Bài 15: Cho $x,y,z$ là các số thực không âm thỏa mãn: $xy+yz+zx=1$. Tìm GTNN của biểu thức:
$P=\frac{1}{x^2+y^2}+\frac{1}{y^2+z^2}+\frac{1}{z^2+x^2}+\frac{5}{2}(x+1)(y+1)(z+1)$.
Ta có bổ đề sau:
Với $x,y,z>0. Thì \sum \frac{1}{x^2+y^2} \geq \frac{10}{(x+y+z)^2}$
-----
Áp dụng bổ đề ta có:
$VT \geq \frac{10}{(x+y+z)^2}+\frac{5}{2}(x+1)(y+1)(z+1)$ $=\frac{10}{(x+y+z)^2}+\frac{5}{2}(xyz+\sum x+\sum xy+1) $$\geq \frac{10}{(x+y+z)^2}+\frac{5}{2}(\sum x+2)$ (Vì $xyz \geq 0, xy+yz+zx=1$)
Đặt $x+y+z=p (p>0)$
Ta có $VT \geq \frac{10}{p^2}+\frac{5}{2}(p+2)=\frac{10}{p^2}+\frac{5}{4}p+\frac{5}{4}p+5 \geq 3\sqrt[3]{\frac{10.5.5.p^2}{4.4.p}}+5=\frac{5}{2}+5=\frac{25}{2}$
Dấu '=' xảy ra khi $x=y=1,z=0$
-------
P/s : 1, Chứng minh bổ đề trên có thể xem tại đây http://www.artofprob...1122010p5166529
2, Em nghỉ để duy trì tính thẩm mĩ topic thì anh nên đăng l lần 2-3 bài ạ.