ĐỀ THI CHỌN ĐỘI TUYỂN MÔN TOÁN NĂM HỌC 2018 - 2019 TRƯỜNG THPT CHUYÊN ĐHSP HÀ NỘI.
Ngày thi thứ hai: 11 - 9 - 2018
Câu 2: Cho các số nguyên $m,n$ lớn hơn $1$ thỏa mãn trong $n$ số $x^{2}-x$ với $x=\overline{1,n}$ không có hai số nào có cùng số dư khi chia cho $m.$ Chứng minh rằng:
(a) $m\geq 2n-1.$
(b) $m=2n-1$ khi và chỉ khi $m$ là số nguyên tố lẻ.
Ý b) có thể làm như sau :
Giả sử $m=2n-1$ là hợp số. Đặt $2n-1=xy$ (với $y \geq x>1$). Thì ta phải có $x,y <n$ và $x,y$ lẻ
Xét đẳng thức sau : $(n-a)^2-(n-a)-(n-b)^2+(n-b)=(b-a)(2n-1-a-b).$
Chọn $a,b$ sao cho $b-a=x;$ $b+a=y$. Hay $b=\frac{x+y}{2};$ $a=\frac{y-x}{2}$.
Thì suy ra $(b-a)(2n-1+a+b)=x(xy-y)=xy(y-1)$ chia hết cho $xy$
Điều này suy ra tồn tại $0\leq a,b \leq n-1$, $a$ khác $b$ sao cho $(n-a)^2-(n-a) \equiv (n-b)^2-(n-b)$ (mod $2n-1$)
Điều này vô lý với đề bài. Vậy $2n-1$ phải là số nguyên tố.
Từ đây đặt $2n-1=p$ thì dễ kiểm tra được tập các số ${x^2-x}$ với $x=\overline{1,n}$ chứa $n$ số dư khác nhau khi chia cho $p$.
Vậy $m=2n-1 \Leftrightarrow m$ là số nguyên tố lẻ