Đến nội dung


Hình ảnh

Chứng minh $(a+b)^2+(c+d)^2=2$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 shinichigl

shinichigl

    Trung sĩ

  • Thành viên
  • 135 Bài viết
  • Giới tính:Nam
  • Đến từ:Đại học Ngoại thương
  • Sở thích:Làm toán

Đã gửi 16-04-2014 - 09:45

Cho bốn số thực $a,b,c,d$ thoã mãn: $a^2+b^2=1,c^2+d^2=1,ac+bd=0$.

Chứng minh rằng: $(a+b)^2+(c+d)^2=2$



#2 caovannct

caovannct

    Thiếu úy

  • Thành viên
  • 529 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT Nguyễn Chí Thanh, Pleiku, Gia Lai

Đã gửi 16-04-2014 - 10:55

Ta phải cm ab+cd=0. Thật vậy $(a^2+b^2)(c^2+d^2)=1\Leftrightarrow a^2c^2+b^2d^2+a^2d^2+b^2c^2=1 \Leftrightarrow (ac+bd)^2+(ad-bc)^2=1\Rightarrow (ad-bc)^2=1 (1)$

Mặt khác $(a+b)^2(c+d)^2=(1+2ab)(1+2cd) \Leftrightarrow (ad+bc)^2=(1+2ab+2cd+4abcd) \Leftrightarrow (ad-bc)^2=1+2(ab+cd)$

Kết hợp với (1) ta suy ra đc ab+cd=0 (đpcm)



#3 Kool LL

Kool LL

    Sĩ quan

  • Thành viên
  • 370 Bài viết
  • Giới tính:Nam
  • Đến từ:Tp.HCM

Đã gửi 28-04-2014 - 14:03

Cho bốn số thực $a,b,c,d$ thoã mãn: $a^2+b^2=1,c^2+d^2=1,ac+bd=0$.

Chứng minh rằng: $(a+b)^2+(c+d)^2=2$

Từ (gt) ta có : $a^2-d^2=c^2-b^2$

Mặt khác : $0\le(ab+cd)^2=(ab+cd)^2-(ac+bd)^2=a^2b^2+c^2d^2-a^2c^2-b^2d^2$ $=(a^2-d^2)(b^2-c^2)=-(b^2-c^2)^2\le0$

Suy ra $ab+cd=0$. Do đó ta có (đpcm).






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh