-
Nếu $p$ lớn hơn giá trị đệm thì đòn đánh không chí mạng và cộng thêm $b$ vào giá trị đệm.
-
Nếu $p$ nhỏ hơn hoặc bằng giá trị đệm thì đòn đánh có chí mạng, và đưa giá trị đệm về $a$.
Có 155 mục bởi nmlinh16 (Tìm giới hạn từ 12-09-2020)
Đã gửi bởi nmlinh16 on 01-09-2024 - 18:26 trong Xác suất - Thống kê
Đã gửi bởi nmlinh16 on 25-06-2024 - 15:11 trong Số học
Mình lại nghĩ lý luận theo số mũ của ước số nguyên tố chung là dễ nhất.
Cách này dễ hiểu để giải thích cho học sinh THCS nhưng mình thấy không thuận logic. Vì định lý về sự phân tích duy rất ra thừa số nguyên tố là một định lý khó và để chứng minh nó thì cần dùng bổ đề Gauss (nếu $a | bc$ và $\gcd(a,b) = 1$ thì $a|c$), và bổ đề Gauss chứng minh bằng đẳng thức Bézout.
Đã gửi bởi nmlinh16 on 13-05-2024 - 20:14 trong Toán học hiện đại
Cho $V$ là một không gian vectơ và $f: k^n \to V$ là một ánh xạ tuyến tính tùy ý. Gọi $(e_1,\ldots,e_n)$ là cơ sở chính tắc của $k^n$ và đặt $v_i:=f(e_i)$ với $i=1,\ldots,n$. Thế thì ta kiểm tra được $\Phi(V)(v_1,\ldots,v_n) = f$ (vì hai ánh xạ tuyến tính này bằng nhau khi tính tại từng phần tử cơ sở $e_i$).
Đã gửi bởi nmlinh16 on 07-05-2024 - 08:15 trong Toán học hiện đại
Trong phạm trù các vành có đơn vị (cấu xạ là đồng cấu vành bảo toàn phần tử đơn vị), phép nhúng $\mathbb{Z} \hookrightarrow \mathbb{Q}$ là một song cấu nhưng không phải một đẳng cấu.
Thật vậy, dễ thấy đây là một đơn cấu. Để chỉ ra rằng nó là toàn cấu, giả sử ta có một vành $A$ và các đồng cấu vành $f,g: \mathbb{Q} \to A$ sao cho $f|_{\mathbb{Z}} = g|_{\mathbb{Z}}$. Với $n$ là số nguyên khác $0$, ta có $$f(\tfrac{1}{n})f(n) = f(n)f(\tfrac{1}{n}) = f(1) = 1_A,$$ nên $f(n)$ khả nghịch và nghịch đảo của nó là $f(n)^{-1} = f(\tfrac{1}{n})$. Tương tự, $g(n)$ khả nghịch và nghịch đảo của nó là $g(\tfrac{1}{n})$. Mà $f(n) = g(n)$ nên $f(\tfrac{1}{n}) = g(\tfrac{1}{n})$. Do đó, với mọi số hữu tỉ $x = \tfrac{m}{n}$, ta có $$f(\tfrac{m}{n}) = f(m)f(\tfrac{1}{n}) = g(m)g(\tfrac{1}{n}) = g(\tfrac{m}{n}),$$ hay $f=g$.
Cuối cùng, $\mathbb{Z} \hookrightarrow \mathbb{Q}$ không phải là đẳng cấu vì không có cấu xạ nào đi từ $\mathbb{Q}$ vào $\mathbb{Z}$.
Đã gửi bởi nmlinh16 on 29-04-2024 - 00:39 trong Bất đẳng thức và cực trị
Nếu $y$ không phải là số nguyên thì sao bạn? Chẳng hạn $y = \frac{3}{2}$
Bài này phải giả sử $x$, $y$ hữu tỉ, vì THCS chưa học lũy thừa với số mũ thực.
Đã gửi bởi nmlinh16 on 22-04-2024 - 00:06 trong Giải tích
Trên mỗi đoạn $[a,b]$, ta có $\int_a^b \varphi(t) v(t) \, dt = -\int_a^b \varphi'(t) 1_{\mathbb{Q}}(t) \, dt = 0 = \int_a^b \varphi(t) \cdot 0\, dt$ với mọi hàm thử $\varphi$ (tức là hàm khả vi vô hạn thỏa mãn $\varphi(a) = \varphi(b) = 0$), nên theo định nghĩa của hàm suy rộng, ta có $v(t) = 0$.
Đã gửi bởi nmlinh16 on 14-04-2024 - 15:54 trong Toán rời rạc
Mệnh đề đúng: Với mọi $x \in \mathbb{R}$, ta lấy $y = 2-x$, thế thì "$x+y = 3$" là một mệnh đề sai, vì thế "$(x+y = 3) \Rightarrow (x-y \ge 1)$" là một mệnh đề đúng. Như vậy $y = 2-x$ là một bằng chứng cho mệnh đề "$\exists y \in \mathbb{R} (x+y = 3) \Rightarrow (x-y \ge 1)$'', nên mệnh đề này đúng. Vì $x$ tùy ý nên mệnh đề đã cho đúng.
Đã gửi bởi nmlinh16 on 11-04-2024 - 01:42 trong Tổ hợp và rời rạc
"Phép vị tự quay tam đa giác" nghĩa là gì? Tôi giả định câu hỏi ở đây là "phép quay một góc $\frac{2 i\pi}{n}$ quanh tâm đa giác, với $i \in \mathbb{Z}$".
Những bài đếm này giải bằng cách dùng bổ đề Burnside, tất nhiên có thể trình bày theo ngôn ngữ sơ cấp như sau.
Ký hiệu $S = S_k(n)$ là giá trị cần tìm, và xét bài toán mới:
Đánh số $n$ đỉnh của đa giác lần lượt là $1,2,\ldots,n$, và xét tập hợp $A = \{1,\ldots,k\}^n$ các bộ $(a_1,\ldots,a_n)$, với $a_i \in \{1,\ldots,k\}$. Với $1 \le i \le n$, ký hiệu $T_i: A \to A$ là ánh xạ cho bởi $T_i(a_1,\ldots,a_n) = (a_{i+1},\ldots,a_{i+n})$, ở phép cộng được hiểu là phép cộng modulo $n$ (nói cách khác là $T_i(a_1,\ldots,a_n) = (a_{i+1},a_{i+2},\ldots,a_n,a_1,\ldots,a_i)$.
Ta đếm số cặp $(a,i)$ thỏa mãn $a \in A$, $i \in \{1,\ldots,n\}$ và $T_i(a) = a$ theo hai cách.
Cách thứ nhất:
Với mỗi $a \in A$, gọi $O(a):=\{T_1(a),\ldots,T_n(a)\}$ là quỹ đạo của $a$. Dễ thấy hai phần tử $a,b \in A$ có cùng quỹ đạo khi và chỉ khi tồn tại $i \in \{1,\ldots,n\}$ sao cho $T_i(a) = b$. Số quỹ đạo chính là là $S$. Ta phân hoạch $A$ thành $S$ quỹ đạo phân biệt $A_1,\ldots,A_S$.
Mặt khác, ký hiệu $i_a \in \{1,\ldots,n\}$ là chỉ số $i$ nhỏ nhất sao cho $T_i(a) = a$ (một chỉ số $i$ như vậy tồn tại vì $T_n(a) = a$). Thế thì $T_j(a) = T_i(a)$ khi và chỉ khi $i_a | j-i$. Nói riêng, ta có $i_a | n$, $|O(a)| = i_a$, và số $s_a$ các chỉ số $i$ thỏa mãn $T_i(a) = a$ chính là $s_a = \frac{n}{i_a}$. Từ đó suy ra với mọi $j \in \{1,\ldots,S\}$, ta có $$\sum_{a \in A_j} s_a = |A_j| \cdot \frac{n}{|A_j|} = n.$$ Vậy số cặp $(a,i)$ cần tìm là $$\sum_{a \in A} s_a = \sum_{j=1}^S \sum_{a \in A_j} s_a = nS.$$
Cách thứ hai:
Với mỗi $i \in \{1,\ldots,n\}$, một phần tử $a = (a_1,\ldots,a_n) \in A$ thỏa mãn $T_i(a) = a$ khi và chỉ khi $a_{j+i} = a_j$ với mọi $j \in \{1,\ldots,n\}$ (phép cộng được hiểu là phép cộng modulo $n$). Nếu đặt $d = \gcd(i,n)$ thì điều này tương đương với $a_t = a_{d+t} = a_{2d+t} = \cdots = a_{n-d + t}$ với mọi $1 \le t \le d$. Vậy số phần tử $a \in A$ thỏa mãn $T_i(a) = a$ là $k^d = k^{\gcd(n,i)}$.
Với mỗi ước $d|n$, số chỉ số $i \in \{1,\ldots,n\}$ thỏa mãn $\gcd(n,i) = d$ là $\varphi\left(\frac{n}{d}\right)$, vì một chỉ số $i$ như vậy thì có dạng $dt$, với $t \in \left\{1,\ldots,\frac{n}{d} \right\}$ và nguyên tố cùng nhau với $\frac{n}{d}$.
Vậy số cặp $(a,i)$ cần tìm là $$\sum_{i=1}^n k^{\gcd(n,i)} = \sum_{d|n} \varphi\left(\frac{n}{d}\right) k^d.$$
Kết luận: tổng cần tính ban đầu là $$S_k(n) = S = \frac{1}{n} \sum_{d|n} \varphi\left(\frac{n}{d}\right) k^d.$$
Đã gửi bởi nmlinh16 on 31-03-2024 - 05:54 trong Nghiên cứu Toán học
Gửi các thành viên của diễn đàn bài viết giới thiệu giả thuyết Milnor của mình, với xuất phát điểm là bài toán sơ cấp về tổng các bình phương.
Đã gửi bởi nmlinh16 on 21-03-2024 - 17:36 trong Giải tích
Bạn chỉ dùng được định lý hội tụ bị chặn nếu $(X_k)$ đúng là hội tụ về $X$ (theo nghĩa $\limsup X_k = \liminf X_k = X$) và khi các tập $(X_k)$ nằm trong một tập có độ đo hữu hạn (điều kiện áp dụng định lý là hàm chỉ thị phải khả tích, tức là độ đo của tập đó phải hữu hạn!). Còn trong trường hợp tổng quát khi $\limsup X_k \supsetneq \liminf X_k$ thì bạn chỉ có bất đẳng thức để so sánh thôi: dùng bổ đề Fatou.
Đã gửi bởi nmlinh16 on 19-03-2024 - 23:08 trong Số học
Em xin góp một chứng minh ạ. Ở đây em sẽ coi số tự nhiên không bao gồm số $0$.
Đặt $r=ad-bc>0$, ta chứng minh tồn tại hai số tự nhiên $p,q$ thỏa mãn $aq-bp=1$ và $0<pd-qc<r$. Nếu ta chỉ ra được sự tồn tại của hai số tự nhiên trên, bài toán chỉ còn quy nạp theo $r$ là xong.
Thật vậy, theo Định lý Bezout, tồn tại hai số tự nhiên $u,v$ với $0<u<a,0<v<b$ thỏa mãn $av-bu=1$.
Nếu $\dfrac{u}{v}=\dfrac{c}{d}$ thì $u=c,v=d$ và $r=1$. Trường hợp này mệnh đề hiển nhiên đúng.
Nếu $\dfrac{u}{v}>\dfrac{c}{d}$ thì $0<ud-vc$ và $a(ud-vc)=(bc+r)u-(bu+1)c=ru-c<ru$ nên
\[0<ud-vc<r.\]
Do đó trường hợp này ta chọn $p=u,q=c$ là xong.
Nếu $\dfrac{u}{v}<\dfrac{c}{d}$ hay $vc-ud>0$. Khi đó gọi $k$ là số tự nhiên duy nhất thỏa mãn
\[k-1<\dfrac{vc-ud}{r}<k.\]
Chọn $p=u+ka, q=v+kb$ thì $aq-bp=av-bu=1$ và
\[pd-qc=ud+kad-vc-kbc=kr-(vc-ad).\]
Khi đó theo cách chọn $k$ ta có $0<pd-qc<r$.
Phát biểu ở đề bài vẫn đúng với $(a,b) = (1,0)$ hoặc $(c,d) = (0,1)$. Tất nhiên 2 trường hợp này không khó
Đã gửi bởi nmlinh16 on 19-03-2024 - 18:24 trong Số học
Cho $a, b, c, d$ là các số tự nhiên sao cho $ad - bc > 0$ và $\gcd(a,b) = \gcd(c,d) = 1$. Chứng minh rằng tồn tại hai dãy hữu hạn các số tự nhiên $a_0,\ldots,a_n$ và $b_0,\ldots,b_n$ sao cho $a_0 = a, b_0 = b, a_n = c, b_n = d$ và $a_i b_{i+1} - a_{i+1}b_i = 1$ với mọi $i = 0,1,\ldots,n-1$.
Đây là một bài toán nhỏ mà mình gặp khi nghiên cứu toric geometry.
Đã gửi bởi nmlinh16 on 18-03-2024 - 16:23 trong Toán học hiện đại
Vấn đề này mình đã từng trình bày ở một bài nói về Galois descent. Về cơ bản đây là câu chuyện $F$-form của một $k$-đa tạp, và $F$-form thì nói chung không duy nhất.
Về câu hỏi 1: Trực giác của bạn gặp vấn đề ở chỗ "đa tạp affine = tập nghiệm của một hệ phương trình đa thức". Thực ra phát biểu như vậy chưa đủ chính xác trong hường hợp này. Chính xác thì "đa tạp affine = lớp đẳng cấu của tập nghiệm của hệ phương trình đa thức", nghĩa là hai hệ phương trình cùng định nghĩa một đa tạp affine nếu ta có một phép đổi biến từ hệ này sang hệ kia và ngược lại. Chẳng hạn, hệ phương trình rỗng trên 1 biến thì định nghĩa đường thẳng affine (vành tọa độ là $k[T]$), còn hệ gồm 1 phương trình $T_2 = T_1^2$ thì định nghĩa đường parabol phẳng (vành tọa độ là $k[T_1,T_2]/(T_2 - T_1^2)$). Về mặt đa tạp thì hai hệ phương trình này cùng định nghĩa một đa tạp (phép đổi biến là $T \mapsto (T,T^2)$ và $(t_1,t_2) \mapsto t_1$ (với $t_1,t_2$ lần lượt là ảnh của $T_1$ và $T_2$ trong $k[T_1,T_2]/(T_2 - T_1^2)$.
Vấn đề khi chuyển từ $k$ xuống $F$ nằm ở đây: ta có thể dùng một phép đổi biến với hệ số trong $k$ để đưa một hệ về một hệ khác (nghĩa là hai đa tạp đẳng cấu trên $k$), nhưng không nhất thiết là ta có thể chọn phép đổi biến với hệ số trong $F$ (nghĩa là hai đa tạp có thể không đẳng cấu trên $F$).
Để đơn giản, ta sẽ xét trường hợp $k/F$ là mở rộng Galois, chẳng hạn $F = \mathbb{R}$ và $k = \mathbb{C}$ như bạn đã xét ở trên. Ta gọi $X$ và $Y$ lần lượt là các đa tạp con của $\mathbb{A}^2$ (với tọa độ $T_1,T_2$) được định nghĩa bởi các phương trình $T_1^2 + T_2^2 - 1 = 0$ và$T_1^2 + T_2^2 + 1 = 0$. Khi đó ta có đẳng cấu $X \cong Y$ cho bởi phép đổi biến $(T_1,T_2) \mapsto (iT_1,iT_2)$ với hệ số trong $\mathbb{C}$. Từ đó ta có sonh ánh $X(\mathbb{C}) \cong Y(\mathbb{C})$. Nhưng đẳng cấu này không định nghĩa trên $\mathbb{R}$. Các tập hợp $X(\mathbb{R})$ và $Y(\mathbb{R})$ không tương ứng với nhau qua song ánh $X(\mathbb{C}) \cong Y(\mathbb{C})$. Lí do: tác động Galois khác nhau! Song ánh $X(\mathbb{C}) \cong Y(\mathbb{C})$ không tương thích với tác động của $\text{Gal}(\mathbb{C}/\mathbb{R})$ trên các đa tạp $X$ và $Y$.
Nếu trình bày theo ngôn ngữ Galois descent thì cho một đa tạp affine trên $\mathbb{R}$ chính là cho một đa tạp affine trên $\mathbb{C}$ được trang bị một involution (ứng với tác động của phép liên hợp, i.e. phần tử không tầm thường của nhóm $\text{Gal}(\mathbb{C}/\mathbb{R})$). Nói cách khác là cho một $\mathbb{C}$-đại số hữu hạn sinh được trang bị một tác động của $\text{Gal}(\mathbb{C}/\mathbb{R})$ (sao cho khi hạn chế lên $\mathbb{C}$ thì nó chính là tác động thông thường). Như vậy, khi bạn chọn một hệ tọa độ cho đa tạp affine $X$ (trên $\mathbb{C}$) của bạn, thì thực ra bạn đã chọn một phép nhúng $X \hookrightarrow \mathbb{C}^n$ nào đó, và như thế đã kéo theo việc chọn một tác động Galois. Chú ý rằng $X(\mathbb{R}) = X(\mathbb{C})^{\text{Gal}(\mathbb{C}/\mathbb{R})}$ nên tác động Galois khác nhau sẽ kéo theo tập các điểm hữu tỉ khác nhau. Trong ví dụ của bạn thì tác động Galois ứng với $\mathbb{R}$-form $\mathbb{R}[a,b]$ sẽ cố định các phần tử sinh $a$ và $b$ nhưng không cố định $ia$ và $ib$.
Hiện tượng hai vật đẳng cấu trên $\bar{F}$ nhưng không đằng cấu trên $F$ ($F$-form) là một vấn đề cơ bản và thú vị trong lý thuyết đối đồng điều Galois. Sau này bạn sẽ gặp thêm nhiều trường hợp khác như đa tạp Severi-Brauer, non-split torus, torsor, Hilbert 90...
Đã gửi bởi nmlinh16 on 14-03-2024 - 19:05 trong Kinh nghiệm học toán
Việc du học là rất nên, dù là lâu dài hay chỉ 2-3 năm. Nó sẽ giúp bạn mở rộng tầm nhìn toán học và networking. Mình vẫn hay nói là "nếu không đi du học thì không thể biết là ở trong nước hay nước ngoài tốt hơn, hãy trải nghiệm".
Đã gửi bởi nmlinh16 on 26-02-2024 - 20:15 trong Đại số tuyến tính, Hình học giải tích
Ánh xạ tuyến tính $f(A) = \frac{\sqrt{5} + \sqrt{3}}{2}A + \frac{\sqrt{5} - \sqrt{3}}{2}A^T$ thỏa mãn điều kiện ở đề bài.
Đã gửi bởi nmlinh16 on 19-02-2024 - 21:04 trong Giải tích
Viết như lời giải trên đương nhiên là sai: Mình có thể viết $(1 + x)^{\frac{1}{3}} \sim 1 + x$ (vì $\lim_{x \to 0} \dfrac{(1 + x)^{\frac{1}{3}}}{1+x} = 1$), nhưng từ đó không thể suy ra giới hạn cần tính bằng $\lim_{x \to 0}\dfrac{1+x-1}{x} = 1$ được.
Để tính giới hạn trên, bạn có thể đổi biến $y = \sqrt[3]{1+x}$, rồi đưa về tính giới hạn $\lim_{y \to 1} \frac{y-1}{y^3 - 1}$.
Đã gửi bởi nmlinh16 on 17-02-2024 - 04:07 trong Toán học hiện đại
Khi đặt câu hỏi cụ thể như vậy thì bạn cần có ngữ cảnh. Giả thiết, kết luận của bài toán là gì? Và nếu có các khái niệm mà bạn nghĩ là lạ thì bạn phải định nghĩa ra. Điều đó sẽ tiết kiệm được thời gian quý giá của người trả lời và của chính bạn.
Tôi giả thiết rằng câu hỏi của bạn là ở trong một phạm trù tùy ý có vật $0$ và có đủ cấu xạ $0$ (một cấu xạ: $0: X \to Y$ được gọi là một cấu xạ $0$ nếu
Hạt nhân của một cấu xạ $f: X \to Y$ là equalizer của $f$ và $0$, nghĩa là một cặp $(K,i)$, với $K$ là một vật và $i: K \to X$ là một cấu xạ, sao cho
Tôi sẽ lấy phản ví dụ cho khẳng định "nếu hạt nhân của $f$ bằng $0$ thì $f$ là đơn cấu" trong phạm trù $\mathbf{Set}_\ast$ các tập hợp định điểm (pointed set), nghĩa là
Nhận xét 1. $\{\ast\}$ (tập hợp có một phần tử duy nhất) là vật $0$ của phạm trù $\mathbf{Set}_\ast$.
Thật vậy, với mọi tập hợp định điểm $(X,x)$, cấu xạ duy nhất $\{\ast\} \to (X,x)$ trong $\mathbf{Set}_\ast$ là $\ast \mapsto x$. Vậy $\{\ast\}$ là vật đầu của $\mathbf{Set}_\ast$. Ngược lại, hiển nhiên có duy nhất một cấu xạ $(X,x) \to \{\ast\}$ trong $\mathbf{Set}_\ast$, đó là ánh xạ cho bởi $a \mapsto \ast$ với mọi $a \in X$.
Nhận xét 2. Với mọi vật $(X,x)$ và $(Y,y)$ của $\mathbf{Set}_\ast$, ánh xạ $\mathbf{0}: X \to Y$ cho bởi $a \mapsto y$ với mọi $a \in X$, là một cấu xạ $0$.
Thật vậy, với mọi cấu xạ $f: (X',x') \to (X,x)$, hợp thành $\mathbf{0} \circ f$ là ánh xạ cho bởi $a' \mapsto y$ với mọi $a' \in X'$.
Tương tự, với mọi cấu xạ $g: (Y,y) \to (Y',y')$, hợp thành $g \circ \mathbf{0}$ là ánh xạ cho bởi $a \mapsto y'$ với mọi $a \in X$, vì ta có $g(y) = y'$.
Nhận xét 3. Với mọi cấu xạ $f: (X, x) \to (Y,y)$, đặt $K:=f^{-1}(y)$ và ký hiệu bởi $i: K \hookrightarrow X$ phép bao hàm. Khi đó vật $(K,x)$ cùng với cấu xạ $i$ chính là hạt nhân của cấu xạ $f$.
Thật vậy, dễ thấy $x \in K$ và $i$ là một cấu xạ trong phạm trù $\mathbf{Set}_\ast$. Ngoài ra, từ định nghĩa của $K$, ta có $f(i(a)) = y$ với mọi $a \in K$, hay $f \circ i = \mathbf{0}: (K,x) \to (Y,y)$.
Giả sử $i': (K', x') \to (X,x)$ là một cấu xạ sao cho $f \circ i' = \mathbf{0}: (K',x') \to (Y,y)$, nghĩa là $f(i'(a')) = y$ với mọi $a' \in K'$. Từ định nghĩa của $K$, ta có $i'(a') \in K$ với mọi $a' \in K'$. Dễ thấy ánh xạ $j: K' \to K$ cho bởi $j(a') = i'(a')$ là cấu xạ duy nhất $(K',x') \to (K,x)$ thỏa mãn $i \circ j = i'$. Vậy $((K,x),i)$ là hạt nhân của cấu xạ $f$.
Bây giờ ta lấy $X = \{0,1,2\}$, $Y = \{0,1\}$ và xét các tập hợp định điểm $(X,0)$ cũng như $(Y,0)$.
Xét cấu xạ $f: (X,0) \to (Y,0)$ cho bởi $f(0) = 0$ và $f(1) = f(2) = 1$. Ta thấy hạt nhân của $f$ là $\{0\}$, tức là vật $0$ của phạm trù $\mathbf{Set}_\ast$.
Tuy nhiên $f$ không phải đơn cấu. Thật vậy, xét các cấu xạ $g,h: (Y,0) \to (X,0)$ lần lượt cho bởi $g(0) = 0$, $g(1) = 1$ và $h(0) = 0$, $h(1) = 2$. Ta có $g \neq h$ nhưng $f \circ g = f \circ h = \text{id}_Y$.
Đã gửi bởi nmlinh16 on 17-02-2024 - 03:29 trong Toán học hiện đại
Có nhiều ví dụ khác về hàm tử biểu diễn được ở đây: https://en.wikipedia...unctor#Examples
Bài trên là do mình làm việc với lý thuyết phạm trù nhiều nên quen, chứ không lấy từ nguồn nào cả.
Đã gửi bởi nmlinh16 on 20-01-2024 - 20:21 trong Đại số tuyến tính, Hình học giải tích
Cảm ơn bạn, mình có giải quyết được bài này rồi.
Đặt $X = (AB - BA)$. Vì $rank(X) = 1$, vậy $X$ có dạng$$X = U^TV = \begin{bmatrix} u_1v_1 & u_1v_2 & \dots & u_1v_n \\ u_2v_1 & u_2v_2 & \dots & u_2v_n \\ \vdots & \vdots & \ddots & \vdots\\ u_nv_1 & u_nv_2 & \dots & u_nv_n \end{bmatrix}$$trong đó $U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}, V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$Ta có: $VU^T = \displaystyle\sum_{i = 1}^{n} v_i u_i = r \in \mathbb{R}$. Từ đó$$X^2 = (U^TV)^2 = (U^TV)(U^TV) = U^T(VU^T)V = U^T r V = r (U^T V) = rX$$Ta sẽ chứng minh tồn tại duy nhất $r \in R$ thỏa mãn $X^2 = rX$.Giả sử $\exists r' \in \mathbb{R}$ thỏa mãn $X^2 = r'X$, khi đó:$$O_n = r'X - rX = (r' - r)X$$Do $X \neq O_n$, suy ra $(r' - r) = 0$ hay $r' = r$.Dễ thấy $r = trace(X) = trace(AB - BA)$. Lại có $trace(AB - BA) = 0$, do:$$trace(AB) = \displaystyle\sum_{i = 1}^{n} (AB)_{ii} = \displaystyle\sum_{i = 1}^{n} \displaystyle\sum_{k = 1}^{n} A_{ik} B_{ki} = \displaystyle\sum_{k = 1}^{n} \displaystyle\sum_{i = 1}^{n} B_{ki} A_{ik} = trace(BA)$$và $trace(AB-BA) = trace(AB) - trace(BA)$.Vì vậy, $X^2 = O_n$ hay $(AB - BA)^2 = O_n$
Từ chỗ $\text{trace}(X) = 0$ bạn đã suy ra được $r = 0$ rồi, không cần chứng minh $r$ là duy nhất nữa.
Đã gửi bởi nmlinh16 on 16-01-2024 - 16:22 trong Kinh nghiệm học toán
Công việc của bạn là gì?
nghiên cứu sinh tiến sĩ
Đã gửi bởi nmlinh16 on 16-01-2024 - 05:28 trong Đại số tuyến tính, Hình học giải tích
À dạ, do em nói sai. Vì $-6 \leq \det A \leq 6$, kết hợp chia hết cho 4 mới được vậy ạ
ok, vậy thì được
Đã gửi bởi nmlinh16 on 16-01-2024 - 02:39 trong Đại số tuyến tính, Hình học giải tích
Bạn không thể dùng tính chia hết cho $4$ để kết luận $|\det(A)| \le 4$ được, nếu $\det(A) = 8$ thì sao?
Community Forum Software by IP.Board
Licensed to: Diễn đàn Toán học