Đến nội dung


Hình ảnh
- - - - -

$\left\{\begin{matrix} x+y+z =2& \\ 2xy-z^{2}=4 & \end{matrix}\right.$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 G_Dragon88

G_Dragon88

    Hạ sĩ

  • Thành viên
  • 53 Bài viết
  • Giới tính:Nữ

Đã gửi 03-08-2013 - 10:16

BT:

a, $\left\{\begin{matrix} x+y+z =2& \\ 2xy-z^{2}=4 & \end{matrix}\right.$

b, $\left\{\begin{matrix} (2-x)(1-2x)(2+y)(1+2y)=4\sqrt{10z+1} & \\ x^{2}+y^{2}+z^{2}+2xz+2yz+x^{2}y^{2}+1=0 & \end{matrix}\right.$



#2 Oral1020

Oral1020

    Thịnh To Tướng

  • Thành viên
  • 1225 Bài viết
  • Giới tính:Nam
  • Đến từ:My house

Đã gửi 03-08-2013 - 10:35

a)

Ta có:

$x+y+z=2$

$\Longleftrightarrow (x+y+z)^2=4$

$\Longleftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=2xy-z^2$

$\Longleftrightarrow (x^2+2xz+z^2)+(y^2+2yz+z^2)=0$

$\Longleftrightarrow (x+z)^2+(y+z)^2=0$

Tới đây dễ rồi :)


"If I feel unhappy,I do mathematics to become happy.


If I feel happy,I do mathematics to keep happy."

Alfréd Rényi

Hình đã gửi


#3 naruto10459

naruto10459

    Trung sĩ

  • Thành viên
  • 141 Bài viết
  • Giới tính:Nam

Đã gửi 03-08-2013 - 10:48

BT:

a, $\left\{\begin{matrix} x+y+z =2& \\ 2xy-z^{2}=4 & \end{matrix}\right.$

b, $\left\{\begin{matrix} (2-x)(1-2x)(2+y)(1+2y)=4\sqrt{10z+1} & \\ x^{2}+y^{2}+z^{2}+2xz+2yz+x^{2}y^{2}+1=0 & \end{matrix}\right.$

câu b cái phương trình thứ 2 tách ra được thành ($(x^{2}+y^{2}+z^{2})=(xy-1)^{2}=0$,tới đó cũng dễ rồi 



#4 letankhang

letankhang

    $\sqrt{MF}'s$ $member$

  • Thành viên
  • 1079 Bài viết
  • Giới tính:Nam
  • Đến từ:$\sqrt{MF}$
  • Sở thích:$Maths$

Đã gửi 03-08-2013 - 10:49

BT:

 

b, $\left\{\begin{matrix} (2-x)(1-2x)(2+y)(1+2y)=4\sqrt{10z+1} & \\ x^{2}+y^{2}+z^{2}+2xz+2yz+x^{2}y^{2}+1=0 & \end{matrix}\right.$

Câu b :

$gt\Rightarrow x^{2}+y^{2}+z^{2}+2xz+2yz+2xy+x^{2}y^{2}-2xy+1=0\Rightarrow (x+y+z)^{2}+(xy-1)^{2}=0\Rightarrow \left\{\begin{matrix} x+y=-z & \\ xy=1 & \end{matrix}\right.$

Từ đây ta có thể dễ dàng giải tiếp.


Bài viết đã được chỉnh sửa nội dung bởi letankhang: 03-08-2013 - 10:52

        :oto:   :nav:  :wub:  $\mathfrak Lê $ $\mathfrak Tấn $ $\mathfrak Khang $ $\mathfrak tự$ $\mathfrak hào $ $\mathfrak là $ $\mathfrak thành $ $\mathfrak viên $ $\mathfrak VMF $  :wub:   :nav:  :oto:            

  $\textbf{Khi đọc một quyển sách; tôi chỉ ráng tìm cái hay của nó chứ không phải cái dở của nó.}$

 

 


#5 letankhang

letankhang

    $\sqrt{MF}'s$ $member$

  • Thành viên
  • 1079 Bài viết
  • Giới tính:Nam
  • Đến từ:$\sqrt{MF}$
  • Sở thích:$Maths$

Đã gửi 03-08-2013 - 11:21

BT:

a, $\left\{\begin{matrix} x+y+z =2& \\ 2xy-z^{2}=4 & \end{matrix}\right.$

b, $\left\{\begin{matrix} (2-x)(1-2x)(2+y)(1+2y)=4\sqrt{10z+1} & \\ x^{2}+y^{2}+z^{2}+2xz+2yz+x^{2}y^{2}+1=0 & \end{matrix}\right.$

 

Câu b :

$gt\Rightarrow x^{2}+y^{2}+z^{2}+2xz+2yz+2xy+x^{2}y^{2}-2xy+1=0\Rightarrow (x+y+z)^{2}+(xy-1)^{2}=0\Rightarrow \left\{\begin{matrix} x+y=-z & \\ xy=1 & \end{matrix}\right.$

Từ đây ta có thể dễ dàng giải tiếp.

Mình giải tiếp thêm 1 tí :

Ta có :

$(2-x)(1+2y)(2+y)(1-2x)=(4y-2)(y-4x)=4x^{2}+8xy+4y^{2}-25xy=(2x+2y)^{2}-25=4z^{2}-25\Rightarrow 4z^{2}-25= 4\sqrt{10z+1}\Rightarrow 16z^{4}-200z^{2}-160z+609=0\Rightarrow (2z-3)(2z-7)(4z^{2}+20z+29)=0\Rightarrow \left\{\begin{matrix} z=1,5 & \\ z=3,5 & \end{matrix}\right.$

Từ đây ta có thể dễ dàng tính được $x;y$


        :oto:   :nav:  :wub:  $\mathfrak Lê $ $\mathfrak Tấn $ $\mathfrak Khang $ $\mathfrak tự$ $\mathfrak hào $ $\mathfrak là $ $\mathfrak thành $ $\mathfrak viên $ $\mathfrak VMF $  :wub:   :nav:  :oto:            

  $\textbf{Khi đọc một quyển sách; tôi chỉ ráng tìm cái hay của nó chứ không phải cái dở của nó.}$

 

 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh