Đến nội dung


Hình ảnh

$f(m^2+f(n))=f(m)^2+n$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 E. Galois

E. Galois

    Chú lùn thứ 8

  • Quản trị
  • 3797 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Toán và thơ

Đã gửi 03-07-2015 - 21:40

Tìm hàm $f:\mathbb{Z}^+\rightarrow \mathbb{Z}^+$ thỏa mãn : 

$$f(m^2+f(n))=f(m)^2+n$$

 

 


1) Xem cách đăng bài tại đây
2) Học gõ công thức toán tại: http://diendantoanho...oạn-thảo-latex/
3) Xin đừng đặt tiêu đề gây nhiễu: "Một bài hay", "... đây", "giúp tớ với", "cần gấp", ...
4) Ghé thăm tôi tại 
http://Chúlùnthứ8.vn

5) Xin đừng hỏi bài hay nhờ tôi giải toán. Tôi cực gà.


#2 Idie9xx

Idie9xx

    Sĩ quan

  • Thành viên
  • 319 Bài viết
  • Giới tính:Nam
  • Đến từ:A4 - Tân Lập

Đã gửi 04-07-2015 - 21:03

 

Tìm hàm $f:\mathbb{Z}^+\rightarrow \mathbb{Z}^+$ thỏa mãn : 

$$f(m^2+f(n))=f(m)^2+n$$

 

 

Bài này nhìn khá quen chắc là làm rồi.

Ta dễ thấy hàm này đơn ánh, ta có:

$f(m^2+(f(f(n)))^2+1)=f(m^2+f((f(n))^2+f(1)))=(f(m))^2+(f(n))^2+f(1)=f(n^2+f((f(m))^2+f(1)))=f(n^2+(f(f(m)))^2+1)$

$\Rightarrow f(m^2+(f(f(n)))^2+1)=f(n^2+(f(f(m)))^2+1) \Rightarrow m^2+(f(f(n)))^2+1=n^2+(f(f(m)))^2+1$

$\Rightarrow m^2+(f(f(n)))^2=n^2+(f(f(m)))^2 \Rightarrow (f(f(m)))^2-(f(f(n)))^2=m^2-n^2,(*)$

Cho $m=k+1,n=k$ vào $(*)$ sao cho $2k+1$ là một số nguyên tố ta có:

$(f(f(k+1)))^2-(f(f(k)))^2=(k+1)^2-k^2=2k+1$

$\Rightarrow (f(f(k+1))-f(f(k)))(f(f(k+1))+f(f(k)))=2k+1$

Do $2k+1$ là số nguyên tố và $f(f(k+1)),f(f(k))$ luôn dương nên suy ra

$f(f(k+1))-f(f(k))=1,f(f(k+1))+f(f(k))=2k+1 \Rightarrow f(f(k+1))=k+1,f(f(k))=k$

Cho $m=k$ vào $(*)\Rightarrow (f(f(k)))^2-(f(f(n)))^2=k^2-n^2\Rightarrow f(f(n))=n,\forall n\in Z^+$

Ta tính $f(1)$ đặt $f(1)=p$ ta có $f(p)=1$

Cho $m=n=p$ vào phương trình đầu ta có

$f(p^2+f(p))=(f(p))^2+p\Rightarrow f(p^2+1)=p+1$

Cho $m=1,n=f(p^2)$ vào phương trình đầu ta có

$f(1+f(f(p^2)))=(f(1))^2+f(p^2)\Rightarrow f(p^2+1)=p^2+f(p^2)$

$\Rightarrow f(p^2)=f(p^2+1)-p^2=p-p^2+1$

$\Rightarrow p-p^2+1=f(p^2)\geq 1\Rightarrow p\geq p^2$

$\Rightarrow p=1\Rightarrow f(1)=1$

Thay $m=1$ và $n$ bằng $f(n)$ ta có $f(1+f(f(n)))=(f(1))^2+f(n)\Rightarrow f(n+1)=f(n)+1$

Từ đây có thể dùng quy nạp để tìm ra hàm số là $f(n)=n$ :)


$\large \circ \ast R_f\cdot Q_r\cdot 1080\ast \circ$




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh