentences, or propositions,
and, hence that we know what proofs (and direct proofs) are for them.
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The conjunction A A B is a proposition, such that a canonical proof of
A A B has the form:

D, D,
A B
ANAB

where Dy and D are (not necessarily direct) proofs of () and B, respectively.
On the basis of this meaning-explanation of the proposition A A B, the rule
(AI) is seen to be valid. We have to show that whenever the two premises
A and B are true then so is A A B. When A and B are true, they are
so on the basis of proof and hence there can be found two proofs D; and
D, respectively of A and B. These proofs can then be used to obtain a
canonical proof of A A B, which therefore is true.

Consider the elimination rule (AE), say, 2482, and assume that AA B is
true. We have to see that B is true. AA B is true on the basis of a proof D,
which by the above meaning-explanation can be used to obtain a canonical
proof D3 of the form specified above. Thus D- is a proof of B and thus B
is true.

Next we consider the implication A — B, which is a proposition that is
true if B is true on the assumption that A is true. Alternatively we may
say that a canonical proof of A — B has the form

Al

D
__B _
A— B!

where D is a proof of B using the assumption A. Again, the introduction
rule (— I) is sound, since what has to be shown is that if B is true on the
hypothesis that A is true, then A — B is true. But this is directly granted
by the meaning explanation above. For the elimination rule we consider

A—-B A
B

and suppose that we have proofs D; and D, of respectively A — B an A.
As Dy is a proof it can be used to obtain a canonical proof D3 and thus we
can find a hypothetical proof D of B from A. But then

SRR
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is a proof of B and thusB is true and (— E) is a valid rule.
The disjunction AV B is a proposition, with canonical proofs of the forms

Dl D2
A and B
AV B AV B

where D; and D, are proofs of respectively A and B. The introduction
rules are immediately seen to be valid, since they produce canonical proofs
of their true premise. For the elimination rule, we assume that AV B
is true,that C' is true on assumption that A is true, and that C is true
on assumption that B is true. Thus there are proofs D;, D> and D3 of,
respectively AV B,C and C, where the latter two proofs are hypothetical,
depending on respectively A and B. The proof D; can be used to obtain a
canonical proof Dy of AveeB in one of the two forms above, say the right,
and so D4 contains a subproof Djs, that is a proof of B. Then we readily
find a proof of C' by combining D5 with the hypothetical D3 to get a proof
of C', which thus is a true proposition.

The absurdity L is a proposition which has no canonical proof. We have
to see that the rule % is valid. Thus, we have to see that whenever the
proposition L is true, then also A is true. But L is never true, since a proof
of L could be used to obtain a canonical proof of L and by the explanation
above there are no direct proofs of L.

The universal quantification (Vox € M)A(z) is a proposition such that its
canonical proofs have the form

r e M!
D
A(x)
(Vz € M)A(z)!

that is, the proof of D of the premise is a hypothetical, free-variable, proof
of A(x) from the assumption that x € M. Again the introduction rule is
valid, since if A(z) is true on the hypothesis that € M, there can be
found a hypothetical proof of A(x) from assumption z € M, and thus we
immediately obtain a canonical proof of (Vz € M)A(z). For the elimination
rule (VE) consider

(Vx e M)A(z) de M
A(d)

and suppose that the premises are true. Thus proofs D, and D» of, respec-
tively, (Vz € M)A(z) and d € M, can be found. As D; is a proof it can be
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used to obtain a direct proof of its conclusion, and hence we can extract a
hypothetical proof of D3 of A(z) from assumption z € M. Combining D,
with the free-variable proof Dj gives a proof

D, (‘D3(d/z)’ indicates the
de M result of substituting
Ds(d/x) d for z in D3.)

A(d)

of A(d), so the rule (VE) is sound.
Finally the existential quantification (3x € M)A(x) is a proposition such
that its canonical proofs have the (3I) form

D, D,
A(d) de M
(Fz € M)A(z)

Again the introduction rule is immediately seen to be valid as it produces
canonical proofs of its conclusion from proofs of the premises. For the elim-
ination rule (3E) consider the situation that (3z € M A(z) is true, and that
C is true on the assumptions that = is in M and A(z) is true. Thus there
can be found a proof D3 of (3z € M)A(z) and a hypothetical free-variable
proof Dy if C' from hypotheses € M and A(x). The proof D3 can be used
to obtain a canonical proof of the form above, and combining the proofs D
and D, with the hypothetical free-variable proof D, we obtain a proof of D:

D» Dy
de M  A(d)
Dy(d/x)

c

Thus the rules of the intuitionistic predicate logic are all valid; no corre-
sponding validation is known for, say, the classical law of Bivalence AV —A
where —A is defined as A — L.

The above treatment has been less precise and complete than would be
desirable owing to limitations of space. First, questions of syntax have been
left out especially where the quantifier rules are concerned, and secondly
a whole complex of problems that arises from the fact that we need to
know that A(z) is a proposition for any  in M in order to know that, say,
(Vx € M)A(z) is a proposition has been ignored. The interested reader is
referred to the type theory of Martin-Lof [1984] for detailed consideration
and careful treatment of (analogues to) these and other lacunae, e.g. how
to treat atomic sentences in our presentation.
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The above explanations of why the rules of predicate logic are valid all
follow the same pattern. The introduction rules are immediately seen to be
valid, since canonical proofs are given introductory form. The elimination
rules are then seen to be valid by noting that the introduction and elimina-
tion rules have the required harmony. The canonical grounds for asserting
a sentence do contain sufficient grounds also for the consequences that may
be drawn via the elimination rules for the sentence in question. Thus, in
fact, we have here made use of the reduction steps first isolated and used by
Prawitz [1965, 1971], in his proofs of the normalisation theorems for Natural
Deduction-style formalisations.

Prawitz has in a long series of papers [1973, 1974, 1975, 1978 and 1980]
been concerned to use this technical insight for meaning-theoretical pur-
poses. His main concern, however, has been to give an explication of the
notion of valid argument rather than to give direct meaning explanations in
terms of proof. In the presentation here, which is inspired by Martin-Lof’s
meaning-explanations for his type theory, I have been more concerned with
the task of giving constructivistic meaning-explanations while relying on the
standard explication of validity as preservation of truth for a justification
of the standard rules of inference.

One should, however, stop to consider the extent to which the above
explanations constitute a meaning theory in the sense of section 1 above.
In particular, in section 4 a promise was given to return to the question of
decidability. Is it in fact true that the notion of proof is decidable? On
our presentation at least this much is true: if we already have a proof it
is decidable if it is in canonical form. As to the general question I would
be inclined to think that the notion of proof is semi-decidable, in that we
recognise a proof when we see one, but when we don’t see one that does not
necessarily mean that there is no proof there. One can compare the situation
with understanding a meaningful sentence: we understand a meaningful
sentence when we see (or hear!) one but if we don’t understand that does
not necessarily mean that there is nothing there to be understood. Failure
to understand a meaningful sentence seems parallel to failure to follow, or
grasp, a proof. Such a position, then, would not make the ‘proof-condition’
recognition-transcendent; when it obtains it can be seen to obtain, but
when it is not seen to obtain no judgement is given (unless, of course it is
seen not to obtain). Apart from the question of decidability, an important
difference is that in explanations such as the above there is no mention of
implicit knowledge and the like. It seems correct to speak of a theoretical
representation of a (constructivistic) deductive practice, but it seems less
natural to say that these explanations are known to everyone who draws
logical inferences.

We used the notion of canonical proof as a key concept in order to provide
the explanations, and in the literature one can find a number of alterna-
tives as to how one ought to specify these, cf. the papers by Prawitz listed
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above. In particular, one might wish to insist that all parts of a canoni-
cal proof should also be canonical (as is the case with the so-called normal
derivations obtained by Prawitz in his normalization theorem [1971]). The
choice I opted for here was motivated by, first, the success of the meaning-
explanations of Martin-Lof in his type theory and, secondly, the fact that
in Hallnés [1983] a successful normalisation of strong set-theoretic systems
is carried out using an analogous notion of normal derivation (Tennant’s
[1982] and his book [1978] are also interesting to the set-theoretically cu-
rious; in the former a treatment of the paradoxes is offered along Natural
Deduction lines, and the latter contains a neat formulation of the rules of
set theory.)

Finally, we should note that the explanations offered here have turned the
formal system into an interpreted formal system (modulo not inconsiderable
imprecision in the formulation of syntax and explanations). This is the main
reason for the avoidance of Greek letters in the present Chapter.

6 QUESTIONS OF COMPLETENESS

In section 5 the meaning of the logical constants was explained and the
standard deductive practice justified. In the case of classical, bivalent logic
we know that the connectives A,V and — are complete in that any truth-
function can be generated from them. Does the corresponding property
hold here? Clearly the answer is dependent on how the canonical proofs
may be formed. It was shown by Prawitz [1978] and, independently of
him, by Zucker and Tragresser [1978] that if we restrict ourselves to purely
schematic means for obtaining canonical proofs (and for logical constants
this does not seem unreasonable), then an affirmative answer is possible to
the above question. As a typical example consider e.g. this Sheffer-stroke
(which of course makes sense constructively as well). This is given the in-
troduction rule (|I)

Al . B?

_ L
A|Bl’2

A definition using A, — and L is found by putting A|B =qef ANB — L. If
there are more premise-derivations in the introduction rule (= the rule for
how canonical proofs may be obtained) for each of these one will get an im-
plication of the above sort and they are all joined together by conjunctions.
(Here it is presupposed that the rules have only finitely many premises.
This does not seem unreasonable.) Finally, if there are more introduction
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rules than one, the conjunctions are put together into a disjunction. (Here
it is presupposed that there are only finitely many introduction rules. Again
this does not seem unreasonable)(.

Only one case remains, namely that there are no introduction rules. Then
there are no canonical proofs to be found and we have got the absurdity.
Thus the fragment based on —, A,V and L is complete. For further details
refer to the two original papers above as well as Schroeder-Heister [1982].
It should be noted that by Hendry [1981] we know that A A B is equivalent
also intuitionistically to (A <+ B) <> (AV B) and that A — B is equivalent
to B <+ AV B. Thus also <>,V and L are complete.

The standard elimination-rules (AE) can be replaced by the following
rule:

Al . B?

ANB c
C 1,2

which rule seems quite well-motivated by the analogy with the introduction
rule ’3 /\g : everything which can be derived from the two premises A and
B used as assumptions can also be derived from A A B alone. The (VE)
rule has exactly this general pattern and the intuitionistic absurdity rule is

a degenerate case without minor premise C"

L

c

Only implication does not obey the above pattern. Here the premise of the
introduction rule is not just a sentence, but a hypothetical judgement that
B is true whenever A is true. Thus, we have a sort of rule as premise: from
A go to B, in symbols A = B. If we may use such rules as dischargable
assumptions, one an keep the standard pattern also for implication, viz.

A= B!

A— B C
Cr 1

whereas if we try to do the same using implication for the arrow =, we end
up with the triviality
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A— B!

A— B C
C 1

which does not allow us to derive even modus ponens.
Using the rule with the higher level assumption A = B one can derive
(— E) as follows:

A

— (A= B)!
A—-B B
B 1

Given the use of the rule A = B as an assumption, from premise () we can
proceed to conclusion B, and the use of the major premise A — B allows
to discharge the use of the rule A = B.

This type of higher-level assumptions was introduced by Schroeder-Heister
[1981] and it is a most interesting innovation in Natural Deduction-formulations
of logic, cf. also his [1982] and [1983]. The elimination rule that the Prawitz
method gives to the Sheffer-stroke would be

AAB — 11

A|B C
C 1

which follows the above pattern, but uses implication and conjunction. With
the Schroeder-Heister conventions the rule can be given as

(A,B — 1)!

AlB C
C 1

In words, if C is true under the assumptions that we may go from the
premise A and B to conclusion L, then C' is a consequence of A|B alone.
In Schroeder-Heister [1984] an extension of the above results is given and
completeness is established also for the predicate calculus language.
The other question of completeness is also considered by Schroeder-
Heister [1983]: is every valid inference derivable from the introduction and
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elimination rules? This question gets a positive answer, but the concept of
validity is extremely restrictive, i.e. the rule AABAC i5 ot a valid rule,
cf. [1983, p. 374], which (given the concept of validity used in the present
paper) it obviously must be. Thus I would consider the problem, first posed
by Prawitz [1973], to establish the completeness of the predicate logic, for

the present sort of meaning explanations, still to be open.

7 THE TYPE THEORY OF MARTIN-LOF

Frege [1893], in the course of carrying out his logicist programme, designed
a full-scale, completely formal language that was intended to suffice for
mathematical practice. By today’s standards, an almost unique feature of
his attempt to secure a foundation of mathematics is that he uses an inter-
preted formal language for which he provides careful meaning explanations.
The language proposed was, as we now know, not wholly successful, owing
to the intervention of Russell’s paradox. (The effects of the paradox on
Frege’s explanations of meaning are explored in Aczel [1980] and, from a
different perspective, in Thiel [1975] and Martin [1982].) As the formal logic
of Frege (and Whitehead-Russell) was transformed gradually into mathe-
matical logic, notably by Tarski and Godel, interest in the task of giving
meaning explanations for interpreted formal languages faded out and af-
ter World War II the current distinction between syntax and (Tarskian,
model-theoretic) semantics has become firmly entrenched.

The type theory of Martin-Lof [1975, 1982, 1984] represents a remarkable
break with this tradition in that it returns to the original Fregean paradigm:
interpreted formal language with careful explanations of meaning. Owing to
limitations of space I shall not be able to give a detailed, precise description
of the system here, (a task for which Martin-Lof [1984] uses close to a
hundred ages), but will confine myself to trying to convey the basic flavour
of the system.

A possible route to Martin-Lo6f’s theory is through further examination
of Heyting’s explanations of the meaning of the logical constants. Our ten-
tative semantics in section 5 above made tacit use of a refinement of the
explanations: the proof-tables do not give just proofs but canonical, or di-
rect proofs. A further refinement can be culled from Heyting’s own writings.
(In Sundholm [1983] a fairly detailed examination of Heyting’s writings on
this topic is offered.) According to Heyting, in order to prove a theorem one
has to carry out certain constructions, ‘die gewissen Bedingungen geniigen’,
namely that it produces a mathematical object with certain specified prop-
erties, cf. e.g. his remarks on the proposition

“Euler’s constant is rational”

in [1931, p. 113]. In Martin-Lof’s system, the proof-tables are extended to
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contain also the information about the objects that need to be constructed
in order to establish the truth of the propositions in question. Thus, taking
both refinements into account, the meaning of a proposition is explained by
telling what a canonical object for the proposition would be. (A canonical
object is not needed in order to assert the proposition; an object (method
program) that can be evaluated to canonical form is enough. For more de-
tails here, see Martin-Lof [1984].) In fact, according to Martin-Lof, one also
has to tell when two such objects are equal. On the other hand, when one
defines a set constructively, one has to specify what the canonical elements
are and what it is for two elements of the set to be equal elements. Thus, the
explanations of what propositions are and of what sets are, are completely
analogous and Martin-L6f’s system does not differentiate between the two
notions.

In ordinary formal theories, that are formulated in the predicate calcu-
lus, the derivable objects are propositions (or, rather, they are well-formed
formulae, i.e. the formalistic counterparts of propositions). This leads to
certain difficulties for the standard formulation where logical inference is a
relation between proposition. As was already observed by Frege, the correct
formulation of modus ponens is

A — B is true A is true

. )
B is true

It is simply not correct to say that the proposition B follows from the propo-
sitions A — B and ). What is correct is that the truth of the proposition
B follows from the truth of A — B and the truth of A. Thus the premises
and conclusions of logical inferences are not propositions but judgements as
to the truth of the propositions. Furthermore, as Martin-Lof notes, that in
order to keep the rules formal, one should also include the information that
A and B are propositions in the premises of the rules, e.g.

Ais a prop. B is aprop. A is true

AV B is true
is how V-introduction should be set out. Therefore, as the premises of in-
ferences are judgements, and remembering the identification of propositions
and sets, on finds two main sorts of judgements in the theory, namely

(a) Aset (‘Aisaset’)
and
(b) a€ A (‘aisan element of the set A”)

(In fact, there are two further forms of judgement, namely ‘A s the same
set as B’ and ‘a and b are equal elements of the set A’.)
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In accordance with the above discussion, (a) also does duty for ‘A is a
proposition’ and (b) can also be read as ‘the (proof-)object a is of the right
sort, for the proposition A, meets the condition specified by the proposition
A’. This reading of (b) is, constructively, a longhand for the judgement
‘(the proposition) A (is) true’, which is used whenever it is convenient to
suppress the extra information contained is the proof-object. A third read-
ing, deriving from Heyting and Kolmogorov, is possible, where (a) is taken
in the sense ‘A is a task (or problem)’ and (b) in the sense ‘a is a method for
carrying out the task A (solving the problem A)’. When the task-aspect is
emphasises, another reading would be ‘a is a program that meets the specifi-
cation A’ and the type-theoretical language of Martin-Lof [1982] has, owing
to this possibility, had considerable influence as a programming language.

Some feeling for the interaction between propositions and proof-objects
may be obtained through consideration of the simple example of conjunc-
tion. The proposition AN B (or set A X B) is explained, on the assumption
that A and B are propositions, by laying down that a canonical element of
A x B is a pair (a,b) where a € A and b € B. Thus the Xx-introduction rule
is correct:

acA beB
(a,b) e AX B’

Using the shorthand reading, when the proof-objects are left out, we also
see that the rule of A-introduction is correct:

A true B true
AAB true

For the A-eliminations, we need the use of the projection-functions p and ¢
that are associated with the pairing-function. Consider the rule

A A B true
Atrue

Restoring proof-objects, we see that from an element ¢ € A A B, one
has to find an element of A. But ¢ is an element of A A B, and so ¢ is
equal to (is a method for finding, can be evaluated, or executed, to) a
canonical element (a,b) € A A B. Applying the projection p, we see that
p(c) = p((a,b)) = a € A, so the proper formulation will be

ce ANB
plc)e A
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It should be mentioned, however, that the conjunction is not a primitive
set-formation operation in the language of Martin-L&éf. On the contrary, a
suitable candidate can be defined from other sets and the appropriate rules
derived.

A slightly more complex example is provided by the universal quantifi-
cation (Vr € A)B[z] and implication A — B, both of which are treated as
variants of the Cartesian product (Ilz € A)B[z] of a family of sets. This
product may be formed only on the assumption that we have a family of
sets over A, that is, provided that B[z] isa set, whenever € A. Thus the
formation rule will take the form

e Al

A set Blz] set
(Ilz € A)Blz] set

(This serves to illustrate the important circumstance that the basic judge-
ments may depend on assumptions. Better still, we should say that the right
premise is a hypothetical judgement B[z] set (provided that x € A).) In or-
der to understand the II-formation rule one needs to know what a canonical
element of (Ilz € A)B[z] would be; this is told by the II-introduction rule

xr e Al

b[z] E Blz]
Az.b[z] € (Iz € A)Blzx]

that is, the canonical elements are functions Azb[z], such that b[z] € B[z]
provided that x € A. Just as in the case of conjunction, where the elim-
ination rule was taken care of by matching the pairing function with a
projection, one will obtain the elimination rule through a similar match
between A-abstraction and function-application, ap. Thus the rule take the
form

fe(lz € A)Blz] ac A
ap(F,a) € Bla/x]

(In order to understand this rule one makes use of an important connection
between abstraction and application, namely the law

ap(Az.b[z],a) = bla/x].
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For the details of the explanation, refer to Martin-Lo6f [1982] or [1984].)

If the set (proposition ) B[z] does not depend on z the product is writ-
ten as the set of functions B4 (as the proposition A — B). The rules are
obvious, with the exception of —-formation:

A true!

A prop B prop
-

A — B prop

Here the formation rule is stronger than the usual rule (where A and B
both have to be propositions) because the right premise is weaker in that
B has to be a proposition only when A is true. This concept of implication
has been used by Stenlund in an elegant theory of definite descriptions, cf.
his [1973] and [1975].

The other quantification is taken care of by means of the disjoint union
of a family of sets. The ¥-formation rule takes the form

re Al

A set Bl[z] set
(Sz € AB[z] set '

The canonical elements are given by the Y-introduction rule

a€A be Bla/z]

(a,b) € (Xz € A)Blz]

On the propositional reading, where the disjoint union is written as the
quantifier (3z € A)B[z], we see that in order to establish an existence
claim one has to (i) exhibit a suitable witness a € A and (ii) supply a
suitable proof-object b that the witness a € A does, in fact, satisfy the
condition imposed by B[z]. The inclusion of the proof-object b allows yet
a third use for the disjoint union, namely that of restricted comprehension-
terms. What would, on a constructive reading, be meant by ‘an element
of the set of z’s in A such that B[z]’? At least one would have to include
a witness ¢ € A and information (= a proof-object) establishing that a
satisfies the condition B[z]. Thus the canonical elements of the restricted
comprehension-term {x € A : B[z]} coincide with the canonical elements
of the disjoint sum. This representation of ‘such that’ provides the key to
the actual development of, say, the theory of real numbers given the set NV
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of natural numbers. A real number will be an element of NV such that it
obeys a Cauchy-condition.

At this point I will refrain from further development of the language
and instead I shall apply the type-theoretic abstractions that have been
introduced so far to the notorious ‘donkey-sentence’

(*)  Every man who owns a donkey beats it.

The problem here is, of course, that formulations within ordinary predicate
logic do not seem to provide any way to capture the back-reference of the
pronoun ‘it’. A simple-minded formalisation yields

(**)  Vz(Man(z) A Jy(Donkey(y) A Own(z,y)) — Beats(z,?)).

There seems to be no way of filling the place indicated by ‘?’, as the donkey
has been quantified away by ‘y’.

Using the disjoint-union manner of representation for restricted compre-
hension-terms one finds that ‘a man who owns a donkey’ is an element of
the set

{z € MAN : (3y € DONKEY)OWN]z, y]}.

Such an element, when in canonical form, is a pair (m,b), where m €
MAN and b is a proof-object for (Jy € DONKEY)OWN][m/z,y]. Thus b,
in its turn, when brought to canonical form, will be a pair (d,c), where
d is a DONKEY and ¢ a proof-object for OWN[m/z,d/y]. Thus for an
element z of the comprehension-term ‘MAN who OWNs a DONKEY’ the
left projection p(z) will be a man and the right projection ¢(z) will be a
pair whose left projection p(q(z)) will be the witnessing donkey. Putting it
all together we get the formulation

(***) (Vz € {x € MAN : (3y € DONKEY)OWN]z, y]}) BEAT[p(z), p(q(2))]

In this manner, then, the type-theoretic abstractions suffice to solve the
problem of the pronominal back-reference in (*). It should be noted here
that there is nothing ad hoc about the treatment, since all the notions used
have been introduced for mathematical reasons in complete independence
of the problem posed by (*). One the other hand one should stress that
it is not at all clear that one can export the ‘canonical proof-objects’ con-
ception of meaning outside the confined area of constructive mathematics.
In particular the treatment of atomic sentences such a ‘OWN]z,y]’ is left
intolerably vague in the sketch above and it is an open problem how to
remove that vagueness.

Martin-Lo6f’s type theory has attracted a measure of metamathematical
attention. Peter Aczel [1977, 1987, 1980, 1982], in particular, has been a
tireless explorer of the possibilities offered by the type theory. Other papers
of interest are Diller [1980], Diller and Troelstra [1984] and Beeson [1982].
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NOTE ADDED IN PROOF (OCTOBER 1985)

Per Martin-Lof’s ‘On the meanings of the logical constants and the jus-
tifications of the logical laws’ in Atti degli incomtri di logica matematica
vol. 2, Scuolo di Specializzazione in Logica Matematica, Dipartimento di
Mattematica, Universita di siena, 1985, pp. 203-281, was not available dur-
ing the writing of the present chapter. In these lectures, Martin-Lof deals
with the topics covered in sections 4-6 above in great detail and carries the
philosophical analysis considerably further.

University of Nijmegen, The Netherlands.

EDITOR’S NOTE 2001

[For the most recent coverage of Martin-Lof’s type theory, see the chapter by
B. Nordstrém, K. Peterson and J. M. Smith in S. Abramsky, D. Gabbay and
T. S. E. Maibaum, eds., Handbook of Logic in Computer Science, volume 5,
pp. 1-37, Oxford University Press, 2000.]
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GOAL-ORIENTED DEDUCTIONS

1 INTRODUCTION

The topic of this chapter is to present a general methodology for automated
deduction inspired by the logic programming paradigm. The methodology
can and has been applied to both classical and non-classical logics. It comes
without saying that the landscape of non-classical logics applications in
computer science and artificial intelligence is now wide and varied, and this
Handbook itself is a witness this fact. We will survey the application of goal-
directed methods to classical, intuitionistic, modal, and substructural logics.
For background information about these logical systems we refer to other
chapters of this Handbook and to [Fitting, 1983; Anderson and Belnap,
1975; Anderson et al., 1992; Gabbay, 1981; Troelstra, 1969; Dummett, 2001;
Restall, 1999]. Our treatment will be confined to the propositional level.!

In the area of automated deduction and proof-theory there are several
objectives which can be pursued. Methods suitable for one task are not
necessarily the best ones for another. Consider propositional classical logic
and the following tasks:

1. check if a randomly generated set of clauses is unsatisfiable;
2. given a formula A check whether A is valid;

3. given a set I' containing say 5,000 formulas and a formula A check
whether I' F A;

4. (saturation) given a set of formulas I" generate all atomic propositions
which are entailed by T

5. (abduction) given a formula A and a set of formulas I" such that T' I/ A,
find a minimal set of atomic propositions S such that U S F A and
satisfies some other constraints.

It is not difficult to see that all these problems can be reduced one to
the other. However, it is quite likely that we need different methods to
address each one of them efficiently. Consider task 3: ' may represent a
‘deductive database’ and A a query. It might be that the formulas of T’
have a simple/uniform structure and only a small subset of the formula
of T are relevant for getting a proof of A (if any): thus a general general

IThe reader of the chapter of Basin and Matthews on logical frameworks can regard
our chapter as a goal directed logical framework done in the object level.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 199-285.
© 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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SAT-algorithm applied I' U {—A} might not be the most natural method,
we would prefer a method capable of concentrating on the relevant data
and ignoring the rest of I'. Similar considerations applies to the other tasks.
For instance in the case of abduction, we would likely calculate the set of
abductive assumptions S from failed attempts to prove the data A, rather
than guess an S arbitrarely and then check if it works. Moreover, in some
applications we are not only interested to know whether a formula is valid or
not, but also to find (and inspect) a proof of it in an understandable format.
The goal-directed approach to deduction is useful to support deduction from
large databases, abduction procedures, and proof search.

In a few words, the goal-directed paradigm is the same as the one un-
derlying logic programming. The deduction process can be described as
follows: we have a structured collection of formulas (called a database) A
and a goal formula A, and we want to know whether A follows from A or
not, in a specific logic. Let us denote by

A A

the query ‘does A follows from A?’ (in a given logic). The deduction is
goal-directed in the sense that the next step in a proof is determined by the
form of the current goal: the goal is stepwise decomposed, according to its
logical structure, until we reach its atomic constituents. An atomic goal
q is then matched with the ‘head’ of a formula G' — ¢ (if any, otherwise
we fail) in the database, and its ‘body’ G’ is asked in turn. This step can
be understood as a resolution step, or as a generalized Modus Tollens. We
will see that we can extend this backward reasoning, goal-directed paradigm
to most non-classical logics. We can have a logic programming-like proof
system presentation for classical, intuitionistic, modal, and substructural
logics.

Here is a plan of the chapter: we start revising Horn classical logic as a
motivating example , we then consider intuitionistic logic and full classical
logic. Then we consider modal logics and substructural logics.

Notation and basic notions

Formulas
By a propositional language £, we denote the set of propositional formulas
built from a denumerable set Var of propositional variables by applying the
propositional connectives =, A,V, —, L.

Unless stated otherwise, we denote propositional variables (also called
atoms) by lower case letters, and arbitrary formulas by upper case letters.
We assign a complexity cp(A) to each formula A (as usual):

ep(q) =0 if ¢ is an atom,
cp(—A) =1+ cp(A),
cp(A x B) = c¢p(A) + ep(B) + 1, where * € {A,V,—}.
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(Formula substitution) We define the notion of substitution of an atom ¢ by
a subformula B within a formula A. This operation is denoted by A[q/B].

o/ ={ 07

(=A)lg/B] = —Alg/B]

(A xC)[q/B] = Alq/B] * C[q/B] where x € {A,V,—}.

Implicational formulas

In much of the chapter we will be concerned with implicational formulas.
These formulas are generated from a set of atoms by the only connective —.
We adopt some specific notations for them. We sometimes distinguish the
head and the body of an implicational formula.? The head of a formula A is
its rightmost nested atom, whereas the body is the list of the antecedents of
its head. Given a formula A, we define Head(A) and Body(A) as follows:

Head(q) = q, if ¢ is an atom,
Head(A — B) = Head(B).

Body(q) = (), if ¢ is an atom,
Body(A — B) = (A) x Body(B),

where (A)*Body(B) denotes the list beginning with A followed by Body(B).

Dealing with implicational formulas, we assume that implication asso-
ciates on the right, i.e. we write

Al 5 Ay — ... Ay 1 — Ay,

instead of
Al =5 (A = ... = (A1 = Ay ..

It turns out that every implicational formula A can be written as
Al 5 Ay — ... > A, —>q,

where we obviously have.

Head(A) =q and Body(A) = (A1,...,A,).

2This terminology is reminiscent of logic programming [Lloyd, 1984].
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2 PROPOSITIONAL HORN DEDUCTION

To explain what we mean by goal-directed deduction style, we begin by
recalling standard propositional Horn deductions. This type of deduction
is usually interpreted in terms of classical resolution, but it is not the only
possible interpretation.® The data are represented by a set of propositional
Horn clauses, which we write as

ar N...Na, = b.

(or as ay — ... = a, — b, according to the previous convention). The
a; are just propositional variables and n > 0. In case n = 0, the formula
reduces to b. This formula is equivalent to:

—a1 V...V -a,Vb.

Let A be a set of such formulas, we can give a calculus to derive formulas,
called ‘goals’ of the form by A ... A b,,. The rules are:

A 7’ bsucceeds if b € A;
7 AABisreduced to A F* Aand A F° B;

? ¢ is reduced to
? a1 A...Aay, if there is a clause in A of the form

gl Pl g
T T T

ai N\...Na, —q.

The main difference from the traditional logic programming convention is
that in the latter conjunction is eliminated and a goal is kept as a sequence
of atoms by, . .., by,. The computation does not split because of conjunction,
all the subgoals b; are kept in parallel, and when some b; succeeds (that is
b; € A) it is deleted from the sequence. To obtain a real algorithm we
should specify in which order we scan the database when we search for a
clause whose head matches the goal. Let us see an example.

EXAMPLE 1. Let A contain the following clauses

(1) anb—g,
(2) t—y,
(3) pAg—t,
(4) h—gq,
(5) ¢c—d,
(6) cAf—a,
(7) dha — b,
(8) a—p,
(9) fAt—h,
(11) f.

3For a survey on foundations of logic programming, we refer to [Lloyd, 1984] and to

[Gallier, 1987].
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A derivation of g from A can be displayed in the form of a tree and it
is shown in Figure 1. The number in front of every non-leaf node indicates
the clause of A which is used to reduce the atomic goal in that node.

A g
/ \
6) A F a () A F b
VAN N
A ¢ AR f (5) A F* d 6) A F’ a

| RN
AF e AF e AFf

Figure 1. Derivation of Example 1.

We can make a few observations. First, we do not need to consider
the whole database, it might even be infinite, and the derivation would be
exactly the same; irrelevant clauses, that is those whose ‘head’ do not match
with the current goal are ignored. The derivation is driven by the goal in
the sense that each step in the proof simply replaces the current goal with
the next one.

Notice also that in this specific case there is no other way to prove the
goal, and the sequence of steps is entirely determined.

Two weak points of the method can also be noticed. Suppose that when
asking for g we use the second formula, then we continue asking for ¢, then
for h, and then we are lead to ask for ¢ again. We are in a loop. An even
simpler situation is the following

p—p ' op

We can keep on asking for p without realizing that we are in a loop. To deal
with this problem we should add a mechanism which ensures termination.

Another problem which has a bearing on the efficiency of the procedure
is that a derivation may contain redundant subtrees. This occurs when
the same goal is asked several times. In the previous example it happens
with the subgoal a. In this case, the global derivation contains multiple
subderivations of the same goal. It would be better to be able to remember
whether a goal has already been asked (and succeeded) in order to avoid
the duplication of its derivation. Whereas the problem of termination is
crucial in the evaluation of the method (if we are interested in getting an
answer eventually), the problem of redundancy will not be considered in this
chapter. However, avoiding the type of redundancy we have described has a
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dramatic effect on the efficiency of the procedure, for redundant derivations
may grow exponentially with the size of the data.

Although the goal-directed procedure does not necessarily produce the
shortest proofs, and does not always terminate, still it has the advantage
that proofs, when they exist, are easily found. In the next sections we
will see how to extend these type of proof systems to several families of
non-classical logics.

3 INTUITIONISTIC AND CLASSICAL LOGICS

3.1 Intuitionistic logic

Intuitionistic logic is the most known alternative to classical logic. For
background motivation and information we refer to [Troelstra, 1969; Gab-
bay, 1981]. The reason why we initiate our tour from intuitionistic logic is
simplicity. A proof procedure for the propositional implicational fragment
of intuitionistic logic is just a minor extension of the Horn case. Morever, the
relation with the semantics, the role of cut, the problems, and the possible
refinments are better understood for intuitionistic logic.

We recall a Hilbert style axiomatisation of the intuitionistic propositional
calculus and the standard Kripke semantics for it. The axiomatization is

obtained by considering the following set of axioms and rules we denote by
|

1. A-B—->C)—»(A—>B)—-A-=C
2. A-B—- A
3. Ao B—=(AAB)
4. ANB— A
5. ANB— B
6. (A-C)=»(B—-C)—>(AVvB—C()
7. A—- AVB
8. A—-BVA
9. 1L - A
In addition, it contains the Modus Ponens rule:
FA +A-— B.
FB

Negation is considered as a derived operator, by —A =%/ A — 1.
Given a set of formulas A, we can define A is derivable from A, A+ A
by the axiom systems above in the customary way.

4This axiom system is separated, that is to say, any theorem containing — and a set
of connectives S C {A,V,, L} can be proved by using the implicational axioms together
with the axiom groups containing just the connectives in S.
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If add to I any of the axioms below we get classical logic C:
Alternative axioms for classical logic

1. (Peirce’s axiom) (A —- B) = A) — A

(
(double negation) =—A — A,
(

2.
3. (excluded middle) =A Vv A,
4. (V, —-distribution) [(A — (BV C)] = [(A — B) v C].

In particular, the addition of Peirce’s axiom to the implicational axioms of
intuitionistic logic give us an axiomatisation of classical implication.

We introduce a standard model-theoretic semantics of intuitionistic logic,
called Kripke semantics.

DEFINITION 2. Given a propositional language £, a Kripke model for £
is a structure of the form M = (W, <, V'), where W is a non-empty set, <
is a reflexive and transitive relation on W, V' is a function of type: W —»
Pow(Varg), that is V maps each element of W to a set of propositional
variables of £. We assume the following conditions:

(1) w < w' implies V(w) C V(w');
(2) L gV(w), forallweW.

Given M = (W, <, V), w € W, for any formula A of £, we define ‘A is true
at w in M’ denoted by M,w = A by the following clauses:

e M,w=qiff ¢ € V(w);

M,wEAABIff MwE A and M,w E B;

M,wl=AVBiff MwE Aor M,w E B;

M,w = A— Biff for all w' > w, if M,w' |= A then M,w' | B;

M,w | —-Aiff for all w' > w M,w' £ A.

We say that A is valid in M if M,w |= A, for all w € W and we denote
this by M = A. We say that A is valid if it is valid in every Kripke model M.
We also define a notion of entailment between sets of formulas and formulas.
Let ' = {Ay,..., Ay} be a set of formulas and B be a formula, we say that
T entails B denoted by I' |= B® iff for every model M = (W, <, V), for every
weWw

if M,w = A; for all A; €T, then M,w |= B.

5To be precise, we should write =1 (and 1) to denote validity and entailment (respec-
tively, provability and logical consequence) in intuitionistic logic I. To avoid burdening
the notation, we usually omit the subscript unless there is a risk of confusion.
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THEOREM 3. For any set of formulas T and formula B, T+ B iff T = B.
In particular -1 B iff =1 B.

Classical interpretations can be thought as degenerated Kripke models
M = (W,<,V), where W = {w}.

3.2 Rules for intuitionistic implication

We start by presenting a goal-directed system for the implicational fragment
of intuitionistic logic. We will then refine it and we will expand it with the
other connectives later on. We give rules in this section to prove statements
of the form A + A, where A is a set of implicational formulas and A is an
implicational formula. We use the usual conventions and we write I', A for
FTU{A} and T UA for T’ UA. Our rules hence manipulate queries @) of the
form:

A A

We call A the database and A the goal of the query ). We use the symbol
F? to indicate that we do not know whether the query succeeds or not. On
the other hand the success of () means that A - A according to intuitionistic
logic.

DEFINITION 4.

e (success) A F’ g succeeds if ¢ € A. We say that ¢ is used in this
query.

e (implication) from A F° A — B step to
AAF B

e (reduction) from A F’ ¢
ifCeA,withC=Dy Dy — ... D, —>q
(that is Head(C) = q and Body(C) = (D1, ...Dy,)) then step to

A F' Dy fori=1,...,n.

We say that C' is used in this step.

A derivation D of a query @ is a tree whose nodes are queries. The root
of D is @, and the successors of every non-leaf query are determined by
exactly one applicable rule (implication or reduction) as described above.

We say that D is successful if the success rule may be applied to every
leaf of D. We finally say that a query ) succeeds if there is a successful
derivation of Q).

By definition, a derivation D might be an infinite tree. However if D
is successful then it must be finite. This is easily seen from the fact that,
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in case of success, the height of D is finite and every non-terminal node
of D has a finite number of successors, because of the form of the rules.
Moreover, the databases involved in a deduction need not be finite. In a
successful derivation only a finite number of formulas from the database will
be used in the above sense.

Notice that the success of a query is defined in a non-deterministic way:
a query succeeds if there is a successful derivation. To transform the proof
rules into a deterministic algorithm one should give a method to search a
successful derivation tree. In this respect we agree that when we come to
an atomic goal we first try to apply the success rule and if it fails we try the
reduction rule. Then the only choice we have is to indicate which formula,
among those of the database whose head matches the current atomic goal,
we use to perform a reduction step, if there are more than one. Thinking of
the database as a list of formulas, we can choose the first one and remember
the point up to which we have scanned the database as a backtracking point.
This is exactly as in conventional logic programming [Lloyd, 1984].

EXAMPLE 5. We check
b—d,a—pp—b(a—b —>c—a,(p—>d —ckb

Let ' ={b—>d,a = p,p— b,(a = b) = c— a,(p— d) = c}, asuccessful
derivation of T' F’ b is shown in Figure 2. A quick explanation: (2) is
obtained by reduction wrt. p — b, (3) by reduction wrt. a — p, (4) and (8)
by reduction wrt. (a — b) — ¢ — a, (6) by reduction wrt. p — b, (7) by
reduction wrt. a — p, (9) by reduction wrt. (p — d) — ¢, (11) by reduction
wrt. b — d, (12) by reduction wrt. p — b.

We state some simple, but important, properties of the deduction proce-
dure defined above. The proof of them is left to the reader as an exercise.

PROPOSITION 6.

1. (Identity) A F° G succeeds if G € A;
2. (Monotony) A F° G succeeds implies A,T' ' G succeeds;

3. (Deduction Theorem) A F° A — B succeeds iff A, A F° B succeeds.

The soundness of the proof procedure with respect to the semantics can
be proved easily by induction on the height of the computation.

THEOREM 7. If A F° A succeeds then A = A.

The completeness can be proved in a number of ways. Here we give
a semantic proof with respect to the Kripke semantics. The technique is
standard: we define a canonical model and we show that provability by the
proof procedure coincides with truth in the canonical model.
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)T F b
|
()T H p
|
3) T a
N
4T H a—b &) T ' ¢
| |

(5)T,a F* b 9T F p—=d

(6) Tya Fop (10) T,p F? d
() T,a ¥ a (1) T,p F* b
(12)T,p F' p

Figure 2. Derivation for Example 5.

The canonical model M is defined as follows: M = (W, C,0,V), where
W is the set of finite databases A over £ and the evaluation function V is
defined by stipulating

V(A) = {p atom : A ' p succeeds}.

By the (Monotony property) it is easy to see that M satisfies the increas-
ingness condition (2) of Definition 2. The important property is expressed
by the following proposition.

PROPOSITION 8 (Canonical Model Property). For any A € W and for-
mula A € L, we have:

M,A = Aiff A F' A succeeds.

Let us attempt a proof of the above proposition, we prove the two direc-
tions by a simultaneous induction on the complexity of the formula A. If A
is an atom then the claim holds by definition.

Let A= B — C. Consider first the direction (=), suppose M,A = B — C,
consider A’ = A, B. Then A C A’. By (Identity), we have A’ F* B suc-
ceeds, by induction hypothesis we get M, A’ = B. Thus we get M,A' =C
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and by induction hypothesis A’ F* C succeeds. Thus A, B F* C succeeds.
By (Deduction Theorem), we finally get A +’ B — C succeeds.

Conversely (<), suppose that A F° B — C succeeds, by (Deduction
theorem) we get that A, B * C succeeds. Let I' be such that A C T and
M,T | B, we have to show that M,T" = C. By induction hypothesis we
have I' F* B succeeds. We know that

(1) T * B and (2) A,B F’° C succeed.

We could easily conclude if from (1) and (2), we could infer that (3) A, T +7
C succeeds: namely, since A C T, (3) is equivalent to I' F* C succeeds.
Thus by induction hypothesis we would get M, T = C.

The question is: is it legitimate to conclude (3) from (1) and (2)? The
answer is ‘yes’ and it will be shown hereafter. This property is well-known
and is called Cut. Thus, given the properties of deduction theorem, identity,
the canonical model property can be derived from cut. We may observe that
the opposite also holds, i.e. that cut can be derived by the canonical model
property. To see this suppose that I',B F° C and A F° B succeeds.
We get I' F° B — C succeeds. Thus by the canonical model property we
get M,' E B — C and M,A | B. Since, trivially, A C T'U A, by the
condition (1) of Definition 2, we have M,I’ UA |= B; so that we obtain
M,TUA |=C, being I' CT'U A. By the canonical model property we can
conclude that T, A F* C succeeds. The equivalence between the canonical
model property and cut has been observed in [Miller, 1992].

The completeness is an immediate consequence of the canonical model
property.

THEOREM 9 (Completeness for I). If A |= A, then A F* A succeeds.

Proof. If A = A holds, the entailment holds in particular in the canonical

model M. thus for every I' € W if M, = B for every B € A, we have

M,T [ A.

By (identity) we have A F’ B succeeds for every B € A. Thus by the

canonical model property M,A = B for every B € A. We hence obtain

M,A = A and by the canonical model property again A F° A succeeds.
|

We have still to show that cut is admissible.

THEOREM 10 (Admissibility of Cut). If A,A F° B and T F° A
succeed, then also A,T F' B succeeds.

Proof. Assume (1) A,A F* Band (2) T F* A succeed.

The theorem is proved by induction on lexicographically-ordered pairs
(¢, h), where ¢ = ¢p(A), and h is the height of a successful derivation of (1),
that is of A, A F° B. Suppose first ¢ = 0, then A is an atom p, and we
proceed by induction on h. If h = 0, B is an atom ¢ and either ¢ € A or
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qg = p = A. In the first case, the claim trivially follows by Proposition 6. In
the second case it follows by hypothesis (2) and Proposition 6.

Let now h > 0, then (1) succeeds either by the implication rule or by
the reduction rule. In the first case, we have that B = C' — D and from
A,A F' C — D westeptoA,A,C F° D, which succeeds by a derivation
h' shorter than h. Since (0,h') < (0, h), by the induction hypothesis we get
that A,T,C F° D, succeeds, whence A,T' F° C — D succeeds too. Let
(1) succeed by reduction with respect to a formula C' € A. Since A is an
atom, C' # A. Then B = ¢ is an atom. Welet C = Dy — ... = Dy, — q.
We have fori =1,...,k

A, A F? D; succeeds by a derivation of height h; < h.
Since (0, h;) < (0,h), we may apply the induction hypothesis and obtain
(a;) A, F? D; succeeds, fori =1,..., k.

Since C € AUT, from A,T" * ¢ we can step to (a;) and succeed. This
concludes the case of (0, h).

If ¢ is arbitrary and h = 0 the claim is trivial. Let ¢ > 0 and A > 0. The
only difference with the previous cases is when (1) succeeds by reduction
with respect to A. Let us see that case. Let

A=Dy—...—» Dy —>qgand B =q.

Then we have for i = 1,...,k A,A F’ D; succeeds by a derivation of
height h; < h. Since (¢, h;) < (¢, h), we may apply the induction hypothesis
and obtain

(b;) A,T F? D; succeeds fori = 1,...,k.
By hypothesis (2) we can conclude that

(3) I',Dy,...,Dp F° g succeeds by a derivation of arbitrary
height h'.

Notice that each D; has a smaller complexity than A, that is ¢p(D;) = ¢; <
c. Thus (c1,h') < (¢, h), and we can cut on (3) and (b1), so that we obtain

(4) A,T,Ds,...,D; F° g succeeds with some height h'.

Again (e, h") < (¢, h), so that we can cut (b2) and (4). By repeating the
same argument up to k we finally obtain

A, T ¢ succeeds.

This concludes the proof. ]
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We have given a semantic proof of the completeness of the proof proce-

dure for the implicational fragment of intuitionistic logic. We have given
all details (although they are rather easy) since this easy case works as a
paradigm for other logics and richer languages. To summarize, the recipe
for the semantic proof is the following: (1) give the right formulation of cut
and show that it is admissible, (2) define a canonical model, (3) prove the
canonical model property as in Proposition8 and derive the completeness as
in Theorem 9.
There are however other ways to prove the completeness depending on the
chosen presentation of the logic. If we have a Hilbert-style axiomatization,
we can show that every atomic instance of any axiom succeeds, and then
show that the set of succeeding formulas is closed under formula substitu-
tion and modus ponens (supposing that these properties hold, which is the
case for all the logics considered in this chapter). To prove the closure under
MP we need again cut. Another possibility, if we have a presentation of the
logic in terms of consequence relation rules, like a sequent calculus, we can
show that every rules is admissible.

3.8  Loop-free and bounded resource deduction

In the previous section, we have introduced a goal-directed proof method
for intuitionistic implicational logic. This method does not give a decision
procedure, as it can easily loop: consider the trivial query

qg—qt q

this query is reduced to itself by the reduction rule, so that the computa-
tion does not stop. There are two different strategies to deal with looping
computation and termination.

One possibility is to detect the loop and stop the computation as soon as
it is detected. The other possibility is to prevent any loop by constraining
the use of the formulas. To perform loop-checking we need to consider
the sequence of goals and the relative database from which they have been
asked. A moment of reflection shows that it is enough to record only the
atomic goals, since the non-atomic ones will always reduce to the same
atomic goals by the implication rule. The other relevant information is
the database from which they are asked. The same atomic goal may be
asked from different databases and such a repetition does not mean that
the computation necessarily loops:

EXAMPLE 11.
F? ((c—>a)—c)—>(c—a)—a
(c—=a)—c F? (c—>a)—a
c—a) —+c,c—a H a
( ) = ¢,



212 DOV GABBAY AND NICOLA OLIVETTI

(c—a)—>cc—a F? ¢
(c—a)—>cc—a F? c—a
(c—>a) = c,c—a,c H a
(c—>a)—>c,c—a,c H ¢
success

As you can see the goal a repeats twice along the same (and unique)
branch, but the second time is asked from an increased database (¢ has
been added). This does not represent a case of loop; we have a loop when
we reask the same (atomic) goal from the same database. To detect the loop
we need also to record the involved databases. For each computation branch
we could record every pair (atomic goal-database) in a history list, so that,
before making a reduction step, we check whether the same pair is already
in the history list. This loop checking ensures termination. The reason is
simple, but important. In the case of intuitionistic logic, the database can
be regarded as a set of formulas (as we have done) so that adding one or
more times the same formula does not matter, i.e. the database does not
change. This gives decidability: there cannot be infinitely many different
databases occurring in one computation branch (supposing that the initial
one is finite) since at most a database can contain all subformulas of the
initial query. Thus any loop will be detected.

However, the fact that the database is a set of formulas can be used to
devise a more efficient loop checking mechanism in which we do not have to
record the database itself. The idea is simple: we have a loop whenever we
repeats the same goal from the same data. Thus we need to record only the
atomic goals which are asked from the same database. Whenever we change
the database we clear the history. The database changes (grows) when we
add a formula not occurring in it by means of the —-rule. This improved
loop-checking procedure has been proposed in [Heudering et al., 1996] to
the purpose of obtaining a terminating sequent calculus for intuitionistic
logic. Let H be the list of past atomic goals. The computation rules are
modified as follows:

Rule 1 for —
A F' A — B, H succeeds
if A¢ A and A, A F° B, succeeds.

Rule 2 for —
A +F A — B, H succeeds
if Ae Aand A F* B, H succeeds.

Reduction Rule

A F’ g, H succeeds

if ¢ ¢ H and for some C; — ... = C,, = ¢ in A we have that for all i
A ' Cy, H % (q) succeeds.
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EXAMPLE 12.
o (p—=q) =) = (g—=p)—p 0
p—=q—q F (¢—=p —p 0
(p—>q)—>q,q—>p Fop, 0
p—=q)—aqgq—p ' q (p)
p=q)=>aq9—p F p=4q (p9)
p—=q) >qq—=pp F ¢ 0
p—=q)—aqq—p ' p=q (9
p=q)—=aqq—>p F q (9
fail

In this way one is able to detect a loop (the same atomic goal repeats from
the same database), without having to record each pair (database goal).

As we have remarked at the beginning of this section loop-checking is not
the only way to ensure termination. A loop is created because a formula
used in one reduction step remains available for further reduction steps. It
can be used as many times as we wish.

Let us adopt the point of view that each database formula can be used
at most once. Thus our rule for reduction becomes

from A 7 ¢,
if there is B € A, with B=Cy —» ... = C,, = q, step to
A—-{B} F" Cifori=1,...,n

The item B is thus thrown out as soon as it is used.

Let us call such a computation locally linear computation, as each formula
can be used at most once in each path of the computation. That is why
we are using the word ‘locally’. One can also have the notion of (globally)
linear computation, in which each formula can be used exactly once in the
entire computation tree.

Since we take care of usage of formulas, it is natural to regard multiple
copies of the same formula as distinct. This means that databases can now
be considered as multisets of formulas. In order to keep the notation simple,
we use the same notation as in the previous section. From now on, I, A, etc.
will range on multisets of formulas, and we will also write I, A to denote the
union multiset of I' and A, that is ' U A. To denote a multiset [Ay,... A,],
if there is no risk of confusion we will simply write Ay, ... A,.

We present three notions of proof: (1) the goal-directed computation
for intuitionistic logic, (2) the locally linear goal-directed computation (LL-
computation), (3) linear goal-directed computation.

DEFINITION 13. We give the computation rules for a query: I' +’ G,
where I' is a multiset of formulas and G is a formula.
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e (success) A F’ ¢ immediately succeeds if the following holds:

1. for intuitionistic and LL- computation, ¢ € A,

2. for linear computation A = q.
e (implication) From A -’ A — B, we step to
A,A F? B.

e (reduction) If there is a formula B € A with
B=Ci—...»C,—q

then from A F° ¢, we step, fori =1,...,n to
A; FPOCy,
where the following holds
1. in the case of intuitionistic computation, A; = A;

2. in the case of locally linear computation, A; = A — [B];

3. in the case of linear computation L;A; = A — [B].

It can be shown that the monotony property holds for the LL-computation
whereas it does not for the linear computation. Let Qy, Qrr and Qr de-
note respectively the set of succeeding queries in the linear, in the locally
linear, and in the intuitionistic computation, then we have

Qr CQrr CQr

The examples below shows that these inclusions are proper.
EXAMPLE 14.

1. We reconsider Example 11: ¢ = a,(c = a) = ¢ ' a
The formula ¢ — a has to be used twice in order for a to succeed.
Thus the query fails in the locally linear computation, but it succeeds
in the intuitionistic one. This example can be generalized as follows,
let:

2. Let Ag =c¢
Apy1 = (A, = a) = c.
Consider the following query:
Ap,c—a F a

The formula ¢ — a has to be used n + 1 times locally.



GOAL-ORIENTED DEDUCTIONS 215

a—sb—=c,a—bat’ ¢

PN

a—balt’ a a—bal’b

”
a bt a

Figure 3. Derivation for Example 15.

EXAMPLE 15. Let us do the full LL-computation for
a—>b—ca—bat’ ¢

The formula a has to be used twice globally, but not locally on each
branch of the computation. Thus the locally linear computation succeeds.
On the other hand, in the linear computation case, this query fail, as a must
be used globally twice.

The example above shows that the locally linear proof system of Defini-
tion 13 is not the same as the linear proof system. First, we do not require
that all assumptions must be used, the condition on the success rule. A
more serious difference is that we do our ‘counting’ of how many times a
formula is used separately on each path of the computation and not globally
for the entire computation. The counting in the linear case is global, as can
be seen by the condition in the reduction rule.

Another example, the query A,A - A — B +° B will succeed in our
locally linear computation because A is used once on each of two parallel
paths. It will not be accepted in the linear computation because A is used
globally twice. This is ensured by the condition in the reduction rule.

Linear computation as defined in Definition 13 corresponds to linear logic
implication, [Girard, 1987], in the sense that the procedure of linear compu-
tation is sound and complete for the implicational fragment of linear logic.
This will be shown in Section 5 within the broader context of substructural
logics.

The above examples show that we do not have completeness with respect
to intuitionistic provability for locally linear computations. Still, the locally
linear computation is attractive, because if the database is finite it is always
terminating. We shall see in the next section how we can compensate for the
use of the locally linear rule (i.e. for throwing out the data) by some other
means. However even if the locally linear computation is not complete for
the full intuitionistic implicational fragment, one may still wonder whether
it works in some particular and significant case. A significant (and well-
known) case is shown in the next proposition.
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We recall that a formula A is Horn if it is an atom, or has the form
p1 — ... = pp — q, where all p; and ¢ are atoms.

PROPOSITION 16. The locally-linear procedure is complete for Horn for-
mulas.

3.4 Bounded restart rule for intuitionistic logic

We have seen that the locally linear restriction does not retain complete-
ness with respect to intuitionistic provability, as there are examples where
formulas need to be used locally several times. We show that we can retain
completeness for intuitionistic logic by adding another computation rule.
The new rule is called the bounded restart rule.

Let us examine more closely why we needed in Example 11 the formula
¢ — a several times. The reason was that from other formulas, we got the
goal F’ a and we wanted to use ¢ — a to continue to the goal F’ ¢. The
formula ¢ — a was no longer available because it had already been used.
In other words, F’ a had already been asked and ¢ — a was used. This
means that the next goal after F° a in the history was F’ c.

If H is the history of the atomic goals asked, then somewhere in H there
is F’ @ and immediately afterwards F’ c.

We can therefore compensate for the reuse of ¢ — a by allowing ourselves
to go back in the history to where +’ a was, and allow ourselves to ask
all atomic goals that come afterwards. We call this type of move bounded
restart.

The previous example suggests the following new computation with
bounded restart rule.

DEFINITION 17. [Locally linear computation with bounded restart] In the
computation with bounded restart, the queries have the form A +* G, H,
where A is a multiset of formulas and the history H is a sequence of atomic
goals. The rules are as follows:

e (success) A F’ ¢, H succeeds if g € A;
e (implication) from A F° A — B, H step to A, A +* B, H;

e (reduction) from A +? ¢, H if C =Dy = Dy — ... = D, — q € A,
then we step to

A—[C] F' Di,Hx(q) fori=1,...,n;
e (bounded restart) from A +’ ¢, H step to
A |_? qlvH* (q))

provided for some H;, Hy, Hs, it holds H = Hy % (q) * H2 * (q1) * H3,
where each H; may be empty.
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EXAMPLE 18.
' ((c—=a)—=c)— (c—a)—a,
(c—=a)—=c F (c—=a)—a,l
(c—=a)—=cc—a F a
(c=a)—=c F ¢ (a
F' c—a, (a,c)
c F' a, (a,0)
c F ¢ (a0

success

The last step is by bounded restart, it is legal since ¢ follows a in the history.

The locally linear computation with bounded restart is sound and com-
plete for intuitionistic logic. However, before stating the theorem, we want
to remark about the meaning of the atoms in the history. To make the
things easy, let the query be A F’ G, (p) and G be atomic. Suppose
in addition that the query succeeds by a reduction step. Then G will be
added to the history list just after p. Let the next goal be p, so that we
can apply the bounded restart rule to the query A F’ p,(p,G). The
bounded restart step could be performed by reduction if we had the for-
mula G — p in the database. Thus the original query is equivalent to the
query A,G = p F° G. The general correspondence is expressed in the
next theorem.

THEOREM 19 (Soundness and completeness of locally linear computation
with bounded restart). For the computation of Definition 17 we have:

A F G, (p1,...,pn) succeeds iff A, G — pp,Pp = Pnet,--- D2 = p1 -G
in intuitionistic logic.

3.5 Restart rule for classical logic

It is interesting to note that by adopting a variation of the bounded restart
rule we can obtain a proof procedure for implicational classical logic. The
variation is obtained by cancelling any restrictions and simply allowing us
to ask any earlier atomic goal. We need not keep the history as a sequence,
but only as a set of atomic goals. The rule becomes

DEFINITION 20 (Restart rule in the LL-computation). If ¢ € H, from
A ' g, H stepto A F* a,HU {q}.

The formal definition of locally linear computation with restart is Definition
17 with the additional restart rule above in place of the bounded restart
rule.
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EXAMPLE 21.

F' (a—=b —at’a 0
F F a— b, {a}

a F at' b {a}
F* a,{a,b} by restart

Success.

The above query fails in the intuitionistic computation. Thus, this example
shows that we are getting a logic which is stronger than intuitionistic logic.
Namely, we are getting classical logic. This claim has to be properly proved,
of course.

If we adopt the basic computation procedure for intuitionistic implication
of Definition 4 rather than the LL-computation, we can restrict the restart
rule to always choose the initial goal as the goal with which we restart.
Thus, we do not need to keep the history, but only the initial goal and the
rule becomes more deterministic. On the other hand, the price we pay is
that we cannot throw out the formulas of database when they are used.

DEFINITION 22 (Simple computation with restart). The queries have the
form

A I_? G7 (G0)7

where G is a goal. The computation rules are the same as in the basic
computation procedure for intuitionistic implication of Definition 4 plus
the following rule

(Restart) from A F’° ¢, (Gp) step to A F° G, (Go).

It is clear that the initial query of any derivation will have the form I' F*
A, (A).

Given the underlying computation procedure of Definition 4, restarting
from an arbitrary atomic goal in the history is equivalent to restart from
the initial goal. This is expressed formally in the next proposition, where
welet F%; and F%, be respectively the deduction procedure of Definition
22 and the deduction procedure of Definition 4 extended by the restart rule
of Definition 20.

PROPOSITION 23. For any database A and formula G, we have
(1) A R, G,0 succeeds iff (2) A Fhp G, (G) succeeds.

We show that the proof-procedure obtained by adding the rule of restart
from the initial goal to the basic procedure for intuitionistic logic defined
in Definition 4 is sound and complete with respect to classical provability.
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The idea is to replace the effect of restart from the initial goal by adding
a suitable set of formulas which depends on the initial goal. This set of
formulas can be seen as representing the negation (or complement) of the
goal.

DEFINITION 24. Let A be any formula. The complement of A, denoted
by Cop(A) is the following set of formulas:

Cop(A) = {A — p| p any atom of the language}

The set Cop(A) represents the negation of A in our implicational language
which does not contain neither =, nor L.

The crucial, although easy, fact is that we can replace any application of
the restart rule by a reduction step using a formula in Cop(A4).

LEMMA 25. (1)T F° A succeeds by using restart rule iff (2) TUCop(A) F’
A succeeds without using restart, that is by the intuitionistic procedure of
Definition 4.

Now we only have to show that A F A in classical logic iff AUCop(4)
A succeeds by the procedure defined in Definition 4. To this purpose we

need the following lemma, which shows that C'op(A) works as the negation
of A.

LEMMA 26. For any database A and formulas G such that A D Cop(G),
and for any goal A, we have

if AU{A} F' G and AUCop(A) F° G succeed then also A ' G
succeeds.

THEOREM 27. For any A and A, (a) is equivalent to (b) below:
(a ) A+ A in classical logic,

(b) AUCop(A) F’ A succeeds by the intuitionistic procedure defined in
Definition 4.

Proof. (<) Show (b) implies (a).
Assume A U Cop(A) +’ A succeeds Then by the soundness of the com-
putation procedure we get that A U Cop(A) - A in intuitionistic logic, and
hence in classical logic. Since the proof is finite there is a finite set of the
form {A — p;,..., A = pp} such that
(al) AA > pr,...A— p, B A (in intuitionistic logic).
We must also have that A - A, in classical logic, because if there were an
assignment h making A true and A false, it would also make A — p; all
true, contradicting (al).

The above concludes the proof that (b) implies (a).
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(=) Show that (a) implies (b).
We prove that if AU Cop(A) F* A does not succeed then A I/ A in
classical logic. Let Ag = AU Cop(A). We define a sequence of databases
A,,n=1,2... as follows:
Let Bi, Bs, Bs, ... be an enumeration of all formulas of the language.
Assume A,,_; has been defined and assume that A,,_; F’° A does not
succeed. We define A,,:
If A, 1U{B,} F* A does not succeed, let A, = A, ; U{B,}. Otherwise
from Lemma 26 we must have:
A, 1U Cop (B,) F* A does not succeed.
and so let A, = A,y UCop(By).
Finally, let A" =J,, Ay
Clearly A’ 7 A does not succeed.

Define an assignment of truth values h on the atoms of the language by
h(p) = true iff A’ 7 p succeeds . We now prove that

for any B, h(B) = true iff A’ ? B succeeds,

by induction on B. For atoms this is the definition.
Let B =C — D. We prove the two directions by simultaneous induction.
Suppose A’ F? C — D succeeds. If h(C) = false, then h(C — D) = true
and we are done. Thus, assume h(C) = true. By the induction hypothesis,
it follows that A’ F’ € succeeds. Since, by hypothesis we have that
A’,C F’ D succeeds, by cut we obtain that A’ 7 D succeeds, and hence
by the induction hypothesis h(D) = true.

Conversely, if A’ F* C — D does not succeed, we show that h(C —
D) = false. Let Head(D) = q, we get

(1) A" F* D does not succeed
(2) A", C F’ ¢ does not succeed.

Hence by the induction hypothesis on (1) we have h(D) = false. We show
that A’ +’ C must succeed. Suppose on the contrary that A’ F° C
does not succeed. Hence C ¢ A’. Let B, = C in the given enumeration.
Since B,, ¢ A,, by construction, it must be Cop(C) C A’. In particular
C — q€ A, and hence A',C F’ ¢ succeeds, against (2).

We have shown that A’ F’ C succeeds, whence h(C) = true, by the
induction hypothesis. Since h(C') = false, we obtain h(C' — D) = false.

We can now complete the proof. Since A’ F* A does not succeed, we get
h(A) = false. On the other hand, for any B € A U Cop(A), h(B) = true
(since AUCop(A) C A') and h(A) = false. This means that AUCop(4) I/ A
in classical logic. This complete the proof. |
From the above theorem and Lemma 25 we immediately obtain the com-
pleteness of the proof procedure with restart from the initial goal.
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THEOREM 28. A F A in classical logic iff A F° A, (A) succeeds using the
restart rule from the initial goal, added to the procedure of Definition 4.

Also the locally linear computation of Definition 17 with the restart rule
from any previous goal is sound and complete. A proof is contained in
[Gabbay and Olivetti, 2000].

THEOREM 29. [Soundness and completeness of locally linear computation
with restart]
A F’ G,H succeeds iff A+ GV \/ H in classical logic.

Observe that we cannot restrict the application of restart to the first
atomic goal occurring in the computation, consider:

p—=q) =pp—=r 10,
it succeeds by the following computation:

p=aq)=pp—=r 1,0,
p—q)—»p F pA{r}
- p—q, {r,p},
p g {rp}
p F' p, {r,p}, restart from p.

However restarting from r, the first atomic goal would not help.

3.6 Termination and complexity

The proof systems based on locally linear computation are a good starting
point for designing efficient automated-deduction procedures; on the one
hand proof search is guided by the goal, on the other hand derivations have
a smaller size since a formula that has to be reused does not create further
branching. We now want to remark upon termination of the procedures.
The basic LL- procedure obviously terminates: since formulas are thrown
out as soon as they are used in a reduction step, every branch of a given
derivation eventually ends with a query which either immediately succeeds,
or no further reduction step is possible from it. This was the motivation
of the LL-procedure as an alternative to a loop-checking mechanism. Does
the (bounded) restart rule preserve this property? As we have stated, it
does not, in the sense that a silly kind of loop may be created by restart.
Let us consider the following example, here we give the computation for
intuitionistic logic, but the example works for the classical case as well:
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a—>bb—a F  af
a—=b F  b(a)
F* a,(a,b)
b, (a,b,a)
F*  a,(a,b,a,b)

This is a loop created by restart. It is clear that continuing the derivation
by restart does not help, as none of the new atomic goals match the head
of any formula in the database.

In the case of classical logic, we can modify the restart rules as follows.

From A F° ¢,H stepto A F* ¢, HU{q},
provided there exists a formula C' € A, with ¢; = Head(C),

and ¢ € H.

It is obvious that this restriction preserves completeness.

In the case of intuitionistic logic, the situation is slightly more complex.
The atom with which we finally restart must match the head of some formula
of the database in order to make any progress. But this atom might only
be reachable through a sequence of restart steps which goes further and
further back in the history. To handle this situation, we require that the
atom chosen for restart matches some head, but we ‘collapse’ several restart
steps into a single one. In other words, we allow restart from a previous goal
g which is accessible from the current one through a sequence of bounded
restart steps.

Given a history H = (q1,¢s, - - -, qn) we define an auxiliary binary relation
on atomic formulas ¢ <g ¢’ as follows:

1. either ¢ coincides with ¢', or
2. q precedes ¢’ in the list H,
3. or for some ¢" one has ¢ <y ¢" and ¢" <g ¢'.

(In other words, ¢ <g ¢’ iff ¢ is reachable from ¢ by the reflexive-transitive
closure of the binary precedence relation generated by the list H. The
modified bounded restart rule for intuitionistic logic becomes: from

AV og H,

step to
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A F’ ¢, H *(q), provided
1. there exists a formula C € A, with ¢' = Head(C), ¢' # q and

2. q¢ <g ¢ holds.

It is easy to see that the above rule ensures the termination of the pro-
cedure preserving its completeness.

Moreover we can reformulate the rules for success and reduction by build-
ing the bounded restart rule into them, to this purpose we simply restate:

1. (br-success) I' F’ ¢, H succeeds if there exists ¢’ such that ¢ <z ¢'
and ¢’ € T}

2. (br-reduction) From I',C; — ... = C,, = ¢’ F* ¢, H if ¢ <y ¢ steps
fori=1,...,ntoT " C;, H % (q).

The proof procedure can be further refined to match the known complexity
bound for intuitionistic logic, namely O(nlogn) space. Observe that the
history list may be kept linear in the length of the database+goal: only
the leftmost and the rightmost occurrence of any atom in H are needed for
determining <p. Thus the history lenght is bounded by 2 % k where k is the
number of atoms occurring in the initial query. The length of each derivation
branch is bounded by the length of the initial query and so is the length of
each intermediate query. In serching a proof of a given query, we first apply
the implication rule if the goal is an implication; if the goal is atomic we
try first (br-success) and if it is not applicable we try (br-reduction).

The proof search space can be then described as a tree that contains
AND branchings, corresponding to the (br-reduction steps) with multiple
subgoals, and OR branchings corresponding to backtracking points, deter-
mined by alternative formulas which can be used in the (br-reduction) steps.
The latter are branchings in the proof search space, not in the derivation
tree. We assume that subgoals are examined and alternatives are scanned
in a fixed manner (for instance from left to right).

To achieve a good space complexity bound, we do not store the whole
derivation, we rather perform the proof search in a depth first manner ex-
panding one query at a time. We only store one query at a time, the one
which is going to be expanded by the rules. Moreover we keep a copy of the
initial query. In addition we use a stack to keep track of the AND branchings
and backtracking points, if any. We will not enter into the details of how to
store the relevant information in the stack entries, it is described in [Gabbay
et al., 1999]. We only observe that: (1) since we can index formulas and
subformulas of the initial query, each stack entry will not require more than
O(logn) bits, being n is the length of the initial query. (2) we have a stack
entry for each query occurring along a derivation branch. Thus the depth
of the stack is bounded by n the length of the initial query. In the whole, an
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algorithm to search a derivation will not need more than O(nlogn) space,
where n is the length of the initial query. This matches the known optimal
upper-bound for intuitionistic logic.

THEOREM 30. The procedure with bounded restart gives an O(nlogn)-
space decision procedure for the implicational fragment of intuitionistic logic.

The proof procedure based on bounded restart is almost deterministic
except for one crucial point: the choice of the database formula to use in a
reduction step. Here a sharp difference between classical and intuitionistic
logic arises. In intuitionistic logic, the choice is critical: we could make the
wrong choice and then have to backtrack to try an alternative formula. In
the case of classical logic, backtracking is not necessary, that is, it does not
matter which formula we choose to match an atomic goal in a reduction
step.

LEMMA 31. Let
A=A —...2A,>qand B=B, - ... = B, = q.
Then (a) is equivalent to (b):
(a) A, A V' By, HU{q} succeeds fori=1,...m;
(b) A,B F* A; HU{q} succeeds fori=1,...,n.

By the previous lemma we immediately have.

PROPOSITION 32. In any computation of A F° q,H with restart, no
backtracking is necessary. The atom q can match with the head of any
A —» ... = A, = g € A and success or failure does not depend on the
choice of such a formula.

The parallel property to Lemma 31, Proposition 32 clearly does not hold
for the intuitionistic case. This difference gives an intuitive account of the
difference of complexity between the intuitionistic and the classical case.

3.7 FEztending the language

Conjunction and negation

In this and the next section we extend the language to the full propositional
language. We start by considering conjunction. The addition of conjunc-
tion to the propositional language does not change the proof system much.
Every formula A with conjunctions is equivalent in intuitionistic logic to a
conjunction of formulas A; A;, where A; contain no conjunctions. If we

SWe recall that intuitionistic provability is PSPACE-complete [Statman, 1979],
whereas classical provability is CoNP-complete, although the space requirements are the
same.
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agree to represent a conjunction of formulas as a set, the handling of con-
junction is straightforward, we can transform every database and goal into
sets of formulas without conjunction. Then we extend the proof procedure
to sets of goals S:

From A F° S step to A F° A for every A€ S.

The computation rule for conjunction can be stated directly:
A F’ A A B succeeds iff A F? A succeeds and A +’ B succeeds.

We now turn to negation. As we have seen, negation can be introduced
in classical and intuitionistic logic by adding a constant symbol L for falsity
and defining the new connective —A for negation as A — L. We will adopt
this definition. However, we have to modify the computation rules, because
we have to allow for the special nature of L, namely that L F A holds for
any A.

DEFINITION 33. [Computations for data and goal containing L for intu-
itionistic and classical logic] The basic procedure is that one defined in 4,
(plus the restart rule for classical logic), with the following modifications:

1. Modify (success) rule to read: A F’ ¢ immediately succeeds, if ¢ € A
or Le A.

2. Modify (reduction rule) to read: from A F’ ¢ step, fori =1,...,n
to

A+ B

if there is C' € A such that Head(C) € {¢,1} and Body(C) =
(Bu..... By).

In Definition 33 we have actually defined two procedures. One is the
computation without the restart rule for intuitionistic logic with L, and
the other is the computation with the restart rule for classical logic. We
have to show that the two procedures indeed correctly capture the intended
fragment of the respective systems. This is easy to see. The effect of the
axiom | F A is built into the computation via the modifications in 1. and
2. of Definition 33 and hence we know we are getting intuitionistic logic.
To show that the restart rule yields classical logic, it is sufficient to show
that the computation

A-1)—>1LF A

always succeeds with the restart rule. This can also be easily checked.

To complete the picture we show in the next proposition that the com-
putation of A F’ A with restart is the same as the computation of
A F (A — 1) - A without restart. This means that the restart rule
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(with original goal A) can be effectively implemented by adding A — L
to the database and using the formula A — | and the L-rules to replace
uses of the restart rule. The above considerations correspond to the known
translation from classical logic to intuitionistic logic, namely:

A F A in classical logic iff A - =4 — A in intuitionistic logic.
The proof is similar to that one of Lemma 25, namely Cop(G) is a way of
representing G — L without using L.
PROPOSITION 34. For any database A and goal G:

A+ G succeeds with restart iff AU{G — L} F G
succeeds without restart.

EXAMPLE 35. We check:
(@ =L1) =L F q,(q)
(q—=L)—=L1F qg—=1,(q)
(g—1)—>Ll,q F" L, (g).

We cannot use the reduction rule here. So, we fail in intuitionistic logic. In
classical logic we can use restart to obtain:

(g—1)—=L,q " q,(q)

and terminate successfully.

The locally linear computation with bounded restart (respectively restart)
is complete for the (—, L, A)-fragment of intuitionistic (classical) logic. The
termination and complexity analysis of the previous section applies also to
this larger fragment.

Ezxtension to the whole propositional intuitionistic logic

To obtain a goal-directed proof method for full intuitionistic propositional
logic we must find a way of handling disjunctive data. The handling of
disjunction is more difficult than the handling of conjunction and negation.
Counsider the formula a — (bV (¢ = d)). We cannot rewrite this formula in
intuitionistic logic to anything of the form B — ¢, where ¢ is atomic (or ).

We therefore have to change our proof procedures to accommodate the
general form of an intuitionistic formula with disjunction.

In classical logic disjunctions can be pulled to the outside of formulas
using the following equivalences:

1. (AVB—=C0)=(A— O)A (B = C)



GOAL-ORIENTED DEDUCTIONS 227

2. (C—-AVB)=(C— AV (C—B),

where = denotes logical equivalence in classical logic. 1. is valid in intu-
itionistic logic but 2. is not valid. We have seen at the beginning of the
section, the axioms governing disjunction. In view of those axioms, it is not
difficult to devise rules to handle disjunction:

Rl: from A F* AV Bstepto A F’ AortoA ' B.

R2: from A,AV B F° Cstepto A,A F’ Candto A, B +’ C.

We can try to incorporate the two rules for disjunction within a goal-
directed proof procedure for full intuitionistic logic.

DEFINITION 36. Computation rules for full intuitionistic logic with dis-
junction.

1. The propositional language contains the connectives A,V,—, L. For-
mulas are defined inductively as usual.

2. We define the operation A+ A, for any formula A = A, A;, as follows:
A+ A =AU{A;} provided A; are not conjunctions.

3. The computation rules are as follows.

(suc) A K’ gsucceeds if g€ A or LE A;

(conj) from A F* AABsteptoA F’ Aandto A ' B;
(g-dis) from A F° AV BsteptoA F* AortoA F° B;
(imp) from A F* A — Bstepto A+ A ' B;

(

red) from A F° G if Gis an atom qor G = AV B, if C € A,
with C = Ay — ... A, = D (where D is not an implication)
step to
(a) A K7 A; fori=1,...,n,and to
(b) A+D F G.

(c-dis) from A, AVB +° Cstepto A+A F* Candto A+B F* C.

The above rules give a sound and complete system for full intuitionistic
logic. However the rules are far from satisfactory, in the sense that the goal-
directness is lost. For instance, we must be allowed to perform a reduction
step not only when the goal is atomic, but also when it is a disjunction, as
in the following case

A, A5 BVC F BVC.
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Similarly, even if the goal is an atom ¢ in the reduction case (red) we cannot
require that D in the formula A; — ... A, — D is atomic and D = ¢q. If
there are disjunctions in the database, at every step we can choose to work
on the goal or to split the database by (c-dis) rule. Moreover, if there are
n disjunctions a systematic application of (c-dis) rule yields 2" branches.
All of this means that if we handle disjunction in the most obvious way we
loose the goal-directedness of deduction and the computation becomes very
inefficient.

The reason is that if positive disjunctions are allowed in a database I it
is not true that

(dp) THAV B impliesT'- Aor '+ B.

This property, called disjunction property, holds when I' does not contain
positive disjunctions, but fails when it does contain them, as the exam-
ple above shows. This means that the goal A V B cannot be decom-
posed/reduced to A and to B. In other words, we cannot proceed in a
goal-directed fashion. There are three ways to overcome the problem of
disjunction. The simplest solution is to kill the problem at the root: do
not allow positive occurrences of disjunction in the database. To prevent
positive disjunctions means to restrict our consideration to so-called Harrop
formulas. To introduce them, let us define the two types of formulas D and
G by mutual induction as follows:

D:=gq|L|G-D|DAD
G:=q|L|GAG|GVG|D—G.

A formula is Harrop if it is defined according to the D-clauses above. D-
formulas are allowed as constituents of the database, whereas G formulas are
allowed to be asked as goals. It is easy to extend the goal directed procedure
to Harrop formulas. A database will be a set of D-formulas (which are not
conjunctions themselves). We just add the rule R1 given above to handle
disjunctive goals. This gives us a complete system, which can be optimized
by adopting the diminishing resource approach and bounded restart.

Another solution, that we just mention, is to eliminate disjunction by
adopting Statman’s translation [Statman, 1979]: we can translate every pair
database-goal (I',G) in a pair (I'*,G*), such that T'*,G* do not contain
disjunction, but contain additional atoms, and it holds (in intuitionistic
logic)

Fr-Gift '+ G~

We can then use the proof procedure without disjunction.

However, one can try to cope with the whole propositional intuitionistic
logic without limitations, by using additional machinery. There are two
difficulties to define a goal-directed procedure. Consider the query I' F’
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AV B. We can adopt the rule R1 by continuing for instance with I' 7 A,
and remember that at a previous step we could have chosen the disjunct B,
thus we must be able to go back to I' 7 B. The use of history and restart
can accomplish the necessary book-keeping mechanism. However, we must
take into account that the database may have changed in the meantime,
and we must go back to the right database; notice that in general

(A-B)VC#Z2A—-BVC#BV(A—-()

(although these equivalences hold in classical logic). One way to keep track
of the dependency between the goal and database from which it is asked
is to use labels. This solution is developed in [Gabbay and Olivetti, 2000],
where a labelled goal-directed proof procedure for full intuitionistic logic is
given. The labels are partially ordered and can be interpreted as possible
worlds.

The other technical trick is to extend suitably the notion of 'Head’of a
formula to formulas with positive disjunctions; this is necessary to define the
reduction step. For instance, ignoring the labelling and restart mechanism,
the query I', K, where K = A — (BV (C = q)) F’° ¢, and ¢ is an atom,
would be reduced to the queries:

I K I A,
IK,B +' g,
I,K,C—qF C.

and g would be recorded in the history.

We shall not give the details of the procedure which can be found in
[Gabbay and Olivetti, 2000]. A similar, although much simpler, procedure
can be given for classical logic. However, in classical logic the treatment
of disjunctive data is not problematic, since on the one hand we can define
disjunction using the other connectives (the — connective alone suffices as
AV B = (A — B) — B). On the other hand every formula can be rewritten
as a set of clauses of the form:

PN AP —=>q@ V... Vgn

where n > 0, and m > 0, every p; is an atom, and every g; is an atom
or is L. For data of this sort, a goal-directed procedure is easily designed,
see [Gabbay and Olivetti, 2000; Nadathur, 1998; Loveland, 1991; Loveland,
1992].

3.8 Some history

A goal-directed proof system for a (first-order) fragment of intuitionistic
and classical logic was first given by Gabbay [Gabbay and Reyle, 1984;
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Gabbay, 1985] as a foundation of hypothetical logic programming. A similar
system for intuitionistic logic was proposed in [McCarty, 1988a; McCarty,
1988b]. The restart rule was first proposed by Gabbay in his lecture notes
in 1984 and the first theoretical results published in [Gabbay, 1985] and
then 1985 in [Gabbay and Kriwaczek, 1991].7 A similar idea to restart has
been exploited by Loveland [1991; 1992], in order to extend conventional
logic programming to non-Horn databases; in Loveland’s proof procedure
the restart rule is a way of implementing reasoning by case-analysis.

The concept of goal-directed computation can also be seen as a general-
ization of the notion of uniform proof as introduced in [Miller et al., 1991].
A uniform proof system is called ‘abstract logic programming’ [Miller et
al., 1991]. The extension of the uniform proof paradigm to classical logic is
recently discussed in [Harland, 1997] and [Nadathur, 1998]. The essence of
a uniform-proof system is the same underlying the goal-directed paradigm:
the proof-search is driven by the goal and the connectives can be interpreted
directly as search instructions.

The locally linear computation with bounded restart was first presented
by Gabbay [1991] and then further investigated in [Gabbay, 1992], where
goal-directed procedures for classical and some intermediate logics are also
presented. This refinment is strongly connected to the contraction-free se-
quent calculi for intuitionistic logic which have been proposed by many
people: Dyckhoff [1992], Hudelmaier [1990], and Lincoln et al., [1991]. To
see the intuitive connection, let us consider the query:

(A, (A—=p —qF ¢

we can step by reduction to A F’ A — p,(q) and then to A, A F* p,(q),
which, by the soundness corresponds to

(2) AAp—q g

In all the mentioned calculi (1) can be reduced to (2) by a sharpened left-
implication rule (here used backwards). This modified rule is the essential
ingredient to obtain a contraction-free sequent calculus for I, at least for
its implicational fragment. A formal connection with these contraction-free
calculi has not been studied yet. It might turn out that LL-computations
correspond to uniform proofs (in the sense of [Miller et al., 1991]) within
these calculi.

In [Gabbay and Olivetti, 2000] the goal-directed methods are extended
to some intermediate logics, i.e. logics which are between intuitionistic and
classical logics. In particular, it is given a proof procedure for the family of
intermediate logics of Kripke models with finite height, and for Dummett-
Godel logic LC. These proof systems are obtained by adding suitable restart
rules to the intuitionistic system.

"The lecture notes have evolved also into the book [Gabbay, 1998].
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4 MODAL LOGICS OF STRICT IMPLICATION

In this section we examine how to extend the goal-directed proof methods
to modal logics. We begin considering a minimal language which contains
only strict implication, we will then extend it to the full language of modal
logics. Strict implication, denoted by A = B is read as ‘necessarily A
implies B’. The notion of necessity (and the dual notion of possibility) are
the subject of modal logics. Strict implication can be regarded as a derived
notion: A = B = 0O(A — B), where — denotes material implication
and O denotes modal necessity. However, strict implication can also be
considered as a primitive notion, and has already been considered as such
at the beginning of the century in many discussions about the paradoxes of
material implication [Lewis, 1912; Lewis and Langford, 1932].

The extension of the goal-directed approach to strict implication and
modal logics relies upon the possible worlds semantics of modal logics which
is mainly due to Kripke.

The strict implication language £(=) contains all formulas built out from
a denumerable set Var of propositional variables by applying the strict im-
plication connective, that is, if p € Var then p is a formula of £(=), and if
A and B are formulas of £(=), then so is A = B. Let us fix an atom py,
we can define the constant T = pg = pp and let DA =T = A.

Semantics
We review the standard Kripke semantics for £(=).

A Kripke structure M for £(=) is a triple (W, R, V), where W is a non-
empty set (whose elements are called possible worlds), R is a binary relation
on W, and V is a mapping from W to sets of propositional variables of L.
Truth conditions for formulas (of £(=)) are defined as follows:

e M,wl=piff pe V(w);

e M,w = A= B iff for all w' such that wRw' and M,w' = A, it holds
M,w'" = B.

We say that a formula A is valid in a structure M, denoted by M | A,
if Yw € W, M,w = A. We say that a formula A is valid with respect to
a given class of structures K, iff it is valid in every structure M € K. We
sometimes use the notation =x A. Let us fix a class of structures . Given
two formulas A and B, we can define the consequence relation A |=x B as

VM = (W,R,V) € KNw e W if M,w |=x A then M,w |Ex B.

Different modal logics are obtained by considering classes of structures
whose relation R satisfies some specific properties. The properties of the
accessibility relations we consider are listed in Table 1.
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Table 1. Standard properties of the accessilbility relation.

Reflexivity | Vz zRz

Transitivity | VaVyVz cRy AyRz — xRz
Symmetry VaVy xRy — yRx
Euclidean VaVyVz tRy AxRz — yRz

Table 2. Some standard modal logics.

Name | Reflexivity | Transitivity | Symmetry | Euclidean
K

KT *

K4 *

S 4 * *

K5 *

K45 * *

KB *

KTB | * *

S 5 * * * *

We will take into consideration strict implication = as defined in systems
K, KT K4, S4, K5, K45, KB, KBT, and S5.°

Properties of accessibility relation R in Kripke frames, corresponding to
these systems are shown in Table 2.

Letting S be one of the modal systems above, we use the notation g A
(and A =g B) to denote validity in (and the consequence relation deter-
mined by) the class of structures corresponding to S.

4.1  Proof systems

In this section we present proof methods for all modal systems mentioned
above. We regard a database as a set of labelled formulas z; : A; equipped
by a relation « giving connections between labels. The labels obviously
represent worlds. Thus, z; : A; means that A; holds at x;. The goal of a
query is asked with respect to a world. The form of databases and goals
determine the notion of consequence relation

{z1: A1,z Aptyabz A

8We use the acronym KT rather than the more common T, as the latter is also the
name of a subrelevance logic we will meet in Section 5.

9We do not consider here systems containing D : OA — <©A, which correspond to
the seriality of the accessibility relation, i.e. Vx3y xRy in Kripke frames. The reason is
that seriality cannot be expressed in the language of strict implication alone; moreover,
it cannot be expressed in any modal language, unless — or < is allowed.
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whose intended meaning is that if A; holds at x; (for ¢ = 1,...,n) and the
x; are connected as « prescribes, then A must hold at z.

For different logics a will be required to satisfy different properties such as
reflexivity, transitivity, etc., depending on the properties of the accessibility
relation of the system under consideration.

DEFINITION 37. Let us fix a denumerable alphabet A = {z;,...,2;,...}
of labels. A database is a finite graph of formulas labelled by 4. We denote
a database as a pair (A, «), where A is a finite set of labelled formulas
A={x: Ar,...,zn : Ay} and a = {(z1,2)),..., (@m,2),)} is a set of
links. Let Lab(E) denote the set of labels € A occurring in E, and
assume that (i) Lab(A) = Lab(a), and (ii) if z : A € A,z : B € A, then
A=B.1°

A trivial database has the form ({zo : A}, 0).

The expansion of a database (I',«) by y : C at z, with & € Lab(T),
y & Lab(T") is defined as follows:

(T,0) @2 (y: C) = (AU{y : O}, U{(z,9)}).
DEFINITION 38. A query @ is an expression of the form:
Q= (Aa) F z:G H
where (A, a) is a database, © € Lab(A), G is a formula, and H, the history,

is a set of pairs

H={(z1, @), (@m,qm)}

where z; are labels and ¢; are atoms. We will often omit the parentheses
around the two components of a database and write Q = A,a F’ 2 : G, H.
A query from a trivial database {zg : A} will be written simply as:

Z’UZA |_? l'oiB,H,

and if A = T, we sometimes just write -’ zo: B, H.

DEFINITION 39. Let a be a set of links, we introduce a family of relation
symbols AS(z,y), where 2,y € Lab(a). We consider the following condi-
tions:

(K) (z,9) €« = AZ(z,y),

(T)x=y = AS(x,y),

(4) F2(A5 (2, 2) A AS(2,y)) = AS(z,y),
(5) 32(A5(2,2) A AS(2,y)) = AS(z,y),
(B) AS(x,y) = AS(y,x).

10We will drop this condition in Section 4.3 when we extend the language by allowing
conjunction.
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For K € S C {K,T,4,5,B}, we let A5 be the least relation satisfying all
conditions in S. Thus, for instance, A¥43 is the least relation such that:

AFP(z,y) & (@y)eaV
V 32(AKIB (1 2) A AKIS (2 )
V (AT (2, @) A A (2,)).
We will use the standard abbreviations (i.e. AS® = AKTS = 4KT45)

DEFINITION 40 (Modal Deduction Rules). For each modal system S, the
corresponding proof system, denoted by P(S), comprises the following rules
parametrized to predicates AS:

e (success) A,a F’ x:q, H immediately succeeds if ¢ is an atom and
x:q€A.

e (implication) From A,a F’ z: A= B, H, step to
(Aa)®, (y:A) F y:B,H,
where y & Lab(A) U Lab(H).

e (reduction) If y : C € A, with C = By = By = ... = B = ¢, with
g atomic, then from

Aa FoziqH
step to

Aja B ouy s B, HU{(z,9)},

Aja B ouy B, HU{(z,q)},

for some wy, . ..,u; € Lab(a), with ug =y, ur = , such that
for i = 0, ey k— 1, AE(ui,uH_l) holds.

e (restart) If (y,r) € H, then, from A,a F° =z : ¢, H, with ¢ atomic,
step to

Aja F oy r, HU{(z,q)}.

Restricted restart

Similar to the case of classical logic, in any deduction of a query @ of the
form A, F’ z : G,0, the restart rule can be restricted to the choice of
the pair (y,r), such that r is the uppermost atomic goal occurred in the
deduction and y is the label associated to r (that is, the query in which r
appears contains ... F° gy :r). Hence, if the initial query is Q = A,a +’
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z:G,) and G is an atom ¢, such a pair is (z, q), if G has the form B; =
... = By = r, then the first pair is obtained by repeatedly applying the
implication rule until we reach the query ... F’ xj : r, with 2, & Lab(A).
With this restriction, we do not need to keep track of the history any more,
but only of the first pair. An equivalent formulation is to allow restart from
the initial goal (and its relative label) even if it is implicational, but the
re-evaluation of an implication causes a redundant increase of the database,
that is why we prefer the above formulation.

PROPOSITION 41. If A,a F' =z : G,0 succeeds then it succeeds by a
derivation in which every application of restart is restricted restart.

We have omitted the reference to the specific proof system P(S), since
of the previous claim does not depend on the specific properties of the
predicates AS involved in the definition of a proof system P(S). We will
omit the reference to P(S) whenever it is not necessary.

We show some examples of the proof procedure.

EXAMPLE 42. In Figure 4 we show a derivation of
(p=>p =>a=b=>0b=>c)=>a=>c

in P(K). By Proposition 41, we only record the first pair for restart, which,
however, is not used in the derivation. As usual in each node we only show
the additional data, if any. Thus the database in each node is given by the
collection of the formulas from the root to that node. Here is an explanation
of the steps: in step (2) a = {(zo,1)}; in step (3) a = {(z0,21), (z1,22)};
in step (4) a = {(zo,71), (x1,72), (2,23)}; since AX (x5, 23), by reduction
w.r.t. 2o : b= ¢ we get (5); since AX(z1,25) and A¥(z2,23), by reduction
wrt. 21 : (p = p) = a = b we get (6) and (8). the latter immediately
succeeds as x3 : @ € A; from (6) we step to (7) which immediately succeeds.

EXAMPLE 43. In Figure 5 we show a derivation of

(((a=a)=p)=q) =p)=p

in P(KBT), we use restricted restart according to Proposition 41. In step
(2), a = {(xo,z1)}. Step (3) is obtained by reduction w.r.t. z; : (((a =
a) = p) = q) = p, as AKBT (2, 2). In step (4) a = {(zo,71), (z1,72)};
step (5) is obtained by restart; step (6) by reduction w.r.t. s : (a = a) = p,
as AKBT (25, 2,); in step (7) a = {(xo,z1), (21, 22), (21, 25)} and the query
immediately succeeds.

In order to prove soundness and completeness, we need to give a formal
meaning to queries, i.e. to define when a query is valid. We first introduce
a notion of realization of a database in a model to give a semantic meaning
to databases.

DEFINITION 44 (Realization and validity). Let AS be an accessibility
predicate, given a database (I',«) and a Kripke model M = (W,R,V),
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1) Flazo:(p=2p)=a=2>b)=>b=>c)>a=c
|
2 zi:(p=p) >a=bat z:(b=c)=a=c
|
B)z2:b=c, aF m:a=>c
|
(4) z3:a, a F? 23:c
|
(5) @ F* z3:b, (x3,c)
— ~
(6) @ F* z2:p=p, (x3,c) 8) a F* z3:a, (xs,c)
|
(7) za :p,aU{(z2,2)} F* 24:p, (x3,0)

Figure 4. Derivation for Example 42.

(1) F 2o ((a=a)=p)=>q) =p)=p

2) z1: (((a=a)=>p) =q =pa F? zy:p

B ei:((a=a)=p)=>q) =p aF 21:((@=a)=>p)=>4q (x1,p)

D) zi:((a=>a)=p)=q¢ =>pr2:(a=a)=>p, a F? 2y q, (x1,p)

G)ar:(((@=a)=>p)=>q) = paz:@=a)=>p, a b z:p, (x1,p)

6) z1: (((a=>a)=p)=q) =>pr2:(a=a)=>p, a F' 21:a = a, (x1,p)

(MNaz1:((a=a)=>p)=>q) =>paz2:(a=a)=>pws:a,a - z3:a, (x1,p)

Figure 5. Derivation for Example 43.
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a mapping f : Lab(T') — W is called a realization of (T',«) in M with
respect to AS, if the following hold:

1. AS(z,y) implies f(z)Rf(y);
2. ifzx:A €T, then M, f(z) = A.

We say that a query Q =T ,a F° =z : G, H is valid in S if for every
S-model M and every realization f of (I', ), we have either M, f(z) E G,
or for some (y,r) € H, M, f(y) E 7.

The soundness of the proof procedure can be proved easily by induction
on the length of the computation.

THEOREM 45 (Soundness). Let Q = T',a F' =z :G,H succeed in the
proof system P(S), then it is valid in S.

COROLLARY 46. Ifvo: A F* x¢ : B, succeeds in P(S) , then A |=s B
holds. In particular, if F* xq¢ : A, () succeeds in P(S), then A is valid in S.

To prove completeness we proceed in a similar way to what we did for
intuitionistic logic. First we show that cut is admissible. Then we prove
completeness by a sort of canonical model construction. The cut rule states
the following: let  : A € I, thenif (1) T Fy: Band (2) AF 2z: A
succeed, we can ‘replace’ z : A by A in I" and get a successful query from
(1). Since there are labels and accessibility predicates, we must be careful.
There are two points to clarify. First, we need to define the involved notion
of substitution. Furthermore the proof systems P(S) depend uniformly on
predicate AS, and we expect that the admissibility of cut depends on the
properties of predicate AS. It turns out that the admissibility of cut (stated
in Theorem 48) holds for every proof system P(S), such that AS satisfies
the following conditions:

e (i) AS is closed under substitution of labels;
o (i) A3(z,y) implies AF 5(z,y);
e (iii) AS(u,v) implies Vz y (Agu{(u v)}(m,y) < AS(z,y)).

These conditions ensure the following properties.

PROPOSITION 47.

(a) If T,a F° z: C,H succeeds then also T[u/v],afu/v] ' =z[u/v] :
C, Hlu/v] succeeds.

(b) If AS(2,y) and T,aU{(z,y)} +° u:G,H succeed, then also T,a F°
u: G, H succeeds.
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We say that two databases (', ), (A, 3) are compatible for substitution,'!
if
for every z € Lab(I") N Lab(A), for all formulas C, z: C €' &
z:C€A.

If (T,a) and (A, ) are compatible for substitution, z : A € T, and y €
Lab(A), we denote by

T,z - AJA, Byl = (T = {z: AU A, afz/y] U ).

the database which results by replacing z : A in (T, @) by (A, 8) at point y.
At this point we can state precisely the result about cut.

THEOREM 48 (Admissibility of cut). Let predicate AS satisfy the condi-
tions (i), (ii), (i) above. If the following queries succeed in the proof system
P@S) :

1. T[x: Al v w: B, H
2. A,B F y: A H,.
and (T, &) and (A, B) are compatible for substitution, then also

8. (T,a)[z: A/A, B,y] V' u[z/y]: B, Hi[z/y] U Hy succeeds in P(S) .

The proof proceeds similarly to the one of Theorem 10 and is given in
[Gabbay and Olivetti, 2000]. From the theorem we immediately have the
following two corollaries.

COROLLARY 49. Under the same conditions as above, if v : A F* = : B
succeeds and x : B F° z : C succeeds then also x : A F* z: C succeeds.

COROLLARY 50. If K € S C {K,4,5,B, T}, then in the proof system
P(S) cut is admissible.

As we have said, we can prove the completeness by a sort of canonical
model construction, which is less constructive of the one of Theorem 9. The
following properties will be used in the completeness proof.

PROPOSITION 51.
o (Identity) If x: A€ T, thenT,a F* x: A, H succeeds.

e (Monotony) If Q = T,a F° x:C,H succeeds and T C A, a C f3,
H C H', then also A,3 V° x:C,H' succeeds.

11 This condition is not necessary if we allow the occurrence of several formulas with
the same label in a database, as we will do in Section 4.3 when we add conjunction.
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THEOREM 52 (Completeness). Given a query Q = T,a F' z: A H, if
Q is S-valid then Q) succeeds in the proof system P(S).
Proof. By contraposition, we prove that if Q = I',a +F° z : A, H does

not succeed in one proof system P(S), then there is an S-model M and
a realization f of (T',«), such that M, f(z) £ A and for any (y,r) € H,

M, f(y) .

We construct an S-model by extending the database, through the evalu-
ation of all possible formulas at every world (each represented by one label)
of the database. Since such evaluation may lead, for implication formulas,
to create new worlds, we must carry on the evaluation process on these new
worlds. Therefore, in the construction we consider an enumeration of pairs
(z;,A;), where z; is a label and A; is a formula.

Assume [',a F’ 2 : A, H fails in P(S). We let A be a denumerable
alphabet of labels and £ be the underlying propositional language. Let
(x4, A;), for i € w be an enumeration of pairs of A x £, starting with the
pair (z, A) and containing infinitely many repetitions, that is

(zo, Ao) = (z, 4),
Yy e ALVF € L,¥n 3m > n (y, F) = (zm, Am).

Given such enumeration we define (i) a sequence of databases (I'y,, a,,), (ii)
a sequence of histories H,,, (iil) a new enumeration of pairs (y,, By), as
follows:

i (step 0) Let (FO,aO) = (F)a)y Hy = H) (yO,BO) = (1‘,A)

e (step n+1) Given (y,, B,), if yn € Lab(T,) and Tp o, F° y, -
B,,, H, fails then proceed according to (a) else to (b).

(a) if B, if atomic, then we set

Hpi1 = Hp U {(Yn, Bn)},

(Crnt1, ang1) = (Tn, an),

(Un+1, Bny1) = (Tht1, Akg),

where k = max;<y, 3s<n(ys, Bs) = (¢, A¢),

else let B,, = C' = D, then we set

Hy1 = Hp,

(Tn1, ang1) = (Do, an) By, (@m 2 0),

(Yn+1, Bnt1) = (Tm, D),

where z,, = min{z; € A| z; ¢ Lab(T'y,) U Lab(Hy,)}.
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(b) We set

Hy1 = Hp,

(Lnt1, ang1) = (T, an),

(Un+1, Buy1) = (Thy1, Arga),

where k£ = max{t < n | Is<n(ys, Bs) = (21, A¢) }, [ ]

The proof of completeness is made of several lemmas.
LEMMA 53. Vk 3n > k (z, Ar) = (yn, Bn).

Proof. By induction on k. If £ = 0, the claim holds by definition. Let

(i) if yn & Lab(T'y,), or T,y 7 yy @ By, H, succeeds, or B, is atomic,
then (zg11, Ag+1) = (Ynt1, But1)-

(ii) Otherwise,let B, =Cy = ... = C; = r, (t > 0), then (41, Apy1) =
(Untt+1, Bryes1). u

LEMMA 54. For alln >0, if Ty, an F° yn : By, H, fails, then:

VYm >n Loy F° yn : Bn, Hy fails.
Proof. By induction on ¢p(B,,) = c. if ¢ = 0, that is B,, is an atom, say q,
then we proceed by induction on m > n + 1.

e (m=n+1) wehave I'y,a, F* y,:q, Hy fails, then also T', o, ’
Yn : ¢, Hp U {(yn,q)} fails, whence, by construction,

Int1, anta F? Yn © q, Hpt fails.

e (m > n+ 1) Suppose we have proved the claim up to m > n + 1, and
suppose by way of contradiction that Ty, & F° yn @ q, Hy, fails, but

(i) Twsts@mi1 F° Yn @ q, Hpyyq succeeds.
At step m, (Ym, Bm) is considered; it must be y,,, € Lab(T,,) and
(ii) Doy am F° ym : B, Hpy, fails.

We have two cases, according to the form of B,,. If B,, is an atom r,
as (yn,q) € Hp, from query (ii) by restart we can step to

| AT ? Yn G, Hp U {(ymar)}a
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that is the same as Ty, @mi1 F° Yn @ @, Hpy1, which succeeds and
we get a contradiction. If B,, = C1 = ... = C} = r, with k£ > 0, then
from query (ii) we step in & steps to Dotk Qmak F° Ymak 2 7y Hmik,
where (Ferk: am+k) = (Fm)am) Dy (ym+1 : Cl) @ym+1 s 69ym+k—1
(Ymk : Cx) and Hyq, = Hpy; then, by restart, since (yn,q) € Hyprk,
we step to

(iii) Donres @mt F° Un 2 @ Hporr U {Umgre, 7) }-

Since query (i) succeeds, by monotony we have that also query (iii)
succeeds, whence query (ii) succeeds, contradicting the hypothesis.

Let cp(B,) = ¢ > 0, that is B, = C = D. By hypothesis I'y,a,, F’
yn : C = D,Hp,, fails. Then by construction and by the computation
rules I'y 11, apga F? Ynt1 = D, Hyyq, fails, and hence, by the induction
hypothesis, Ym > n + 1,

Loy @ F° Y1 2 D, Hyy, fails.

Suppose by way of contradiction that for some m >n +1, Ty, oy
C = D, H,,, succeeds. This implies that, for some z ¢ Lab(T',,) U Lab(H,,),

(1) (Tony i) @y, (2:C) 7 z: D, Hp,, succeeds.

Since yp+1 : C € Tyy1 C Ty apy1 € o, Hypr € Hyy,, by monotony, we
get

(2) Ty @y F7 Y1 = O, H,y,, succeeds.

The databases involved in queries (1) and (2) are clearly compatible for sub-
stitution, hence by cut we obtain that T'y,, & F° yny1 : D, Hy, succeeds,
and we have a contradiction. [ |

LEMMA 55.
(i) Ym, Uy 7 20 A, Hpy, fails, whence

(ii) Ym, if (y,r) € Hy, then Ty, F° y i 7, Hyy, fails.

Proof. Left to the reader. |

LEMMA 56. If B, =C = D and 'y, o, F° yn : C = D, H, fails, then
there is a y € A, such that for k < n, y ¢ Lab(T) and Ym > n: (i)
Ynsy) € Qm, () Doy oy 2 C,Hy, succeeds, (i) Uyt F oy
D, H,, fails.

Proof. By construction, we can take y = y,41, the new point created at
step n + 1, so that (i), (ii), (iii) hold for m = n 4 1. In particular
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(*) Fn+1,0én+1 l_? Yn+1 : D,Hn+1 fails.

Since the (I', oy, ) are not decreasing (w.r.t. inclusion), we immediately have
that (i) and (ii) also hold for every m > n + 1. By construction, we know
that Bp41 = D, whence by (*) and Lemma 54, (iii) also holds for every
m >n+ 1. ]

Construction of the Canonical model

We define an S-model as follows M = (W, R, V), such that
o W =, Lab(T,);
e Ry = nAS (z,y),
e V(z)={q|3nz € Lab(T'y) A Tp,an F* z:q, H, succeeds}.

LEMMA 57. The relation R as defined above has the same properties of
AS, e.g. if S=S4, that is AS is transitive and reflerive, then so is R and
the same happens in all other cases.

Proof. Left to the reader. |

LEMMA 58. for all x € W and formulas B,
M,z =B & 3nz €Lab(T,) AT, a, F° z: B, H, succeeds.

Proof. We prove both directions by mutual induction on cp(B). If B is an
atom then the claim holds by definition. Thus, assume B = C' = D.

(<) Suppose for some m I'y,,a,, F° x: C = D, H, succeeds. Let
zRy and M,y = C, for some y. By definition of R, we have that for some
ni, ACSM1 (z,y) holds. Moreover, by the induction hypothesis, for some no,

Ty @ny 7y : C, Hy, succeeds. Let k = max{n;,n2,m}, then we have
1. Tw,ar F° z:C = D, H, succeeds,
2. T'y,ap F y:C, Hy succeeds,
3. A (z,9).

So that from 1. we also have:

1. (Tr,ap) ®e (2 : C) F° 2z : D, Hy succeeds, (with z ¢ Lab(I'y) U
Lab(Hy)).

We can cut 1. and 2., and obtain:

Ly, ap U{(z,y)} F* y:D,Hy succeeds.
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Hence, by 3. and Proposition 47(b) we get ['y,ax F° y : D, Hy, succeeds,
and by the induction hypothesis, M,y E D,

(=) Suppose by way of contradiction that M,z |= C = D, but for all
n if z € Lab(T,), then [, e, 7 x:C = D, H, fails. Let = € Lab(T},),
then there are m > k > n, such that (z,C = D) = (x, Ax) = (Ym, Bm) 18
considered at step m + 1, so that we have:

I, am F? ym : C = D, Hy, fails.

By Lemma 56, there is a y € A, such that (a) for t < m, y ¢ Lab(T';) and
(b): ¥Ym' > m (i) (Yn,vy) € amr, (i) Ty F° y 2 C, Hyy succeeds, (iii)
Loy ape F oy D, H,, fails.

By (i) we have xRy holds, by (ii) and the induction hypothesis, we have
M,y = C. By (a) and (iii), we get: Vn if y € Lab(T'y,), then [y, c,, 7 y:
D, H, fails. Hence, by the induction hypothesis, we have M,y [~ D, and
we get a contradiction. |

Proof of The Completeness Theorem, 52. We are now able to conclude
the proof of the completeness theorem. Let f(z) = z, for every z € Lab(Ty),
where (T'g,ap) = (T', @) is the original database. It is easy to see that f is
a realization of (I',a) in M: if AS(u,v) then A5 (u,v), hence f(u)Rf(v).

If u: C €T = Ty, then by identity and the previous lemma we have
M, f(u) = C. On the other hand, by Lemma 55, and the previous lemma
we have M, f(z) £ A and M, f(y) [~ r for every (y,r) € H. This concludes
the proof. |

By the previous theorem we immediately have the corollary.

COROLLARY 59. If A =5 B holds, then A F° =z : B,0, succeeds in
P(S). In particular, if A is valid in the modal system S, then F° xo: A, 0,
succeeds in P(S) .

4.2 Simplification for specific systems

In this section we show that for most of the modal logics we have considered,
the use of labelled databases is not necessary and we can simplify either the
structure of databases, or the deduction rules.

If we want to check the validity of a formula A, we evaluate A from a
trivial database F° g : A,0. Restricting our attention to computations
from trivial databases, we observe that we can only generate databases
which have the form of trees.

DEFINITION 60. A database (A, «) is called a tree-database if the set of
links « forms a tree.

Let (A, a) be a tree database and x € Lab(A), we define the subdatabase
Path(A, a, x) as the list of labelled formulas lying on the path from the root
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of a, say xg, up to x, that is: Path(A,«,z) = (A',a'), where:

o = {(zo, 1), (x1,72), .., (Tn_1,2n) | T ==
and for i =1,...,n,(z;—1,2;) € a}
A" = {y:AeA|ye Lab(a')}.

PROPOSITION 61. If a query Q occurs in any derivation from a trivial
database, then Q = A, F° z: B, H, where (A, ) is a tree-database.

From now on we restrict our consideration to tree-databases.

Simplification for K, K4, S4, KT: Databases as Lists

For systems K, K4, S4, KT the proof procedure can be simplified in the
sense that: (i) the databases are lists of formulas, (ii) the restart rule is not
needed. The key fact is expressed by the following theorem.

THEOREM 62. If A,a F° z: A0 succeeds, then Path(A,a,z) F' z:
A, D succeeds without using restart.

Intuitively, only the formulas laying on the path from the root to = : A
can be used in a proof of A, F° z: A, (. The reason why restart is not
needed is related: a restart step, say a restart from z : g, is useful only if we
can take advantage of formulas at worlds created after the first call of x : ¢
by means of the evaluation of an implicational goal. But these new worlds
(being new) do not lay on the path from the root to  : g, thus they can be
ignored and so can the restart step.

By virtue of this theorem we can reformulate the proof system for logics
from K to S4 as follows. A database is simply a list of formulas Ay, ..., 4,,
which stands for the labelled database ({z : A1,...,z, : A}, a), where
a={(x1,x2),...(Tn_1,Tn)}. A query has the form:

A, A, F' B

which represents {z1 : Ay,...,2, : Ay}, ' 1z, : B. The history has
been omitted since restart is not needed. Letting A = Ay, ..., A,, we refor-
mulate the predicates AS as relations between formulas within a database
AS(A, A;, Aj), in particular we can define:

AK(A A A) = i4+1=]
AKT(A A, A)) i=jVi+l=j
AKYA AL A)) = i<

AS4(A Ay A)) i<j

The rules become:

e (success) A 7 g succeeds if A = A;,...,A,, and 4, = q;
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e (implication) from A F° A = B step to A, A F° B;

e (reduction) from A F’ g stepto A; F° Dy, fori=1,... k,
if there is a formula A; = Dy = ... = D}, = ¢ € A, and there are
integers j = 5o < Jj1 < ... < Jjr = n, such that

1= ].,...,k?, AS(A,AJ'FUAJ'I.) holds and Az = Al;---;Ajl--

EXAMPLE 63. We show that ((b = a) = b) = ¢= (b = a) = ais a
theorem of S4.

-~

(b=a)=b)=>c=>(b=>a)=>a
c=>(b=>a)=>a

(b=a)=a

a reduction w.r.t. b = a (1)

b reduction w.r.t. (b= a) =10 (2)
b=a

a reduction w.r.t. b= a

)

(b=a)=0b

(b= a) = b,c
(b=a)=b,c,b=a
(b=a)=b,c,b=a
(b=a)=bc,b=a
(b=a)=b,c,b=a,b
(b= a)=b,c,b=>a,b ' b

)

-~

2

2

This formula fails in both KT and K4, and therefore also fails in K:
reduction at step (1) is allowed in KT but not in K4; on the contrary,
reduction at step (2) is allowed in K4 but not in KT.

Simplification for K5, K45, S5: Databases as Clusters

We can also give an unlabelled formulation of logics K5, K45, S5. The
simplification is allowed by the fact that we can define explicitly the acces-
sibility relation.

PROPOSITION 64. Let Q = A,a F° x: G, H be any query which occurs
in a P(K5) deduction from a trivial database xo : A F° x¢ : B, Hy. Let
R¥5(z,y) be defined as follows:
Rgs(may) = (1‘ =T A (m[):y) € CM)
V ({4} C Lab(a) A # 20 Ay # o).
Then we have R¥5(z,y) = AK5(z,y).

COROLLARY 65. Under the same conditions as the last proposition, we
have:

R¥5(z,7) and RE®(zo,y) implies z = y.

PROPOSITION 66. Let Q = A,a F’ z:G,H be any query which occurs
in a P(K45) deduction from a trivial database xo : A F° =z : B,Hy. Let
REA45 (2, y) be defined as follows:
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R4 (z,y) = {z,y} C Lab(a) Ay # xo.
Then we have RX4%(z,y) = AK45(z,y).

PROPOSITION 67. Let Q = A,a F’ x:G,H be any query which occurs
in a P(S5) deduction from a trivial database vo : A F° w0 : B, Hy. Let
RS%(z,y) be defined as follows:

R3?(x,y) = {z,y} C Lab(a).
Then we have RS®(x,y) = AS®(x,y).

From the previous propositions we can reformulate the proof systems for
K5, K45 and S5 without making use of labels. For K5 the picture is as
follows: either a database contains just one point zg, or there is an initial
point zg which is connected to another point x;, and any point excluding xq
is connected to any other. In the case of K45, xo is connected also to any
point other than itself. Thus, in order to get a concrete structure without
labels we must keep distinct the initial world from all the others, and we
must indicate what is the current world, that is the world in which the goal
formula is evaluated. In case of K5 we must also identify the (only) world
to which the initial world is connected. We are thus led to consider the
following structure.

A non-empty database has the form:

A=DBy| | orA= By|Bs,...,Bn| B;, where 1 <i <n,
and By, By, ..., B, are formulas. We also define
By if A=DBy| |,
B;if A=DBy| By,...,B, | B;.

This rather odd structure is forced by the fact that in K5 and K45 we have
reflexivity in all worlds, except in the initial one and therefore, in contrast
to all other systems, we have considered so far, the success of

Actual(A) = {

F? zo: A= B, which means that A = B is valid,
does not imply the success of

zo: A F° zy: B, which means that A — B is valid (material
implication).!?

The addition operation is defined as follows:
By|By,...,B,,A|A ifA=By|By,...,B,|B;
A®A=(¢ By|A|A ifA=DBy| |
T|IA|A fA=0

1211 these two systems the validity of OC does not imply the validity of C, as it holds
for all the other systems considered in this section.
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A query has the form
A+ G,H, where H = {(A1,q1), ..., (Ak,qr)}, with A; € A.

DEFINITION 68 (Deduction Rules for K5 and K45).
Given A = By | By,...,B, | B, let

AKS(AX)Y) = (X=By A Y=8)
V(X:Bl/\Y:B] A i,j>0)and
AK4(A X Y) = (X =B;AY = B, with j > 0)

(success) A F’ ¢, H succeeds if Actual(A) = q.

(implication) From A +* A= B,H stepto A® A +* B, H.

(reduction) if A = By | By,...,B, |Band C =Dy = ... = D;, =
g€ A, from A F° G, H step to

Bo|Bi,...,Bn|Ci V' DiyHU{(B,q)}fori=1,...,k,

for some Cy,...,Cr € A, such that Cy = C, ) = B,, and
AKS (A C; 1, C;) (respectively AK45 (A C; 4, C;)) holds.

(restart) If A = By | Bi,...,B, | B; and (Bj,r) € H, with j > 0,
then from A F° ¢, H, step to

By | By,...,B, | B; V' r,HU{(Bi,q)},
According to the above discussion, we observe that the check of the validity
of = A = B, corresponds to the query
) F* A= B,0,
which (by the implication rule) is reduced to the query
T|A|A F B,

This is different from checking the validity of A — B (— is the material
implication), which corresponds to the query

Al |F? B,0.

The success of the former query does not imply the success of the latter.
For instance in K5,

K (T = p) = pandindeed T =p| |F’ p,0 fails.
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On the other hand we have

E(T=p =>pandindeed T | T =p| T =>p F pl
succeeds.

The reformulation of the proof system for S5 is similar, but simpler. In
the case of S5, there is no need to keep the first formula/world apart from
the others. Thus, we may simply define a non-empty database as a pair
A = (S, A), where S is a set of formulas and A € S. If A = (S, A), we let

Actual(A) = A and A® B = (SU{B},B).

For A =, we define 0 ¢ A = ({4}, A). With these definitions the rules are
similar to those of K5 and K45, with the following simplifications:

e (reduction) if A = (S,B) and C = D; = ... = Dy = ¢ € A, then
from A F* G, H step to

(S,C;) F' Dy, HU{(B,q)}, where fori=1,...,k C; € A
and C;, = B.

e (restart) If A = (S,B) and (C,r) € H, then from (S,B) +’ ¢, H,
step to

(5,C) K r,HU{(B,9)},

EXAMPLE 69. In Figure 6 we show a derivation of the following formula
in S5

((a=b)=c)=>(a=d=c)=(d=c).

In the derivation we make use of restricted restart, according to Proposition
41. A brief explanation of the derivation: step (5) is obtained by reduction
w.r.t. (a = b) = ¢, step (7) by restart, steps (8) and (9) by reduction w.r.t.
a = d = ¢, and they both succeed immediately.

4.3 Extending the language

In this section we extend the proof procedures to broader fragments. We
first consider a simple extension allowing conjunction. To handle conjunc-
tion in the labelled formulation, we simply drop the condition that a label x
may be attached to only one formula, thus formulas with the same label can
be thought as logically conjuncted. In the unlabelled formulation, for those
systems enjoying such a formulation, the general principle is to deal with
sets of formulas, instead of single formulas. A database will be a structured
collection of sets of formulas, rather than a collection of formulas. The
structure is always the same, but the constituents are now sets. Thus, in
the cases of K, KT, K4 and S4, databases will be lists of sets of formulas,
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1) F ((a=b)=2c)=>@@=>d=c)=d=>c

|

2) {a=b=cha=b=ct (a=d=>c)=>d=c

B) {@a=b)=>ca=>d=>clha=>d=>ctH d=c

4) {a=b=ca=>d=>cd}dF ¢

|

(5) {(a=b)=ca=>d=cd},dF a=b(dc)

|

6 a=0b)=ca=d=cda},a - b(d,c
b d d b, (d

(7) {(a=b)=ca=>d=cda},d " ¢(dc)

(8) {(a=b)=c, (9) {(a=0b)=c
a=d=cd,a}, a=d=cd,a},
a F a,(dc) d +F° d,(dc)

Figure 6. Derivation for Example 69.

whereas in the cases of K5, K45 and S5, they will be clusters of sets of
formulas.

A conjunction of formulas is interpreted as a set, so that queries may
contain sets of goal formulas.

A formula A of language L£(A,=>) is in normal form if it is an atom or
has form:

ASi = ... = Sk, = q

(3

where SJZ: are conjunctions of formulas in normal form. In all modal logics
considered in this section (formulated £(A,=>)) it holds that every formula
has an equivalent one in normal form.

We simplify the notation for NF formulas and replace conjunctions with
sets. For example the NF of (b= (¢cAd)) = (e A f))A((gAh) = (kEAu))
is the set containing the following formulas:

{b=>c,b=>d}=e {b=>c,b=>d}=f, {g,h} =k, {g9,h} = u.
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For the deduction procedures all we have to do is to handle sets of formulas.
We define, for z € Lab(T") U Lab(H), y ¢ Lab(T') U Lab(H) and finite set of
formulas S = {Dq,...,D:},

(ya) @y S = (AU{y: Doy Dia U {(m,0))),
then we change the (implication) rule in the obvious way:
from A,a F’ z:S = B, H,
step to
(Aa)@,y:S F y:BH,

where S is a set of formulas in NF and y ¢ Lab(T"), and we add a rule for
proving sets of formulas:

from (A,a) F° z:{Bi,...By},H
step to
(Aa) F? z:Bj,Hfori=1,... k.

Regarding the simplified formulations without labels, the structural restric-
tions in the rules (reduction and success) are applied to the sets of formulas,
which are now the constituents of databases, considered as units; the history
H, when needed, becomes a set of pairs (S;, 4;), where S; is a set and A4; is
a formula. The property of restricted restart still holds for this formulation.

We can extend further extend the L£(=,A)-fragment in two directions.
In one direction, we can define a modal analogue of Harrop formulas for
intuitionistic logic that we have introduced in Section 3.7. This extension is
relevant for logic programming applications [Giordano et al., 1992; Giordano
and Martelli, 1994]. In the other direction, we can define a proof system for
the whole propositional modal language via a translation into an implicative
normal form.

Modal Harrop formulas

We can define a modal analogue of Harrop formulas by allowing disjunction
of goals and local clauses of the form

G —q,

where — denotes ordinary (material) implication. We call them ‘local’, since
z : G — g can be used only in world z to reduce the goal = : g and it is not
usable/visible in any other world. It is ‘private’ to =, whereas the ‘global’
clause G = ¢ can be used to reduce ¢ in any world y accessible from z. It
is not a case that modalities have been used to implement visibility rules
and structuring mechanisms in logic programming [Giordano et al., 1992;
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Giordano and Martelli, 1994]. In order to define a modal Harrop fragment
we distinguish D-formulas, which are the constituents of databases, and G-
formulas which can occur as goals. The former are further distinct in modal
D-formulas (MD) and local D-formulas (LD).

LD :=G —q,
MD:=T|q|G= MD,
D:=LD | MD,

CD:=D|CDACD;
G=T|q|GAG|GVG|CD=G.

We also use OG and OD as syntactic sugar for T = G and T = D. Notice
that atoms are both LD- and MD-formulas (as T — ¢ = ¢); moreover, any
non-atomic MD-formula can be written as Gy = ... = G = ¢. Finally,
CD formulas are just conjunction of D-formulas.

For D- and G-formulas as defined above we can easily extend the proof
procedure. We give it in the most general formulation for labelled databases.
It is clear that one can derive an unlabelled formulation for systems which
allow it, as explained in the previous section. In the labelled formulation,
queries have the form

Ao F x:GH

where A is a set of D-formulas, G is a G-formula, and H = {(z1,G1),...,
(zk, Gr)}, where G; are G-formulas. The additional rules are:

e (true) A,a F* z: T, H immediately succeeds.
e (local-reduction) From A,a F x:q, H step to
Aa F 2:GHU{(z:q)}
ifx:G—qeA.
e (and) From A,a F* z:Gy AGs,H step to
Aa Frz:Gi,Hand Ao F° z:Gs, H.
e (or) From A,a F* z:G,V G, H step to

Aa F oz G HU{(z,G2)} orto Aja F' z:Gy, HU{(z,G1)}.

EXAMPLE 70. Let A be the following database

xo : [(Op = s) Ab] = q,
zo: ([((p=q) ABa] = 1) = ¢,
To:a — b.
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(1) A F? oz :q,0

(2) F' zo:[(p=q) AOa] = r,(z0,q)

(3) 1 :p = q,21 : Oa,{(zo,21)} F* 1 :7,(20,9)

(4) l_? To ' ¢, (1‘0,(])

/ \

(5) F* xo:0p=s,(x0,q) (10) F* xq:b,(z0,q)
| |

(6) 22 : Op,{(z0,21), (x0, 22)} F' 3 :5,(z0,q) (11) " 20 : a,(z0,q)
| |

(7) F* @o:q,(z0,q) (12) " @o: T, (z0,q)

|
(8) H? To - D, (l'o,q)

9) 'z T, (wo,q)

Figure 7. Derivation for Example 70.

We show that A, F° o : ¢, succeeds in the proof system for KB and
this shows that the formula

A A — ¢ is valid in KB.

A derivation is shown in Figure 7. The property of restricted restart still
holds for this fragment, thus we do not need to record the entire history,
but only the first pair (zo,q). At each step we only show the additional
data introduced in that step. A quick explanation of the steps: step (2) is
obtained by local reduction w.r.t. zo : ([(p = ¢) AQa] = r) — ¢, step (4) by
restart, steps (5) and (10) by local reduction w.r.t. o : [(Op = s) Ab] — ¢,
step (7) by restart, step (8) by reduction w.r.t. z; : p = ¢ since letting
a = {(zo, 1), (z0, 2)} AKB(21,20) holds; step (9) is obtained by reduction
wa.t. xp @ Op (= T = p) since REB(zy,2¢) holds, step (11) by local
reduction w.r.t. zg : @ — b, step (12) by reduction w.r.t. z; : Da (= T = a)
since REB (1, z0) holds.

The soundness and completeness results can be extended to this fragment.
THEOREM 71. A +° G, H succeeds in P(S) if and only if it is valid.
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Ezxtension to the whole propositional language

We can easily extend the procedure to the whole propositional modal lan-
guage: we just consider the computation procedure for classical logic and
we combine it with the modal procedure for £(=,A). To minimize the
work, we can introduce a simple normal form on the set of connectives
(=,—,A,T,1). It is obvious that this set forms a complete base for modal
logic. The normal form is an immediate extension of the normal form for
=, A.

PROPOSITION 72. Every modal formula over the language (—,—, <, 0)
is equivalent to a set (conjunction) of NF-formulas of the form

So—=(S1=(S2= ... (Spn=09...)

where q is an atom, T, or L, n > 0, and each S; is a conjunction (set) of
NF-formulas.

As usual we omit parentheses, so that the above will be written as
S()—)51:>52=>...=>Sn:>q.

In practice we will replace the conjunction by the set notation as we wish.
When we need it, we distinguish two types of NF-formulas, (i) those with
non-empty Sp, which are written as above, and (ii) those with empty So,
which are simplified to S; = S2 = ... = S, = ¢. For a quick case analysis,
we can also say that type (i) formulas have the form S — D, and type (ii)
have the form S = D, where D is always of type (ii).

For instance, the NF-form of p — Or is

(pA(r= 1)) — L, or equivalently {p,r = L} — L.

This formula has the structure Sop — ¢, where Sp = {p,r = L} and ¢ = L.
The NF-form of O(Ga — &(bAc¢)) is given by ((a = L) = L) = ((bAc) =
1) = L. We give below the rules for queries of the form

Ia +’ z:G,H,

where I is a labelled set of NF-formulas, G is a NF-formula, « is a set of
links (as usual), H is a set of pairs {(z1,q1),...(zk,qxr)}, where ¢; is an
atom.

DEFINITION 73 (Deduction rules for whole modal logics). For each modal
system S, the corresponding proof system, denoted by P(S), comprises the
following rules, parametrized to predicates AS.

e (success) A,a F° x:q, H immediately succeeds if ¢ is an atom and
z:q€A.

e (strict implication) From A,a F* z:S = D,H step to
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(A,) @2 (y:S) F y:D,H,
where y & Lab(A) U Lab(H).
e (implication) From A,a F* x:S — D,H step to
Au{z:A|AeS},a " z:D,H.

e (reduction) If y : C € A, with C =S5y = S1 = Se = ... = Sk = ¢,
with ¢ atomic, then from

AaFoziqH
step to

A,CM l_? U[)CS(),H’
Aa B oug o Sy, H

A,Cl I_? Uk:Sk,HI

where H' = H if ¢ = 1, and H' = H U {(z,q)} otherwise, for some
Uo, - - -, u, € Lab(a), such that ug =y, ux, = z, and

AS (us,uiq1) holds, for i =0,...,k— 1.
e (restart) If (y,7) € H, then, from A,a F’ z:q, H, with ¢ atomic,
step to
Aja F oy r, HU{(z,q)}.
e (falsity) From A,a F* z:q,H,if y € Lab(T) step to
Aja F oy LLHU{(z:q)}.
e (conjunction) From (A, ) F’ z:{B,... B}, H step to
(Aya) F' x: By, Hfori=1,... k.

If the number of subgoals is 0, i.e. k¥ = 0, the above reduction rule becomes
the rule for local clauses of the previous section. On the other hand if Sy = 0,
then the query with goal Sy is omitted and we have the rule of Section 4.1.

The proof procedure is sound and complete, as asserted in the next the-
orem, and the completeness proof is just a minor extension of the one of
Theorem 52.

THEOREM 74. T,y +F° & : G, H succeeds if and only if it is valid.

EXAMPLE 75. In K5 we have Op — OOp. This is translated as
(p=>1) - 1) = ((p=> L) = 1). Below we show a derivation. Some
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explanation and remarks: at step (1) we can only apply the rule for falsity,
or reduction w.r.t. y : p = L, since AX5(x,y) implies AX5(y, y). We apply
the rule for falsity. The reduction at step (2) is legitimate as AX®(zg,y)
and AX3(xq,2) implies AX5(y.2).

z:(p=>L)>1L)=(p=>L)=> 1L
zo:(p=>1l)=1

y:L (1)
zo: L rulefor L

To:p=> L

z: L (2)
z:p

success

zo:(p=>1l)—> 1
y:p= L, a={(z0,y)}

-~

)

)

z:p, a={((wo,y), (z0,2)}

)

This proof procedure is actually a minor extension of the one based on
strict-implication/conjunction. The rule for falsity may be source of non-
determinism, as it can be applied to any label y. Further investigation
should clarify to what extent this rule is needed and if it is possible to
restrict its applications to special cases. Another point which deserve inves-
tigation is termination. The proof procedure we have described may not ter-
minate. The two standard techniques to ensure termination, loop-checking
and diminishing-resources, could be possibly applied in this context. Again
further investigation is needed to clarify this point, taking into account the
kwnon results (see [Vigano, 1999; Heudering et al., 1996)).

4.4 Some history

Many authors have developed analytic proof methods for modal logics, (see
the fundamental book by Fitting [1983], and Goré [1999] for a recent and
comprehensive survey).

The use of goal-directed methods in modal logic has not been fully
explored. The most relevant work in this area is the one by Giordano,
Martelli and colleagues [Giordano et al., 1992; Giordano and Martelli, 1994;
Baldoni et al., 1998] who have developed goal-directed methods for frag-
ments of first-order (multi-)modal logics. Their work is motivated by sev-
eral purposes: introducing scoping constructs (such as blocks and modules)
in logic programming, representing epistemic and inheritance reasoning. In
particular in [Giordano and Martelli, 1994] a family of first-order logic pro-
gramming languages is defined, based on the modal logic S4 with the aim
of representing a variety of scoping mechanisms. If we restrict our consid-
eration to the propositional level, their languages are strongly related to
the one defined in Section 4.3 in the case the underlying logic is S4. The
largest (propositional) fragment of S4 they consider, called Ly, is very close
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to the one defined in the previous Section for modal-Harrop formulas, al-
though neither one of the two is contained in the other. The proof procedure
they give for Ly (at the propositional level) is essentially the same as the
unlabelled version of P(S4) for modal Harrop formulas.

Abadi and Manna [1989] have defined an extension of PROLOG, called
TEMPLOG based on a fragment of first-order temporal logic. Their lan-
guage contains the modalities ¢, O, and the temporal operator () (next).
They introduce a notion of temporal Horn clause whose constituents are
atoms B possibly prefixed by an arbitrary sequence of next, i.e. B = Q%A
(with & > 0). The modality O is allowed in front of clauses (permanent
clauses) and clause-heads, whereas the modality < is allowed in front of
goals. The restricted format of the rules allows one to define an efficient
and simple goal-directed procedure without the need of any syntactic struc-
turing or labelling. An alternative, although related, extension based on
temporal logic has been studied in [Gabbay, 1987].

Farinds in [1986] describes MOLOG a (multi)-modal extension of PRO-
LOG. His proposal is more a general framework than a specific language,
in the sense that the language can support different modalities governed
by different logics. The underlying idea is to extend classical resolution by
special rules of the following pattern: let B, B’ be modal atoms (i.e. atomic
formulas possibly prefixed by modal operators), then if G — B is a clause
and B' ACy A ... AC} is the current goal, and

(*) Es B = B’ holds

then the goal can be reduced to GACy A...ACg. It is clear that the effec-
tiveness of the method depends on how difficult it is to check (*); in case of
conventional logic programming the (*) test is reduced to unification. The
proposed framework is exemplified in [Farinds, 1986 by defining a multi-
modal language based on S5 with necessity operators such as Knows(a).
In this case one can define a simple matching predicate for the test in (*),
and hence an effective resolution rule.

In general, we can distinguish two paradigms in proof systems for modal
logics: on the one hand we have implicit calculi in which each proof con-
figuration contains a set of formulas implicitly representing a single pos-
sible world; the modal rules encodes the shifts of world by manipulating
sets of formulas and formulas therein. On the other hand we have ex-
plicit methods in which the possible world structure is explicitly repre-
sented using labels and relations among them; the rules can create new
worlds, or move formulas around them. In between there are ‘intermediate’
proof methods which add some semantic structure to flat sequents, but they
do not explicitly represent a Kripke model [Masini, 1992; Wansing, 1994;
Goré, 1999)].

The use of labels to represent worlds for modal logics is rather old and
goes back to Kripke himself. In the seminal work [Fitting, 1983] formulas
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are labelled by strings of atomic labels (world prefixes), which represent
paths of accessible worlds. The rules for modalities are the same for every
system: for instance if a branch contains o : A, and ¢’ is accessible from o,
then one can add ¢’ : A to the same branch. For each system, there are some
specific accessibility conditions on prefixes which constraint the propagation
of modal formulas. This approach has been recently improved by Massacci
[1994]. Basin, Mattews and Vigano have developed a proof-theory for modal
logics making use of labels and an explicit accessibility relation [Basin et al.,
1997a; Basin et al., 1999; Vigano, 1999]. A related approach was presented
in [Gabbay, 1996] and [Russo, 1996]. These authors have developed both
sequent and natural deduction systems for several modal logics which are
completely uniform.

If we forget the goal-directed feature the proof methods presented in this
section clearly belongs to the ‘explicit’-calculi tradition in their labelled
version, and to the ‘intermediate’-calculi tradition calculi in their unlabelled
version. The sequence of (sets of) formulas represent a sequence of possible
worlds. It is not a case that the unlabelled version of K is strongly related
to the two-dimensional sequent calculus by Masini [1992].

5 SUBSTRUCTURAL LOGICS

5.1 Introduction

In this section we consider substructural logics. The denomination sub-
structural logics comes from sequent calculi terminology. In sequent calculi,
there are rules which introduce logical operators and rules which modify the
structure of sequents. The latter are called the structural rules. In case of
classical and intuitionistic logic these rules are contraction, weakening and
exchange. Substructural logics restrict or allow a finer control on structural
rules. More generally, substructural logics restricts the use of formulas in
a deduction. The restrictions may require either that every formula of the
database must be used, or that it cannot be used more than once, or that
it must be used according to a given ordering of database formulas.

We present the systems of substructural logics, restricted to their implica-
tional fragment, by means of a Hilbert axiomatization and a possible-world
semantics.

DEFINITION 76 (Axiomatization of implication). ~We consider the fol-
lowing list of axioms:

(id) A— A4
(h1l) (B—=C)—= (A= B) - A— C;

(h2) (A—-B)—»(B—-C)— A—C;
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h3) (A- A— B) » A— B;

(h3)
(h4) (A—- B) = ((A—B)—>C)—C;
(h5) A — (A — B) — B;

(h6)

h6) A - B — B.

Together with the following rules:
A—-B A
——— (MP)

A—B

(B=>C)—=A-=C

(Suff).

Each system is axiomatized by taking the closure under modus ponens (MP)
and under substitution of the combinations of axioms/rules of Table 3.

Table 3. Axioms for substructural implication.

Logic | Axioms

FL (id), (h1), (Suff)

T-W | (id), (hl), (h2)

T (id), (h1), (h2), (h3)

E-W | (id), (hl), (h2), (h4)

E (id), (h1), (h2), (h3), (h4)

L (id), (hl1), (h2), (h5)

R (id), (h1), (h2), (h3), (h5)
BCK | (id), (hl), (h2), (h5), (h6)

I (id), (h1), (h2), (h3), (h5), (h6)

In the above axiomatization, we have not worried about the minimality
and independence of the group of axioms for each system. For some systems
the corresponding list of axioms given above is redundant, but it quickly
shows some inclusion relations among the systems. We just remark that
in presence of (h4), (h2) can be obtained by (hl). Moreover, (h4) is a
weakening of (h5). The rule of (Suff) is clearly obtainable from (h2) and
(MP). To have a complete picture we have included also intuitionistic logic
I, although the axiomatization above is highly redundant (see Section 3.1).

We give a brief explanation of the names of the systems and how they
are known in the literature.'®> R is the most important system of relevant

13The names R, E, T, BCK, etc. in this section refer mainly to the implicational
fragment of the logical systems known in the literature [Anderson and Belnap, 1975]
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logic and it is axiomatized by dropping the irrelevant axiom (h6) from the
axiomatization of intuitionistic implication.

The system E combines relevance and necessity. The implication of E
can be read at the same time as relevant implication and strict implication.
Moreover, we can define

OA =gef (A= A) = A,

and E interprets O the same as S4. E is axiomatized by restricting the
exchange axiom (h5) to implicational formulas (the axiom (h4)).

The weaker T stems from a concern about the use of the two hypotheses
in an inference by Modus Ponens: the restriction is that the minor A must
not be derived ‘before’ the ticket A — B. This is clarified by the Fitch-style
natural deduction of T, for which we refer to [Anderson and Belnap, 1975].

BCK is the system which result from intuitionistic implicational logic
by dropping contraction. L rejects both weakening and contraction and it
is the implicational fragment of linear logic [Girard, 1987] (also commonly
known as BCI logic).

We will also consider contractionless versions of E and T, , namely E-
Wand T-W respectively.

The weakest system we consider is FL,'* which is related to the right
implicational fragment of Lambek calculus. This system rejects all sub-
structural rules.

We will mainly concentrate on the implicational fragment of the systems
mentioned. In Section 5.3, we will extend the proof systems to a fragment
similar to Harrop-formulas. For the fragment considered, all the logics stud-
ied in this section are subsystems of intuitionistic logic. However, this is no
longer true for the fragment comprising an involutive negation, which can
be added (and has been added) to each system. In this section we do not
consider the treatment of negation. We refer the reader to [Anderson and
Belnap, 1975; Anderson et al., 1992] for an extensive discussion.

In Figure 5.1 we show the inclusion relation of the systems we consider
in this section.

We give a corresponding semantics for this set of systems. The semantics
we refer is a simplification of the one proposed in [Fine, 1974], [Anderson et
al., 1992] and elaborated more recently by Dosen [1988; 1989].1°

with the corresponding names. The implicational fragments are usually denoted with
the subscript —. Thus, what we call R is denoted in the literature by R_, and so
forth; since we are mainly concerned with the implicational systems we have preferred to
minimize the notation, stating explicitly when we make exception to this convention.
14The denomination of the system is taken from [Ono, 1998; Ono, 1993].
I5Dealing only with the implicational fragment, we have simplified Fine semantics: we
do not have prime or maximal elements.
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Figure 8. Lattice of Substructural Logics.

DEFINITION 77. Let us fix a language £, a Fine S-structure!® M is a
tuple of the form:

M = (W7 S? 0707 V)7

where W is a non empty set, o is a binary operation on W, 0 € W, <is a
partial order relation on W, V' is a function of type W — Pow(Var). In all
structures the following properties are assumed to hold:

Ooa=a,
a < bimpliesaoc<boc,
a < b implies V(a) C V(b).

For each system S, a S-structure satisfies a subset of the following condi-
tions, as specified in Table 4

ao(boc)<(aob)oc

a2) ao(boc) < (boa)oc;

Truth conditions for a € W, we define
e M,alpifpeV(a);

16We just write S-structure if there is no risk of confusion.
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e M,al=A— Bif
Vbe W(M,bl= A = M,aob = B).

We say that A is valid in M (denoted by M = A) if M,0 |= A. We say that
A is S- valid, denoted by
ELine A if A is valid in every S-structure.

Table 4. Algebraic conditions of Fine Semantics.

Logic | (al) | (a2) | (a3) | (ad) | (ad) | (a6)
FL *

W [ * | ¥

T * % *

E-W | * * *

E * % * %

L * * * *

R * % * % %

BCK | * * * *

i * % * % %

We have included again intuitionistic logic I in Table 4 to show its proper
place within this framework. Again this list of semantical conditions is
deliberately redundant in order to show quickly the inclusion relation among
the systems. The axiomatization given above is sound and complete with
respect to this semantics. In particular each axiom (hi) corresponds to the
semantical condition (ai).

THEOREM 78 (Anderson et al., 1992, Fine, 1974, Dosen, 1989). Es A if
and only if A is derivable in the corresponding axiom system of Definition
76.

We assume that o associates to the left, so we write

aoboc=(aob)oc.

5.2 Proof systems

We develop proof methods for the implicational logics: R, BCK, E, T,
E-W, T-W, FL. As we have seen in the section about modal logics, we
can control the use of formulas by labelling data and putting constraints on
the labels. In this specific context by labelling data, we are able to record
whether they have been used or not and to express the additional conditions
needed for each specific system. Formulas are labelled with atomic labels
x,y, 2. Intuitively these labels can be read as representing at the same time
resources and positions within a database.
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DEFINITION 79. Let us fix a denumerable alphabet A = {z1,...,z;,...}
of labels. We assume that labels are totally ordered as shown in the enu-
meration, vg is the first label. A database is a finite set of labelled formulas
A={z:A,...,z,: A,}. We assume that

ifr:AcAandz:B €A, then A= B.'7

We use the notation Lab(E) for the set of labels occurring in an expression
E, and we finally assume that vo ¢ Lab(A). Label vgp will be used for
queries from the empty database.

DEFINITION 80. A query @ is an expression of the form:
ASF z:G

where A is a database, § is a finite set of labels not containing vq; moreover
if  # vo then € Lab(A), and G is a formula.
A query from the empty database has the form:

F? vo: G.

Let max(d) denote the maximum label in ¢ according to the enumeration
of the labels. By convention, we stipulate that if § = (), then max(d) = vy.
The set of labels § may be thought as denoting the set of resources that are
available to prove the goal. Label z in front of the goal has a double role as
a ‘position’ in the database from which the goal is asked, and as available
resource.

The rules for success and reduction are parametrized to some conditions
SuccS and RedS that will be defined below.

e (success) A,§ F° z:q; succeeds if z: ¢ € A and SuccS(d, z).
e (implication) from A,§ F* z:C — G step to
Au{y:CHou{y} F y:G,

where y > max(Lab(A)), (whence y ¢ Lab(A));
e (reduction) from
AG F g,
if there is some z : C' € A, with C = A; —» ... = Ay — ¢, and there
are d;, and x; for i = 0,.. .,k such that:

1. do = {2z}, o = 2,

17This restriction will be lifted in Section 5.3 where conjunction is introduced in the
language.
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2. U, i =4,
3. RedS(0,...,0k, 0, .., Th;T)
then for i = 1,...k, we step to
A6, Fomg s A

The conditions for success are either (s1) or (s2) according to each system:
(s1) Succ3(6,z) = x €4,
(s2) SuccS(8,z) = 6 = {z}.
The conditions Red® are obtained as combination of the following clauses:
(r0) =z = x;
(rl) fori,j=0,...,k, 6; Nd; = 0;
(r2) fori=1,...,k, x;—1 <z; and max(J;) < x;;
(r3) fori=1,...,k x;—1 < z; and max(d;) = x;;

(r4) fori=1,...,k, x,—1 < x;, max(d;—1) = z;—1 < min(J;) and max(d) =
Tg.

The conditions Red® are then defined according to Table 5.

Table 5. Restrictions on reduction and success.

Condition | (r0) | (rl) | (r2) | (r3) | (r4) | (Success)
FL * [ (s2)
T-W * * (s2)
T * (s2)
E-W * * (s2)
E * (s2)
L * (s2)
R (s2)
BCK % (1)

Notice that

(rd) = (r3) = (r2), and
(rd) = (rl).
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We give a quick explanation of the conditions Succ® and RedS. We
recall that the component § represents the set of available resources which
must/can be used in a derivation.

For the success rule, in all cases but BCK, we have that we can succeed
if z : ¢ is in the database, = is the only resource left, and ¢ is asked from
position z; in the case of BCK 2z must be among the available resources,
but we do not require that z is the only one left.

The conditions for the reduction rule can be explained intuitively as fol-
lows: resources ¢ are split in several §;, for ¢ = 1,...,k and each part d;
must be used in a derivation of a subgoal A;.

In the case of logics without contraction we cannot use a resource twice,
therefore by restriction (rl), the d;s must be disjointed and z, the label of
the formula we are using in the reduction step, is no longer available.

Restriction (r2) imposes that successive subgoals are to be proved from
successive positions in the database: only positions y > x are ‘accessible’
from z; moreover each x; must be accessible from resources in d;. Notice
that the last subgoal Ay must be proved from z, the position from which
the atomic goal ¢ is asked.

Restriction (r3) is similar to (r4), but it further requires that the position
x; is among the available resources §;.

Restriction (r4) forces the goal A; to be proved by using successive dis-
jointed segments 0; of 6. Moreover, z which labels the formula used in the
reduction step must be the first (or least) resource among the available ones.

It is not difficult to see that intuitionistic (implicational) logic is obtained
by considering success condition (s1) and no other constraint. More interest-
ingly, we can see that S4-strict implication is given by considering success
condition (s1) and restrictions (r0) and (r2) on reduction. We leave the
reader to check that the above formulation coincides with the database-as-
list formulation of S4 we have seen in the previous section. We can therefore
consider S4 as a substructural logic obtained by imposing a restriction on
the weakening and the exchange rules. On the other hand, the relation
between S4 and E should be apparent: the only difference is the condition
on the success rule which controls the weakening restriction.

We can prove that each system is complete with respect to the its ax-
iomatization by a syntactic proof. To this aim, we need to show that every
axiom/rule is derivable, and the sets of derivable formulas is closed under
substitution and Modus Ponens. The former property is proved by induction
on the length of a derivation. The latter property is as usual a straightfor-
ward consequence of cut admissibility. This property is proved similarly to
Theorem 10, although the details of the proof are more complex, because
of the various restrictions on the reduction rule (see [Gabbay and Olivetti,
2000] pages 181-191, Theorem 5.19).
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PROPOSITION 81 (Substitution). If Q = I,y F° z: A succeeds, then
also Q' = T[q/B),y F* x: Alq/B] succeeds.

PROPOSITION 82 (Modus Ponens). If F* vo: A — B and F* vo: A
succeed then also F° vo : B succeeds.

PROPOSITION 83 (Identity). If v : A € T and SuccS(vy,z) then T,y F’
x 1 A succeeds.

THEOREM 84 (Completeness). For every system S, if A is a theorem of
S, then - vg : A succeeds in the corresponding proof system for S.

Proof. By Propositions 81, 82, we only need to show a derivation of an
arbitrary atomic instance of each axiom in the relative proof system. In the
case of reduction, the condition v = | J;, will not be explicitly shown, as its
truth will be apparent by the choice of v;. We assume that the truth of the
condition for the success rule is evident and we do not mention it. At each
step we only show the current goal, the available resources and the new data
introduced in the database, if any. Moreover, we justify the queries obtained
by a reduction step by writing the relation RedS (Yo, ..., Yn,To,. -, Tn;T)
(for suitable v;, ;) under them; the database formula used in the reduction
step is identified by 7.

(id) In all systems:
Fe Vo:a—a
we step to
u:a,{u} F u:a,

which immediately succeeds in all systems.

(h1) In all systems:
Fovo:(b—=c) = (a—=b) »a—c
three steps of the implication rule leads to:

Ti:b—c, z2:a—b, v3:a, {T1, 10,23} ' wm3:c
{9,235} F° x3:b

RedS({x1},{xy, 23}, 21, 23; 23)
{z3} F' x3:a

RedS({z2}, {z3}, 22, x3; T3).
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(h2) In all systems, but FL:
F ovo:(a—=b) = (b—¢) = a—ec
three steps of the implication rule leads to:

Ti:a—b xo:b—c 13:a, {T1, 10,23} F  m3:c
(%) {z1,23} F'  x3:0b,
RedS({x3},{x1, 23}, 2o, 23; 3)
{z3} F° x3:a,
Red®({z1}, {z3}, x1, x3; 73).
the step (*) is allowed in all systems, but those with (r4), namely FL.

(h3) In all systems, but those with (rl) or (r4):
F' vo:(a—a—b) = a—b.
Two steps of the implication rule leads to:
x1:a—a—=b, x2:a, {1, 2} Fo@ot b,
By reduction we step to:
{2} F' zo:a and {x} F’ 25 :a

since Red®({z1},{z2}, {72}, 71,22, T2;22) holds in all systems with-
out (rl) and (r4).

(h4) In all systems, but those with (r3) or (r4):
F' vo:(a—b) = ((a—=b) = c) >c.
two steps of the implication rule leads to:

Ti:ia—b za:(a—=b) = {1z} F omm:c
() {z1} F ma:a—b
Reds({x2},{x1},m2,x2;m2)
r3:a, {1,235} F x3:b
{z3} F' x3:a
Reds({xl},{xg},ml,xg;mg)

The step (*) is allowed by (r2), but not by (r3) or (r4) since max({z1}) =
T < T2.
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In LLRBCK:
F' vo:a— (a—b) = b,
two steps of implication rule leads to:

Tyia, y:a—b, {v,r} F omp:b
{x1} F° =21:a
Red®({z2}, {1}, 22, 715 22).

In BCK we have:
F vo:a—b—b.

two steps by implication rule leads to:
x1:a, x3:b, {x1,22} F? ao b

which succeeds by the success condition of BCK. This formula does
not succeed in any other system.

We prove the admissibility of (Suff) rule in FL. Let F* vo: A — B
succeed. Then for any formula C', we have to show that

F vo: (B — C) = A — C succeeds.

Let C =C; — ... — C, — q. Starting from

FHovo:(B=Ci—...5Ch—=q 2 A=Cl—...5C,—=q

by the implication rule, we step to A, {z1,...,Zpi2} F Tpyo 1 ¢, where
A = {z:B->Ci—...5C,—q, z9:4,
23 :Cly.. oy Tpga: Cp e

From the above query we step by reduction to:

Q' = A, {z2} F* x5 : B and
Qi = A,{$i+2} I—? Ti42 : Cz fori = 1,...,TL.

since the conditions for reduction are satisfied. By hypothesis, F*
vo : A — B succeeds, which implies, by the implicational rule, that
zy: A, {x3} F* 2y : B succeeds, but then Q' succeeds by monotony.
Queries @; succeed by Proposition 83. |
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We can prove the soundness semantically. To this purpose we need to
interpret databases and queries in the semantics. As usual, we introduce
the notion of realization of a database and then of validity of a query.

DEFINITION 85 (Realization). Given a database I', and a set of labels 7,

an S-realization of (T',7) in an S-structure M = (W, 0,<,0,V), is a mapping
p: A— W such that:

L. p(vo) = 0;

2. ify: B el then M,p(y) = B.

In order to define the notion of validity of a query, we need to introduce
some further notation. Given an S-realization p, v and z, we define

0
v) = p(x1)o...op(xy) ify ={z1,...,2,}, wherezy < ... <z,

DEFINITION 86 (Valid query). Let Q@ = T,y F’ z: A, we say that Q
is S-valid if for every S-structure M, for every realization p of ' in M, we
have

M, p(< v,z >) F A

According to the definition above, the S-validity of the query F’° vq : A
means that the formula 4 is S-valid (i.e. =57 A).

THEOREM 87. If Q = T,y F° =z : A succeeds in the proof system for
S then Q is S-valid. In particular, if vo : A succeeds in the proof system
for S, then =5e A.

The proof can be done by induction on the length of derivations, by suit-
ably relating the constraints of the reduction rule to the algebraic semantic
conditions.

5.8 Extending the language

In this section we show how we can extend the language by some other
connectives. We allow extensional conjunction (A), disjunction (V), and
intensional conjunction or tensor (®). The distinction between A and ®
is typical of substructural logics and it comes from the rejection of some
structural rule: A is the usual lattice-inf connective, ® is close to a residual
operator with respect to —. In relevant logic literature ® is often called
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fusion or cotenability and denoted by o.'® The addition of the above connec-
tives presents some semantic options. The most important one is whether
distribution (dist) of A and V is assumed or not. The list of axioms/rules
below characterizes distributive substructural logics.

DEFINITION 88 (Axioms for A, ®, V).
1. ANB — A,
2. ANB — B,
3. (C—-AAN(C—->B)—(C—AANB),
4. A— AV B,
5. B— AV B,
6. A-C)AN(B—-C)—= (AVB—=C(C)
A B
ANB
A—-B—=C
A®B—C
A®B —~C

A—-B-=C
(e-A) For E and E-W only

OAANOB — O(AAB)
where OC =45 (C = C) — C.
(dist) AN(BVC)— (AANB)VC.

As we have said, the addition of distribution (dist) is a semantic choice,
which may be argued. However, for the fragment of the language we consider
in this section it does not really matter whether distribution is assumed or
not. This fragment roughly corresponds to the Harrop fragment of the
section of modal logics (see Section 4.3); since we do not allow positive
occurrences of disjunction, the presence of distribution is immaterial.!® We
have included distribution to have a complete axiomatization with respect
to the semantics we adopt.

18We follow here the terminology and notation of linear logic [Girard, 1987].

191n the fragment we consider we trivially have (for any S) I'a F’ z: AA(BV C)
impliesT',a 7 x: AV(BAC), where I is a set of D-formulas and A, B, C' are G-formulas
(see below).
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As in the case of modal logics (see Section 4.3), we distinguish D-formulas,
which are the constituents of databases, and G-formulas which can be asked
as goals.

DEFINITION 89. Let D-formulas and G-formulas be defined as follows:
D:=q|G— D,
CD:=D|CDACD,
G:=q|GANG|GVGE|G®G|CD — Gq.
A database A is a finite set of labelled of D-formulas.

A database corresponds to a ®-composition of conjunctions of D-formulas.
Formulas with the same label are thought as A-conjuncted. Every D-formula
has the form

Gy — ... G —q,

In the systems R, L, BCK, we have the theorems
(A-B—-C)—»(A®B—-C) and (A®B—-C)—(A—-B—C()

Thus, in these systems we can simplify the syntax of (non atomic) D-
formulas to G — ¢ rather than G — D. This simplification is not allowed
in the other systems where we only have the weaker relation

F(A—-B—-C) & FA®B—C.

The extent of Definition 89 is shown by the following proposition.
PROPOSITION 90. Every formula on (A,V,—,®) without

e positive?® (negative) occurrences of ® and V and
e occurrences of ® within a negative (positive) occurrence of A

is equivalent to a A-conjunction of D-formulas (G-formulas).

The reason we have put the restriction on nested occurrences of ® within
A is that, on the one hand, we want to keep the simple labelling mechanism
we have used for the implicational fragment, and on the other we want to
identify a common fragment for all systems to which the computation rules
are easily extended. The labelling mechanism no longer works if we relax

20Positive and negative occurrences are defined as follows: A occurs positively in A;
if B#C occurs positively (negatively) in A (where # € {A,V,®}), then B and C occur
positively (negatively) in A; if B — C occurs positively (negatively) in A, then B occurs
negatively (positively) in A and C occurs positively (negatively) in n A. We say that a
connective # has a positive (negative) occurrence in a formula A if there is a formula
B#C which occurs positively (negatively) in A.
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this restriction. For instance, how could we handle A A (B ® C) as a D-
formula? We should add z : A and « : B® C' in the database. The formula
x : B® C cannot be decomposed, unless we use complex labels: intuitively
we should split z into some y and z, add y : B and z : C, and remember
that x,y, z are connected (in terms of Fine semantics the connection would
be expressed as £ = y o z).2!

The computation rules can be extended to this fragment without great
effort.

DEFINITION 91 (Proof system for the extended language). We give the
rules for queries of the form

A6 F oz G,
where A is a set of D-formulas and G is a G-formula.
e (success) A, 0 F° z:q succeeds if z;¢ € A and SuccS (4, z).

e (implication) from A,§ F* z:CD — G
ifCD =Dy AN...\D,, we step to

AU{y:Dy,...,y: D}, 0U{y} F' y: G
where y > max(Lab(A)), (hence y ¢ Lab(A)).

e (reduction) from A,§ 7 z:q
if thereis z : G; — ... =& G — q € A and there are §;, and z; for
1 =0,...,k such that:

1. 6o = {2}, zo = 2,
2. Ul 8 =9,
3. RedS(8o,...,0h,T0,...,Tk;T),

then for i = 1,...k, we step to
A6, oz Gl
e (conjunction) from A, F x:G1 AGy step to
AdF z:Giand A6 F oz Gs.
e (disjunction) from A,§ F* z:G1V Gy step to
ASF z:Gifori=1ori=2.

21Tn some logics, such as L, we do not need this restriction since we have the following
property: I' AA B+ C implies ' A+ C or I', B C. Thus, we can avoid introducing
extensional conjunctions into the database, and instead introduce only one of the two
conjuncts (at choice). This approach is followed by Harland and Pym [1991]. However
the above property does not hold for R and other logics.
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e (tensor) from A,§ F* z:G1 ® G»
if there are 01, d2, x1 and x> such that
1. § =6, Uds,
2. RedS(d1, 62,71, 72;T),

step to
A,51 |—? I ZG1 and A,62 l—? I : GQ.

An easy extension of the method is the addition of the truth constants
t, and T which are governed by the following axioms/rules

A—>T,
Ft— Aiff - A.

Plus the axiom of (t - A) — A for E and E-W. We can think of t as
defined by propositional quantification
t =aer Vp(p — p).

Equivalently, given any formula A, we can assume that t is the conjunction
of all p — p such that the atom p occurs in A. Basing on this definition,
it is not difficult to handle t in the goal-directed way and we leave to the
reader to work out the rules. The treatment of T is straightforward.

EXAMPLE 92. Let A be the following database:
r1:eNg—d,
z2:(c—=d)®(aVb) —p,
T3 :C— €,
r3:Cc— g,
z4:(c—g)—b.

In Figure 9, we show a successful derivation of
A {1, 2, 3,24} F? oz cp

in relevant logic E (and stronger systems). We leave to the reader to justify
the steps according to the rules. The success of this query corresponds to
the validity of the following formula in E:

[(eAg—=d)®((c>d) @ (aVb) = p) @ ((c—=e)A
A(c—)g))@((c—)g)—)b)] — p.

We can extend the soundness and completeness result to this larger frag-
ment. We first extend Definition 77 by giving the truth conditions for the
additional connectives.
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?
A {zi,z2, 23,24} F xa:p

A {z1, 23,24} F' oz (c—d) @ (aVb)

/\

A{zi,z3} Foaz:e—d A {zz,za} F' xa:a Vb
|
A xs e {x1, 3,25} F' x5 d A {zs,za} F'oaa:h
|
Azxs e, {x3, x5} F' z5:eAg A, {z3} F' za:c—g
|
TA_,?x;E (:2,6{1‘3,965} TA_’?M% (:l,g{x3,x5} Aze:c,{za,x6} F z6: 9
TA_%x;S :C{CM} T{?x;;?’c{%} A,xe e, {we} F we:c

Figure 9. Derivation for Example 92.

DEFINITION 93. Let M = (W,0,0,V) be a S-structure, let a € W we
stipulate:

M,aEAABiff M,a = A and M,a = B,
M,a=AVBiff Mial=Aor M,a |E B,

M,a = A® B iff there are b,c € W, s.t. boc<aand M,aE A
and M,a = B.

It is straightforward to extend Theorem 87 obtaining the soundness of the
proof procedure with respect to this semantics. The completeness can be
proved by a canonical model construction. The details are given in [Gabbay
and Olivetti, 2000], (see Section 6.1). Putting the two results together we
obtain:

THEOREM 94. Let T,y ' z : G be a query with v = {zy,...,71}
(ordered as shown), and let S; = {A | z; : A €T}, i =1,...,k. The
following are equivalent:

1. ':gine ANS1®...9A\Sk) -G

2. T,y V" 2 : G succeeds in the system S.
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5.4  Eliminating the labels

As in the case of modal logics, it turns out that for most of the systems (at
least if we consider the implicational fragment), labels are not needed.

PROPOSITION 95.

o IfT,y F* x:B succeeds, u: A€T butu gy, thenT —{u: A}, vy F’
x : B succeeds.

e For R, L, BCK, if ',y +’ 2 : B succeeds, then for every y € v,
I,y F* y: B succeeds.

e For T,T-W,FL, if ',y +° =« : B succeeds then it must be x =
max(7y).

Because of the previous proposition, the formulas which can contribute
to the proof are those that are listed in . Since every copy of a formula gets
a different label, labels and ‘usable’ formulas are into a 1-1 correspondence.
Moreover in all cases, but E and E-W, the label x in front of the goal is
either irrelevant or it is determined by . Putting these facts together, we
can reformulate the proof systems for all logics, but E and E-W without
using labels. The restrictions on reduction can be expressed directly in
terms of the sequence of database formulas. In other words, formulas and
labels become the same things. As an example we give the reformulation
of L and FL. In case of L, it is easily seen that the order of formulas does
not matter (it can be proved that permuting the database does not affect
the success of a query), thus the database can be thought as a multiset of
formulas, and the rules become as follows:

1. (success) A F’° ¢ succeeds if A = g,
2. (implication) from A F* A — B step to A, A F* B,

3. (reduction) from A,C — ... = C, = q F° ¢ step to A; ' C;,
where A = L;A;, (U denotes multiset union).

In other words we obtain what we have called the linear computation in
Section 3.3, Definition 13.

In case of FL, the order of the formulas is significant. Thus the rules for
success and implication are the same, but in case of implication the formula
A is added to the end of A. The rule of reduction becomes:

(FL-reduction) from C — ... = C, — ¢,A F’ ¢ step to
Ai l_? Ci, where A = Al,. . .,An,

in this case “,” denotes concatenation. The reformulation without labels for
R, T, and T-W, BCK is similar and left to the reader.
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5.5 Some history

The use of labels to deal with substructural logics is not a novelty: it has
been used for instance by Prawitz [1965], by Anderson and Belnap [1975],
to develop a natural-deduction formulation of most relevant logics. The
goal-directed proof systems we have presented are similar to their natural
deduction systems in this respect: there are not explicit structural rules.
The structural rules are internalized as restrictions in the logical rules.

Bollen has developed a goal-directed procedure for a fragment of first-
order R [Bollen, 1991]). His method avoids splitting derivations in several
branches by maintaining a global proof-state A * [A;,..., A,], where all
Ap,... A, have to be proved (they can be thought as linked by ®). If we
want to keep all subgoals together, we must take care that different subgoals
A; may happen to be evaluated in different contexts. For instance in

CF D= EF—G

according to the implication rule, we must evaluate E from {C, D}, and
G from {C, F}. Bollen accommodates this kind of context-dependency by
indexing subgoals with a number which refers to the part of the database
that can be used to prove it. Furthermore, a list of numbers is maintained
to remember the usage; in a successful derivation the usage list must contain
the numbers of all formulas of the database.

Many people have developed goal-directed procedures for fragments of
linear logic leading to the definition of logic programming languages based
on linear logic . This follows the tradition of the uniform proof paradigm
proposed by Miller [Miller et al., 1991]. We notice, in passing, that implica-
tional R can be encoded in linear logic by defining A — B by A —!A — B,
where ! is the exponential operator which enables the contraction of the
formula to which is applied. The various proposals differ in the choice of
the language fragment. Much emphasis is given to the treatment of the
exponential !, as it is needed for defining logic programming languages of
some utility: in most applications, we need permanent resources or data,
(i.e. data that are not ‘consumed’ along a deduction); permanent data can
be represented by using the ! operator.

Some proposals, such as [Harland and Pym, 1991] and [Andreoli and
Pareschi, 1991; Andreoli, 1992] take as basis the multi-consequent (or clas-
sical) version of linear logic. Moreover, mixed systems have been studied
[Hodas and Miller, 1994] and [Hodas, 1993] which combine different log-
ics into a single language: linear implication, intuitionistic implication and

more.22

221n [Hodas, 1993], Hodas has proposed a language called O which combines intuition-
istic, linear, affine and relevant implication. The idea is to partition the ‘context’, i.e.
the database in several (multi) sets of data corresponding to the different handling of the
data according to each implicational logic.
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O’Hearn and Pym [1999] have recently proposed an interesting develop-
ment of linear logic called the logic of bunched implications. Their system
has strong semantical and categorical motivations. The logic of bunched
implications combines a multiplicative implication, namely the one of linear
logic and an additive (or intuitionistic) one. The proof contexts, that is the
antecedents of a sequent, are structures built by two operators: ‘,” corre-
sponds to the multiplicative conjunction ® and ‘;’ corresponds to the addi-
tive conjunction A. These structures are called bunches. Similar structures
have been used to obtain calculi for distributive relevant logics [Dunn, 1986].
The authors define also an interesting extension to the first-order case by
introducing intensional quantifiers. Moreover they develop a goal-directed
proof procedure for a Harrop-fragment of this logic and show significant
applications to logic programming.

In [Gabbay and Olivetti, 2000], the goal-directed systems are extended
to RMO where a suitable restart rule takes care of the mingle rule. More-
over, it is shown how the goal-directed method for R can be turned into
a decision procedure (for the pure implicational part) by adding a suit-
able loop-checking mechanism. We notice that for contractionless logics,
the goal-directed proof-methods of this section can be the base of decision
procedures.

To implement goal-directed proof systems for substructural logics, one
can import solutions and techniques developed in the context of linear logic
programming. For instance, in the reduction and in the ®-rule we have to
guess a partion of the goal label. A similar problem has been discussed in
the linear logic programming community [Hodas and Miller, 1994; Harland
and Pym, 1997] where one has to guess a split of the sequent (only the
antecedent in the intuitionistic version, both the antecedent and consequent
in the ‘classical’ version). A number of solutions have been provided, most
of them based on a lazy computation of the split parts. Perhaps the most
general way to handle this problem has been addressed in [Harland and
Pym, 1997] where it is proposed to represent the sequent split by means of
Boolean constraints expressed by labels attached to the formulas. Different
strategies of searching the partitions correspond to different strategies of
solving the constraints (lazy, eager and mixed).

6 DEVELOPMENTS, APPLICATIONS AND MECHANISMS

The goal-directed proof methods presented in this chapter may be useful
for several purposes, beyond the mere deductive task. The deductive pro-
cedures can be easily extended in order to compute further information, or
to support other logical tasks, such as abduction. We show two examples:
the computation of interpolants in implicational linear logic, and the com-
putation of abductive explanations in intuitionistic logic. Both of them are
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simple extensions of the goal-directed procedures that we have seen in the
previous sections. We conclude by a discussion about the extension of the
goal-directed methods to the first order case.

6.1 Interpolation for linear implication

By interpolation we mean the following property. Let ¢); and Q2 be two
sets of atoms; let £; be the language generated by @1 and Lo by Qs; finally
let A, B be formulas with A € £, and B € £,. If A+ B, then there is a
formula C € £ N Ly, such that A+ C and C + B. The formula C' is called
an interpolant of A and B. Here, we consider the interpolation property for
implicational linear logic, i.e. F denotes provability in (implicational) linear
logic, and A, B contain only implication. We show how the procedure of
the previous section can be modified to compute an interpolant. Since the
computation is defined for sequents of the form I' A, where I is a database
(a multiset of formulas in this case), we need to generalize the notion of
interpolation to provability statements of this form. As a particular case we
will have the usual interpolation property for pair of formulas. To generalize
interpolation to database we need first to generalize the provability relation
to databases. Let A = Ay,..., A,, we define:

'+ A iff there are Ay, ..., A,, such that A = Ay Ll...UA,, and
A;FAjfori=1,...,n

The formulas A; can be thought as conjuncted by ®. Moreover, since 4; —

.= A, — B, is equivalent to 4; ® ... ® A, — B, and ® is associative
and commutative, we abbreviate the above formula with A — B, where A
is the multiset A;,...,4,. Let ' € £; and A € L5, suppose that [' - A
holds; an interpolant for I' - A is a database II € £ N L5 such that '+ II
and IT = A. Oberve that if | T' |= 1, it must be also | IT |= 1, and we have
the ordinary notion of interpolant.

We give a recursive procedure to calculate an interpolant for ' - A. We
do this by defining a recursive predicate Inter(I; A; A;II) which is true
whenever: T' € L1, A,A € L5, ', A+ A holds, and II is an interpolant for
A — A

e (Succ 1) Inter(q;0;q;q).

e (Succ 2) Inter(D;q; q;0).

e (Red 1) Inter(I‘ Cy —...C, — q; A;q; D), if there are T';, A;, TI; for

(

(

e (Imp) Inter(T;A; A — B, 1) if Inter(T; A, A; B,1I).

(
i =1,...,n such that

1. T =1, A =LA,
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2. Inter(A;Ty; CpIL) for i =1, .0 ,n,
3.II=ILu...ull, —q

e (Red 2) Inter(T;A,Cy — ... Cy, — q; ¢; 1), if there are T';, A;, II; for
i =1,...,n such that

1. T =10y, A = 1A, IT = w10,
2. Inter(T;; Ay; C L) for i =1, ... n.

If we want to find an interpolant for T' - A, the initial call is Inter(T; 0; A; IT),
where II is computed along the derivation. One can observe that the pred-
icate Inter is defined by following the definition of the goal-directed proof
procedure. (Succ 1) and (Succ 2) apply to the case of immediate success,
respectively when the atom is in £, and when it is in L. Analogously, (Red
1) deals with the case the atomic goal unifies with the head of a formula in
L; and (Red 2) when it unifies with the head of a formula in £,. It can be
proved that if I' = A the algorithm computes an interpolant. Moreover all
interpolants can be obtained by selecting different formulas in the reduction
steps. Here is a non trivial example.

EXAMPLE 96. Let
A=((f=2e)=((a=b) =)= (a=q 2> (@20 = f—=b) =y,
and
B=(e—cod —(d—>a)—(a—=b) —g

One can check that A - B holds; we compute an interpolant, by calling
Inter(A;(; B;1I). Let us abbreviate the antecedent of A by A’. Here are
the steps, we underline the formula used in a reduction step:

(1) Inter(4;0; B; 1)

(2) Inter(4; e » c—d,d— a,a —b; g; II)

(3) Inter(e - c—d,d—a,a—b; §; A1) O=1; =g

(4) Inter(e = ¢ —d,d = a,a = b; f = e,(a—=b) = c,a— q,q—=0b,f;

byﬂl)
(5) Inter(e > c—d,d—a,a—b; f—e (a—=b)=ca—q,f; qll)
(6) Inter(e > c—d,d—=a,a—b; f —e (a—=b) —cf;a,)

(7) Inter(f —e,(a—=b)—>c f; e—=c—dya—b;; d]Il)
I, =1, > a
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Now we have a split with II, = I3, 114 and

(8) Inter(f — e, f; 0; e; IIs) and (9) Inter((a = b) — ¢; a — b; ; ¢,IIy).
(8) gives

(10) Inter(0; f; f; W5) T3 =15 e

whence ITIs = 0. (9) gives

(11) Inter(a — b; 0; a = b; ) Iy =Tl — ¢
(12) Inter(a — b; a; b; Ilg)

(13) Inter(a; 0; a; ;) Tlg =1y — b

Thus II; = a and we have:

IIg =a— 0,

II3 = e,

Iy = (a = b) = ¢

I, =e,(a—b) — ¢,

Il =e— ((a > b) > ¢) = a,

MI=(e— ((a—=b) 2c)—=a)—g.

IT is evidently in the common language of A and B; we leave to the reader
to check that A F IT and 1T - B.

It is likely that similar procedures based on the goal-directed computa-
tion can be devised for other logics admitting a goal directed presentation.
However, further investigation is needed to see to what extent this approach
works for other cases. For instance, the step in (Red 1) is justified by the
structural exchange law which holds for linear logic. For non-commutative
logics the suitable generalization of the interpolation property, which is the
base of the inductive procedure, might be more difficult to find.

6.2 Abduction for intuitionistic implication

Abduction is an important kind of inference for many applications. It has
been widely and deeply studied in logic programming context (see [Eshghi,
1989] for a seminal work). Abductive inference can be described as follows:
given a set of data I and a formula A such that T' I/ A, find a set of formulas
IT such that I',)IT - A. Usually, there are some further requirements on
the possible II’s, such as minimality. The set II is called an abductive
solution for T' - A. We define below a metapredicate Abduce(l; A; II)
whose meaning, is that II is an abductive solution for I' F A. The predicate
is defined by induction on the goal-directed derivation. Given a formula C
and a database I', we write C — I to denote the set {C — D | D € T'}.
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1. Abduce(T; ¢; TI) if g € T and T = 0.
2. Abduce(T; ¢; 1) if VC € T q # Head(C) and II = {q}.
3. Abduce(l'; A — B; II) if Abduce(T',A; B; II') and I = A — TI'.

4. Abduce(T'; ¢; ) if thereis Cy —» ... = C,, > ¢ € T and Iy, ..., 11,
such that
(a) Abduce(T; C;,I1;) for i =1,...,n.
(b) I =Y, 11,

It can be shown that if Abduce(T; ¢; II) holds then I', II - A.
EXAMPLE97. Let T'=(a—¢) > b,(d—>b) >s—=>q,(p—>q) =t —r.
We compute Abduce(T; r; II). We have

(1) Abduce(T; r; II) reduces to

(2) Abduce(T; p— q; ;) and (3) Abduce(T; t; 1)
with IT = II; UIIy; (3) gives IIs = {t}. (2) is reduced as follows

(4)  Abduce(T',p; g; II3) and II; = p — I3

(5) Abduce(T',p; d — b; IIy) and (6) Abduce(T,p; s; II5)
with I = I, U II5; (6) gives IT5 = {s}. (5) is reduced as follows

(7)  Abduce(T',p,d; b; Ilg) and Iy = b — Il
(8) Abduce(T',p,d; a — c; )
(9) Abduce(T',p,d,a; ¢; 1I7) and Il = a — Iy
(9) gives II; = {c}.
Thus
Il = {a — ¢}
My=4{b—a—c}
Iy ={b—a—cs}
Ii={p—=b—-a—c,p— s}
D={p—>b—=a—cp—s,t}
One can easily check that T, I F r.

The abductive proof procedure we have exemplified is a sort of metapred-
icate defined from the goal-directed computation. It can be used to generate
possible abductive solutions, that might be then compared and processed
further. Of course variants and refinments of the abductive procedures are
possible for specific purposes.
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6.3 First-order extension

We conclude this chapter by some remarks on the major extension of these
methods: the one to the first-order level. The extension is not straightfor-
ward. In general, in most non-classical logics there are several options in the
interpretation of quantifiers and terms according to the intended semantics
(typically, constant domain, increasing domains etc.); moreover, one may
adopt either rigid, or non-rigid interpretation of terms. Sometimes the inter-
pretation of quantifiers is not entirely clear, as it happens in substructural
logics. However, even when quantifiers are well understood as in intuition-
istic and modal logics, a goal-directed treatment of the full language creates
troubles analogously to the treatment of disjunction. In particular the treat-
ment of positive occurrences of the existential quantifier is problematic. In
classical logic such a problem does not arise as one can always transform
the pair (Database, Goal) into a set of universal sentences using Skolem
transformation. A similar method cannot be applied to most non-classical
logics, where one cannot skolemize the data before the computation starts.

As a difference with the theorem proving view, in the goal-directed ap-
proach (following the line of logic programming) one would like to define
proof procedures which compute answer-substitutions. This means that the
outcome of a successful computation of

A F? GIX],

where G[X] stands for 3XG[X] is not only ’yes’, but it is (a most gen-
eral) substitution X/¢, such that A + G[X/t] holds. In [Gabbay and
Olivetti, 2000] it is presented a proof procedure for (—,V) fragment of in-
tuitionistic logic. The procedure is in the style of a logic programming
and uses unification to compute answer-substitutions. The proof-procedure
checks the simultaneous success of a set of pairs (Database, Goals); this
structure is enforced by the presence of shared free variables occurring
in different databases arising during the computation. The approach of
‘Run-time skolemization’ is used to handle universally quantified goals.??
That is to say the process of eliminating universal quantifiers on the goal
by Skolem functions is carried on in parallel with goal reduction. The
‘Run-time Skolemisation’ approach has been presented in [Gabbay, 1992;
Gabbay and Reyle, 1993] and adopted in N-Prolog [Gabbay and Reyle,
1993], a hypothetical extension of Prolog based on intuitionistic logic. A
similar idea for classical logic is embodied in the free-variable tableaux, see
[Fitting, 1990] and [Hihnle and Schmitt, 1994] for an improved rule. The
use of Skolem functions and normal form for intuitionistic proof-search has
been studied by many authors, we just mention: [Shankar, 1992], [Pym and
Wallen, 1990], and [Sahlin et al., 1992].

23These would be existentially quantified formulas in classical logic as checking A F
Vz A is equivalent to check A U {3z—A} for inconsistency.
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It is likely that in order to develop the first-order extensions for others
non-classical logics one could take advantage of the labelled proof system.
One would like to represent the semantic options on the interpretation of
quantifiers by tinkering with the unification and the Skolemisation mecha-
nism. The constraints on the unification and Skolemisation might perhaps
be expressed in terms of the labels associated with the formulas and their
dependencies. At present the extension of the goal-directed methods to the
main families of non-classical logics along these lines is not at hand and it
is a major topic of future investigation.

Dov M. Gabbay
King’s College London, UK.

Nicola Olivetti
Universita di Torino, Italy.
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ARNON AVRON

ON NEGATION, COMPLETENESS AND
CONSISTENCY

1 INTRODUCTION

In this Chapter we try to understand negation from two different points of
view: a syntactical one and a semantic one. Accordingly, we identify two
different types of negation. The same connective of a given logic might be
of both types, but this might not always be the case.

The syntactical point of view is an abstract one. It characterizes connec-
tives according to the internal role they have inside a logic, regardless of
any meaning they are intended to have (if any). With regard to negation
our main thesis is that the availability of what we call below an internal
negation is what makes a logic essentially multiple-conclusion.

The semantic point of view, in contrast, is based on the intuitive meaning
of a given connective. In the case of negation this is simply the intuition
that the negation of a proposition A is true if A is not, and not true if A4 is
true.!

Like in most modern treatments of logics (see, e.g., [Scott, 1974; Scott,
1974b; Hacking, 1979; Gabbay, 1981; Urquhart, 1984; Wojcicki, 1988; Ep-
stein, 1995; Avron, 1991a; Cleave, 1991; Fagin et al., 1992]), our study of
negation will be in the framework of Consequence Relations (CRs). Fol-
lowing [Avron, 1991a], we use the following rather general meaning of this
term:

DEFINITION.

(1) A Consequence Relation (CR) on a set of formulas is a binary relation
F between (finite) multisets of formulas s.t.:

(I) Reflexivity: A+ A for every formula A.

(IT) Transitivity, or “Cut”: if I'y F Ay, A and A,T's + Ay, then I'y,Ts F
Aq, As.

(IIT) Consistency: @ I/ @ (where @) is the empty multiset).

1We have avoided here the term “false”, since we do not want to commit ourselves to
the view that A is false precisely when it is not true. Our formulation of the intuition is
therefore obviously circular, but this is unavoidable in intuitive informal characterizations
of basic connectives and quantifiers.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 287-319.
© 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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(2) A single-conclusion CR is a CR | such that I' = A only if A consists of
a single formula.

The notion of a (multiple-conclusion) CR was introduced in [Scott, 1974]
and [Scott, 1974b]. It was a generalization of Tarski’s notion of a conse-
quence relation, which was single-conclusion. Our notions are, however, not
identical to the original ones of Tarski and Scott. First, they both con-
sidered sets (rather than multisets) of formulas. Second, they impose a
third demand on CRs: monotonicity. We shall call a (single-conclusion or
multiple-conclusion) CR which satisfies these two extra conditions ordinary.
A single-conclusion, ordinary CR will be called Tarskian.?

The notion of a “logic” is in practice broader than that of a CR, since
usually several CRs are associated with a given logic. Given a logic £ there
are in most cases two major single-conclusion CRs which are naturally as-
sociated with it: the external CR % and the internal CR I—iﬁ. For example,
if £ is defined by some axiomatic system AS then A,,---, A, F% B iff there
exists a proof in AS of B from A, --- A,, (according to the most standard
meaning of this notion as defined in undergraduate textbooks on mathemat-
ical logic), while Ay,---, A, . Biff Ay — (A4, = -+ > (4, = B)--+)
is a theorem of AS (where — is an appropriate “implication” connective
of the logic). Similarly if £ is defined using a Gentzen-type system G then
Aq,---, A, FL B if the sequent Aj,---, A, = B is provable in G, while
Ay, -+ Ay F% B iff there exists a proof in G of = B from the assumptions
= Ay,---,=> A, (perhaps with cuts). % is always a Tarskian relation, %
frequently is not. The existence (again, in most cases) of these two CRs
should be kept in mind in what follows. The reason is that semantic char-
acterizations of connectives are almost always done w.r.t. Tarskian CRs
(and so here 4 is usually relevant). This is not the case with syntactical
characterizations, and here frequently % is more suitable.

2 THE SYNTACTICAL POINT OF VIEW

2.1 Classification of basic connectives

Our general framework allows us to give a completely abstract definition,
independent of any semantic interpretation, of standard connectives. These
characterizations explain why these connectives are so important in almost
every logical system.

In what follows F is a fixed CR. All definitions are taken to be relative
to - (the definitions are taken from [Avron, 1991a)).

2What we call a Tarskian CR. is exactly Tarski’s original notion. In [Avron, 1994] we
argue at length why the notion of a proof in an axiomatic system naturally leads to our
notion of single-conclusion CR, and why the further generalization to multiple-conclusion
CR is also very reasonable.
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We consider two types of connectives. The internal connectives, which
make it possible to transform a given sequent into an equivalent one that has
a special required form, and the combining connectives, which allow us to
combine (under certain circumstances) two sequents into one which contains
exactly the same information. The most common (and useful) among these
are the following connectives:

Internal Disjunction: + is an internal disjunction if for all T', A, A, B:

Fr-AJAB iff THFAA+B.

Internal Conjunction: ® is an internal conjunction if for all T, A} A, B:
ABFA iff T"A BFA.

Internal Implication: — is an internal implication if for all T', A, A, B:
A-B,A iff THA— B,A.

Internal Negation: — is an internal negation if the following two condi-
tions are satisfied by all I', A and A:

(1) ATHFA if TFHA,-A
(2) TFAA if —-ATFA.

Combining Conjunction: A is a combining conjunction iff for all ', A, A, B:
'-AJAAB if THFAJA and THA,B.

Combining Disjunction: V is a combining disjunction iff for all T, A, A, B
AvB,THFA if ATFA and B,TFA.

Note: The combining connectives are called “additives” in Linear logic
(see [Girard, 1987]) and “extensional” in Relevance logic. The internal
ones correspond, respectively, to the “multiplicative” and the “intensional”
connectives.

Several well-known logics can be defined using the above connectives:
LL,, — Multiplicative Linear Logic (without the propositional con-
stants): This is the logic which corresponds to the minimal (multiset) CR
which includes all the internal connectives.

LL,,, — Propositional Linear Logic (without the “exponentials” and
the propositional constants): This corresponds to the minimal consequence
relation which contains all the connectives introduced above.

R,, — the Intensional Fragment of the Relevance Logic R:* This
corresponds to the minimal CR which contains all the internal connectives
and is closed under contraction.

3see [Anderson and Belnap, 1975] or [Dunn, 1986).
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R without Distribution: This corresponds to the minimal CR which
contains all the connectives which were described above and is closed under
contraction.
RM]I,, — the Intensional Fragment of the Relevance Logic RMI:*
This corresponds to the minimal sets-CR which contains all the internal
connectives.
Classical Proposition Logic: This of course corresponds to the minimal
ordinary CR which has all the above connectives. Unlike the previous log-
ics there is no difference in it between the combining connectives and the
corresponding internal ones.

In all these examples we refer, of course, to the internal consequence
relations which naturally correspond to these logics (In all of them it can
be defined by either of the methods described above).

2.2 Internal Negation and Strong Symmetry

Among the various connectives defined above only negation essentially de-
mands the use of multiple-conclusion CRs (even the existence of an internal
disjunction does not force multiple-conclusions, although its existence is
trivial otherwise.). Moreover, its existence creates full symmetry between
the two sides of the turnstyle. Thus in its presence, closure under any of
the structural rules on one side entails closure under the same rule on the
other, the existence of any of the binary internal connectives defined above
implies the existence of the rest, and the same is true for the combining
connectives.

To sum up: internal negation is the connective with which “the hidden
symmetries of logic” [Girard, 1987] are explicitly represented. We shall call,
therefore, any multiple-conclusion CR which possesses it strongly symmet-
Tic.

Some alternative characterizations of an internal negation are given in
the following easy proposition.

PROPOSITION 1. The following conditions on & are all equivalent:
(1) = is an internal negation for F.

(2) THAAf T,-AFA

(3) ATHFA ffTFA-A

(4) A -AF andt A A

(5) F is closed under the rules:
ATFA FFAA
kA -A -ATHFA

Our characterization of internal negation and of symmetry has been done
within the framework of multiple-conclusion relations. Single-conclusion

4see [Avron, 1990a; Avron, 1990b].
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CRs are, however, more natural. We proceed next to introduce correspond-
ing notions for them.

DEFINITION.

(1) Let . be a single-conclusion CR (in a language £), and let = be a
unary connective of L. . is called strongly symmetric w.r.t. to -, and = is
called an internal negation for ., if there exists a multiple-conclusion CR
F7 with the following properties:

()T H:y Aiff Tk, A
(ii) = is an internal negation for 7.

(2) A single-conclusion CR F is called essentially multiple-conclusion iff it
has an internal negation.

Obviously, if a CR 7 like in the last definition exists then it is unique.
We now formulate sufficient and necessary conditions for its existence.

THEOREM 2. k. is strongly symmetric w.r.t. — iff the following conditions
are satisfied:

(i) At A
(il) —AFL A
(iii) If T, Atz B then T',-B F, —A.
Proof. The conditions are obviously necessary. Assume, for the converse,

that b, satisfies the conditions. Define: Ay,---, A, F% By,---, By, iff for
every l <i<mand 1 <j<k:

Ar,-o Aima, 2By B, Ay - A B 04y
Al)'"7An>_'B1>"')_'Bj717_' j+1;"';_‘Bk |_BJ .

It is easy to check that % is a CR whenever k. is a CR (whether single-
conclusion or multiple-conclusion), and that if I' F% A then I' 2 A. The
first two conditions imply (together) that — is an internal negation for %
(in particular: the second entails that if A, F% A then I' F% A, —=A and
the first that if I' -5 A, A then —=A,T % A). Finally, the third condition
entails that 7 is conservative over . |

Examples of logics with an internal negation.
1. Classical logic.

2. Extensions of classical logic, like the various modal logics.

3. Linear logic and its various fragments.
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4. The various Relevance logics (like R and RM (see [Anderson and Bel-
nap, 1975; Dunn, 1986; Anderson and Belnap, 1992] or RM I [Avron,
1990a; Avron, 1990b]) and their fragments.

5. The various many-valued logics of Lukasiewicz, as well as Sobocinski
3-valued logic [Sobocinski, 1952].

Examples of logics without an internal negation.
1. Intuitionistic logic.

2. Kleene’s 3-valued logic and its extension LPF [Jones, 1986].

Note: Again, in all these examples above it is the internal CR which is
essentially multiple-conclusion (or not) and has an internal negation. This
is true even for classical predicate calculus: There, e.g., Vo A(x) follows
from A(z) according to the external CR, but ~A(z) does not follow from
—VzA(z).?

All the positive examples above are instances of the following proposition,
the easy proof of which we leave to the reader:

PROPOSITION 3. Let L be any logic in a language containing — and —.
Suppose that the set of valid formulae of L includes the set of formulae in
the language of {—,—} which are theorems of Linear Logic,® and that it
is closed under M P for —. Then the internal consequence relation of L
(defined using — as in the introduction) is strongly symmetric (with respect
to —).

The next two theorems discuss what properties of k. are preserved by
F%. The proofs are straightforward.

THEOREM 4. Assume b is essentially multiple-conclusion.
1. % is monotonic iff so is .

2. k7 is closed under expansion (the converse of contraction) iff so is
Fr.

3. A is a combining conjunction for =7 iff it is a combining conjunction
for ..

4. — 1is an internal implication for =7 iff it is an internal implication
for ..

5The internal CR of classical logic has been called the “truth” CR in [Avron, 1991a]
and was denoted there by ¢, while the external one was called the “validity” CR and
was denoted by FV. On the propositional level there is no difference between the two.

SHere — should be translated into linear negation, — — into linear implication.
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Notes:
1) Because 7 is strongly symmetric, Parts (3) and (4) can be formulated
as follows: % has the internal connectives iff -~ has an internal implication
and it has the combining connectives iff -, has a combining conjunction.
2) In contrast, a combining disjunction for -, is not necessarily a combining
disjunction for F7. It is easy to see that a necessary and sufficient condition
for this to happen is that . —(AV B) whenever -, =A and -z =B. An ex-
ample of an essentially multiple-conclusion system with a combining disjunc-
tion which does not satisfy the above condition is RMT of [Avron, 1990a;
Avron, 1990b]. That system indeed does not have a combining conjunction.
This shows that a single-conclusion logic £ with an internal negation and
a combining disjunction does not necessarily have a combining conjunction
(unless £ is monotonic). The converse situation is not possible, though: If
- is an internal negation and A is a combining conjunction then =(-=AA-B)
defines a combining disjunction even in the single-conclusion case.
3) An internal conjunction ® for k. is also not necessarily an internal con-
junction for F%. We need here the extra condition that if A -z —B then
Fr —=(A ® B). An example which shows that this condition does not nec-
essarily obtain even if F, is an ordinary CR, is given by the following CR
l_triv:

Al;"'aAnl_trivB iff TLZI

It is obvious that F.;, is a Tarskian CR and that every unary connective
of its language is an internal negation for it, while every binary connective
is an internal conjunction. The condition above fails, however, for ¢, .
4) The last example shows also that % may not be closed under contraction
when ¢ does, even if . is Tarskian. Obviously, I' 7, A iff TUA| > 2.
Hence I}, A, Abut I/}, A. The exact situation about contraction is given
in the next proposition.
PROPOSITION 5. IfF. is essentially multiple-conclusion then 7 is closed
under contraction iff -, is closed under contraction and satisfies the follow-
ing condition:

If A+, B and -A bt B then b, B.

In case -, has a combining disjunction this is equivalent to:

Fr—-AVA.

Proof. Suppose first that . is closed under contraction and satisfies the
condition. Assume that I' F% A, A, A. If either I or A is not empty then
this is equivalent to = A, —A, ™ k. B for some I'* and B. Since . is closed
under contraction, this implies that —=A,I'* F, B, and so I' % A, A. If
both T and A are empty then we have —=A . A. Since also A k. A, the
condition implies that - A, and so -7 A.
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For the converse, suppose -7 is closed under contraction. This obviously
entails that so is also k.. Assume now that A -, B and —=A k. B. Then
AF% B and F% B, A. Applying cut we get that % B, B, and so - B. It
follows that . B. [ |

3 THE SEMANTIC POINT OF VIEW

We turn in this section to the semantic aspect of negation.

3.1 The General Framework

A “semantics” for a logic consists of a set of “models”. The main property
of a model is that every sentence of a logic is either true in it or not (and
not both). The logic is sound with respect to the semantics if the set of
sentences which are true in each model is closed under the CR of the logic,
and complete if a sentence ¢ follows (according to the logic) from a set T' of
assumptions iff every model of T is a model of . Such a characterization
is, of course, possible only if the CR we consider is Tarskian. In this section
we assume, therefore, that we deal only with Tarskian CRs. For logics like
Linear Logic and Relevance logics this means that we consider only the
external CRs which are associated with them (see the Introduction).

Obviously, the essence of a “model” is given by the set of sentences which
are true in it. Hence a semantics is, essentially, just a set S of theories.
Intuitively, these are the theories which (according to the semantics) provide
a full description of a possible state of affairs. Every other theory can be
understood as a partial description of such a state, or as an approximation
of a full description. Completeness means, then, that a sentence ¢ follows
from a theory T iff ¢ belongs to every superset of T' which is in S (in
other words: iff ¢ is true in any possible state of affairs of which T is an
approximation).

Now what constitutes a “model” is frequently defined using some kind of
algebraic structures. Which kind (matrices with designated values, possible
worlds semantics and so on) varies from one logic to another. It is difficult,
therefore, to base a general, uniform theory on the use of such structures.
Semantics (= a set of theories!) can also be defined, however, purely syn-
tactically. Indeed, below we introduce several types of syntactically defined
semantics which are very natural for every logic with “negation”. Our in-
vestigations will be based on these types.

Our description of the notion of a model reveals that externally it is based
on two classical “laws of thought”: the law of contradiction and the law of
excluded middle. When this external point of view is reflected inside the
logic with the help of a unary connective — we call this connective a (strong)
semantic negation. Its intended meaning is that = A should be true precisely
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when A is not. The law of contradiction means then that only consistent
theories may have a model, while the law of excluded middle means that
the set of sentences which are true in some given model should be negation-
complete. The sets of consistent theories, of complete theories and of normal
theories (theories that are both) have, therefore a crucial importance when
we want to find out to what degree a given unary connective of a logic can be
taken as a semantic negation. Thus complete theories reflect a state of affairs
in which the law of excluded middle holds. It is reasonable, therefore, to say
that this law semantically obtains for a logic £ if its consequence relation
k. is determined by its set of complete theories. Similarly, £ (strongly)
satisfies the law of contradiction iff - is determined by its set of consistent
theories, and it semantically satisfies both laws iff -, is determined by its
set of normal theories.

The above characterizations might seem unjustifiably strong for logics
which are designed to allow non-trivial inconsistent theories. For such logics
the demand that . should be determined by its set of normal theories is
reasonable only if we start with a consistent set of assumptions (this is called
strong c-normality below). A still weaker demand (c-normality) is that any
consistent set of assumptions should be an approximation of at least one
normal state of affairs (in other words: it should have at least one normal
extension).

It is important to note that the above characterizations are independent
of the existence of any internal reflection of the laws (for example: in the
forms —(—=A A A) and -A V A, for suitable A and V). There might be
strong connections, of course, in many important cases, but they are neither
necessary nor always simple.

We next define our general notion of semantics in precise terms.

DEFINITION. Let £ be a logic in L and let I, be its associated CR.

1. A setup for F, is a set of formulae in L which is closed under .. A
semantics for . is a nonempty set of setups which does not include
the trivial setup (i.e., the set of all formulae).

2. Let S be a semantics for Fz. An S-model for a formula A is any setup
in S to which A belongs. An S-model of a theory T is any setup in S
which is a superset of T'. A formula is called S-valid iff every setup in
S is a model of it. A formula A S-follows from a theory T' (T 2 A)
iff every S-model of T is an S-model of A.
PROPOSITION 6. 2 is a (Tarskian) consequence relation and o CF7.

Notes:

1. F72 is not necessarily finitary even if - is.

2. F is just I—‘z(ﬁ) where S(£) is the set of all setups for .
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If S; C Sy then F22C 7L

EXAMPLES.

1.

For classical propositional logic the standard semantics consists of the
setups which are induced by some valuation in {¢, f}. These setups
can be characterized as theories T such that

(i) ~AeT if A¢T (i) AANBET iffbothAeT and Be T

(and similar conditions for the other connectives).

. In classical predicate logic we can define a setup in S to be any set of

formulae which consists of the formulae which are true in some given
first-order structure relative to some given assignment. Alternatively
we can take a setup to consist of the formulae which are valid in some
given first-order structure. In the first case F°=F* in the second
FS=FY, where It and F? are the “truth” and “validity” consequence
relations of classical logic (see [Avron, 1991a] for more details).

In modal logics we can define a “model” as the set of all the formulae
which are true in some world in some Kripke frame according to some
valuation. Alternatively, we can take a model as the set of all formulae
which are valid in some Kripke frame, relative to some valuation.
Again we get the two most usual consequence relations which are
used in modal logics (see [Avron, 1991a] or [Fagin et al., 1992]).

From now on the following two conditions will be assumed in all our
general definitions and propositions:

1.
2.

The language contains a negation connective —.

For no A are both A and —A theorems of the logic.

DEFINITION. Let S be a semantics for a CR F,

1.
2.

k¢ is strongly complete relative to S if FZ=F.
k¢ is weakly complete relative to S if for all A, . A iff F3 A.

F. is c-complete relative to S if every consistent theory of k. has a
model in S.

k. is strongly c-complete relative to S if for every A and every con-
sistent T, T I—g Aiff T, A
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Notes:

1. Obviously, strong completeness implies strong c-completeness, while
strong c-completeness implies both c-completeness and weak com-
pleteness.

2. Strong completeness means that deducibility in F, is equivalent to
semantic consequence in S. Weak completeness means that theorem-
hood in t (i.e., derivability from the empty set of assumptions) is
equivalent to semantic validity (= truth in all models). ¢-completeness
means that consistency implies satisfiability. It becomes identity if
only consistent sets can be satisfiable, i.e., if {—A, A} has a model for
no A. This is obviously too strong a demand for paraconsistent logics.
Finally, strong c-completeness means that if we restrict ourselves to
normal situations (i.e., consistent theories) then . and 2 are the
same. This might sometimes be weaker than full strong completeness.

The last definition uses the concepts of “consistent” theory. The next
definition clarifies (among other things) the meaning of this notion as we
are going to use in it this paper.

DEFINITION. Let £ and F, be as above. A theory in L consistent if for
no A it is the case that T F, A and T Fy —A, complete if for all A, either
Tk, Aor T kg —A, normal if it is both consistent and complete. C'Sg,
CP; and N will denote, respectively, the sets of its consistent, complete
and normal theories.

Given k., the three classes, C'S;, C P, and N, provide 3 different syn-
tactically defined semantics for ., and 3 corresponding consequence rela-
tions I—gsﬁ, I—(ZP‘ and I—g‘. We shall henceforth denote these CRs by &9,
FCF and FY, respectively. Obviously, F¢SCHY and FSPCHY . In the rest
of this section we investigate these relations and the completeness properties
they induce.

Let us start with the easier case: that of F¢°. It immediately follows
from the definitions (and our assumptions) that relative to it every logic is
strongly c-complete (and so also c-complete and weakly complete). Hence
the only completeness notion it induces is the following;:

DEFINITION. A logic £ with a consequence relation |-, is strongly consis-
tent if F&S=F.

FS5 is not a really interesting CR. As the next theorem shows, what
it does is just to trivialize inconsistent F,-theories. Strong consistency,
accordingly, might not be a desirable property, certainly not a property
that any logic with negation should have.
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PROPOSITION 7.

1. T |_gs A iff either T is inconsistent in L or T . A. In particular, T
18 I—gs-consistent iff it is b -consistent.

2. L is strongly consistent iff A, At B for all A,B (iff T is consistent
whenever T I A).

3. Let LES be obtained from L by adding the rule: from —A and A infer
B. Then |_€S: Fres. In particular: if &, is finitary then so is I—gs.

4. |_gs is strongly consistent.

We turn now to F¢F and FV. In principle, each provides 4 notions
of completeness. We don’t believe, however, that considering the two no-
tions of c-consistency is natural or interesting in the framework of F¢% (c-
completeness, e.g., means there that every consistent theory has a complete

extension, but that extension might not be consistent itself). Accordingly
we shall deal with the following 6 notions of syntactical completeness.”

DEFINITION. Let £ be a logic and let I, be its consequence relation.
1. L is strongly complete if it is strongly complete relative to C'P.
. L is weakly complete if it is weakly complete relative to CP.
. L is strongly normal if it is strongly complete relative to N.

2
3
4. L is weakly normal if it is weakly complete relative to V.
5. L is c-normal if it is e-complete relative to V.

6

. L is strongly c-normal if it is strongly c-complete relative to N (this
is easily seen to be equivalent to FY=F%%).

For the reader’s convenience we repeat what these definitions actually mean:

1. £ is strongly complete iff whenever T I/, A there exists a complete
extension T™* of T such that T* t/, A.

2. L is weakly complete iff whenever A is not a theorem of £ there exists
a complete T™ such that T* t/, A.

3. L is strongly normal iff whenever T I/, A there exists a complete and
consistent extension T™* of T such that T* t/, A.

4. L is weakly normal iff whenever A is not a theorem of £ there exists
a complete and consistent theory T* such that T* I/, A.

"In [Anderson and Belnap, 1975] the term “syntactically complete” was used for what
we call below “strongly c-normal”.
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5. L is e-normal if every consistent theory of £ has a complete and con-
sistent extension.

6. L is strongly c-normal iff whenever T is consistent and T' I/, A there
exists a complete and consistent extension T* of T such that T* t/, A.

Our next proposition provides simpler syntactical characterizations of
some of these notions in case k- is finitary.

PROPOSITION 8. Assume that . is finitary.

1. L is strongly complete iff for all T, A and B:
(x) T,AtzB and T,-AtvcB imply Tt.B

In case L has a combining disjunction V then (%) is equivalent to the
theoremhood of AV A (excluded middle).

2. L is strongly normal if for all T and A:

(xx) Tre A iff TU{=A} is inconsistent.

3. L is strongly c-normal iff (xx) obtains for every consistent T

4. L is c-normal iff for every consistent T and every A either T U {A}
or TU{-A} is consistent.

Proof. Obviously, strong completeness implies (x). For the converse, as-
sume that Tt/ B. Using (%), we extend T in stages to a complete theory
such that T* t/ B. This proves part 1. The other parts are straightforward.

|

COROLLARIES.

1. If £ is strongly normal then it is strongly symmetric w.r.t. =. More-
over: -7 is an ordinary multiple-conclsion CR.

2. If £ is strongly symmetric w.r.t. — then it is strongly complete iff %
is closed under contraction.

Proof. These results easily follows from the last proposition and Theorems
2, 4 and 5 above. n

In the figure below we display the obvious relations between the seven
properties of logics which were introduced here (where an arrow means
“contained in”). The next theorem shows that no arrow can be added to it:
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weak completeness

N\

weak normality c-normality
strong completeness strong c-normality strong consistency

strong normality

THEOREM 9. A logic can be:
1. strongly consistent and c-normal without even being weakly complete

2. strongly complete and strongly c-normal without being strongly consis-
tent (and so without being strongly normal)

3. strongly consistent without being c-normal

4. strongly complete, weakly normal and c-normal without being strongly
c-normal

5. strongly complete and c-normal without being weakly normal

6. strongly consistent, c-normal and weakly normal without being strongly
c-normal (=strongly normal in this case, because of strong consis-
tency)

7. strongly complete without being c-normal.®
Proof. Appropriate examples for 1-6 are given below, respectively, in the-

orems 12, 18, 33, 19, 35 and the corollary to theorem 19. As for the last
part, let £ be the following system in the language of {—, —}:°

8Hence the two standard formulations of the “strong consistency” of classical logic are
not equivalent in general.

9Classical logic is obtained from it by adding =A — (A — B) as axiom (see [Epstein,
1995, Ch. 2L].
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Azl: A— (B— A)
Az2: A-(B—->C)—»(A—=-B)=(A->0C)
Az3: (A — B)—> ((A— B) - B)

A A—> B
vmp) 4 A=B

Obviously, the deduction theorem for — holds for this system, since M P
is the only rule of inference, and we have Azl and Az2. This fact, Az3 and
proposition 8 guarantee that it is strongly complete. To show that it is not
c-normal, we consider the theory To = {p = ¢, p = —q¢, -p—r, "p = —r}.
Obviously, Ty has no complete and consistent extension. We show that it
is consistent nevertheless. For this we use the following structure:

Define in this structure a — b as t if a < b, b otherwise, —x as f if ¢ = ¢,
tif z = f and —x otherwise. It is not difficult now to show that if T+ A in
the present logic for some 7" and A, and v is a valuation in this structure
such that v(B) = ¢ for all B € T, then v(A) = t. Take now v(p) = 3,
v(g) =1, v(r) = 2. Then v(B) =t for all B € Tj, but obviously there is no
A such that v(A) = v(—A) = t. Hence T} is consistent. [ ]

We end this introductory subsection with a characterization of F&¥ and
F. The proofs are left to the reader.

PROPOSITION 10.

1. l—gp s strongly complete, and is contained in any strongly complete
extension of Fr.

2. Suppose ¢ is finitary. T FGF A iff for some By, ..., B, (n > 0) we
have that TU{BY,...,B} Fr A for every set {B;,..., B} such that
for alli, Bf = B; or B} = —B,.
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8. If b is finitary, then so is FGF.

PROPOSITION 11.

1. I—g s strongly normal, and is contained in every strongly normal ex-
tension of ..

2. If ¢ is finitary then T X A iff for some By, ..., B, we have that
for all {B5,...,B}:} where Bf € {B;,-B;} (i=1,...,n), either T U
{Bf,...,Bx} is inconsistent or TU {B5,...,Bi}Fr A

8. N is finitary if ¢ is.

3.2 Classical and Intuitionistic Logics

Obviously, classical propositional logic is strongly normal. In fact, most
of the proofs of the completeness of classical logic relative to its standard
two-valued semantics begin with demonstrating the condition (*%) in Propo-
sition 8, and are based on the fact that every complete and consistent theory
determines a unique valuation in {t, f} - and vice versa. In other words: N
here is exactly the usual semantics of classical logic, only it can be charac-
terized also using an especially simple algebraic structure (and valuations in
it). One can argue that this strong normality characterizes classical logic.
To be specific, it is not difficult to show the following claims:

1. classical logic is the only logic in the language of {—, A}which is
strongly normal w.r.t. = and for which A is an internal conjunction.
Similar claims hold for the {-, =} language, if we demand — to be
an internal implication and for the {—,V} language, if we demand Vv
to be a combining disjunction.

2. Any logic which is strongly normal and has either an internal impli-
cation, or an internal conjunction or a combining disjunction contains
classical propositional logic.

The next proposition summarizes the relevant facts concerning intuition-
istic logic. The obvious conclusion is that although the official intuitionistic
negation has some features of negation, it still lacks most. Hence, it cannot
be taken as a real negation from our semantic point of view.

PROPOSITION 12. Intuitionistic logic is strongly consistent and c-normal,
but it is not even weakly complete.

Proof. Strong consistency follows from part 3 of Proposition 7. c¢-normality
follows from part 4 of Proposition 8, since in intuitionistic logic if both
TU{A} and TU{—A} are inconsistent then T' -z —A and T kg —-—A, and
so T is inconsistent. Finally, =A V A belongs to every complete setup, but
is not intuitionistically valid. ]
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Note: Intuitionistic logic and classical logic have exactly the same consis-
tent and complete setups, since any complete intuitionistic theory is closed
under the elimination rule of double negation. Hence any consistent intu-
itionistic theory has a classical two-valued model.

What about fragments (with negation) of Intuitionistic Logic? Well, they
are also strongly consistent and c-normal, by the same proof. Moreover,
((A— B) - A) —» A is another example of a sentence which belongs to
every complete setup (since AFy (A — B) - A) > Aand Aty (A —
B) - A) = A), but is not provable. The set of theorems of the pure {—, A}
fragment, on the other hand, is identical to that of classical logic, as is well
known. This fragment is, therefore, easily seen to be weakly normal. It is
still neither strongly complete nor strongly c-normal, since = —A I—%P AN

Finally, we note the important fact that classical logic can be viewed as
the completion of intuitionistic logic. More precisely:

PROPOSITION 13.
1 FGS=ty

2. FGP=FN= classical logic.

Proof.

2. F¢P =k whenever L is strongly consistent (i.e., all nontrivial theories
are consistent). In the proof of the previous proposition we have seen
also that F&F =AVA and F4F ((A — B) — A) — A. Tt is well known,
however, that by adding either of this schemes to intuitionistic logic
we get classical logic. Hence classical logic is contained in F4¥. Since
classical logic is already strongly complete, I—%P is exactly classical
logic. (Note that this is true for any fragment of the language which
includes negation.) |

3.3 Linear Logic (LL)

In the next 3 subsections we are going to investigate some known substruc-
tural logics [Schroeder-Heister and Dogen, 1993]. Before doing it we must
emphasize again that in this section it is only the external, Tarskian con-
sequence relation of these logics which can be relevant. This consequence
relation can very naturally be defined by using the standard Hilbert-type
formulations of these logics: Ai,...,A, +% B (L =LL,R,RM,RM]I, etc.)
iff there exists an ordinary deduction of B from Ai,..., A, in the corre-
sponding Hilbert-type system. This definition is insensitive to the exact
choice of axioms (or even rules), provided we take all the rules as rules of
derivation and not just as rules of proof. In the case of Linear Logic one can
use for this the systems given in [Avron, 1988] or in [Troelstra, 1992]. An
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alternative equivalent definition of the various external CRs can be given us-
ing the standard Gentzen-types systems for these logics (in case such exist),
as explained in the introduction. Still another characterization in the case
of Linear Logic can be given using the phase semantics of [Girard, 1987]:
Ay, ..., Ay FS Biff Bis true in every phase model of Ay, ..., A,. In what
follows we shall omit the superscript “e” and write just Frr, Frr,,, etc.

Unlike in [Girard, 1987] we shall take below negation as one of the con-
nectives of the language of linear logic and write = A for the negation of A
(this corresponds to Girard’s A+). As in [Avron, 1988] and in the relevance
logic literature, we use arrow (—) for linear implication.

We show now that linear logic is incomplete with respect to our various
notions.

PROPOSITION 14. LL,, (LLp,, LL) is not strongly consistent.

PROPOSITION 15. LL,, (LLya, LL) is neither strongly complete nor c-
normal.

Proof. Consider the following theory:

T={p—-p, -p—p}.

From the characterization of Frz, given in [Avron, 1992] it easily follows
that has T been inconsistent then there would be a provable sequent of
the form: -p - p, -p = p,...,~p = p,p = —p,...,p — —p =. But
in any cut-free proof of such a sequent the premises of the last applied
rule should have an odd number of occurrences of p, which is impossible
in a provable sequent of the purely multiplicative linear logic. Hence T is
consistent. Obviously, every complete extension of 7" proves p and —p and
so is inconsistent. This shows that LL,, is not c-normal. It also shows
that p is not provable from T, although it is provable from any complete
extension of it, and so LL,, is not strongly complete. ]

PROPOSITION 16. LLy,, (and so also LL) is not weakly complete.
Proof. ~ A@® A is not a theorem of linear logic, but it belongs to any

complete theory. ]

It follows that Linear logic (and its multiplicative-additive fragment) has
none of the properties we have defined in this section. Its negation is there-
fore not really a negation from our present semantic point of view.

Our results still leave the possibility that LL,, might be weakly com-
plete or even weakly normal. We conjecture that it is not, but we have no
counterexample.

We end this section by giving axiomatizations of F¢F and ;.
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PROPOSITION 17.

1. Let LLCT be the full Hilbert-type system for linear logic (as given in
[Avron, 1988]) together with the rule: from !A — B and '-A — B
infer B. Then F¢P=Fp cp.

2. Let LLN be LLCY together with the disjunctive syllogism for & (from
—A and A® B infer B). Then FY,=Fpp~.

Proof.

1. The necessitation rule (from A infer !4) is one of the rules of LL.1° Tt
follows therefore that B should belong to any complete setup which
contains both !4 — B and !-A — B. Hence the new rule is valid for
l—gf and l_LLCPg l—gf
For the converse, assume T’ I—ff A. Then there exist By, ..., B, like in
proposition 10(2). We prove by induction on n that T'Frrcr A. The
case n = 0 is obvious. Suppose the claim is true for n — 1. We show it
for n. By the deduction theorem for LL, !Bf,...,!B} = Ais derivable
from T in LLEYP ' More precisely: !Bf®!Bj ... ®!B} — A is deriv-
able from T for any choice of By, ..., Bk. Since IC®!D <!(C&D) is a
theorem of LL, this means that both !B,, — ({(Bf& ... &Bj);_;) = A)
and =B, — ((Bj&...&B? _|) — A). By the new rule of LL“F we
get therefore that T Fprer!(Bf& ... &B}_ ;) - A, and so T Fprer
'Bf®!B; ®...Q!B;_; — A for all choices of Bf,...,B;_;. An appli-
cation of the induction hypothesis gives T Frrcp A.

2. The proof is similar, only this time we should have (by proposition
11) that T U {By,..., B:} is either inconsistent in L™ or proves A
there. In both cases it proves A@® L in LLYF. The same argument as
before will show that T'Frrcr A® L. Since Frr = L, one application
of the disjunctive syllogism will give T' Fyrcr A. It remains to show
that the disjunctive syllogism is valid for F&,. This is easy, since
{-4, A ® B, ~B} is inconsistent in LL, and so any complete and
consistent extension of {—A, A ® B} necessarily contains B. |

3.4 The Standard Relevance Logic R and its Relatives

In this section we investigate the standard relevance logic R of Anderson and
Belnap [Anderson and Belnap, 1975; Dunn, 1986] and its various extensions
and fragments. Before doing this we should again remind the reader what
consequence relation we have in mind: the ordinary one which is associated

10Note again that we are talking here about A
1Tn fact, at the beginning it is derivable from T in LL, but for the induction to go
through we need to assume derivability in LLCP at each step.



306 ARNON AVRON

with the standard Hilbert-type formulations of these logics. As in the case
of linear logic, this means that we take both rules of R (M P and adjunction)
as rules of derivation and define T' g A in the most straightforward way.
Let us begin with the purely intensional (=multiplicative) fragment of R:
R,,. We state the results for this system, but they hold for all its nonclassical
various extensions (by axioms) which are discussed in the literature.

THEOREM 18. R,, is not strongly consistent, but it is strongly complete
and strongly c-normal.

Proof. It is well-known that R,, is not strongly consistent in our sense.
Its main property that we need for the other claims is that T, A kg, B iff
either T'+g,, B or T g, A — B. The strong completeness of R, follows
from this property by the provability of (wA — B) — ((A — B) — B) and
proposition 8(1).

To show strong c-normality, we note first that a theory T is inconsistent
in R, iff T +g, (B — B) for some B (because Fr,, =B — (B —
—(B — B))). Suppose now that T is consistent and T t/r, A. Were
TU{—A} inconsistent then by the same main property and the consistency
of T we would have that T Fg, —=A — —(B — B) for some B, and so that
Ttg, (B—B)—>Aand T g, A. A contradiction. Hence T'U {-A} is
consistent and we are done by proposition 8(3). |

The last theorem is the optimal theorem concerning negation that one
can expect from a logic which was designed to be paraconsistent. It shows
that with respect to normal “situations” (i.e., consistent theories) the nega-
tion connective of R, behaves exactly as in classical logic. The difference,
therefore, is mainly w.r.t. inconsistent theories. Unlike classical logic they
are not necessarily trivial in R,,. Strong completeness means, though, that
excluded middle, at least, can be assumed even in the abnormal situations.

When we come to R as a whole the situation is not as good as for the
purely intensional fragments. Strong c-normality is lost. What we do have
is the following:

THEOREM 19. R is strongly complete, c-normal and weakly normal, 12

but it is neither strongly consistent nor strongly c-normal.

Proof. Obviously, R is not strongly consistent. It is also well known that
—p,pV q /g q. Still ¢ belongs to any complete and consistent extension of
the (even classically!) consistent theory {-p,p V ¢}, since {-p,p V ¢,q}
is not consistent in R. It follows that R is not strongly c-normal. On the
other hand, to any extension £ of R by axiom schemes it is true that if
T,A+F; Cand T,B -, C, then T,AV B F, C [Anderson and Belnap,
1975]. Since Fr A V —A, this and proposition 8(1) entail that any such
extension is strongly complete. Suppose, next, that 7' is theory and A a

12\Weak normality is proved in [Anderson and Belnap, 1975] under the name “syntac-
tical completeness”.
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formula such that TU{A} and TU{—A} are inconsistent (£ as above). Then
for some B and C' it is the case that T, Aty -BAB and T,-AF; -CAC.
It follows that T,AV =A Fz (-=BAB)V (-C AC). Since AV —-A and
S[(=B A B)V (=C A C)] are both theorems of R, T' is inconsistent in £. By
proposition 8(4) this shows that any such logic is c-normal. Suppose, finally,
that /g A. Had {—A} been inconsistent, we would have that for some B,
-A Fr =B A B. This, in turn, entails that AV -4 Fr AV (=B A B),
and so that Fg AV (=B A B). On the other hand, Fr =(—=B A B). By
the famous theorem of Meyer and Dunn concerning the admissibility of the
disjunctive syllogism in R [Anderson and Belnap, 1975; Dunn, 1986] it would
follow, therefore, that Fr A, contradicting our assumption. Hence {—A} is
consistent, and so, by the c-normality of R which we have just proved, it
has a consistent and complete extension which obviously does not prove A.
This shows that R is weakly normal (the proof for RM is identical). |

COROLLARY. I—%S is strongly consistent, c-normal and weakly normal,
but it is not strongly c-normal.

Note: A close examination of the proof of the last theorem shows that the
properties of R which are described there are shared by many of its relatives
(like RM, for example). We have, in fact, the following generalizations:

1. Every extension of R which is not strongly consistent is also not
strongly c-normal.

2. Every extension of R by axiom-schemes is both strongly complete and
c-normal.

3. Every extension of R by axiom schemes for which the disjunctive syl-
logism is an admissible rule!?® is weakly normal.

In fact,(1)—(3) are true (with similar proofs) also for many systems weaker
than R in the relevance family, like E.

Our results show that F&F=Fg, but F¥#FSS (since R is not strongly
c-normal). Hence l—g is a new consequence relation, and we turn next to
axiomatize it.

DEFINITION. Let £ be an extension of R by axiom schemes and let £V
be the system which is obtained from £ by adding to it the disjunctive
syllogism () as an extra rule: from —A and AV B infer B.

THEOREM 20. FY="F,~.

Proof. To show that -~ C Y it is enough to show that =4, AVB ¥ B.
This was already done, in fact, in the proof of the last theorem. For the
converse, assume T F¥ A. Since £ is c-normal (see last note), T U {=A}

13See [Anderson and Belnap, 1975] and [Dunn, 1986] for examples and criteria when
this is the case.
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cannot be L-consistent. Hence T'U {-A} +z =B A B for some B. This
entails that T Fz AV (=B A B) and that T .~ A exactly as in the proof
of the weak normality of R. |

3.5 The Purely Relevant Logic RM 1

The purely relevant logic RM I was introduced in citeAv90a,Av90b. Proof-
theoretically it differs from R in that:

(i) The converse of contraction (or, equivalently, the mingle axiom of
RM) is valid in it. This is equivalent to the idempotency of the inten-
sional disjunction + (=“par” of Girard). In the purely multiplicative
fragment RM I, it means also that assumptions with respect to —
can be taken as coming in sets (rather than multisets, as in LL,, or
Ry).

(ii) The adjunction rule (B,C B A C) as well as the distribution axiom
(AN(BVC) = (AAB)V (AACQC)) are accepted only if B and C' are
“relevant”. This relevance relation can be expressed in the logic by
the sentence R (A4, B) = (A — A)+ (B — B), which should be added
as an extra premise to adjunction and distribution (this sentence is
the counterpart of the “mix” rule of [Girard, 1987]).

We start our investigation with the easier case of RM I,,,.

THEOREM 21. Exactly like R,,, RM1I,, is not strongly consistent, but it
1s both strongly complete and strongly c-normal.

Proof. Exactly like in the case of R,,. |

Like in classical logic, and unlike the case of R,,, these two main proper-
ties of RM I,,, are strongly related to simple, intuitive, algebraic semantics.
Originally, in fact, RMI,, was designed to correspond to a class of struc-
tures which are called in [Avron, 1990a) “full relevant disjunctive lattices”
(full r.d.l.). A full r.d.l is a structure which results if we take a tree and
attach to each node b its own two basic truth-values {t;, fs}. To a leaf b
of the tree we can attach instead a single truth-value I, which is the nega-
tion of itself (its meaning is “both true and false” or “degenerate”). b is
called abnormal in this case. Intuitively, the nodes of the tree represent
“domains of discourse”. Two domains are relevant to each other if they
have a common branch, while b being nearer than a to the root on a branch
intuitively means that b has a higher “degree of reality” (or higher “degree
of significance”) than a (we write a < b in this case). The operation of —
(negation) is defined on a full r.d.l. M in the obvious way, while + (rele-
vant disjunction) is defined as follows: Let |t,| = |fa] = |1a] = a, and let
val(ty) = t, val(fy) = f and val(l;) = I. Define z< y if either x = y or
|z| < |y| or |z| = |y| and val(y) = ¢. (M,<4) is an upper semilattice. Let
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T+y = supSJr(a:,y). An RMI,,-model is a pair (M,v) where M is a full
r.d.l. and v a valuation in it (which respects the operations). A sentence A
is true in a model (M,v) if val(v(A)) # f. Obviously, every model (M,v)
determines an RM I,,,-setup of all the formulae which are true in it. Denote
the collection of all these setups by RD Ly,.

PROPOSITION 22. CPgpyi,, = RDL,,

Proof. It is shown in [Avron, 1990b] that the Lindenbaum algebra of any
complete RM I,,,-theory determines a model in which exactly its sentences
are true. This implies that C'Prasr,, € RDL,,. The converse is obvious
from the definitions. |

CPROLLARY. [Avron, 1990b]: RM]I,, is sound and complete for the se-
mantics of full r.d.l.s. In other words: T Fgrar,, A iff A is true in every
model of T'.

Proof. Checking soundness is straightforward, while completeness follows
from the syntactic strong compleness of RM I, (theorem 21) and the last
theorem. |

The strong c-normality of RMI,, also has an interpretation in terms
of the semantics of full r.d.l.s. In order to describe it we need first some
definitions:

DEFINITION.

1. A full r.d.l is consistent iff for every = in it val(z) € {¢, f} (i.e., the
intermediate truth-value I is not used in its construction). This is
equivalent to: x # —x for all x.

2. A model (M,v) is consistent iff M is consistent.

3. CRDL,, is the collection of the RM I,,-setups which are determined
by some consistent model.

Note: On every tree one can base exactly one consistent full r.d.l. (but in
general many inconsistent ones).

PROPOSITION 23. Ngar, = CRDLy,.

Proof. In the construction from [Avron, 1990b] which is mentioned in the
proof of proposition 22, a complete and consistent theory is easily seen to
determine a consistent model. The converse is obvious. |

In view of the last proposition, the strong c-normality of RM I, and its
two obvious corollaries (weak normality and c-normality) can be reformu-
lated in terms of the algebraic models as follows:

PROPOSITION 24.

1. If T is consistent then T Fraa,, A iff A is true in any consistent
model of T'.
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2. Frura,, A iff A is true in any consistent model.

3. Fvery consistent RM I,,,-theory has a consistent model.

It follows that if we restrict our attention to consistent RM I,,-theories,
we can also restrict our semantics to consistent full r.d.l.s, needing, therefore,
only the classical two truth-values ¢ and f, but not I.

Exactly as in the case of R, when we pass to RM I things become more
complicated. Moreover, although we are going to show that RM1I has ez-
actly the same properties as R, the proofs are harder.

THEOREM 25. RM1 is strongly complete.
Proof. The proof is like the one for R given above, since RM I has the
relevant properties of R which were used there (see [Avron, 1990b]). [ ]

Like in the case of RMI,,, the strong completeness of RM I is directly
connected to the semantics of full r.d.l.s. This semantics is extended in
[Avron, 1990a; Avron, 1990b] to the full language by defining the operator
A on a full r.d.l. as follows: define < on M by: z <y iff val(—z +y) # f.
(M, <) is a lattice. Let « Ay = inf<(z,y). The notions of an RM I-model,
consistent RM I-model and the truth of a formula A (of the language of
RMT) in such models are defined as in the case of RMI,,. The classes of
setups RDL and CRDL are also defined like their counterparts in the case
of RM1I,,. Again we have:

PROPOSITION 26.
1. CPryr = RDL.

2. Ngmr =CRDL.
Proof. Similar to the proofs of propositions 22 and 23. |
Again, theorem 25 and 26(1) entail the following result of [Avron, 1990b]:
COROLLARY. RM1 is sound and complete for the semantics of full r.d.l.s.
THEOREM 27.

1. Fryr A iff A is valid in all the consistent models.

2. RM1 is weakly normal.

Proof.

1. Suppose that /rar A. Then there is a model (M, v) in which A is
not true. Let M’ be the consistent full r.d.l based on Ths (the tree
on which M is based). Let v' be any valuation in M’ which satisfies
the following conditions: (i) |v'(P)| = |v(P)| for every atomic P,
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(ii) o'(P) = v(P) whenever |[v(P)| is normal in M. It is easy to
see that conditions (i) and (ii) are preserved if we replace P by any
sentence. In particular v'(A) = v(A4) and so A is not valid in the
consistent model M.

2. Immediate from part (1) and proposition 26(2) |
THEOREM 28.
1. RMI is c-normal.

2. Every consistent RM I-Theory has consistent model.

Proof. (1) By proposition 8(4) it suffices to prove that if T' is consistent
and A a sentence then either T'U {A} or T'U {—A} is consistent. This is
not so easy, however, since like in R, T'U { A} might be inconsistent even if
T i/ = A, while unlike in R, (7) for V is not sound for F&,,;.

Suppose then that T'U {A} and T'U {—A} are both inconsistent. Since
=B, B Fryr ~(B — B), this means, by RMI deduction theorem for D4
that there exist sentences B and C such that T Fryr A D -(B — B),
T Fryr 7A D =(C — C). In order to prove that T is inconsistent it is
enough therefore to show that the following theory Fj is inconsistent:

FOZ{AD —I(B—)B) , "AD —|(C—>C)}

For this we show that the following sentence ¢ and its negation are theorems
of Fy (where a ob = —(—a + —b)):

p=(BV[~AoR" (A+C,B)) A(C V [(A+C)oR" (A+B,C)) .

By the completeness theorem it suffices to show that ¢ gets a neutral
value (I) in every model of Fy. Let (M, v) be such a model, and denote by
R the relevance relation between the nodes of the tree on which M is based.
It is easy to see that:

a) [o(A)| £ [v(B)]  [o(A)] £ |u(C)]
b) If |[u(A)| R |v(B)| or if v(A) is designated then v(B) is neutral.
c) If [u(A)| R |v(C)| or if v(—A) is designated then v(C') is neutral.

Denote, for convenience, v(A) by a, v(B) by b, v(C) by ¢, and the two
conjuncts of ¢ by ¢1 and s respectively. Then:

(i) If|b| R (|a|V]c|) then v(yp1) = b. Also we have then that |c| < |a|V]c| <
la|V|b] = |a+b| (since always (Ja|V |b]) R (|a|V |c|)). Hence |¢| R |a+ b
and 50 v (p2) = tg)vp|v|c|- It follows that v (¢) = b and so v (y) is
neutral by b) above.

14See [Avron, 1990b]. The connective D is defined there by a D b= bV (a — b).
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(ii) If |b| R (Ja| V |¢]) and either |a| < |a| V |¢| or val(a) = f then, by a),
|b] < |a| V |e¢| and either |a| R |c| or v(—A) is designated. Hence c is
neutral by c¢). It follows (since either |a| R |c| or val(a) = f), that either
la| B |c| or |c| < |a|. In both cases v(A + C) = flajvp|vic], V(p2) = ¢,
and v(©1) = tja|v|p|v|c|- Hence v(p) = ¢, which is neutral.

(iii) If || R (|a| V |c]), |a] =]a|] V |c| and a is designated then, by a), |a| =
la| V10| V |e|. If val(a) = I then also val(b) = I and val(c) = I, and
so val(v(e)) = I. If val(a) = ¢ then by b) b is neutral and so |b]| < |a]
(la| is normal!). Obviously |¢| < |a| in this case, and so v(¢1) = b,
v(p2) = tjq) = a and v(p) = b, which is neutral.

(2) Immediate from (1) and proposition 26(2). [ |

PROPOSITION 29. RMT is not strongly c-normal.

Proof. Let 1)1 and ¥ be the two elements of the theory Fy from the last
proof. Let T' = {¢1}, A = —)2. Then T is consistent (even classically!)
and A is provable in every consistent and complete extension of T (since Fp
is inconsistent). Hence T' I—gMI A. However, T /g1 A since it is easy to
construct a full model of ¢ in which =)y is not true. (¢ is neutral in this
model.) [ ]

Like in the case of R, our results show that I—gMI is stronger than Frasr
and F§3;;. We now construct a formal system for this consequence relation.

DEFINITION. The system RMIC is RM I strengthened by M.T. for D:

ADB, -BF-A.

THEOREM 30.
1. Trrure A iff THY, A

2. l_RMIC A fo l_RMI A.

Proof.

1. Obviously, if both A D B and —B are true in a consistent model
(M,v) then so is =A. Hence if T Frarre A then T HY, A, For the
converse, suppose T F&¥, . A. Then by Theorem 26 T U {-A} has
no consistent model. This means, by Theorem 28, that T'U {—A} is
inconsistent. Hence T'Fgy 1 —A D —(B — B) for some B. Since also
Fryvr = (B — B), we have that T Fgy e ——A, by applying M.T.
Hence T '_RMIC A.

2. Immediate from 1) and theorem 27(2). |
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Notes:

1. From 30(2) it is clear that the system RMT is closed under M.T.
for D. By applying this rule to theories we can make, however, any
inconsistent theory trivial. This resembles the status of (y) in R and
E. Indeed (y) may be viewed as M.T. for the usual implication as
defined in classical logic. A comparison of theorems 30 and 20 deepens
the analogy (note that RM I is not an extension of R and 20 fails for
it!).

2. Despite 30(2) RM I and RMIC are totally different even for consistent
theories, as we have seen in prop. 29. It is important, however, to
note that theory T is consistent in RM I iff it is consistent in RMIC'.
This follows easily from theorem 28.

3.6 Three Valued Logics

Like in section 2, we consider here only the 3-valued logic which we call in
[Avron, 1991b] “natural” (in fact, only those with Tarskian CR). All these
logics have the connectives {—, A, V} as defined by Kleene. The weaker ones
have only these connectives as primitive. The stronger ones have also an
implication connective which reflect their consequence relation.

Suppose the truth-values are {t, f,I}. t and f correspond to the classi-
cal truth values. Hence ¢ is designated, f is not. The 3-valued logics are
therefore naturally divided into two main classes: those in which I is not
designated, and those in which it is. The first type of logics can be un-
derstood as those in which the law of contradiction is valid, but excluded
middle is not. The second type — the other way around.

Kleene’s basic 3-valued logic

This logic, which we denote by K/, has only ¢ as designated and {—,V,A}
as primitives. It has no valid formula, but it does have a non-trivial conse-
quence relation, defined by the 3-valued semantics. A setup in this semantics
is any set of the form {4 | v(A) =t} where v is a 3-valued valuation, and the
consequence relation gy is defined by this semantics. A sound and strongly
complete Gentzen-type or natural deduction formulations have been given
in several places (see, e.g., [Barringer et al., 1984] or [Avron, 1991b]).

The properties of kg, which are relevant to the present paper are sum-
marized in the following theorem:

THEOREM 31.

1. Like intuitionistic logic, gy is strongly consistent, c-normal but not
even weakly complete.

2. F8 is classical logic.
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Proof.

1. Since —A, A Fg¢ B, Fk¢ is strongly consistent. Since l—f(lz AV -A

but e AV —A, Fi is not weakly complete.

We turn now to c-normality. First we need a lemma

LEMMA 32. If T has a 3-valued model then it has also a classical,
two valued model.

Proof of the lemma: It is enough to show that every finite subset of
T has a two-valued model (by compactness of classical logic). So let T’
be a finite set which has a 3-valued model. Since De-Morgan laws and
the double-negation laws are valid for the three-valued truth tables,
we may assume that all the formulas in T' are in negation normal form.
We prove now the claim by induction on the number of A and V in
. If all the formulas in [' are either atomic or negations of atomic
formula, then the claim is obvious. If I' =T’y U {A A B} then I has a
model iff I’y U{A, B} has a model, and so we can apply the induction
hypothesis to I'y U{A,B}. If ' =T'; U {AV B} then I" has a model
iff either I'y U {A} or I'y U {B} has, and we can apply the induction
hypothesis to the one which does, getting by this a two-valued model
for I |

To complete the proof of the theorem, let T be a consistent F g ¢-theory.
The definitions of consistency and of F g, imply in this case that it has
some 3-valued model. By the lemma it has also a two-valued model.
Let T be the set of all the formulae that are true in that two-valued
model. Then T* is a F-setup which is consistent (even classically),
complete, and an extension of T'.

Since I—%Z -AV Aand AV C, AV B kg CV B, it is easy to
show, using (for example) Shoenfield’s axiomatization of classical logic
in [Shoenfield, 1967] that Fc(CFSY. The converse is obvious, since
Fre¢C Fee and Fey is strongly complete (by ey we mean here classical
logic). [ ]

LPF/Ls

LPF was developed in [Barringer et al., 1984] for the VDM Project. As
explained in [Avron, 1991b], it can be obtained from kg, by adding an
internal implication D so that T, A Frpr B iff T Frpr A D B. The
definition of D is: a D b =t if a # t, b if a = t. Alternatively one can
add to the language Lukasiewicz’s implication, or the operator A used in
[Barringer et al., 1984]. All these connectives are definable from one another
with the help of =, A and V.
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THEOREM 33.

1. Fppr s strongly consistent but neither weakly complete nor c-normal.
2. F¢F . is classical logic.
Proof.

1. That Fppp is strongly consistent but not weakly normal follows from
the corresponding fact for gy, since Fppp is a conservative extension
of Fi¢. As for c-normality, it is enough to note that {(4 VvV —=A) D
B, —B} is consistent in LPF (take v(A4) = I, v(B) = f) but obviously
has no consistent and complete extension.

2. Again, take any axiomatization of classical logic in the LP F-language
and check that all the axioms and rules are valid in F¢F . [

The Basic Paraconsistent 3-valued logic PAC

This logic, which we call PAC in [Avron, 1991b] °, has the same language
(with the same definitions of the connectives) as b g¢. The difference is that
here both ¢ and I are designated. A setup in the intended semantics is,
therefore, this time a set of the form {A | v(4) =t or v(A) = I},where
v is a three-valued valuation. A sound and strongly complete (relative to

the 3-valued semantics) Gentzen-type axiomatization is given in [Avron,
1991b)].16

THEOREM 34.

1. Fpac is strongly complete, weakly normal and c-normal. It is neither
strongly comsistent nor strongly c-normal.

2. ¥ is identical to classical logic.

15Tt is a fragment of several logics which got several names in the literature — see next
subsection.

16Giving a faithful Hilbert-type system is somewhat a problem here, since the set of
valid formulas is identical to that of classical logic, but the consequence relation is not.
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Proof.

1.

The strong completeness theorem for the Gentzen-type system entails
that Fp ¢ is finitary. Hence to show strong syntactical completeness
it is enough to show that the condition in 8(1) obtains. This is easy.
Weak normality is immediate from the fact that Fpqc A iff A is
a classical tautology (see [Avron, 1991b]) and that FpacClce. c-
normality is proved exactly as for R (it is easy to check that Fpac
has all the properties which are used in that proof). It is also easy
to check that —p,p pac ¢ and that {-p,pV ¢} is consistent, that
—p,pV q F¥ 4o g but =p,pV q Fpac g (take v(p) = I, v(g) = f).
Hence Fp4c¢ is not strongly c-normal and not strongly consistent.

. Since all classical tautologies are valid in Fp 4 and M P for classical

implication is valid for % ,~, Fc/CFY ,~. The converse is obvious,
since F¢y is strongly c-normal and FpscCFcy. [ |

RMs;/Js

This logic is obtained from PAC by the addition of certain connectives while
keeping the same CR. There are two essential ways that this has been done

(independently) in the literature (they were shown equivalent in [Avron,
1991b]):

(i)

Adding an implication —, defined as in [Sobociriski, 1952]. In this
way we get the strongest logic in the relevance family: the three-
valued extension of RM. It is in this way that this logic arose in the
relevance literature. The corresponding matrix is called there M3 and
the logic RM3. It can be axiomatized by adding to R the axioms
A— (A— A)and AV (A — B).

Adding an implication D, defined by (see [da Costa, 1974]) a D b = t if
a = f,a D b= botherwise. For this connective the deduction theorem
holds. In this form the logic was called .J3 in [D’Ottaviano, 1985] (see
also [Epstein, 1995]) 7. It was independently investigated also in
[Avron, 1986] and in [Rozonoer, 1989]. Strongly complete Hilbert-
type formulations with M.P. for D as the only rule of inference were
given in those papers, and a cut-free Gentzen-type formulation can be
found in [Avron, 1991b].

In what follows we shall use the neutral name Pac* for the CR of PAC
in the extended language. The next theorem shows that the main difference
between Pac* and PAC is that Pac* is not weakly normal.

17[D’Ottaviano, 1985] and [Epstein, 1995] consider a language with more connectives,
but we shall not treat them here.
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THEOREM 35.

1. Pac* is strongly complete and c-normal. It is neither strongly consis-
tent nor weakly normal.

2. FB .. is identical to classical logic.

Proof.

1. Strong completeness and c-normality can easily be proved. Since
Fpacs is a conservative extension of p,., it is not strongly consis-
tent. Finally I—gac* AN-AD B, since «(AAN—-A D B) Fpger AN—A,
but paer AAN—A D B (the same argument applies to (AA—A — B)).

2. It is provable in [Dunn, 1970] that classical logic is the only proper
extension of RMj in the language of {—,V,A, =} (from the point of
view of theoremhood). Since we have just seen that the set of valid
sentences in F¥, .. is such a proper extension, and since M P for — is
valid for it, F%, .. should be identical to ¢y (in this language). The
same argument works for the {—, V, A, D} language using the results of
[Avron, 1986]. Alternatively, it is not difficult to show that by adding
- A A A — B to the Hilbert-type formulation of RM3 or ~AANA D B
to that of J3 we get classical logic in the corresponding languages. B

4 CONCLUSION

We have seen two different aspects of negation. From our two points of view
the major conclusions are:

e The negation of classical logic is a perfect negation from both syntac-
tical and semantic points of view.

e Next come the intensional fragments of the standard relevance log-
ics (R, RMI,,, RM,). Their negation is an internal negation for
their associated internal CR. Relative to the external one, on the
other hand, it has the optimal properties one may expect a seman-
tic negation to have in a paraconsistent logic. In the full systems
(R,RMI,RM) the situation is similar, though less perfect (from the
semantic point of view). It is even less perfect for the 3-valued para-
consistent logic.

e The negation of Linear Logic is a perfect internal negation w.r.t. its
associated internal CR. It is not, however, a negation from the seman-
tic point of view. The same applies to Lukasiewicz 3-valued logic.

e The negations of intuitionistic logic and of Kleen’s 3-valued logic are
not really negations from the two points of view presented here.
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In addition we have seen that within our general semantic framework,
any consequence relation which is not strongly normal naturally induces one
or more derived consequence relations in which its negation better deserves
this name. We gave sound and complete axiomatic systems for these derived
relations for all the substructural logics we have investigated.

Department of Computer Science, Tel Aviv University, Israel.
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TON SALES

LOGIC AS GENERAL RATIONALITY: A
SURVEY

Logic today is urged to confront and solve the problem of reasoning under
non-ideal conditions, such as incomplete information or imprecisely formu-
lated statements, as is the case with uncertainty, approximate descriptions
or linguistic vagueness. At the same time, Probability theory has widened
its traditional field of analysis (the ezpected frequency of physical phenom-
ena) so as to encompass and analyze general rational expectations. Thus,
Probability has placed itself in the position of offering Logic a solution for
its own long-awaited generalization. The basis for that turns out to be
precisely the shared base underlying the two disciplines. This theoretical
base predates their common birth, as seen in the early efforts of Bernoulli
and Laplace, as well as in Boole’s 1854 attempt to formalize the “laws of
thought” and then, as he claimed, to “derive Logic and Probability” from
them. Once we recover (following Popper’s 1938 advice) the underlying
formalism, we come, by interpreting it in two different directions, back into
either Logic or Probability. The present survey explains the story so far
and does the reconstruction work from the logical point of view. The stated
aim is to generalize Logic so as to cover, as Boole intended, the whole of
rationality.

INTRODUCTION

This survey could as well be entitled: “How Logic was once the same as
Probability, and then they diverged —and how they may again be formally
the same”, or “Logic and classical Probability: recovering the lost common
ground”. Before we begin, let us say that the implied desideratum of the
title(s) is long overdue. Indeed, that (a) standard Logic can be generalized,
and that (b) the natural generalization of Logic is —or derives from, or is
suggested by— Probability theory seems at present the shared conviction
of a number of logicians and probabilists. Thus, to cite a few of the latter,
Ramsey wrote (in 1926) that the laws of probability are actually laws of
consistency (or rational behavior), an extension of Formal Logic to cover
partial information, and that Probability theory could become the “logic of
consistency” which would control and guarantee, as Mathematics does, that
our beliefs are not self-contradictory. At about the same time de Finetti
concluded that Probability theory is the only possible “logic” to generalize
standard Logic. All the same, Patrick Suppes was considering in 1979 that
Probability theory is the natural extension of classical deductive inference
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rules, while, more recently, Glenn Shafer declared that “probability is not
really about numbers; it is about the structure of reasoning”.

Why the technicalities of Probability theory should be viewed today as a
powerful generalizer of standard Logic and a suitable formal unifier of the
two may come as a surprise both to probabilists and logicians. Actually,
the idea —that we pursue in our generalization below— is very simple:
Probability and Logic are but two interpretations of a same underlying
concept. This is how the founders of both theories saw it and what Popper
later explicitly said (and Kolmogorov claimed he had done). But this old
notion, over which notable thinkers like Reichenbach or Carnap agonized
after the 1930s, is shared nowadays by a surprisingly exiguous minority of
specialists (in both disciplines).

Logic and Probability are overwhelmingly seen today as two completely
disparate fields, with a very few, if any, points of contact. Logic deals
with reasoning and truth, Probability with inference on poor data. They
seem to have nothing in common. Though they both start with a set B of
Boolean-structured objects (respectively sentences and events —or, confus-
ingly, “propositions”) and though they assign them values in a simple num-
ber system containing the one and the zero (here logicians prefer ‘truth’ and
‘falsity’, though), at this point the similarity apparently ends, for the two
valuations are perceived to be very different: the probabilistic P : B — [0, 1]
obeys a set of axioms set forth by Kolmogorov in the 1930s (that do not
actually follow from any particularly “probabilistic” rules but rather reduce
it to a simple ‘measure’ —in the technical sense— of the “event” objects),
while the logical valuation is felt to be of a quite different nature and regu-
lated by a semantics set forth by Tarski, also in the thirties, and buttressed
by elaborate, specialized logical considerations. Moreover, either field not
only has a different type of problem to solve, it also has a different, in-
compatible set of base concepts and interpretations to work on. And the
diverging traditions have bred different strokes of unrelated practitioners
and two methodologies that are seen by the mainstream mathematician
as far distant (even lying at opposite fields of Mathematics, i.e. real vs.
discrete).

However, this is not how things were seen in the first stages of the mod-
ern theories of Probability and Logic. Their founders, notably Bernoulli and
Laplace, or Boole and Peirce, dithered a lot on what might “probability” or
“truth” mean, and often tended to explain one through the other in incip-
ient, half-baked intersecting intuitions, as can be readily seen by browsing
into the original literature. Later developments, as well as the progressively
firmer foundations and the more specialized and mutually deviating inter-
pretations that either field painstakingly acquired, created an increasing gap
between Probability and Logic, in which both contenders apparently never
found a ground or occasion to reconcile into one unified approach (which,
as we suggest below, is not only desirable but feasible and even natural).
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Why striving to recover an encompassing view should be interesting at
all may be not obvious at first, but there are strong reasons for it. First, be-
cause, as we said, both theories are two differing interpretations of the same
idea. Second, because both probabilists and logicians have recently been
hard pressed against the limits of their own disciplines when confronting
new challenges with consecrated methods. Prominent challenges include:
(1) for probabilists, how to clarify the ultimate meaning, and the practical
import, of the apparently obvious idea of “probability” (doubters here in-
clude names as Keynes [1921], Ramsey [1926] or de Finetti [1931], and the
questions raised prolong well to this day into widely-discussed conundrums
as the status of subjective probability, rational belief or bayesianism); or (2)
for logicians, how to validate reasoning under uncertainty or with incom-
plete or approzimate information (a problem that eventually gave rise, also
around the 1930s, to non-standard formalisms such as the many-valued log-
ics of Lukasiewicz [1920] (and [1930], with Tarski) or Kleene [1938], or the
attempts at defining a probability logic by Reichenbach [1935a,b], discussed
by Carnap [1950].

The material below is structured in two parts: the first is a short survey
explaining why Logic and classical Probability were once the same thing
—and gave the (common) pioneers (Bernoulli, Hume, Laplace, Boole) lots
of cross-supporting arguments— and why they soon diverged to the point
of being considered unrelated. The second part —considerably longer— is a
summary of how we locate Logic firmly in the Logic/Probability common
heritage; it is based on former work by the author (Sales [1982a,b, 92,94,96])
and the starting point is Popper’s 1938 suggestion (see Popper [1959]) to
set forth a unique algebraic uninterpreted formalism as the common source
from which, through distinct interpretations, both Logic and Probability
can be formally derived as particular instances. The common formal idea
we advance is, as will be later explained, that we can postulate an additive
valuation (in e.g. [0,1]) of the elements of a given abstract Boolean structure
B —that is later interpreted by Probability as a (set-theoretic) event, and by
Logic as a (non-set) sentence. Our generalization proceeds from this point
on as an exclusively logical reading of the common uninterpreted formalism.
(The development is satisfactory also in a second, non-formal sense, since
it can be seen as a vindication and reconstruction of the pioneers’ historical
common source of insights.)
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A. The Probability /Logic Interface

1 THE VIEW FROM PROBABILITY

1.1 Classical Probability

Around the year 1700, Jakob Bernoulli tried to define the probability of
a phenomenon as a non-evident and non-subjective something that fortu-
nately had effects: the observable frequency, or relative number of cases in
which the phenomenon manifested itself. This number was supposed fixed
and objective. So, measuring frequencies was the way to estimate “prob-
ability”. Conversely, knowing the probability of a phenomenon allowed to
predict its expected frequency. This is, in essence, Bernoulli’s theorem. It
is the first clear, albeit implicit, definition of probability. It is also the first
instance of a duality that is present since in Probability theory: probability
P —a supposedly objective property of phenomena— is conceived simulta-
neously as (1) the ratio of positive cases (call it P.) and (2) the number
we have (call it Py, b for ‘belief’) to estimate P.. The first is assumedly an
objective reality, the second an inevitably subjective entity that depends
on our past history of observations (a paradox that is the common theme
of many reflections, like those of e.g. de Finetti). Obviously, the fewer our
interactions, the more subjective our P, estimate is. The idea is that P,
“aproximates” P., and the aim is getting P, = P. (in some limit situation).

The Rev. Bayes developed Bernoulli’s idea of P, converging to P. through
observational updates and came up with his celebrated formula (posthu-
mously revealed in 1763) to compute P. Hailed by observational scientists
for more than a century, it is now the heart of a debate about what is this
Bayes-computed probability. Called “a priori” probability, anti-Bayesians
contend it is nothing more than simple, non-objective belief based on a
hypothetical view of our ignorance.

Laplace, in 1774 and later, defined probability as P., the ratio of favorable
cases, all assumed having “the same probability”. The obvious circularity
raised some eyebrows in the 1920s, but Laplace’s has been the standard
and successful definition since, at least for non-sophisticated applications.
Note that it places probability clearly on the frequency side, and cavalierly
dismisses any subjective-sounding belief content, perhaps the reason for its
long-standing success. Note, too, that cases are a logical notion, since they
can be defined —and were by Laplace himself— as the true instances of
a proposition. Thus, Laplace’s [1774,1820] probability can be seen as an
early generalization of Logic, particularly of the concept of validity (resp.
consistency), now interpretable as “true in all (resp. some) cases”. Some
years before this, Hume had already implied too that probability was a
generalization of logical inference by considering that, given a proposition
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obtained from some conditions or premises, its probability was the pro-
portion of premises (or premise extensions) in which the proposition was
satisfied.

The classical probabilists thus conceived probability, more than as some-
thing associated with indeterminism or uncertainty, as a measure of our
knowledge of phenomena in the presence of incomplete information (or,
dually, as a measure of our partial ignorance). This concept was consid-
ered objective because, though not directly measurable, (1) it referred to
a supposedly objective situation indirectly parameterizable through its ob-
servable effects, and (2) it was manipulable through rules of an objective
calculus. So, after Laplace, Probability theory came to be dominated by the
probability-as-frequency view. This was convenient as it was objective and
“scientific” and adequately eschewed the estimation or “belief” problem.

It lasted until the 1920s, when von Mises, dissatisfied with the classi-
cal solution, formalized (in 1928) the estimation or approximation problem
by postulating a “sample space” (), defining frequency in it and comput-
ing probability as the result of some limit process, in which the number of
observations tended to infinity. Since this was no ordinary limit and the
process not quite satisfactory, Kolmogorov [1933] came up with the now
universally accepted solution: probability is just the measure of an event
(an event being a set of outcomes); this measure is taken in the mathe-
matical sense, i.e. as a countably additive valuation (though the need for
countable additivity has been challenged by many, notably de Finetti [1970]
or Popper [1959]). An interesting thing to note: Kolmogorov declared that
his formalization was “neutral” in the sense that it was abstract (and thus
previous to any interpretation); in his words, probability had to be formal,
pure mathematics, merely ruled by axioms. Nevertheless he also declared
that his measured entities (in theory merely the members of a o-algebra
over ) are actually sets. And though he added that this was irrelevant,
Popper protested (in 1955) that it is relevant in some important cases, and
noted that a truly abstract formalization must admit any interpretations,
including those in which the measured entities are not sets. (But, we add,
this is precisely the case of Logic, where we have non-set entities, namely
sentences from a language, not events from a sample space.) Popper [1959]
offered an axiomatic alternative first suggested in 1938, fully developed in
1955, and now fashionable (under the guise of “probabilistic semantics” or
“Popper functions”).

1.2 ‘Subjective probability”, “Probability logic” and “Logical prob-
ability”
Following Keynes’s [1921] lead, Ramsey [1926] was the first to consider that

the belief side of probability, already present in Bernoulli or the Bayes’ for-
mula, was the core of the concept, since the “true” value of probability was
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beyond our reach and the best we could do is approximate it through a care-
ful, consistent, rational procedure; so he defined probability as belief and
defined this as a number obtained on the basis of consistency considerations
about the belief-holder’s rational behavior (as deducible from betting proto-
cols); the rationality-induced consistency insured that the number, though
inevitably “subjective”, was nevertheless the most objective measure one
could obtain. In a similar spirit, and in same years, Bruno de Finetti
[1931,37] approached probability as an inherently non-objective concept.
He summarized it in his well-known slogan “probability does not exist”
(i.e. objectively, at least “not more than the cosmic ether”), and noth-
ing beyond consistency assures its imagined objectivity. According to him,
probability is merely what we expect on the basis of past experience and
the assumed consistency of what we do. As a number, probability (which
de Finetti [1937,70] constructed formally on the basis of a vector space of
rational expectations), is “objective” as far as the procedure to obtain it
obeys coherent assumptions.

The “subjective probability” thesis of Ramsey/de Finetti has found con-
tinuation till now in the work of Jeffreys [1939], Koopman [1940], Savage
[1954] or Jeffrey [1965], to name a few, all of which reject the epithet “sub-
jective”; they prefer to be called simply probabilists and at most admit that
the probability they deal with is a (non-subjective) partial or rational belief,
i.e. the value we assign propositions in absence of complete information.

On the other hand, in a series of studies beginning in 1932 Hans Re-
ichenbach [1935a,b], a physicist with an interest in foundations, interpreted
probability as a logic. The logic (probability logic he called it) was not truth-
functional, but he could subsume all classical tautologies as particular cases
of propositions p that had unit probability (i.e. |p| = 1 ). He obtained
formulas for the value (probability) of the connectives which are basically
like the ones we obtain below; he says that e.g. |pV ¢| is a function of
|p| and |q| plus a third parameter k he calls Kopplungsgrad or ‘degree of
coupling’ (defined roughly as the relative size of the intersection of overlap-
ping areas or classes to which a measure is applied that coincides with the
conditional probability). This is equivalent to what we obtain in our gener-
alization below, but note that Reichenbach never moves out of probability
and events: he always speaks of probability in its standard meaning and
only in a translation of senses he says he can interpret the probability of
an event sequence —a sequence of binary truth values— as its (non-binary)
“truth”. His world is clearly that of Probability, and what he obtains is a
Logic only in the sense that he speaks of truth, albeit probability by an-
other name. Moreover, though his contemporary critics (including Tarski
[1935a]) argued against the construction, they did not because of the sub-
sidiary role of truth in it (as a surrogate for a probability of one) but on
the arguable ground that a proper logic ought to be truth-functional (see
Urquhart’s [1986] comment below as to the contrary).
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(Work on ‘probability logic’ by Kemeny et al.(see Leblanc [1960]), Bac-
chus [1990], Halpern [1990] or Fagin et al. [1990] is not mentioned here be-
cause what these authors deal with is not what is understood by that name
in the the classical tradition. Instead, they apply the standard treatment
of any first-order theory inside Logic, i.e. augmenting ordinary first-order
logic with a number of specific axioms that syntactically describe the real
numbers (or an ordered field) and the probability operations on them, so
that the Probability laws can be derived formally as theorems.)

Another indirect view of Logic-as-valuation was the one adopted by Rudolf
Carnap [1950,62], starting in the 1940s. The Logic/Probability link began
in his case by trying to justify probability logically. In his view (that he
called logical probability and surmised as theoretical ground on which to
base a “logic of induction” to which Popper came to be fiercely opposed),
the probability of an event was the proportion or, more generally, the mea-
sure (“ratio of ranges of propositions”) of the intervening circumstances
(described as logical sentences) concurring in the event. For this measure
he said he was inspired by a definition of Wajsberg —which was inspired
in turn by proposition *5.15 of Wittgenstein’s [1922] Tractatus (ultimately
Bolzano-inspired, see below). Carnap hesitated and changed his approach
often along the 1950s; for instance, notably, he came to value sentences
instead of events, but came back to events later, shortly before giving up
the whole scheme. Wittgenstein and Wajsberg’s extensional rendition and
Carnap’s use of them is, like Reichenbach’s implicit grounding of proba-
bility on rather obscure “overlapping classes”, strongly reminiscent of the
Stone representation we obtain below out of our general, non-probabilistic
truth valuation of logical sentences. It is interesting to note that Carnap’s
logically-described components of events correspond rather precisely to what
Laplace had called the (positive i.e. true) “cases” concurring in an event.
They are also almost interchangeable with Boole’s cases (his “conceivable
sets of circumstances”) underlying a logical proposition (or with equivalent
descriptions by McColl and Peirce and Wittgenstein, see below).

2 THE VIEW FROM LOGIC

2.1 The pioneer logicians

The laplacian idea of having “cases” (a logical concept, we noted) and then
measuring the proportion of the true ones seem to have been floating all over.
Laplace’s uninfluential contemporary, the Austrian philosopher Bolzano,
had this to say about first-order propositions and truth: propositions, he
says, have an associated “degree of validity”, a number in [0,1] which equals
“the proportion of true ‘variants” (Bolzano’s “variants” are our term sub-
stitutions).
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And then Boole [1854], when just after studying classes he sets out to
analyze propositions (in 1847), conceives them by means of an alternative
interpretation of his elective symbol z (already introduced for classes) and
says it now stands for the cases (defined informally as “conceivable sets of
circumstances”) —out of a given hypothetical “universe” (a De Morgan’s
idea)— in which the proposition is ¢rue. In the last chapters of his 1854
book (significantly entitled “An investigation of the laws of thought, on
which are founded the mathematical theories of logic and probabilities”)
Boole even likens the product z -y of two propositions (i.e. the conjunction
value, actually) to the probability of simultaneously having them both and
the (value of) the sum x + y to the probability of having either (provided
they are mutually exclusive).

An equivalent idea is present in MacColl’s [1906] partially published re-
flections (started before 1897), where he says that propositions are generally
“variable”, meaning they are sometimes the case, depending on their (ba-
sically probabilistic) modality. Peirce [1902], in an unpublished work that
deliberately follows MacColl’s steps, sets out to distinguish “necessary” from
“contingent” propositions, most being the latter sort, characterized by their
(probabilistic) occurrence.

In a similar vein Wittgenstein [1922] considers a little later that proposi-
tions reflect —and are basically decomposable into— “states of affairs” (an
idea borrowed from Leibniz). That those states of affairs (reminiscent of
Laplace’s or Boole’s cases) are in some way a measurable universe whose
proportions gave information on the truth of the composite propositions is
obvious from the Tractatus (and is the inspiration of the extensional view
of Wajsberg and Carnap mentioned above).

2.2 ‘Multi-valued logic”

While some probabilists (from Ramsey to Reichenbach) agonized in the
1930s over their base concepts, there was intense soul searching also in
the logicians’ camp. The main new idea came from Lukasiewicz in 1930
(down from antecedents since 1918) when he postulated a logic in which
“truth” values could take any value from the infinite real [0,1] interval (see
Lukasiewicz & Tarski [1930]). To compute the value of composite propo-
sitions in his “many-valued logic” he obtained (truth-functional) formulas
which are exactly the ones we obtain below except for the fact that they
presuppose full compatibility (a concept we explain below) among all propo-
sitions, no matter some are the negation of others. This was not perceived
as a problem at the time but it was, as some fellow logicians pointed out to
him at the 1938 Zurich workshop (see Lukasiewicz [1938]). They considered
that either we assign p A —p the value min(|p|, 1 — |p|) given by the formu-
las (thus blatantly contradicting the basic logical law of non-contradiction)
or else we assign it the —correct— zero value (meaning falsity, so in accor-
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dance with ordinary Logic) but then we arbitrarily disobey the postulated
truth-functionality. As this predicament found no decisive solution, many-
valued logic has continued to this day —along with unexpected offshoots
like “fuzzy logic” — consecrating truth-functionality as a rigid principle and
thus putting itself out of mainstream Logic, of which is a weak incompatible
variety (unless we add, as suggested by van Fraassen [1968], some super-
valuation mechanism to it). At the end of a detailed survey of multi-valued
logic, Alasdair Urquhart [1986] comments that it is hardly surprising that
those systems have remained logical toys or curiosities since “there seems
to be a fundamental error [truth functionality] at the root”. Some modern
cultivators wonder whether is it possible to combine the two best-known
formalisms, Probability and Logic, in any way (but Lee [1972] admits that
“we do not seem how to do this”); others, like Hamacher [1976], Zimmer-
man [1977] or Trillas et al. [1982], in asking what are the correct truth-value
formulas for the fuzzy calculi, hesitate among a variety of candidates, while
still another, Minker (with Aronson et al. [1980]), would like to know the
“truth bounds” of many-valued conclusions obtained from premises.

3 THE VIEW FROM THE OUTSIDE

3.1 Mathematics

Alfred Tarski straightforwardly supposed (in Tarski & Horn [1948]) he had
simply a Boolean algebra and then set out to analyze thoroughly all possible
measures in it. So did Gaifman [1962] —and Scott (with Krauss,[1965])—
who extended this analysis to first-order logical formulas; these were as-
signed (additive) values, that were called ‘measures’ by Gaifman (and ‘prob-
abilities” by Scott). True to mathematicians’ fashion (i.e. approaching
topics in uninterpreted, “abstract” formalisms), they did not understand
‘probability’ as other people do; they just used the word as a synonym for
normalized measure (a measure being a o-additive valuation on the positive
reals). In this sense, their “probability” is a blanket term for any common
generalization —such as the one we attempt here— for the two (heavily
interpreted) fields of Logic and Probability.

Also in this line, J. Lo$ [1962] explored general “probability” valuations
of logical sentences and came up with a (reasonably unsurprising) repre-
sentation theorem of probabilities on a (set-theoretical) space of models (or
interpretations) in the logical sense. Lo$’s line has been consistently fol-
lowed by Fenstad since 1965. (Fenstad’s papers [1967,68,80,81] have been a
source of inspiration for our generalization below.)
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3.2 Philosophy

Philosophers have also been exploring the common material. A few repre-
sentative examples are Hintikka and Suppes (both presenting first results
in 1965), Stalnaker (in 1968-70), Lewis (in 1972) or Popper (e.g. in 1987,
with Miller). The first (Jaakko Hintikka [1968]), inspired by Bar-Hillel’s
(and Carnap’s,[1952]) information-measure ideas, was suggesting in 1965
(with Pietarinen,[1968]) various formulas to parameterize the information
contained in sentences. Also in 1965, the second (Patrick Suppes [1968]) did
a circumscribed analysis of the Modus Ponens logical inference rule from
a generalized perspective (what he called ‘probabilistic inference’) in which
he got formulas fully consistent with the ones we obtain below. Another
philosopher traditionally preoccupied with logic/probability differences (es-
pecially those centered on the conditional/conditioning operation), Robert
Stalnaker [1970], revealed some fine points (among which our “A — B” #
“B|A” conceptual and practical distinction). His work and David Lewis’s
[1976] have done much to clarify and distinguish concepts shared by logi-
cians and probabilists.

But, prior to these 1960s efforts, the single philosopher to do this most
explicitly is surely Popper [1959], in lucid but little known pioneering work.
He did not only see (in 1938) that the two concepts were different interpreta-
tions of a (yet to be written) formalism —Kolmogorov [1933] also saw this—
but he designed one in a very simple and intuitive way by defining a valua-
tion in [0,1] on pairs (a, b) of sentences (of a very elementary language) that
was directly constructible by users (i.e. reasoners and probability-estimators
alike) and that gave way naturally to a Boolean structure with the usual
properties (including measurability). Whatever sense the user gave the valu-
ation (“probability”, “truth likelihood”, “truth content” or simply “truth”)
it was the user’s concern. Popper later used his own formalism (and the
derived Booleanity assumption) to deduce properties of his ‘truth content’
measure and so emit (with David Miller,[1987]) a post-mortem indictment
against Carnap’s [1950,62] “inductive logic”.

3.8  “Fuzzy Logic”

From a logical point of view, Fuzzy Logic (under development since 1965)
can be considered as an “interpreted” variety of Lukasiewicz & Tarski’s
[1930] infinite-valued logic. (“Interpreted” because it adds to many-valued
logic an extensional interpretation of predicates in terms of non-standard
sets.) Thus, it was already mentioned in a former section, where we con-
sidered it as an (unexpected) offshoot of the many-valued logic family, and
we dedicated it some short comments. Nevertheless, the overgrown “fuzzy”
tradition, now largely applications-oriented, has its own self-contained rules
and momentum and is not exactly logic nor probability. Nor, it claims, has
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barely anything to do with them, with which it is pretendedly “orthogonal”,
only devoted to linguistically-motivated imprecision (i.e. vagueness).

One may doubt the claim by fuzzy theorists that the issues they currently
discuss have no logical bearing. On the contrary, they seem fully relevant
for logical discussion, so we have dedicated an appendix to comment rather
expansively on fuzzy ‘logic’, as well as to mention an early generalization of
Logic that arose inside the fuzzy tradition (by B.R. Gaines [1978]).

3.4 Artificial Intelligence

Since the moment the first “expert systems” dealt with uncertain informa-
tion (the obvious cases are Mycin and Prospector), Al as a discipline got
involved too in the Probability/Logic dilemma about what is the ultimate
nature of “truth” measures of sentences presented to the expert system user
(see Shortliffe [1976]). Leaving aside Mycin’s “uncertainty factors” (later
revealed to be actually measuring belief change, see Heckermann [1986]),
the typical measures are Prospector’s “probability assignments” (see Duda
et al. [1976]), that are considered unproblematic and intuitive (to the user,
who can easily estimate them), and are combined according to Bayes’ for-
mula as though they were really what their chosen name implied. Whatever
the true status (probabilistic, or logical) of the calculus, the formulas on of-
fer happen to become corollaries of our generalized calculus below (where,
unlike in AT’s rather ad hoc formalisms, nothing is assumed about whether
the measures are actually “probabilities” or “truths” or something else).

Nils Nilsson’s [1986] stated goal in his ‘probabilistic logic’ paper (orally
anticipated in 1983) was to rationalize past work in the Prospector expert
system project (1976-80) and give it a formal background by propounding a
‘probabilistic entailment’ that would do for this formalism what the Modus
Ponens rule ( A, A — B F B) does for ordinary Logic. He obtained the
well-known bounds for the probability of B (see e.g. our formula (8) below)
by Venn diagram techniques, that he extended to the study of convex hulls in
a “probability space” of “possible worlds” (the latter terms are both familiar
terminology to de Finetti and Los readers). As Nilsson [1993] acknowledged
later, his method is similar to work by Good [1950] and Smith [1961] (not
to mention de Finetti [1937,70]), authors of whom he was unaware at the
time. His goal is, in fact, shared by many since the first 1980s —including
the present author and others mentioned in previous and later paragraphs.
(The Nilsson effort is briefly discussed in the next section.)

The Artificial Intelligence context has continued to breed practical moti-
vation for the Logic/Probability demarcation. A series of special conferences
(‘Uncertainty in A.L.’) has been called (beginning in 1986, see Kanal &
Lemmer [1986]) and given useful insights into the differences and similarity
of the once-separate fields, including expert system coefficient analysis by
Heckermann [1986], Grosof [1986] and others or the theoretical framework
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called belief networks, developed for the efficient computation of “probabil-
ities” (or whatever they are) by Judea Pearl [1988]. These contributions to
general and practical Logic, worthwhile as they are, have the implicit bias
that what is actually manipulated is the probability of distribution-driven
events (rather than the belief, commitment or assertiveness of linguistic
sentences), and thus the interpretations are always loaded with unnecessary
concessions to probabilistic terminology and methods. So, for instance,
Pearl, whose formalism is nominally about “beliefs”, is nevertheless over-
whelmed with computing probability distributions of facts and with assum-
ing simplifying conditions (such as independence or conditioning) to obtain
the final value; if this asignment is to be a real “belief”, as stated, then
presumably the “facts” and their distributional assumptions should be less
real and objective than supposed: probably a consistent calculus (consis-
tent in the Ramsey/de Finetti sense) based on possible or estimated (rather
than actual) “facts” would suffice —and for this the possible-worlds or the
rational-expectations analyses are already at hand (and ready to be usefully
supplemented by a practical procedure such as Pearl’s).

An unsuspected benefit of Logic-oriented analysis by Artificial Intel-
ligence practitioners has been their growing awareness that a system of
premises (what they tend to call “knowledge base”) from which predictions
are made (or actions are taken) is essentially a set of beliefs to which the
agent is commited. This is now already clear in classic Al textbooks as
Genesereth & Nilsson’s [1987], where the distinction is made between infer-
ence procedures where the user’s full commitment must be kept throughout
the inference process and those where the belief premises are “qualified”
(e.g. modally, with a belief operator) or “quantified” (with a “probabil-
ity” assignment); in the latter cases, it is assumed, the commitment is less
than absolute and the conclusion strength, therefore, less than guaranteed
—however formally valid the reasoning may be. This approach is welcome,
since it implies that however we treat premises in a logical argument —
either as commitment-inducing beliefs or as admittedly weak probes— they
all take part in the inference process and share with it a common goal:
knowing to what extent can we rely on conclusions.

3.5 Probabilistic logic

As mentioned in the previous section, Nilsson [1986] sets out to investigate
how Logic would generalize if one were to “assign probabilities instead of
truth values to sentences”. Though he calls his probabilities probabilistic
truth values he treats them as real probabilities (at least to the extent that
Prospector’s numerical assignments are). This shows clearly in his sub-
sequent treatment of (sentence) conditioning, that he considers plainly a
Bayes process and relates to considerations by authors as Pearl, Hecker-
mann, Grosof or Cheeseman (who explicitly deal with probability distribu-
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tions). Based on entropy considerations by the latter author, Nilsson refines
his bounding formulas so as to spot an exact value for the B in his ‘proba-
bilistic entailment’ (= generalized Modus Ponens) rule —that happens to be
the midpoint of the bounding interval (compare that with formulas (9-11)
below).

Nilsson’s grounding for his ‘probabilistic logic’ is basically semantic: he
exhaustively generates and examines the “possible worlds” inherent in a
formula; but the way he then discards some of the worlds —before assigning
values to them— amounts to introduce consistency considerations. Akin
to this method is what Paass [1988] proposes in a survey: assign basic
“subjective probabilities”, construct a universe of “relevant propositions”
—which turns out to be isomorphic to Shafer’s “frame of discernment” (or
to our © below)— and then evaluate the resulting probability distributions
on it. The computation may be done in Dempster-Shafer’s terms (see Shafer
[1976]) or by other methods: linear programming, stepwise simplification,
Pearl’s “belief networks” (with interactions) or statistical simulation (see
Paass [1988]).

Though they may not use the name (invented by Nilsson), many so-
called “probability logics” do not descend from Reichenbach but are really
probabilistic logics and share Nilsson’s conception and aim: finding a logical
foundation for the use of [0,1] probability assignments to sentences taking
part in an inference. Most of them formally derive their technical motivation
and analysis from Gaifman [1962] and Scott & Krauss [1968]. The author
of one of the first such ‘probability logics’, Theodore Hailperin [1984] —who
also motivates his analysis historically (and also mentions the classics, from
Bernoulli to Keynes and beyond)— sets out to generalize “truth” values
and Logic in model-theoretical style, through the use of a modified version
of the model and consequence concepts. This is done too by Bolc & Borowik
[1992], who base their analysis on Scott & Krauss [1968] and Adams [1966],
and by Gerla [1994] in an interesting attempt parallel to ours below.

4 BRIDGING THE GAP

4.1 Attempts at a synthesis

That the need for a generalization of Logic is widely felt, and that the time
is now come to try it, is attested by the many surveys —and attempts
at Logic/Probability synthesis (like the present one)— that are appear-
ing of late (see for instance Gérdenfors [1988], Paass [1988], Garbolino et
al. [1991], Bolc & Borowik [1992] or Gerla [1994]). But other such efforts
deserve mention: Kyburg’s [1993] is an exhaustive survey on logics of “un-
certainty” where the author probably respects too much the usual division
that insulates the surveyed authors’ self-assigned topics, as he divides his
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survey, too prolixly, in “objectivism”, “subjectivism”, Nilsson’s “probabilis-
tic logic”, “belief functions”, “measures”, “probabilities”, “statistical facts”,
“updating” and “inference”, where the very exhaustivity gets in the way of
a comprehensive attempt at synthesis. Similarly division-respecting are sev-
eral 1995 drafts by Friedman & Halpern on plausibility measures, where the
probabilistic bias dominates —in the terminology, in the chosen operations,
etc.— though apparently the original intention was to widen “the measure”
to a general “plausibility” concept. In the case of the swift and consistent
work done by Dubois & Prade [1987,93], now a respected tradition, here the
drawback to attain wide method-independent generality is the self-imposed
limitation to (fuzzy) possibility measures —though some convergence with
non-fuzzy approaches may occur in the future (see below on subadditivity).
For the sake of completeness, we must add here work in progress by two
researchers with a long tradition in trying to bridge the Probability/Logic
gap: Richard Jeffrey [1995] and Glenn Shafer [1996].

4.2 Attempts at finding a meaning for the value

Confronted with the meaning that a “truth value” may have —or may be
given— when extended to points in the [0,1] interval, different people have
reacted in a number of ways. Here we mention only those who did not
surrender to the temptation of subsuming truth value into probability (car-
rying with a it a heavily loaded interpretation of theory). Popper [1972]
thought that, in terms of theories rather than sentences, truth value could
be made to mean truth content (of the theory), degree of approzimation
to truth or, interchangeably, its (appropriately defined) distance to false-
hood. Haack [1974] saw it could also be interpreted as partial truth, roughly
defined as the proportion of true components of a sentence or theory, or
—equivalently— the “truth” of their conjuntion. (An unwilling distant rel-
ative of Haack’s is the quantum physicists’ interpretation of the “truth”
of a probabilistic quantum event sequence, which is similarly defined by
reduction —conjunction, actually— to its elementary event components; see
e.g. Reichenbach [1935a,b] or Watanabe [1969]). Dana Scott [1973] tried
to answer by defining truth value as one minus the error we commit when
ascertaining or deciding it, clearly in analogy with what we do in the ob-
servational sciences. Based on ideas advanced in the 1950s by Bar Hillel
(with Carnap,[1952]), Johnson-Laird [1975,83] gave too a definition of truth
value, albeit indirectly, by positing as a new concept the informativeness or
“degree of information” of a sentence (a quantity negatively correlated with
the “truth-table probability”) to see how it evolves through the reasoning
process, with an eye more on guiding the process than on controlling the
degree of truth (or assertiveness, or whatever), which is what Logic puts
the proper emphasis on.
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4.3 Popper, and Probabilistic Semantics

As repeatedly mentioned above, Popper [1959] (in 1938 and 1955) had de-
cided that Probability and Logic had to be given at last their long-overdue
common formalism. Disagreeing with Kolmogorov’s [1933] solution (a [0,1]-
valuation on sets) because it was already (semi)interpreted —the valued
objects were sets— and had a bias toward Probability, he proposed instead
a totally abstract, uninterpreted system consisting of (1) an elementary
algebra of “sentences” (not necessarily Boolean, merely closed by “conjunc-
tion” and “negation”), and (2) a [0,1]-valuation v(a,b) on pairs of such
sentences satisfying very basic and reasonable conditions (see the appen-
dices in Popper [1959]). Such valuations, called “Popper functions”, have
become a vogue now (under the name of “probabilistic semantics”), fol-
lowing efforts by Harper [1975], Field [1976] or Leblanc [1979,83] to base
ordinary (i.e. “unary”) probability on it. Great advantages of the Popper
formalism are:

e the formulas may be interpreted at will either “logically” or “proba-
bilistically”: when in the latter mode, the “sentences” are elementary
events, the basic operations are intersection and complementation,
and the valuation is just plain conditional probability (but with an un-
suspected plus: there is no need that the “conditioning” event should
be assigned a non-zero (unary) probability)

e there is no need for o-additivity (as Popper [1959] himself bothers
to show), nor is o-additivity abstract enough for Kolmogorov’s [1933]
pretendedly neutral formalism to qualify as really neutral (since it is
satisfied in an interpretation but discards certain others)

e the resulting quotient algebra modulo equi-valuation is automatically
a Boolean algebra, which is not only simple and extraordinarily con-
venient but, because obtained from very simple assumptions, disarm-
ingly natural

e ecach quotient algebra class is interpretable, at will, as an ordinary
logical sentence or an ordinary probabilistic event, and its value turns
out to be automatically its truth value or, respectively, its (so-called
“unary”, i.e. ordinary) probability

e the formalism being completely abstract (i.e uninterpreted) and the in-
terpretation totally free, the “probability” may be —with equal legitimacy—
subjective, objective or whatever; in particular it may be Popper’s
[1962] truth content, or its probability (the latter is, according to him,
the value we give a theory when nothing is known about its content,
which correlates negatively with it)
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o likewise, the “truth value” may be truth or simple belief ; in the present
author’s view, many other interpetations are equally legitimate, such
as “degree of commitment”, “assertive value” or any other that gives
us information on the reliability —subsuming truth— of sentences
(including premises and conclusion), and that allows us to have control
over their behavior along a chain of reasoning

e if one does not accept Popper’s simple conditions, the same result
can provably be obtained by accepting alternative and equally simple
conditions set forth —independently— by Cox [1961] (and, lately, also
the ones by Woodruff [1995]).

As stated, “truth values” may be interpreted in various legitimate ways.
Furthermore, any truly abstract formalism requires that they must. In
the following sections —to the end of the article— we consider, in genuine
Popperian fashion, several fully logical interpretations of the “truth value”
concept (belief, assertiveness, etc.), all motivated by what should be in-
cluded in any study of Logic: invariance (of truth —or of what the truth
value stands for, be it approzimation to truth, reliability or whatever else)
along the whole reasoning process (assumed formally valid). But, compared
to the standard Popper schema, our method proceeds just in the reverse di-
rection: where Popper first defines the two-place probability function and
then the unary probability is obtained by taking the quotient, we begin
instead by a unary valuation and then we subsidiarily define conditioning
(that we prefer to call “truth relativity” or “relative truth”) to obtain Pop-
per’s basic two-placed function. The process inversion is unimportant, as
we could as well have begun by a two-place valuation (of the assertive value
—or whatever else— of a sentence relatively to the others) and then obtain
its absolute assertive value by taking the quotient. And note that when
we proceed in our direction rather than Popper’s, evaluating the mutually
relative position of sentences through the a and ¢ parameters (see below)
amounts to just computing the basic two-place Popper function.

B. Steps toward a General Logic of Rationality

5 MOTIVATION

Let us advance what is our aim here by starting with an obvious remark.
When we argue, we do not always fully assert what we say. We often make
half-hearted assertions of sentences we are not sure about, or we even use as
assertions sentences we hardly believe to be the case. And yet we proceed
by reasoning from such weak premises. If we admit we do, and want to treat
this inside Logic, we need to qualify assertions, or, if possible, to quantify
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their strength, and try to follow and control what effects weak assertions
may have in the reasoning process, whether and how they affect its logical
validity and how we can tell the strength of the conclusion. All this is
indeed a proper logical subject (that, however, classical logic never set out
to confront).

By tradition, Logic is about truth; or, more precisely, it is about truth-
preserving manipulations that allow us to validate arguments. Arguments
are lists of sentences that we note by “ T' - C' 7, where C is called the
conclusion and ' is a —possibly empty, or infinite— list of sentences called
premises. It is no obligation for sentences to be true (or even to have
meaning). We merely use them to see whether certain formal manipula-
tions —the inference rules— assure us that the prediction embodied by the
conclusion C' is true whenever the premises are. The whole process is de-
pendent on the truth of the premises: if we cannot assure the truth of all of
them, the whole procedure becomes redundant. This is how ordinary Logic
approaches reasoning.

Now, at least two questions arise. First, suppose we are not sure whether
some premise applies, yet we want to know the “truth” of C' (or what
is left of it, or, in other words, the reliability we can still attach to C as a
prediction). Second, suppose that we deliberately want to weaken some true
premise to see whether —or up to what point— the conclusion still holds (this
is : probe the conclusion’s dependence on its premises, or, in other words,
the argument’s “robustness”). By tradition, none of this is approached by
Logic (so far). To see how we can generalize Logic to cover weak premises
we must get a closer look on how we assign truth to sentences. In Logic the

base material is the sentence, say A. (Note A is not a set, but merely a
member of a given language £ .) Once we interpret it we get what we can
call a proposition. Then, by looking at what is the case, we get a value (a
“truth value”). Following Tarski’s [1935b] well-known schema

(T) ‘A’ is true if and only if A is true

the reasoner can verify the sentence (i.e examine the proposition A, obtained
by “unquoting” the sentence A) and declare it true whenever the translation
A of the object-language sentence A is found true. A is thus assigned the
one or true value, and we say that A has full credibility and eventually we
assert it with the full confidence that truth warrants. If we find A false, we
assign it the zero or false value and give it null credibility. Note it is the
reasoner who is full command of the sentences and the translation process,
and thus the only one who can validate their truth. As sentences are used to
assert, and assertions are defined as “true, believed or merely hypothesized”
sentences, it is left to the reasoner who uses them to count actively on the
quality of assertions as part of the reasoning process itself (so, for instance,
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the reasoner usually qualifies the conclusions, conditioned on the strength
the original assertions carried).

Now suppose we are reasoning in Physics and A (a premise) is the positive
result of an experiment. If we are sure that A is true, then we are done: we
can use it in a reasoning as a true premise and proceed with the assumedly
valid argument to obtain the conclusion. But suppose that, as is usually the
case in Physics, we have some qualms about the truth of A, so we quantify
the error £ of the experiment. Now the “truth” of the assertion ‘result is
positive’ is no longer 1 as before but, say, “1 —¢”. We then perform the
formal —valid— reasoning. The question now is : what confidence —as a
function p(g) of e— may we have in the conclusion?

Most reasonings are like this. We perform as though premises were really
true, often unconvincedly. They are provably true sometimes, but most of
the time they are ‘assumed true’ for the sake of the argument. Now, be-
cause the (T) validation process to declare a sentence true is under control
of the user (who performs the translation and decides whether the unquoted
statement is observed to be the case), so the reasoner is the only one who
can qualify the truth with the appropriate provisos, according to the diffi-
culties met in the validation (unquoting) process. It seems only natural to
ask this user not only to qualify but to quantify (with a number in e.g.[0,1])
what is the degree of credibility (or belief) (s)he assigns it. The user can
usually do it consistently (this is the “rational” behavior studied by Ram-
sey [1926]), thereby defining (by de Finetti’s [1937] theorem) an additive
valuation. (S)he can always assign the sentence A the value v(A) —or, as
we will write hereafter, [A]—; this value (“truth value” we will call it) may
be computed in an unspecified way (by betting preferences, belief networks,
simulation, statistical survey, or whatever) and based on any preferred in-
terpretation of A, be it standard probability of A as an event, or Popper’s
truth likelihood or truth content of A as a proposition or theory (that, as
Popper found in the 1930s, is negatively correlated with its probability),
or its partial truth in Haack’s [1974] sense, or Shafer’s [1976] belief (and
its dual, plausibility), or its reliability, or the credibility of —or the (user’s)
belief in— A, or whatever (provided the assignment is done consistently).
[A] represents a rough index of the confidence we have in A being the case
and —consequently— the force with which we feel we can assert A in a par-
ticular argument (or the assertiveness we can commit into it). This measure
is always possible, provided the user is “rational” in Ramsey’s sense (but
“non-rational” measures are also possible: they merely give non-additive
values; see the final section, on subadditivity). What is measured is the
user’s belief in and commitment to A: a zero value means that the premise
is to be taken as false, 1 means that it is a true (and therefore fully as-
sertable) premise or —more often— that it is to be assumed true (and fully
endorsed), and v(A) = 1 — ¢ (¢ > 0) means that we can assert A but with
some apprehension or risk (that we assume) e.
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Now, approached in a most general way, the problem to solve is as follows.
Suppose we have the reasoning Ay, As, ... F B. Suppose we assign degrees
of confidence or assertiveness to the premises. The question is : what will be
the effect of those degrees in the confidence or reliability of B 7 (We would
thus probe the argument’s robustness.) And what if we vary our confidence
levels in some premises? Can it happen that, though the reasoning may
be formally wvalid, the reliability of B turns out to be zero (thus making
the argument unsound)? Or does B maintain its “truth” (or reliability =
1) though all the premises get null confidence themselves (thus making B’s
truth independent from the premises)? This analysis, like the physicist’s
() estimation problem above, is a legitimate logician’s concern. (It is
what we proceed to develop in our proof theory below.)

We illustrate this with an example. This is the well-known sorites about
bald men: “If a man with ¢ hairs is not bald then a man with ¢ — 1 hairs is
still not bald. Suppose a man has n hairs. Therefore, a man with 0 hairs is
still not bald”. Formally:

Ai—)Ai,1 (i:l,...,n)
An
Ao

This is a paradox because the reasoning is formally correct (it consists
of merely n applications of the Modus Ponens rule), the n + 1 premises are
deemed flawless, but the conclusion is outright false (or, more precisely, a
contradictio in terminis). Usually, it is the length of the argument that is
put to blame. There is, however, a more concrete and satisfactory answer
we can offer. The n premises A; — A;_; cannot obviously be asserted with
the same assurance whatever the index value. That’s why the argument
fails: for low values of i the premises simply cannot be asserted, even if the
rest can, so we can never have all premises asserted, and the reasoning is
formally valid but vacuously so.

Formally, what happens is that the value [A; — A;_1] decreases with 1,
so that when i is n (or even, say, around n/2 or n/3) it is 1 or very near
1, but when i approaches, say, n/10 —and surely when it becomes zero—
the value of A; — A;_1 (= the predisposition we have to assert it —or the
willingness to assume the risk) comes down to an exceedingly low number.
According to a simple proof theory (that we describe below), the conclusion
Ap has the same truth value, at best, as that lowest of numbers (and, thus,
the reasoner would be willing to assert the conclusion just no more than he
or she would willing to assert 41 — Ap).

Note that, though we use words such as ‘belief’ or ‘commitment’ as surro-
gates for truth, truth itself is not merely reducible to belief (or probability):
compare de Finetti’s well-known position (“probability tells us only what
to expect, not what will actually be the case”) with the more recent com-
ments of Cohen [1990] (a probabilist), who admits that when we say that
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something is true with probability, say, .26, “this result tells us nothing
about the truth” of the predicted fact or the postulated hypothesis, which
will be —is, actually— true or not regardless of our (expectation-inducing)
probability computations. This is not to say that Logic should continue to
treat truth exclusively, as it now does. On the contrary, we contend that
Logic, as it becomes a general theory of rationality, should center on a new
object of study: the assertive value of sentences (that subsumes ¢ruth and
which we will hereafter call —somewhat misleadingly— truth value), because
this is what is really manipulated in arguments, and because this concept
may let us analyze them in full generality, be it through weak premises,
strong conclusions or argument robustness.

6 “TRUTH” VALUATIONS OVER SENTENCES

We assume we have a set £ of sentences that form a Boolean algebra (with
respect to the three connectives and two special sentences L and T). Now
we have the whole Proof Theory of Sentential Logic by identifying the “
” order defined by the Boolean algebra with the deductive consequence rela-
tion. Thus the algebra of sentences we started with automatically becomes
the Lindenbaum-Tarski algebra of all sentences modulo the interderivability
relation “ -+ ” given by the F order (i.e. A 4+ B iff A = B). We then
assume that all sentences are valued in [0, 1], which we do in the standard
way of a normalized measure v: L — [0,1]: A — [A] , by just requiring
that T gets a value of 1 (1 is the only ‘designated value’ we consider) and
that the valuation v is additive (i.e. [AV B] =[A] +[B] —[AA B] ). So
we now have also the whole Model Theory of Sentential Logic.

This “truth” valuation is merely a (finitely aditive) probability in all tech-
nical senses, but here A is a sentence (in a language £), not an event (in
a sample space ). [4] = 1, [A] = 0 and [A] = 1/2 here just mean —
respectively— truth (or, more precisely, that “A is taken as truth”), falsity
and undecided belief (when expressly asserting the A sentence); this is to be
contrasted with (respectively) probabilistic “certainty”, zero-probability or
balanced odds (when evaluating the uncertain outcome of A as an event).
We do not require that the valuations —even when interpreted fully as
“truth” valuations— to be “extensional” or “truth-functional” as done in
many-valued logics. As for the Booleanity of the sentences, either this is
assumed (which is undemanding) or it derives from the “minimal algebra”
of sentences suggested by Popper [1959] —or from provably equivalent sim-
ple assumptions (e.g. by Cox [1961] or Woodruff [1995]). Also, the additive
character of the valuation amounts to having a ‘rational’ (Ramsey [1926])
or ‘coherent’ (De Finetti [1937,70]) belief, a concept so akin to ‘strength of
assertion’ in Logic as to be all but exchangeable.

From the Booleanity of £ and the above properties of the v valuation we
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immediately obtain:

(1) [~A] = 1-[A4]
(2) [AAB] < min([A],[B])
[Av B] > max([A],[B])

[A— B] = 1-[A] +[AAB]
[A© B] = 1—[AVB]+[AAB]

7 SENTENCES AS SET EXTENSIONS, AND TRUTH AS MEASURE

Any Boolean Algebra has a representation on a set structure (a field of sets)
as Stone proved long ago in a famous theorem (see, for example, Koppelberg
et al. [1989]). Thus, given the Boolean sentence algebra £, there exist both a
set © (whatever the meaning we give to its elements #) and a ‘representation’
function that can be characterized as an isomorphism of £ into the Boolean
subalgebra B of clopens in P(0), i.e.

p:L+—B:A—-A (BCPO),ACO).

We call the members of © possible worlds, or cases (as Laplace [1774] or
Boole [1854]) or possibilities (Shafer [1976]) or even observers, states, etc. ©
is the universe of discourse or reference frame (the set of possible worlds). It
coincides with Fenstad’s [1968] model space (where the s are interpretations
in the standard logic sense).

We can establish a general, one-to-one correspondence between the two
worlds (the language world £ and the referential universe ©, both made up
of “propositions”) and their constituent parts, thus:

L S B
A(Ael) <= AACO)
AANB S ANB
AV B S AUB
-A = Ac
T = ]

L = 0]
AFB S ACB

If £ has a finite number of generators, then it has 2" atoms a and the two
bijective correspondences £ <= P(0O) and a <= {6} also hold.
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The valuation v and the representation isomorphism p induce a [0,1]-
valued measure p in B C P(0), in such a way that p = vop !, ie.
u(A) = [4].

Intuitively, the measure p({f#}) of each individual 6 in a finite © uni-
verse is the relevance or the degree of realizability of the given possible
world. The pu measure corresponds to the weighing function A in Fenstad’s
[1968] model space. As it is known, p (or A) is not only additive but —by
the compactness property— countably so; thus pu is eligible as a standard
“probability” measure (in the technical sense).

8 CONNECTIVES AND SENTENTIAL STRUCTURE

If we want to compute the truth value of composite sentences, the task is
easy. For the negation connective, the formula is given by (1) above. For the
binary sentences composed of A and B we have the formulas below, where
we observe that, besides [A] and [B], we now need a third parameter that
we note “ aap 7 and that we call “compatibility between A and B”; its

value is defined by aap =4 1— Bap , where:
; min ([A],[B]) — [AAB]
AB = —— :
min ( [[A]]v [[B]]v 1- [[A]]v 1- [[B]] )
We call Bap the “degree of incompatibility of sentences A and B” and

we rename the denominator by calling it “A4p”. Then, the formulas for
the connectives are:

[AAB] = min([A],[B]) — Bas Aas
[AvB] = max([A],[B]) + Bap-Aas

[A—- B] = min(l,1-[A]+[B]) — Bap-AaB
[A«<+B] = 1— |[A]-[B]| — 2 Bap Aun

So, by knowing a single value (either of [AAB], [AVB], [A — B], [A < B],
aap or Bap —or [A|B] or [B|A], see below) we can compute, via aap (or
Bag), the other seven. The parameter asp (which is a modern version of
Reichenbach’s [1935b] “Kopplungsgrad”) acts as an indicator or measure of
the “relative position” of A and B inside ©, while “A4p” is a quadruple
minimum that only depends on the values of [A] and [B]. Note that if we
suppose that B4p =0 for all A and B then the above formulas are

[AAB] = min([A],[B])
[AvB] = max([A],[B])
[A— B] = min(1,1-[A] +[B])

[A < B] 1—[[A] = [BI
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and coincide with those given in ordinary many-valued logics. Instead, if
Bap = 1, the connectives are

[AANB] = max(0,[A] +[B]—1)
[AvB] = min(1,[A] +[B])
[A— B] = max(1-[A4],[B])
[A< Bl = [[Al+[B] -1

and coincide with those given in threshold logics.

9 RELATIVE TRUTH
Now suppose we want to express the conjunction value as a product:
[AAB] =[A4] - .
With the current £/P(0) representation in mind, we obtain:

_ uw(ANB)
®) =" @)

We define 7 as the relative truth “ [B|A] ” (i.e. the “truth of B relative to
A”). Though this definition exactly parallels that of conditional probability,
the account we give leaves out any probabilistic interpretation of the concept
and retrieves it for exclusively logical contexts.

In particular, if [B|A] = [B] then we say that A and B are independent.
In that case, the conjunction can be expressed as the product:

[AAB] = [A]-[B].

In any other case we say that A and B are mutually dependent and speak
of the relative truth of one with respect to the other. Note the dependence
goes both ways and the two situations are symmetric. We have (assuming

[4] # 0):
[A] - [BIA] =[B] - TA|B] =[AAB] (alogical “Bayes formula™)
[BlA] =1 - =L
From the latter, note that, in general,
[BIA] # [A— B].

Particularly, we have always

[B|4] < [A— B]
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except when either [A] =1 or [A — B] =1, in which cases (and they
are the only ones) [B|A] = [A — B] . (These facts have been repeatedly
noticed by many people, notably by Reichenbach [1935b], Popper [1959],
Stalnaker [1970] or Lewis [1976].)

When two sentences A and B are independent then (and this is a neces-
sary and sufficient condition for that to happen): aap = max ([A],[B])

if [A]+[B] <1 = max ([~A],[-B]) if [A] + [B] > 1 and then the
connectives obey the formulas

[AAB] = [A]-[B]

[AvB] = [Al+[B]-[Al-[B]

[A—-B] = 1-[A]+][A]: [B]-

The statement ‘A — B’ can have, among other readings, one logical (“A
is sufficient for B” or “B is necessary for A”), another (loosely) “causal”
(“A occurs and B follows”). But because A — B is valued in [0,1], its value
[A — B] (and the values [B|A] and [A|B]) now mean only degrees, and so
B — A may be —and usually is— read “evidentially” (“B is evidence for
A”). Within such a frame of mind,

e [B|A] (or “o4(p)”) could be termed “degree of sufficiency or causal-
ity” of A (or “causal support for B”), to be read as “degree in which
A is sufficient for B” or “degree in which A is a cause of B”. In view
of (3), it is roughly a measure of how much of A is contained in B.

e [A|B] (or “vap)”) could be termed “degree of necessity” or “evi-
dence” of A (or “evidential support for A”, to be read as “degree in
which A is necessary for B” or “degree in which B is evidence (=
support of hypothesis) for A (=the hypothesis)”. With (3) in mind,
it can be seen as how much of B overlaps with A.

Such measures may be directly estimated by experts, normally by inter-
preting the 8s frequentially, in terms of cases, like Boole [1854], possibilities
(Shafer [1976]), elementary events in ©, or possible interpretations; at any
rate, they may be statistically-based or simply imagined, presumably on the
basis of past experience or sheer plausibility. Thus, 04(p) in a causal reading
of “A — B” would be determined by answering the question: “How many
times (proportionally) —experience shows— A occurs and B follows?” For
vA(B), the question would be: “How many times effect B occurs and A has
occurred previously?” (Similarly for the evidential reading of “A — B”.)
Once o and v have been guessed, they may be adjusted (via the

cam _ [B]
VA(B) [[A]]
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relation) and then lead —by straightforward computation— to [A — B],
[B — A] and aap, which allows one to compute all other values for con-
nectives and also to get a picture of the structural relations linking A and
B. This process of eliciting the o value for every (A, B) sentence pair is
closely equivalent to computing Popper’s binary probability function.

Note first that a similar computing process takes place in “Bayesian rea-
soning”, and in the “approximate reasoning” methods as implemented in
marketable expert systems, though none of them satisfactorily explains on
what logical grounds are the procedures justified, nor can they avoid sup-
plying a (nominally) probabilistic account of them. Such an account would
be here clearly misplaced, since there is usually neither (a) a sample space
of events, but a language of sentences (i.e. linguistic descriptions —not
necessarily of any “event”), nor (b) a measure based on uncertainty and
outcomes (the topics Probability is supposed to deal with) but rather simple
beliefs or, at most, mere a priori estimates, nor (c) an adequate updatable
statistical or probabilistic basis to compute the values of the “events” (and
their ongoing, dynamical change).

Note also that any reasoning can proceed here in both directions (from
A to B and from B to A), because both conditionals A — B and B —
A claim a non-zero value and thus a “causal” top-down reasoning can be
complemented by an “evidential” bottom-up reasoning on the same set, of
given sentences (as also happens in Pearl’s [1988] belief networks).

10 THE GEOMETRY OF LOGIC: DISTANCE, TRUTH
LIKELIHOOD, INFORMATION CONTENT AND ENTROPY IN £

The fact that we have:

[A« B]=1-([AVB] - [AAB])

strongly suggests using 1 —[A <> B] = [AV B] —[AAB] as a measure of
the distance AB (under a given valuation v). So we do. (We remark that
all definitions we give here of distance and related concepts are not only
applicable to sentences but to theories as well, because for a general lattice
L the lattice £ of theories derived from each sentence in £ is isomorphic to

L)

DEFINITION 1. Distance (or Boolean distance) between two sentences or
theories A and B is:

d(A, B) =df 1-— [[A — B]]
= [AVB]-[AAB]
[[A] = [Bll +2- Bap - Aap
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DEFINITION 2. Compatible distance between two sentences or theories A
and B is:

d* (A, B) =q |[A] = [B]| = [A] +[B] -2 min([A],[B])

We now define a truth likelihood value for A —approximating Popper’s
[1972] (and Miller’s [1978]) truth likelihood or verisimilitude measure— by
making it to equal the distance from A to falsehood, i.e. d(A4,Ll). We
obtain, immediately:

d(A,1) = d(T,L1)—d(T,A) =1-d(A,T)
= 1-d(AAT, L)
= 1-d(=4,1)=1-[-A4] = [4]

So here we have a further interpretation of our “truth values” [A] in terms of
Popper’s [1972] truth likelihood or verisimilitude. We might as well consider
[A] as a rough measure of partial truth or truth content of A. In a similar
vein, we may recall that Scott [1973] suggested the “truth value” [A] of
many-valued logics could be interpreted as one (meaning truth) less the
error of A (or rather of a measure settling the truth of A) or the inexactness
of A (as a theory); in this framework, it comes out that, in our terms,
[Al]=1—€4 and €4 =1—-[A] =d(A4,T).

We further observe that, for any sentential letters P and ), any uniform
truth valuation yields [P] = [-P] = .50, [P A Q] = .25 and [PV Q] = .75,
which is like saying that, if all letters are equiprobable, the given values are
the probability of the given sentence being true (a number that Johnson-
Laird [1975,83] calls, appropriately, “truth-table probability”). This value’s
complement to one is reasonably made to correspond to the amount of
information —in a loose sense— we have when the sentence is true. This is
precisely what Johnson-Laird [1975,83] defines as “degree of information”,
“semantical information” or informativeness I(A) of a sentence A. (Viewed
in our terms, this information content I(A) equals 1—[A], or [(4) = [-A4] =
d(A,T) = €4.) The concept, based on Bar-Hillel’s (and Carnap’s,[1952])
ideas, was originally designed to model the reasoning process, assumed to
be driven by an increase both of informativeness and parsimony. What is
interesting is that the informativeness of composite sentences is computed by
combining them according to non-truth-functional rules which yield values
that coincide with those predicted by our formulas.

A new measure we can define, which can also be used as an entropy (in
the sense of De Luca & Termini [1972]), is this one:

DEFINITION 3. Imprecision (or, perhaps, “fuzziness”) of a sentence (or
theory) A is the value for A of the function

f:L£ —[0,1] such that f(4) =1—d"(4,-A)



LOGIC AS GENERAL RATIONALITY: A SURVEY 347

It is immediate that:
f(A) =2 min ([A],1 - [4]),

which is equivalent to saying that the imprecision of a sentence A equals
twice the error we make when we evaluate on A the truth of the law of
non-contradiction or of the excluded middle by considering there really is
maximum compatibility between A and —A. (Actually, there is null com-
patibility, as aap is provably zero when B is —A.) In connection with this
measure, we note in passing that:

e classical (two-valued) logic is the special case of ours in which all
sentences in £ have zero imprecision.

e ordinary multi-valued logics —like Lukasiewicz-Tarski’s L.,— are the
ones where at least one sentence in £ has non-zero imprecision. This
measure being —as it is— an error function, imprecision is here just
the degree in which these logics fail to distinguish contradictions (their
lack of “resolving power”) .

11 ELEMENTARY PROOF THEORY FOR GENERAL ASSERTIONS

Once we have valued sentences in [0, 1] we now need a Proof Theory that
in the most natural way extends standard logic so as to treat imprecise
statements or weak assertions, and measure and control whatever effect they
may have on reasoning (as well as to explain some results in approximate
reasoning methods from Artificial Intelligence).

To begin with, suppose a valid argument, noted ' - B (where I' are the
premises, or a finite subset of them). Classical logic declares it valid if B is
derivable from I' in an appropriate deduction calculus. By the completeness
property, this amounts to assert the truth of B whenever the premises in I’
are true. Now, as we said, the ultimate judge of the truth of the premises is
the reasoner. It is the reasoner who decides that each premise used is true
(or to be considered true). To justify such a decision, the reasoner applies
a truth criterion such as Tarski’s [1935b] (T) schema. Thus the reasoner
declares A true when assured that what A describes is precisely the case. If
the reasoner is not sure of the result of his/her validation or does not want
to commit him/herself to it, then the reasoner may choose not to make a
full assertion by claiming that A’s verification does not yield an obvious
result. In that case, the reasoner may rather easily “qualify” the assertion
by assigning numbers in [0,1] such as v(A) —that we noted “[A]”— or
e(4) [=1—-v(A) ]| meaning that the reasoner believes or is willing to assert
A to the degree v(A) or assume it with a risk or estimated error of £(A).
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The proof theory we now sketch is a slightly extended version of the
standard one. Here we understand by proof theory the usual syntactical de-
duction procedures plus the computation of numerical coefficients that we
must perform alongside the standard deductive process. We do that because
a final value of zero for the conclusion would invalidate the whole argument
as thoroughly as though the reasoning were formally —syntactically— in-
valid. As always, any formally valid argument will have, by definition, the
following sequent form:

'-B

where B is the conclusion and I' stands for the list —or, rather, the conjunction—
of the premises (or, by the compactness property, of a finite number of
them). We have, elementarily:

4) THFB = [I]<L[B]

We henceforth assume that we have a valid argument (so T - B will
always hold), and that all premises are non-zero (i.e. Vi [4;] > 0). We
distinguish four possible cases:

1. [T] = 0 (i.e. the premises are —materially— inconsistent). Here by
(4) [B] can be anywhere between 0 and 1; this value is in principle
undetermined, and uncontrollably so.

2. [B] = 0. This entails, by (4), [I'] = 0 and we are in a special instance
of the previous case. The reasoning is formally valid, the premises are
not asserted, and the conclusion is false.

3. [I'] € (0,1) (i-e. the premises are consistent). Then, by (4), [B] > 0.
We have a formally valid argument, we risk assessing the premises
(though with some apprehension) and get a conclusion which can be
effectively asserted though by assuming a —bounded-— risk. This will
be the case we will set to explore below.

4. [T] = 1. This condition means that [A;] = ... = [A,] = 1 and,
by (4), [B] = 1. So the premises are all asserted —with no risk
incurred— and the conclusion holds inconditionally (remember I' - B
is formally valid). This is the classical case studied by ordinary two-
valued Logic.

We are interested in examining case 3 above, i.e. formally valid reasoning
plus assertable premises (though not risk-free assertions) plus assertable
conclusion (but at some measurable cost). Cases 3 and 4 characterize in
a most general way all sound reasoning. Case 2 characterizes unsound
arguments (since in this case having a formally valid argument I' - B does
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not preclude getting an irrelevant conclusion ([B] = 0). As this case is the
one to avoid, we have:

DEFINITION 4. Unsoundness of a valid argument I' F B is having [B] = 0
though the premises are themselves non-zero. So:

DEFINITION 5. Soundness of a valid argument I' F B is having [B] > 0
whenever the premises non-zero.

With that in mind, we can now turn to the basic inference rule, the
Modus Ponens (MP). From a strictly logic point of view, this rule is

A m
(5) A—B n
B p

where m, n and p stand for the strength or force (or “truth value”) we are
willing to assign each assertion; so, in our terms, m, n and p are just our
[A], [A — B] and [B]. They are numbers in [0,1] that take part in a (nu-
merical) computation which parallels and runs along the logical, purely syn-
tactical deduction process. This is well understood and currently exploited
by reasoning systems in Artificial Intelligence that must rely on numeri-
cal evaluations —given by users— that amount to credibility assignments
(or “certainty factors”), belief coefficients, or even —rather confusingly—
probabilities (often just a priori probability estimates); this is the case of
successful expert systems such as Prospector or Mycin. The trouble with
such systems is that they tend to view Modus Ponens as a probability rule
(this is made explicit in systems of the Prospector type, see Duda et al.
[1976]). They use it to present the MP rule in this way:

A(m)
(6) A — B(o)
B(p)

where m and p are the ‘probability’ (a rather loose term here) of A and
B, and “A — B(0)” means that “whenever A happens, B happens with
probability ¢”. Here ¢ turns out to be just v(B|A) or “[B|A]”, the “relative
truth” of B given A; this concept, modelled on a close analogy —ceteris
paribus— with that of (probabilistic) conditioning, is what we have defined
above (in (3)) and called “degree of sufficiency” o of A —or of necessity
of B—, assumed easily elicitable by experts. So it is just natural, and
immediate, to compute the p value thus:

p>o-m
or, in our notation,

[B] > [B]A] - [A]
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which is just another version of formula (2).

The problem is that what we have, from our purely logical, probability-
rid standpoint, is (5), not (6), and in (5) n is not [B|A] but [A — B]. Recall
that [B|A] and [A — B] not only do not coincide but mean different things
(as repeatedly noticed by logicians, and as explained above). Indeed, [A —
B] is the value (“truth” we may call it, or “truth minus risk”) we assign to
the (logical) assertion A — B. Instead, [B|A] is a relative measure linking
materially, factually, A and B (or, better still, the A and B sets), with no
concern whether a true logical relation between them exists; we might even
have [B|A] < [B], thereby indicating there exists an anticorrelation (thus
rather contradicting any —logical or other— reasonable kind of relationship
between A and B). So we turn back to our (5) rule; note that m +n > 1
(this always holds) and that [B|A] can be obtained from [A — B], or vice
versa: [A — B] from [B|A] through

(7) [A—=B] = 1-[A]-(1-[B|4])
(which is useful, since [B|A] is directly obtainable from experts).

The following theorem states the soundness condition for the MP rule.

The Modus Ponens rule

A m
A—-B n

(we assume m and n are both non-zero)
B p

is sound (and thus [B] # 0) if one of these four equivalent conditions hold:
1. m+n>1
2. [B|4] >0
3. [AANB] >0

4. Either [A] + [B] > 1 (and thus [B] > 1 —m) or both A and B are
compatible (aap > 0) and not binary-valued.

In both sound and unsound cases we have the following easily computable
bounds for the value [B] of the MP conclusion (Sales [1992,96]):

8) [Al+[A—-B]-1 < [B] < [A—B]
or equivalently, in shorter notation:

m+n—1<p < n.
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(Such bounds have been discovered again and again by quite diverse authors;
see e.g. Genesereth & Nilsson [1987]). The lower bound —which equals
[AA B] — is reached when ayp = 1 and [A] > [B], while the upper bound
is reached when asp = 0 and [A] + [B] > 1. Naturally we usually know
neither [B] nor a4 p beforehand, so we don’t know whether the actual value
[B] reaches either bound or not, nor which is it; we can merely locate [B]
inside the [m + n — 1,n] interval.

But this interval can be narrowed. Since a very reasonable constraint a
conditional A — B may be expected to fulfill is that A and B be (assumedly)
non-independent —and not binary— and positively correlated (i.e.: [AAB] >
[A] - [B]), so we have:

9) [Al+[A—=B]-1 < [B] < [BIA].

Here, if A and B are fully or strongly compatible, [B] will be nearer the
lower bound. Thus, we can only increase our [B] if we are assured that
A and B are independent (in the sense that [A A B] equals [A] - [B], see
above): we then obtain the highest value [B] = [B|A]. On the other hand,
the more we confide instead in a strong logical relation between A and B,
the more we should lean towards the low value given by

(10) [B]=[AAB]=m+n—1.

Under very reasonable elementary hypotheses (like this one: [A — B] >
[A — —B] or, equivalently, 045y > 1/2, see Sales [1996]), we easily get
these bounds for [B]: [A]/2 < [B] < [A]-

Now, if what we want is not an interval, however narrowed, but a precise
value for [B] we should favor the lower value, the one given by (10) above.
There are lots of reasons (some mentioned in Sales [1996]) for this choice of
value in the absence of more relevant information.

But if we want not merely a pair of bounds —or a favored lower bound—
for the conclusion B of an MP but the ezact value [B], the obvious candidate
formula for this follows easily: suppose we are given not only [B|A] but also
[A|B] (that we note by o and v) and we assume them estimated by experts.
We then formulate MP as

A(m)
A — B(o,v)
B(p)

which is exactly (6) except that the conditional has prompted evaluation of
relative truths of A and B in both directions. The value is computable at
once from the above definition of [A|B]:

_ [B]A]-[A] og-m

1B = a5 o  P=




352 TON SALES

Note that the above logical formula coincides formally with Bayes’s the-
orem —whence the adjective (“Bayesian”) for any calculus that uses it—
except that it deals not with hard-to-compute probabilities of events but
with beliefs (or assertion strengths) of sentences. Note also that this value
is the one that some approzimate reasoning systems (e.g. Prospector) un-
qualifiedly assign to [B] supposedly on purely probabilistic grounds —and
falsely assuming that [B|A] is the same as [A — B]—; see, for instance,
the Genesereth & Nilsson [1987] text, where the logical equation above is
said to be Bayes’s formula.

If we wanted the MP presented in the more traditional logical way (5),
first we would directly estimate the truth value [A — B] of the conditional,
or compute it from ¢ through (7) —or both, and use each estimate as a
cross-check on the other—, so we would now have, along with the expert
guess of v:

A m
A— B n(v)
B P

(wheren=1—-m-(1—0) ), and so

[ANB]  m+n-—1

that naturally fits the (9) bounds (when v runs along from 1 to [A]).

12 THREE COROLLARIES AND ONE EXTENSION

A few remarks can be made on some apparent advantages of the “logic-
as-truth-valuation” approach that, following the advice of Popper et alii,
we have advocated and described above. First, we mention three well-
known fields that have been traditionally perceived as separate but that
now automatically become special cases of a single formulation. Then, in
subsection b, we hint at an obvious extension of the approach.

12.1 The special cases

1. Classical (two-valued) logic is the special case of our general logic
in which every sentence is binary (ie. VA € L [A] € {0,1}) or,
equivalently, in which every sentence has zero imprecision (i.e. VA €

£ f(A) =0).

2. For three-valued logics first note that classical examples, especially
Kleene’s system of strong connectives [1938] and Lukasiewicz’s [1920]
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Es, give the following tables for the values of connectives (where U
stands for “undetermined”):

U

= < g S
— = e
SN = T
T

0
1
U
0

— O o o

0 1 \%
0 0 0
0 U U
0 1 1

= O o >

0
X
U

with X = Y = U in both Kleene’s and Lukasiewicz’s tables, and
Z =U in Kleene’s (but Z =1 in Lukasiewicz’s).

Now, if we abbreviate the “[A] € (0, 1)” of our general logic by “[A] =
U” (as in Kleene or Lukasiewicz) the values given in the above tables
coincide exactly with those that would have been computed by our
formulas, except that X, Y and Z would remain undetermined until
we knew aap. In general, our values would match Kleene’s, but in
certain cases they would yield differing results:

(a)
(b)
(c)

If [A]+[B] < 1 and A and B are incompatible (typically because
ANB =0) then X = 0.

If [A]+[B] > 1 and A and B are incompatible (typically because
AUB=0) thenY =1.

If J[A] < [B] and A and B are compatible (typically because
A CB) then Z =1.

Note that in the particular case in which B is —A we have always
[AA-A] =0 and [AV —A] =1 for any valuation, so that, for
instance, the three classical Aristotelian principles (- A — A
, F 2(AA-A) and F AV —A), which do not hold in these
logics (except that the first one does in £3), do now hold in ours.
These three results are perfectly classical and in full agreement
with what is to be expected from a (Boolean) logic.

Lukasiewicz & Tarski’s [1930] Lo logic, as ours, generalizes clas-
sical (two-valued) logic in the sense that it allows the members
of the sentential lattice to take values in [0,1] other than O or
1. Both systems of logic include classical two-valued logic as a
special case. Nevertheless, while L., renounces Booleanity, we
renounce functionality (though not quite, since each connective
is actually truth-functional in three arguments: [A], [B] and a
third parameter such as, e.g., aap). In fact, if the {0,1} truth
set is extended to [0,1] those two properties of classical logic can-
not be both maintained, and one must sacrificed; we find much
easier to justify logically, and more convenient, the sacrifice of
truth-functionality.
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Our general logic admits L., as a special case since, indeed, Lo, be-
haves exactly as ours would do if no sentence in £ could be recognized
as a negation of some other and, then, it would be assigned systemat-
ically the maximum compatibility (e = 1) connective formulas. Nat-
urally that would give an error in the values of composite sentences
involving non-fully-compatible subsentences, but it would also restore
the lost truth-functionality of two-valued logic. £, amounts —from
our perspective— to viewing all sentences as having always maximum
mutual compatibility. That means that L., conceives all sentences as
nested (i.e. for every A and A', either A C A’ or A’ C A ) (Sales
[1994]). Such a picture is strongly reminiscent of Shafer’s [1976] de-
scription of conditions present in what he calls consonant valuations,
and which entails the fiction of a total, linear order - in £ —and C
in P(0©)— (that means a coherent, negationless universe) ...which
is probably the best assumption we can make when information on
sentences is lacking and negations are not involved —or cannot be
identified as such. (Such an option is as legitimate as that of as-
suming, in the absence of information on sentences, that these are
independent.) In L., obvious negations may be a problem, but it can
be solved by applying error-correcting supervaluations (van Fraassen
[1968]) —that our logic supplies automatically. And note that, in
particular, the error incurred in by L., when failing to distinguish
between a sentence and its negation —thus not being able to recog-
nize a contradiction— is just the quantity we called imprecision (or
curiously, for the historical record, what Black called vagueness and
defined formally as we did with imprecision, see Sales [1982b]).

12.2  Ignorance as subadditivity

If we now suppose that £ is still in a Boolean algebra but the v valuation
we impose on L is subadditive, i.e.:

{AABJ} + {AV BJ} > {A}} + {{B]} (Subadditivity)

(where we note explicitly by the { ]} brackets that v is subadditive), then v
can be characterized as a lower probability (see Good [1962]) or as a belief
Bel(A) (in Shafer’s [1976] sense). If the inequality sign were inverted, the
valuation would become an upper probability or (Shafer’s) plausibility PI(A).
The defective value —the part of the value v(A) attributed neither to A nor
to = A— can be expressed as:

9(4) = 1-{A}+{~4D)
(1 —A{~A) — {4}
PI(A) — Bel(A)



LOGIC AS GENERAL RATIONALITY: A SURVEY 355

In the finite £ case we know (Shafer [1976]) that a subadditive valuation
like v: £ — [0,1] : A — {{A} —or, better, the measure u : P(0) —
[0,1] : A — p(A) induced on P(O) by that valuation— defines a function
m : P(©) — [0,1] (called “basic assignment” by Shafer) that satisfies:

1. m(@)=0

2. Yaco m(A) =1

so that the u(A) ( = {{AJ}) values are computed from this measure through

A} =Y m(B)

BCA

and, conversely, the m(A) values can be obtained from {{A} ( = p(A))
through

m(A) = Z (=1)!A=Bl (B) for any A C ©.
BCA

Bel(A) and PI(A) happen to coincide with the traditional concept (in Mea-
sure Theory) of inner measure (P,) and outer measure (P*), so that the
following chain of equivalences has a transparent meaning (notice Shafer
calls Bel(—A) “degree of doubt of A”):

PlI(A) = P*(A)= EBmA¢¢ m(B)
= ZBc6 m(B) — EBCAC m(B)
= 1—P,(A° =1- Bel(—A)

We know, also, that an additive valuation p is just a basic assignment m
such that m(A) =0 for all A C © except for the singletons {6} of ©. This
is what Shafer calls ‘Bayesian belief’.

Subadditive belief derives from “non-rational” valuations of evidence by
a reasoner (in the Ramsey/de Finetti sense). It can model and explain
situations like this classic result: Confronted with the question “Should the
Government allow public speeches against democracy?”, one user assented
25% of the time. Substituting the word “prohibit” for “allow” elicited a
54% of assenting responses. Since both words are antonyms (the contrary
of prohibiting is allowing), it is clear that this user had an unattributed gap
left between those two complementary concepts, thus:

{A} + A} = 25+ .54 <1

which reveals that sentence A (=speeches allowed) was being valued sub-
additively, and also that “allow” and “fail to prohibit” are here analyzable,
in Shafer’s terms, as Bel(A) and PI(A), respectively, with values .25 (for
belief) and .46 (for plausibility).
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Ignorance (or, rather total ignorance) is the particular instance of sub-
additive valuation in which all non-true sentences get the zero value, i.e.

{4} =1 it A=T, {A} =0 otherwise

(this is what Shafer calls ‘vacuous belief function’). It is just the particular
instance of valuation in which all non-true sentences get the zero value:
indeed, we have, for a given A, {{A]} = {-A]}] = 0. In a strict parallel
with total ignorance, subadditive valuations can also adequately formalize
total certainty (meaning that {{A]} =1 while at the same time {{B]} = 0 for
all B+ A).

Subadditivity enables us to analyze other interesting situations related
to Logic. For instance, suppose we have a subadditive valuation assigning
A the value pu(A) = {{A]} = Bel(A), and that a set A’ (not necessarily a
subset of A) can be found in P(0) such that there is an additive valuation
which assigns A’ precisely the same value. We denote A’ by ‘CJA” (where
O is a set-operator) and A’ = §(A') by “00A”. So we have:

Bel(4) = {A} = [OA4]

The “[7” is here a linguistic operator that acts on a sentence A and
transforms it into another whose value is the belief ( = subadditive truth-
value) one can assign non-additively to A, so it seems proper to interpret
“0O” syntactically as “it is believed that”, and “O,” or “ [a] ” as “a ( =
the name of a subject or agent) believes that”. Further, we would have

Pl(4) = 1- Bel(=4) = 1—{-A}
= 1-[0-4] = [[O-4] = [¢A4]

where we have defined a new operator “{” as an abbreviation for “—[-”
to be interpreted as syntactically as “it is plausible that” or “a admits as
credible” (so that “{,A” —or (a@)A— would read “a finds that A can be
believed”), because « just does not believe the contrary.

Dubois & Prade [1987] speak rather of “necessity” (or “degree of knowl-
edge”) and write Nec(A4) =4 {{A} (= [OA]), and “possibility” (or “de-
gree of admissibility”) Poss(A) =4 1 — {{~A} (= [¢A]); naturally,
Nec(A)<[A] < Poss(A) for any A (and also:

Nec(A) + Poss(nA) = Poss(A) + Nec(—4) = 1).

If necessity (or knowledge) of A and —A are totally incompatible (in the
sense that Nec(—A) = 0 whenever Nec(A) > 0) then Nec(AV B) =
max(Nec(A), Nec(B)) and Poss(AAB) = min(Poss(A), Poss(B)) .
It is interesting to notice that a subadditive valuation may be superim-
posed on a sentential lattice without breaking its Boolean character, so that
AN-A= 1 (bivalence) and AV —-A =T (excluded middle) still hold,



LOGIC AS GENERAL RATIONALITY: A SURVEY 357

while at the same time {{A]} + {{—A]} < 1. This slightly paradoxical fact
may explain that many often-encountered situations —where mere subad-
ditivity ( A} + {{-A} < 1) was probably the case— have been analyzed
historically as invalidating the law of the ezcluded middle, because it was
felt that there was a “third possibility” between A and —A making for the
unattributed value 1 — {{A} — {{-A]J} , covered neither by A nor —A. If
our analysis is correct, such situations are analyzable in terms of incom-
plete valuations, but this does not imply the breaking of bivalence of any
Boolean algebra (except, naturally, for intuitionistic logic, where the algebra
is explicitly non-Boolean).

Subadditivity valuations on a Boolean algebra allow also analysis not
only of the concept of ignorance and certainty (as we sketched above) but
of the paradoxes of Quantum Logic as well. These arise, according to the
‘Quantum Logic’ proponents (e.g. Reichenbach in 1944), in explaining why
the distributivity fails in this logic, following the standard interpretation of
certain experimental results where:

p(a) - p(bla) + p(a) - p(bla) < p(b)

a relationship we write in this way:

(12) {{Al} - {BIA} + {-AL} - {B|~A]} < {B]}-

What is odd is that this inequality is normally interpreted by quantum
logicians (e.g. Watanabe) as meaning;:

(13) (AANB)V(-AAB)#B

which obviously signals the breaking of distributivity. However, the even-
handed transcription of the value-version (12) into the algebraic one (13)
is clearly abusive: (13) is much stronger than (12), since it is equivalent
to requiring that (12) hold for all conceivable valuations. Actually, in our
notation, the reading of the experimental results translates immediately into
(12), not (13). From there we conclude that:

{AA B} +{~AA B} <{B]}

which is in clear violation of additivity, but not of distributivity. So we
need not consider that quantum phenomena occur in a non-Boolean alge-
bra (orthomodular lattices are the preferred alternatives) because a sub-
additively-valued Boolean lattice surely would do for most quantum-logic
applications.

Finally we mention that subadditive valuations can as well satisfactorily
model how a scientific explanation frame (i.e. the appropriate lattice of
theories that cover any observed or predictable true fact) is dynamically
replaced by another once the first can no longer account for observed facts:
as the valuation of explanations turns subadditive —reflecting that they
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no longer cover all predictable facts— one is naturally forced to replace the
original sentential structure of theories by a new one (still a Boolean lattice)
provided with a new —now again additive— valuation on it that restores
the balance; the augmented lattice generators are the new vocabulary, and
the elementary components of the new structure are the required new ex-
planatory elements (atomic theories) for the presently observed facts. Such
a simple valuation-revision and lattice-replacement mechanism may serve
to illustrate the basic dynamics of theory change in scientific explanation
(see Sales [1982b]).

APPENDIX

A ON FUZZY LOGIC

A.1 The “Fuzzy Logic” tradition

In a joint reflection with Richard Bellman in 1964 Lotfi Zadeh, then a
process control engineer, considered the nonsense of painstakingly comput-
ing numerical predictions in control theory contexts where the situation is
complex enough to render them meaningless. So he proposed instead to
rely confidently on broad —and inherently vague— linguistic descriptions like
‘high’ (for a temperature) or ‘open’ (for a valve) rather than on misleadingly
precise values. He then went to suggest (in Zadeh [1965]) a non-standard
extensional interpretation of Predicate Calculus. Though first advanced by
Karl Menger (in a 1951 note to the French Académie entitled Ensembles
flous et fonctions aléatoires), the idea was nevertheless original and simple:
an atomic predicate sentence like ‘the temperature is high’ is assigned truth
values in [0,1] reflecting the applicability of the sentence to circumstances
(the actual temperatures); those values then define a “set”, a “fuzzy” set, by
considering them to be the values of a generalized characteristic or set mem-
bership function, in a way that is strictly parallel to the standard procedure
for defining predicate extensions (e.g. of ‘prime number’) by equating the
{0,1} truth values with the characteristic function of the set (i.e ‘the prime
numbers’) so that if for instance [ Prime (3) ] =1 then X primes (3) =1,
ie. 3 € Primes (and so now, accordingly, if e.g. [ High (170) ] = 0.8
then X High_temps (170) = 0.8 or 170 €3 High_temps).

Some snags soon arose to question the utter simplicity of the scheme,
doubts such as: should set inclusion (defined as A C B iff Vz xa(z) <
xB(z) ) fail if a single point z does not satisfy the relation? or, more funda-
mentally: what are the appropriate formulas for the connectives? Zadeh had
first proposed the usual Lukasiewicz connective formulas (the min and the
max for the A and V) but then (in 1970, again with R. Bellman) considered
that these were “non-interactive” and to be preferred only in the absence
of more relevant information, so he offered further formulas he called “soft”
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or “interactive” (the product and sum-minus-product). Bellman and Gierz
[1973] showed that under certain pre-established conditions (notably, truth-
functionality) the only possible connectives were the min and the maz. For
a (standard) logician this is an unfortunate result, since the min formula
when applied to a (0,1)-valued sentence A and its negation —A yields al-
ways a non-zero value ( [A A 7A] = min([A],1 — [4]) # 0 ), so explicitly
negating the classical law of non-contradiction (never questioned before by
any Logic) and thus placing Fuzzy Logic outside the standard logic main-
stream, for which =(A A —A) is always guaranteed theoremhood (and so,
necessarily, [A A =A] = 0 for any valuation —provided 1 is the only des-
ignated value, as we assume). Another unfortunate by-product, this one
algebraic in character, is that the neatness and simplicity of the Boolean
algebra structure —preservable only by sacrificing truth-functionality— are
irrecoverably lost.

Note that (a) Boolean structure had to be sacrificed in Fuzzy Logic just
by technical reasons (the min formula), not by a deliberate or methodolog-
ical bias, and that (b) the choice of connectives was historically motivated,
in fuzzy-set theory, by pragmatic reasons (prediction accuracy in applica-
tions) rather than by logical method: thus, many formulas were tried and
discussed (see e.g Rodder [1975] and Zimmerman [1977]). (Interestingly,
while theoreticians stuck to Lukasiewicz’s min, practitioners —e.g. Mam-
dani [1977]— preferred the product, perhaps recognizing that in complex
or poorly-known systems the best policy is to suppose sentences indepen-
dent —in our sense, see above—; whence the product.) Anyway, after a
brief flurry of discussion in the 1970s about the right connectives, fuzzy-set
theory proceeded from then onwards non-compatibly by emphasizing that
its basic theme is linguistic vagueness, not logic or uncertainty, and that
the [0,1]-values are grounded on a (possibly non-additive) valuation called
“possibility”, for which a complete subtheory has been elaborated since.

The initially intuitive “fuzzy logic” approach has since become an inde-
pendent growth industry. From a logical point of view, some foundational
points are arguable: (1) the apparently undisputable truth-functionality re-
quirement, already present in Lukasiewicz, imposes a radical departure from
(ordinary) logic: the sentences cannot form any longer a Boolean structure,
and traditional logic principles are gone forever; (2) the theory’s justifica-
tion for using (0,1)-values (values that reflect imprecision, since [A] € (0, 1)
implies f(A) > 0) is strictly linguistic: the cause of imprecision is attributed
solely to the vagueness of language and explicitly excludes any non-linguistic
component or dimension such as uncertainty (considered non-intersectingly
to be the domain of Probability theory) or simply approzimation.

The emphasis fuzzy theorists place on vagueness and its “orthogonality”
with respect to other causes of unattributed truth value is understandable
considering the basic tenets of the theory but questionable from a non-
partisan stand.
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First: in all cases we finally obtain a number, and this has a transparent
function in reasoning: keeping track of our confidence in what we say. In
the vagueness case the value we assign is clearly the degree of applicability of
the sentence to the circumstances at hand (and this is seen by executing the
(T) schema); in the uncertainty case it is our “belief” or its “probability”
(in some more or less standard sense) what emerges from the (T) evaluation
procedure. In either case (vagueness or uncertainty), what we try to capture
and measure is the degree of approximation (to truth, or to full reliability)
that we can confidently assign the sentence, and what we have in both
cases is imprecision (difficulties in ascertaining the {0,1} truth value and
also, consequently, doubts about committing ourselves to it along a whole
inference process). Plausibly, it is easier to assign values consistently (in the
[0,1] interval) to the sentence, regardless of where or why imprecision arose
in the first place, because what we are mainly interested in is the degree
of confidence we attach to this piece of information we are manipulating
through the (hopefully truth-preserving) inferences.

Second: the two dimensions of imprecision, linguistic and epistemnic (for
vagueness and uncertainty, resp.), are not so separable as claimed, either
conceptually or practically. (We do not consider here occasional claims —
often made by Zadeh— that vagueness is in things —even in truth—, i.e. it is
not linguistic, but ontological). As seen through application of the Tarski
(T) schema, when the agent is uncapable of making up his/her own mind as
to the truth of the (unquoted) sentence, the cause for the under-attribution
and the origin of the ¢ residual value need not be considered, only the re-
sulting confidence matters. The non-attribution of “normal” (i.e. {0,1})
truth values may originate in language (i.e. the sentence is vague) or in
imperfect verification conditions (i.e. the sentence, even being linguistically
precise, is nevertheless uncertain due to identification or measurement dif-
ficulties or other causes), but spotting the source is mostly an academic
exercise: consider, for example, the sentence ‘this is probable’, which is im-
precise in either or both senses, or the historically motivating illustration
by Bellman/Zadeh (the ‘high temperature’ process-control case), where a
discrimination of origins, either linguistic (the expression is vague) or epis-
temic (we don’t know what is the precise case, or we have difficulties in
identifying it) is indifferent or pointless.

Moreover, not only such boundary examples cast doubts on the claimed
vagueness/uncer-tainty orthogonality; even the linguistic character of fuzzi-
ness (or of “possibility”) is arguable. First, because a vague sentence, that
to the utterer may mean just that the expression lacks straightforward ap-
plicability to actual fact, to the hearer —if not involved in the described
situation— it may be epistemic information about what to expect (for in-
stance, hearing a temperature is “high” may set the unknowing hearer into
a —correspondingly imprecise— alert state; (s)he then even may usefully turn
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the “membership” or “possibility” number into an a priori-probability or
belief estimate). Second, because the number we assign to approximate
membership in a class, which reflects the applicability of the sentence to
the observed situation (a semantic quantity shared by the speakers of the
language), is constructed and continually adjusted by the language speak-
ers on the base of their experience of past cases, in a process which is
the same as that of constructing all other [A] assignments, however called
(“truths”, “degrees”, “applicabilities”, “probabilities”, “beliefs”, “approxi-
mation” or whatever). The process, described above, consists in setting a
universe © (here the application instances of the sentences in the language)
and then considering cases 6 € p(A) (here the fs are application instances —
utterances— of A) from past experience; the weighed result is [A] = p(p(A))
(here the applicability of the —vague— sentence A, i.e. its “fuzziness”), and
the relationship between A and all other sentences can also be user-evaluated
through the compatibilities « or the sufficiency/causality degrees o intro-
duced in the text (in a way that otherwise amounts to Popper’s ‘binary
probability” evaluation process).

This process of constructing values may be considered a further instance
of our general approach to rationality based on the universe © of cases,
and the resulting number [A] may be used in general reasoning as all other
“truth values” are. We thus assure compatibility inside a shared formalism
from which Logic, Probability and (e.g.) fuzzy reasoning or belief theories
can be derived directly without costly or unnatural translations. To do this
we merely need that the different interpretations (including the “fuzzy” one)
obey the same laws and have the same formal components: (1) a common
sentential language equipped with a Boolean structure (easy to justify and
convenient for preserving the commonly accepted laws of logic), (2) coher-
ence in attributing the values (regardless of the meaning we give them) to
assure additivity, and (3) a predisposition to sacrifice truth-functionality
when required. If the notion of fuzziness, however justified, could be con-
ceived in this way, then the original 1964 Bellman/Zadeh proposal could
be subsumed and solved in a very natural way, and we probably could do
without a separate, costly and incompatible additional formalism. (In other
words, we probably wouldn’t need “fuzzy logic”.)

A.2 Gaines’s ‘Standard Uncertainty Logic’

In an interesting effort, born inside the “fuzzy” tradition, to construct a
common formalization by discriminating between algebraic structures and
truth valuations on them —somewhat paralleling and anticipating the aim
of our present development— Gaines [1978] set out to define what he called
‘Standard Uncertainty Logic’, that covered and formalized two known sub-
cases. This logic postulates (a) a proposition lattice with an algebraic
structure that is initially assumed Boolean but —by technical reasons—
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finally admitted to be merely distributive, and (b) a finitely additive val-
uation of the lattice on the [0,1] interval. Gaines then distinguishes two
special cases of his logic: (1) what he calls ‘probability logic’ and defines
to be the particular case of his logic where the law of the excluded middle
holds, and (2) what he terms ‘fuzzy logic’, defined (in one among several
alternative characterizations) to be his logic when that law does not hold.
Apparently, Gaines’s encompassing logic should correspond to our general
logic above (that covers classical logic as a special case, just as Gaines’s
logic becomes his ‘probability logic’ when “all propositions are binary”),
but closer examination reveals that Gaines’s confusingly called ‘probability
logic’ turns out to be actually coextensional with classical logic, while his
‘fuzzy logic’ is, simply, Lukasiewicz’s L. This fact is spelled out by the
property he mentions of propositional equivalence (here in our notation):

[A < B] = min(l —[A] +[B],1 - [B] + [A])

in which the right hand is clearly 1 — |[A] — [B]|- This is an expression
that is deduced from Gaines’s postulates only if, necessarily, either A - B
or B+ A (note this either/or condition —exactly corresponding to our
aap = 1 full-compatibility situation— is explicitly mentioned by Gaines as
a characteristic property of his ‘fuzzy logic’). So Gaines makes the implicit
assumption that the base lattice is linearly ordered (perhaps induced to it
by the < symbol used for the —partial- propositional order in the lattice).
A confirmation for this comes from the fact that classical logic principles
—that hold, by definition, in his ‘probability logic’— do not hold in this
one. No wonder, then, the base lattice cannot be but merely distributive.

Departament de Llenguatges i Sistemes Informdatics, Universitat Politécnica
de Catalunya. Spain.
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