Đến nội dung


Hình ảnh

cho x,y,z > 0 . Chứng minh $\frac{\sqrt{y}}{x+z}+\frac{\sqrt{x}}{y+z}+\frac{\sqrt{z}}{x+y}$ > 2

toán trung học cơ sở bất đẳng thức và cực tri

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Takamina Minami

Takamina Minami

    Trung sĩ

  • Thành viên
  • 135 Bài viết
  • Giới tính:Nữ
  • Đến từ:Secret
  • Sở thích:Nghe nhạc

Đã gửi 14-08-2014 - 14:56

cho x,y,z > 0 . Chứng minh 

           $\frac{\sqrt{y}}{x+z}+\frac{\sqrt{x}}{y+z}+\frac{\sqrt{z}}{x+y}$ > 2

CHo x,y > 1 

                    CM: $\frac{(x^{3}+y^{3})-(x^{2}+y^{2})}{(x-1)(y-1)} \geq 8$


tumblr_mvk1jxSuSL1r3ifxzo1_250.gif


#2 einstein627

einstein627

    Trung sĩ

  • Thành viên
  • 102 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội, VN, Lớp 10T1 Trường Hà Nội Amsterdam
  • Sở thích:Được thành công cùng bạn mình,hình học thuần túy, số học,bđt,pt hàm,bóng đá bóng bàn,ghét hình học giải tích đồ thị đại số,...

Đã gửi 14-08-2014 - 15:12

Bài 1 sai đề nhé tớ lấy đc phản ví dụ ngay nè
Vs $x=y=z=1$ thì $VT=3/2<2$ Vô lý
Có lẽ đề là tn 
$\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{z+x}}+\sqrt{\frac{z}{y+x}}> 2$

Giải:

$VT=\sum \frac{x}{\sqrt{x(y+z)}}\geq \sum \frac{2x}{x+y+z}=2$
Dấu đẳng thức sảy ra khi x=y=z=0 vô lý vậy dấu đẳng thức ko sảy ra (DPCM)


Bài viết đã được chỉnh sửa nội dung bởi einstein627: 14-08-2014 - 15:20

-Học từ ngày hôm qua, sống ngày hôm nay, hi vọng cho ngày mai. Điều quan trọng nhất là không ngừng đặt câu hỏi.

-Albert Einstein

 
-Khi Bạn Sắp Bỏ Cuộc, Hãy Nhớ Tới Lý Do Khiến Bạn Bắt Đầu.

 


#3 einstein627

einstein627

    Trung sĩ

  • Thành viên
  • 102 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội, VN, Lớp 10T1 Trường Hà Nội Amsterdam
  • Sở thích:Được thành công cùng bạn mình,hình học thuần túy, số học,bđt,pt hàm,bóng đá bóng bàn,ghét hình học giải tích đồ thị đại số,...

Đã gửi 14-08-2014 - 15:19

CHo x,y > 1 

                    CM: $\frac{(x^{3}+y^{3})-(x^{2}+y^{2})}{(x-1)(y-1)} \geq 8$

Ta có
$\frac{(x^{3}+y^{3})-(x^{2}+y^{2})}{(x-1)(y-1)}=\frac{x^{2}}{y-1}+\frac{y^{2}}{x-1}$
Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có
$\frac{x^{2}}{y-1}\geq \frac{4x^{2}}{y^{2}}$
Tương tự
$\frac{y^{2}}{x-1}\geq \frac{4y^{2}}{x^{2}}$
Vậy suy ra
$\frac{x^{2}}{y-1}+\frac{y^{2}}{x-1}\geq \frac{4x^{2}}{y^{2}}+\frac{4y^{2}}{x^{2}} \geq 8(AM-GM)$
Ta có đpcm dấu đẳng thức sảy ra khi x=y=2


-Học từ ngày hôm qua, sống ngày hôm nay, hi vọng cho ngày mai. Điều quan trọng nhất là không ngừng đặt câu hỏi.

-Albert Einstein

 
-Khi Bạn Sắp Bỏ Cuộc, Hãy Nhớ Tới Lý Do Khiến Bạn Bắt Đầu.

 






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: toán trung học cơ sở, bất đẳng thức và cực tri

0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh