Đến nội dung


Hình ảnh

Chứng minh rằng : $m\vdots p$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Secrets In Inequalities VP

Secrets In Inequalities VP

    Sĩ quan

  • Thành viên
  • 309 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên Vĩnh Phúc
  • Sở thích:Xem phim.

Đã gửi 06-09-2013 - 18:38

CHo $p$ là số nguyên tố lẻ.Kí hiệu : ${S_a}= a+\frac{a^{2}}{2}+...+\frac{a^{p-1}}{p-1}$.

Giả sử ${S_3}+{S_4}-3{S_2}=\frac{m}{n}$. Chứng minh rằng : $m\vdots p$



#2 yeutoan11

yeutoan11

    Sĩ quan

  • Thành viên
  • 307 Bài viết
  • Giới tính:Nam

Đã gửi 22-09-2013 - 11:27

$\frac{\textrm{C}^p_k}{p}\equiv \frac{(-1)^{k-1}}{k}\pmod p$

$\Rightarrow \sum^{p-1}_{k=1}\frac{a^k}{k}=\sum^{p-1}_{k=1}\frac{(-a)^k.(-1)^k}{k}=-\sum^{p-1}_{k=1}\frac{(-a)^k.(-1)^{k-1}}{k}\equiv -\sum^{p-1}_{k=1}\frac{(-a)^k.C^k_p}{p} \equiv \frac{(a-1)^p-a^p+1}{p} \pmod p$

Thay vào ta được : 

$S_3+S_4 -3S_2 \equiv \frac{(2^p-2)^2}{p}\vdots p$

ĐPCM


Bài viết đã được chỉnh sửa nội dung bởi yeutoan11: 22-09-2013 - 11:29

Dựng nước lấy việc học làm đầu. Muốn thịnh trị lấy nhân tài làm gốc.
NGUYỄN HUỆ
Nguyễn Trần Huy
Tự hào là thành viên VMF




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh