Đến nội dung


holobleep nội dung

Có 2 mục bởi holobleep (Tìm giới hạn từ 17-05-2017)


Sắp theo                Sắp xếp  

#724745 $\left\{\begin{array}{l}\left({x+y}\right)...

Đã gửi bởi holobleep on 30-03-2021 - 12:30 trong Phương trình, hệ phương trình và bất phương trình

Giải hệ sau

\[\left\{ \begin{array}{l}
\left( {x + y} \right)\left( {x + 1} \right)\left( {y + 1} \right) = 8\\
7{y^3} + 6xy\left( {x + 2y} \right) = 25
\end{array} \right.\]




#724744 $\frac{1}{2-a}+\frac{1}{2-b...

Đã gửi bởi holobleep on 30-03-2021 - 12:28 trong Bất đẳng thức và cực trị

Có:$\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}=\frac{1}{2}(\frac{a}{2-a}+1+\frac{b}{2-b}+1+\frac{c}{2-c}+1)=\frac{1}{2}(\frac{a^{2}}{2a-a^{2}}+\frac{b^{2}}{2b-b^{2}}+\frac{c^{2}}{2c-c^{2}})+\frac{3}{2}\geqslant \frac{1}{2}.\frac{(a+b+c)^{2}}{2(a+b+c)-a^{2}-b^{2}-c^{2}}+\frac{3}{2}$

Ta sẽ chứng minh:$\frac{1}{2}.\frac{(a+b+c)^{2}}{2(a+b+c)-a^{2}-b^{2}-c^{2}}+\frac{3}{2}\geqslant 3\Leftrightarrow (a+b+c)^{2}+9 \geqslant 6(a+b+c)\Leftrightarrow (a+b+c-3)^{2}\geqslant 0$( luôn đúng) suy ra đpcm

Dấu bằng xảy ra khi a=b=c=1