Đến nội dung


Hình ảnh
- - - - -

Tính tổng $sin\varphi +sin2\varphi +...+sinn\varphi $?


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 datanhlg

datanhlg

    Hạ sĩ

  • Thành viên
  • 50 Bài viết
  • Giới tính:Nam
  • Đến từ:TPHCM

Đã gửi 16-10-2014 - 02:36

Tính tổng $S=sin\varphi +sin2\varphi +...+sinn\varphi $ với $\varphi \neq k2\pi $ và $k\epsilon Z$



#2 nucnt772

nucnt772

    Thượng sĩ

  • Thành viên
  • 209 Bài viết
  • Giới tính:Nam

Đã gửi 17-10-2014 - 18:52

Tính tổng $S=sin\varphi +sin2\varphi +...+sinn\varphi $ với $\varphi \neq k2\pi $ và $k\epsilon Z$

Đặt $K = 1 + cos\alpha +cos2\alpha +cos3\alpha +...+cosn\alpha$

ta có: 

$K+iS$ $=(1+cos\alpha +cos2\alpha +cos3\alpha +...+cosn\alpha )+i(sin\alpha +sin2\alpha +sin3\alpha +...+sinn\alpha )$

$=1+(cos\alpha +isin\alpha )+(cos2\alpha +isin2\alpha )+(cos3\alpha +isin3\alpha )+...+(cosn\alpha +isinn\alpha )$

=$1+(cos\alpha +isin\alpha )+(cos\alpha +isin\alpha )^{2}+(cos\alpha +isin\alpha )^{3}+...+(cos\alpha +isin\alpha )^{n}$

$=\frac{1-(cos\alpha +isin\alpha )^{n+1}}{1-(cos\alpha +sin\alpha )}$

 

$=\frac{1-cos(n+1)\alpha -isin(n+1)\alpha }{1-cos\alpha -sin\alpha }$

 

$=\frac{2sin^{2}\frac{(n+1)\alpha }{2}-2isin\frac{(n+1)\alpha }{2}.cos\frac{(n+1)\alpha }{2}}{2sin^{2}\frac{\alpha }{2}-2isin\frac{\alpha }{2}.cos\frac{\alpha }{2}}$

 

$=\frac{sin\frac{(n+1)\alpha }{2}}{sin\frac{\alpha }{2}}.\frac{sin\frac{(n+1)\alpha }{2}-icos\frac{(n+1)\alpha }{2}}{sin\frac{\alpha }{2}-icos\frac{\alpha }{2}}$

 

$=\frac{sin\frac{(n+1)\alpha }{2}}{sin\frac{\alpha }{2}}.\frac{cos(\frac{(n+1 )\alpha }{2}-\frac{\pi }{2})+isin(\frac{(n+1 )\alpha }{2}-\frac{\pi }{2})}{cos(\frac{\alpha }{2}-\frac{\pi }{2})+isin(\frac{\alpha }{2}-\frac{\pi }{2})}$

 

$=\frac{sin\frac{(n+1)\alpha }{2}}{sin\frac{\alpha }{2}}.[cos(\frac{(n+1)\alpha }{2}-\frac{\pi }{2}-\frac{\alpha }{2}+\frac{\pi }{2})+isin(\frac{(n+1)\alpha }{2}-\frac{\pi }{2}-\frac{\alpha }{2}+\frac{\pi }{2})]$

 

$=\frac{sin\frac{(n+1)\alpha }{2}}{sin\frac{\alpha }{2}}.(cos\frac{n\alpha }{2}+isin\frac{n\alpha }{2})$

 

$K+iS=\frac{sin\frac{(n+1)\alpha }{2}}{sin\frac{\alpha }{2}}.(cos\frac{n\alpha }{2}+isin\frac{n\alpha }{2})$

 

$\Rightarrow S=sin\alpha +sin2\alpha +sin3\alpha +...+sinn\alpha =\frac{sin\frac{(n+1)\alpha }{2}.sin\frac{n\alpha }{2}}{sin\frac{\alpha }{2}}$


Bài viết đã được chỉnh sửa nội dung bởi nucnt772: 17-10-2014 - 18:53

cnt




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh