Đến nội dung


 Photo

Nhóm cơ bản và đồng điều: lý thuyết

26-04-2021

Đây là bài viết đầu tiên của mình về topo đại số trên diễn đàn, và sẽ là topic mình sẽ tổng hợp lại bài từ cái webinar nho nhỏ của tụi mình trong khoảng thời gian sắp tới. Bài đầu tiên sẽ do mình đăng, các bài sẽ chủ yếu dựa trên quyển Topo đại số của Rotman. Trước hết, mình sẽ trình bày về các khái niệm đồng luân, null- homotopic, contractible và topo thương. 1. Đồng luânĐịnh nghĩa 1.1. Xét \(X,Y\) là hai không gian topo và hai ánh xạ liên tục \(f, g: X\rightarrow Y\). Khi đó \(f\) gọi là đồng luân với \(g\) nếu như tồn tại một ánh xạ liên tục \(F: X\times I \rightarrow Y\) mà \(F(x,0) = f(x)\) và \(F(x,1) = g(x)\). Kí hiệu \(f\simeq g\).Nếu như \(f\) đồng luân với \(g\) thì có thể ví như có thể dời, làm biến dạng từ \(f\) được thành \(g\), và \(f_{t}(x)=F(x,t)\) miêu tả sự "biến dạng" tại thời điểm t.Ví dụ: Xét \(\gamma_{i}:I\rightarrow \mathbb{C}\) với \(i=0,1\) là hai hàm liên tục mà ảnh của chúng là hai đường cong trong mặt phẳng phức. Nếu ta xét \(F(x,t)=t\gamma_{1}(x)+(1-t)\gamma_{0}(x)\) thì dễ thấy \(\gamma_{0}\simeq \gamma_{1}.\) Bổ đề 1.2. Giả sử không gian X là hợp hữu hạn các tập đóng \(X_i\) và \(f_i\) là các ánh xạ liên tục từ \(X_i\) vào \(Y\) thỏa mãn \(f_i(X_i \cap X_j) = f_j(X_i \cap X_j)\) thì tồn tại duy nhất \(f: X \rightarrow Y\) liên tục mà \(f|X_i = f_i\).Chứng minhHiển nhiên từ X là hợp của các tập \(X_i\) và \(f_i(X_i \cap X_j) = f_j(X_i \cap X_j)\) ta thấy rằng ánh xạ f được xác định duy nhất.Giả sử C là một tập đóng của Y, khi đó:...

  1797 Lượt xem · 2 Trả lời ( Trả lời cuối cùng bởi gosh )

 Photo

[TOPIC] HÌNH HỌC 8 CHUẨN BỊ CHO CÁC KÌ THI HỌC SINH GIỎI 2020-2021

24-04-2021

Gửi bởi KietLW9 trong Hình học
I/ LỜI NÓI ĐẦUCó lẽ bây giờ nhiều bạn học sinh lớp 8 đang sắp bước vào kì thi học sinh giỏi cấp huyện(như mình   ), bản thân mình cảm thấy Box Hình học THCS dạo gần đây có rất ít các Topic về các bài toán hình học lớp 8 khó. Vì những lý do đó, mình đã quyết định đăng nhưng bài tập (Mỗi ngày khoảng 5-10 bài) để các bạn cùng thảo luận, suy nghĩ và phát triển tư duy hình học làm bệ phóng để đạt những thành tích cao trong các kì thi. Tuy nhiên, việc đăng quá nhiều bài của mình cũng nhận được một ý kiến trái chiều rằng đăng như thế rất rời rạc, bản thân mình cũng thấy việc đăng như thế sẽ làm trôi câu hỏi của nhiều bạn nên hôm nay mình quyết định tạo một TOPIC về hình học lớp 8.~~~ Theo ý kiến riêng của mình thì phân môn Hình học THCS thì chỉ có lớp 8 và lớp 9 là có nhiều những bài toán hay và khó, còn lớp 6 thì chủ yếu là khởi động, tìm hiểu những cốt lõi cơ bản, lớp 7 thì chỉ dừng lại ở mức các tam giác bằng nhau và các đường đồng quy. Lớp 8 thì các bạn phải vận dụng cả về tam giác bằng nhau, tam giác đồng dạng, định lý Thales tạo ra các đoạn thẳng tỉ lệ, đôi khi còn phải động não sử dụng khéo léo phương pháp diện tích và đặc biệt là vẽ thêm hình phụ... và lớp 9 trở nên toàn diện khi được bổ sung những kiến thức khó về đường tròn. ~~~ Nói về các đề thi chọn học sinh giỏi thì như các bạn đã biết, thường thì sẽ có một câu hình gồm 3 mảng a), b), c) chiếm 30% số điểm (6/20). Trong 3 câu đó thì câu hình c) có thể là câu khó phải vận dụng việc vẽ thêm...

  5051 Lượt xem · 101 Trả lời ( Trả lời cuối cùng bởi KietLW9 )

 Photo

Học gì ở Toán phổ thông

11-04-2021

Gửi bởi Nxb trong Kinh nghiệm học toán
Trước đây ông thầy người Pháp hướng dẫn mình có chê toán olympic của Việt Nam không phải khoa học. Điều này có lẽ không phải bàn cãi, tức là toán phổ thông Việt Nam cũng nổi tiếng ở một nước tiên tiến về toán, theo nghĩa tiêu cực. Nhưng cần suy nghĩ điều này thấu đáo vì hiện giờ ở Việt Nam, toán olympic là loại toán hấp dẫn với học sinh phổ thông, nếu không dùng nó thì cái gì để thu hút các em làm toán học hoặc khoa học? Mặc dù nó không hiệu quả, ai học chuyên là rõ nhất. Để nhiều bằng chứng hơn, hãy so với Pháp: phong trào olympic nghèo nàn, đi thi imo thì lúc nào cũng xếp sau Việt Nam, nhưng số lượng sinh viên đăng ký học toán gấp nhiều lần so với Việt Nam, cả lý thuyết và ứng dụng. Ở đây mình không bàn về chất lượng, chỉ tập trung vào số lượng. Vì vậy, mình mở ra post này, để anh em trên diễn đàn có thể lạm bàn. Mình xin tóm tắt lại một số vấn đề, cũng như đưa ra một số câu hỏi (tất nhiên không giới hạn việc thảo luận trong những vấn đề này): 1) Toán olympic ngày càng chứng tỏ không giúp ích nhiều cho khoa học và toán học (ở đây không bàn chuyện toán olympic có giúp tìm ra nhân tài); 2) Tạm bỏ qua (không có nghĩa bỏ hẳn) các yếu tố liên quan đến văn hóa, kinh tế để bàn về toán ở phổ thông hay nghiên cứu, nếu không muốn việc thảo luận trở nên phức tạp hơn. Đặt câu hỏi: vậy nên học toán gì ở phổ thông nhằm thu hút các em làm khoa học và toán học? Một gợi ý là tham khảo chương trình toán phổ thông ở các nước khác. Nhưng khoan hãy nói toán phổ thông ở Pháp có ích cho kh...

  7621 Lượt xem · 63 Trả lời ( Trả lời cuối cùng bởi tritanngo99 )

 Photo

[TOPIC] BẤT ĐẲNG THỨC

07-04-2021

Xin chào các bạn, mình là KietLW9, thực sự là mình mới tham gia diễn đàn được khoảng hơn 1 tháng và mình thấy rằng bất đẳng thức rất ít được quan tâm trong thời gian gần đây. Hôm nay, mình quyết định tạo một Topic về bất đẳng thức để các bạn cùng tham gia trả lời, thảo luận và có thêm nhiều kiến thức. Mình sẽ tổng hợp một số bài mà mình từng làm và mình cảm thấy hay nhất để đăng lên. Nếu có gì sai sót mong các bạn chỉ bảo. Cảm ơn các bạn đã ủng hộ TOPIC.Bài 1: Cho a, b, c là các số thực dương thỏa mãn $abc=\frac{2}{3}$. Chứng minh rằng: $\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\geqslant \frac{a+b+c}{a^3+b^3+c^3}$Bài 2: Cho a, b, c là các số thực thỏa mãn $ab+bc+ca\geqslant 0 $ và $(a^2+ab)(b^2+bc)(c^2+ca)>0$. Chứng minh rằng: $(a+b+c)(\frac{3a-b}{a^2+ab}+\frac{3b-c}{b^2+bc}+\frac{3c-a}{c^2+ca})\leqslant 9$Bài 3: Cho a, b, c là các số thực dương thỏa mãn $\sqrt{a}+\sqrt{b}+\sqrt{c}=2$. Chứng ming rằng: $\sum \frac{a+b}{\sqrt{a}+\sqrt{b}}\leqslant 4(\sum \frac{(\sqrt{a}-1)^2}{\sqrt{b}})$Bài 4: Với các số thực dương a, b thay đổi. Chứng minh rằng: $(a+b)(\frac{1}{\sqrt{a^2-ab+2b^2}}+\frac{1}{\sqrt{b^2-ab+2a^2}})\leqslant 2\sqrt{2}$ (Chú ý: Bài 4 không được dùng tất cả các bất đẳng thức đã có như Cô-si, Cauchy-Schwarz, Cauchy-Schwarz dạng phân thức,...)Bài 5: Với a, b, c không âm. CMR: $25(a^2+b^2+c^2)+54abc+36\geqslant 6(a+b+c)+49(ab+bc+ca)$ Bài 6: Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca...

  5726 Lượt xem · 72 Trả lời ( Trả lời cuối cùng bởi Hoang Huynh )

 Photo

[MARATHON] Chuyên đề Bất đẳng thức

05-04-2021

Xin chào, mình là pcoVienam02. Như các bạn có thể thấy thì hiện tại trên Diễn đàn đang có nhiều TOPIC, nhưng mà nó có thể làm các bạn học hơi khô khan. Nên mình sẽ cải biến TOPIC thành một loại mới, chính là Marathon.Vậy Marathon là gì?Marathon (mình sẽ lấy format từ diễn đàn mình đang làm việc - AoPS), gồm 2 thể loại chính:+ Marathon loại 1 tức là người đăng chủ đề sẽ gửi bài toán đầu tiên (bài toán gốc). Người nào giải được bài toán gốc sẽ tiếp tục đưa ra câu hỏi thứ hai để những người giải được sau đó sẽ đưa ra câu hỏi tiếp theo, và cứ liên tục như thế.+ Marathon loại 2 là người đăng chủ đề sẽ là người chấm điểm, và có nhiệm vụ gửi các bài toán theo thứ tự (mỗi lần 1 bài), ai giải được sẽ được 1 điểm (người giải sớm nhất). Nếu ai giải sai mà có người chỉ được điểm sai sót trước khi người đăng đáp án bài đó nhận ra sẽ được 0,5đ. Sau một số hữu hạn bài (thường là 100-200 bài) thì ai có số điểm cao hơn thì sẽ chiến thắng. Thì loại 1 chỉ mang tính chất học hỏi và cũng có khá nhiều rủi ro vì nếu có người gửi bài quá khó thì Marathon coi như chấm dứt. Vì vậy dựa trên tình hình diễn đàn thì mình sẽ tổ chức Marathon loại 2 cho các bạn vì mục đích vừa học hỏi vừa có sự thi đua giữa các bạn của 3 miền Tổ Quốc. *Lưu ý: Thời hạn giải mỗi bài là 2 ngày. Để khai mạc kì Marathon phiên bản mới mình sẽ 'khui' bài tập đầu tiên (khá dễ):$\boxed{1}$ Cho $a,b,c$ là các số dương thỏa$\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1$Chứng minh rằng:  $...

  6840 Lượt xem · 85 Trả lời ( Trả lời cuối cùng bởi KietLW9 )

 Photo

Đề thi olympic 30/4 môn Toán khối 10 năm 2021

03-04-2021

Đề thi Olympic 30/4 môn Toán khối 10 năm 2021Bài 1: Cho $a,b,c$ là ba cạnh của một tam giác có chu vi là $2$. Chứng minh rằng:\[2\sqrt 2  + \frac{{{a^3} + {b^3} + {c^3} - 3abc}}{6} \le \sqrt {{a^2} + {b^2}}  + \sqrt {{b^2} + {c^2}}  + \sqrt {{c^2} + {a^2}}  < 2\sqrt 3 \]Bài 2: Cho các số thực $x,y,z$ thỏa mãn:\ Chứng minh rằng $x+y+z$ là số nguyên.Bài 3: Với mỗi số nguyên $n \ge 2$, xét một bảng gồm $(2n - 1) \times (2n-1)$ ô vuông. Người ta viết các số $-1, 0, 1$ vào mỗi ô vuông sao cho với mọi bảng con $2 \times 2$, ta luôn tìm được 3 ô sao cho tổng các số viết trên mỗi ô vuông này bằng $0$. Đặt $S_n$ là giá trị lớn nhất của tổng các số được viết trên bảng.(a) Chứng minh rằng $S_2=5$.(b) Chứng minh rằng $S_n = n^2+n-1$.Bài 4: (a) Chứng minh rằng tồn tại hai cặp số $(a,b)$ sao cho $a,b$ là những số nguyên dương thỏa mãn:$$a^2 + 3b^2 = 7^9$$(b) Tìm tất cả các số nguyên dương $n$ sao cho phương trình$$x^2 + y^2 + xy= 7^n$$có nghiệm trong tập các số nguyên không chia hết cho $7$.Bài 5: Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$. Tia $AO$ cắt $BC$ tại $L$. Gọi $A'$ là điểm đối xứng của $A$ qua $BC$. Tiếp tuyến tại $A'$ của đường tròn ngoại tiếp $A'BC$ cắt $AB,AC$ lần lượt tại $D,E$.(a) Chứng minh đường tròn ngoại tiếp của các tam giác $A'BD, A'CE, A'AL$ đồng quy tại một điểm khác $A'$.(b) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ADE$. Chứng minh rằng đường tròn ngoại tiếp của hai tam giác $ABC, JDE$ tiếp xúc nhau.

  3310 Lượt xem · 16 Trả lời ( Trả lời cuối cùng bởi hanishuri )

 Photo

Vietnam TST 2021

02-04-2021

Ngày thi thứ nhất Thời gian: 270 phútBài 1 (7 điểm): Cho dãy số $\left ( a_n \right )$ được xác định bởi $a_1 =1$ và $\left\{\begin{matrix} a_{2n}=a_n \\ a_{2n+1} = a_n +1  \end{matrix}\right.$ với $n \geq 1$.a) Tìm tất cả $n$ sao cho $a_{kn}=a_n$ với mọi số nguyên dương $k \leq n$.b) Chứng minh rằng tồn tại vô số $m$ nguyên dương mà $a_{km} \geq a_m$ với mọi số $k$ nguyên dương. Bài 2 (7 điểm): Cho bảng ô vuông $2021 \times 2021$. Tìm giá trị lớn nhất của $k$ sao cho có thể đánh dấu được $k$ ô của bảng mà mỗi ô trong $k$ ô đó thì có chung đỉnh với tối đa 1 ô được đánh dấu. Bài 3 (7 điểm): Cho tam giác $ABC$ và điểm $N$ không trùng với các điểm $A,B,C$. Gọi $A_b$ là điểm đối xứng với $A$ qua đường thẳng $NB$, còn $B_a$ là điểm đối xứng với $B$ qua đường thẳng $NA$. Xác định tương tự với 2 cặp điểm còn lại là $B_c,C_b$ và $C_a,A_c$. Đường thẳng $m_a$ qua $N$ và vuông góc với $B_c C_b$. Xác định tương tự với $m_b, m_c$.a) Giả sử $N$ là trực tâm tam giác $ABC$, chứng minh rằng ba đường thẳng đối xứng với các đường $m_a, m_b, m_c$ lần lượt qua phân giác các góc $\widehat{BNC}, \widehat{CNA}, \widehat{ANB}$ thì trùng nhau.b) Giả sử $N$ là tâm đường tròn Euler của tam giác $ABC$, chứng minh rằng ba đường thẳng đối xứng với các đường $m_a, m_b, m_c$ lần lượt qua $BC,CA,AB$ thì đồng quy tại một điểm. Ngày thi thứ hai Thời gian: 270 phútBài 4 (7 điểm): Cho các số thực không âm $a,b,c$ thoả mãn$2 \left ( a^2 +b^2 + c^2 \right ) +3(ab+bc+ca)=5(a+b+...

  2334 Lượt xem · 4 Trả lời ( Trả lời cuối cùng bởi toanhoc2017 )

 Photo

[TOPIC] Phương trình hàm $\mathbb{R} \rightarrow \mathbb{R}$

01-04-2021

Xin chào, mình là pcoVIetnam02 . Có một số bạn đã biết, mình từng làm một chuyên đề phương trình hàm trên tập rời rạc nhưng sau đó vì diễn đàn bảo trì nên topic cũng không cánh mà bay. Và vì các bạn cũng bắt đầu thi Olympic 30/4 rồi nên mình sẽ làm luôn một chuyên đề về phương trình hàm trên tập số thực với khá là nhiều cách giải khác nhau để các bạn có thể trang bị cho kì thì VMO sắp tới. Yêu cầu rất đơn giản:$1)$ Tích cực tham gia, bàn luận và giải các bài toán mình đưa ra (tất nhiên sẽ có bài dễ nhưng mà lâu lâu thôi, vì sắp thì VMO rồi nên mình sẽ coi như các bạn đã biết được cơ bản của phương trình hàm).$2)$ Ủng hộ các bạn đưa ra cách làm của bài đó, phương pháp, trình bày rõ ràng mạch lạc.$3)$ Nếu muốn gửi bài tập cho các bạn khác cùng làm nhớ ghi số thứ tự (sau số của bài cuối cùng được đăng), đăng khoảng từ 1-5 bài và nếu không ai giải được (mình sẽ cố gắng giải cho các bạn) thì người đăng phải gửi lời giải của bài đó. Mong các bạn sẽ hưởng ứng vì chuyên đề này không mấy ai quan tâm, thêm cả việc không quá nhiều người học THPT ở group này nên cũng khó khăn cho mình. Nhưng vì đam mê thì làm thôi chứ biết sao  Sau đây là những bài tập đầu tiên (lấy lại từ những bài trước mình đã làm): $\boxed{1}$ Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $g(x+y)+g(x)g(y)=g(xy)+g(x)+g(y)$ , $\forall x,y\in \mathbb{R}$ $\boxed{2}$ Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa$f(xf(x)+f(y)) = f(x)^2 +y$, $\forall x,y\...

  3394 Lượt xem · 52 Trả lời ( Trả lời cuối cùng bởi Hoang72 )

 Photo

[TOPIC] ÔN TẬP HÌNH HỌC THI VÀO THPT CHUYÊN 2020-2021

27-03-2021

Gửi bởi 12DecMath trong Hình học
Chào các bạn, mình là 12DecMath. Để tiếp nối series ôn tập hình học của anh spirit1234, mình xin phép được lập lại topic rất hay giúp các bạn lớp 9 có thể ôn tập hình học thi vào THPT chuyên.P/s: Dưới đây là một số bài tập mà mình muốn gửi!$\boxed{1}$ Cho tam giác ABC ngoại tiếp đường tròn (I). (I) tiếp xúc với AB,AC lần lượt tại D và E. P là một điểm bất kì trên cung lớn DE của đường tròn (I). Lấy điểm F là điểm đối xứng với A qua PD và M là trung điểm DE. Chứng minh rằng $\hat{FMP}$ = 90o$\boxed{2}$ Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O). Phân giác $\hat{BAC}$ cắt (O) tại E khác A. Gọi M,N lần lượt là trung điểm AB,AC. Trung trực AB,AC cắt AE lần lượt tại P,Q. Chứng minh rằng $PM.PE=QN.QE$$\boxed{3}$ Cho tam giác ABC (AB<AC) ngoại tiếp đường tròn (I), nội tiếp (O), có trực tâm H. (I) tiếp xúc với BC tại D. Khi IO//BC thì chứng minh rằng HD//AO$\boxed{4}$ Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O) có trực tâm H. AH cắt BC tại D. Đường tròn (w) tâm A đi qua D cắt (O) tại P,Q. Gọi G là giao điểm của PQ và AD. AO cắt BC tại E và K,M lần lượt là trung điểm của AD,BC. Chứng minh rằng HM,GE,OD đồng quy.$\boxed{5}$ Cho tam giác ABC có I là tâm đường tròn nội tiếp và Ia là tâm đường tròn bàng tiếp ứng với góc A. Đường thẳng qua Ia vuông góc với AIa cắt AC tại E. Gọi H,K lần lượt là hình chiếu của Ia lên AB,AC. L thuộc HK sao cho CL//AB. Chứng minh rằng B,L,E thẳng hàng.$\boxed{6}$(Bài toán khó) Cho tứ giác ABCD ngoại tiếp (I). Đường chéo AC và BD...

  6529 Lượt xem · 113 Trả lời ( Trả lời cuối cùng bởi Hoang72 )

 Photo

Tại sao tìm nghiệm hữu tỉ lại khó?

25-03-2021

Bài 1. Giới thiệu Ở bài viết này mình sẽ giới thiệu theo kiểu layman về một vấn đề của lý thuyết số hiện đại. 1. Dẫn nhập Một câu hỏi cơ bản và lâu đời nhất của số học là làm thế nào để biết một (hệ) phương trình đa thức với hệ số nguyên (phương trình Diophantus) cho trước có nghiệm nguyên (hay hữu tỉ) hay không, và tìm nghiệm nguyên (hay hữu tỉ) như thế nào? A priori, đây là một câu hỏi rất khó và hoàn toàn có thể là không có câu trả lời. David Hilbert đã phát biểu nó thành bài toán thứ 10 trong danh sách 23 bài toán thế kỷ: Liệu có một thuật toán mà, cho trước một phương trình Diophantus, trả lời rằng phương trình đó có nghiệm hay không?Định lý Matiyasevich đã đưa ra câu trả lời phủ định: Không tồn tại một thuật toán phổ quát như vậy. Chú ý, nếu ta không nói đến nghiệm nguyên (hay hữu tỉ), mà quan tâm đến nghiệm phức (hoặc nghiệm trong một trường đóng đại số), thì vấn đề rất đơn giản: Trong logic toán và lý thuyết mô hình, đây là tính chất khử lượng từ (QE/quatifier /elimination) của lý thuyết ACF (algebraically closed field). Tương tự đối với nghiệm thực (hoặc nghiệm trong một trường đóng thực), lý thuyết RCF (real closed field) cũng có QE. Ngoài ra ta còn có các công cụ của giải tích: thuật toán Sturm, đạo hàm... Ở bài này, chúng ta tìm hiểu lí do tại sao việc tìm nghiệm hữu tỉ lại khó. Tổng quát hơn, ta quan tâm đến việc tìm nghiệm trong một trường số (number field). Đây là bước chuyển từ lý thuyết số sơ cấp sang lý thuyết số đại số....

  2259 Lượt xem · 2 Trả lời ( Trả lời cuối cùng bởi nmlinh16 )


Ấn phẩm của Diễn đàn Toán học

 

 

 

Bài viết mới


  • 620267 Bài viết
  • 104557 Thành viên
  • quangminh0931 Thành viên mới nhất
  • 17600 Online đông nhất

1439 người đang truy cập (trong 20 phút trước)

0 thành viên, 1439 khách, 0 thành viên ẩn danh   (Xem đầy đủ danh sách)


Portal v1.4.0 by DevFuse | Based on IP.Board Portal by IPS