Đến nội dung

Hình ảnh

$|a_{m}-a_{n}| \geq \frac{1}{m-n}$

- - - - -

  • Please log in to reply
Chủ đề này có 1 trả lời

#1
halloffame

halloffame

    Thiếu úy

  • Điều hành viên OLYMPIC
  • 522 Bài viết
Chứng minh rằng tồn tại dãy số $(a_{n})$ thỏa mãn:
$i) \exists c_{1},c_{2} \in \mathbb{R}: c_{1} \leq a_{n} \leq c_{2} \forall n \in \mathbb{N}^{*};$
$ii) \forall m,n \in \mathbb{N}^{*},m \neq n, |a_{m}-a_{n}| \geq \frac{1}{m-n}.$

Sự học như con thuyền ngược dòng nước, không tiến ắt phải lùi.


#2
phuc_90

phuc_90

    Sĩ quan

  • Thành viên
  • 438 Bài viết

Chứng minh rằng tồn tại dãy số $(a_{n})$ thỏa mãn:
$i) \exists c_{1},c_{2} \in \mathbb{R}: c_{1} \leq a_{n} \leq c_{2} \forall n \in \mathbb{N}^{*};$
$ii) \forall m,n \in \mathbb{N}^{*},m \neq n, |a_{m}-a_{n}| \geq \frac{1}{m-n}.$

 

Với mọi số thực $t\geq 2$ ta có $t+\frac{1}{t}-\frac{5}{2}=\frac{(t-2)(2t-1)}{2t}\geq 0$ nên $t+\frac{1}{t}\geq \frac{5}{2}$  (*)

 

Bổ đề :  Với $\frac{m}{n}\geq 2$ hoặc $m<n$ thì $\left | \frac{2}{m}-\frac{2}{n} \right |\geq \frac{1}{m-n}$

 

Thật vậy, với $\frac{m}{n}\geq 2$ ta có $(m-n)\left | \frac{2}{m}-\frac{2}{n} \right |=2(m-n)\frac{|n-m|}{mn}=2(m-n)\frac{-(n-m)}{mn}=2\left ( \frac{m}{n}+\frac{n}{m}-2 \right )$

 

Theo BĐT (*) ta có $\frac{m}{n}+\frac{n}{m}\geq \frac{5}{2}$ suy ra $(m-n)\left | \frac{2}{m}-\frac{2}{n} \right |\geq 1$

 

hay $\left | \frac{2}{m}-\frac{2}{n} \right |\geq \frac{1}{m-n}$

 

Còn trường hợp $m<n$ thì $\left | \frac{2}{m}-\frac{2}{n} \right |> 0> \frac{1}{m-n}$

 

Vậy bổ đề được chứng minh hoàn toàn

 

Bây giờ, với mọi số nguyên dương $n$ ta có $0<\frac{2}{n}\leq 2$

 

Đặt $a_n=\frac{2}{n}$ thì $(a_n)_{n\in \mathbb{N^*}}$ là dãy bị chặn và đặt $n_k=2k, \forall k\in \mathbb{N^*}$

 

Theo bổ đề trên thì dãy con $(a_{n_k})_{k\in \mathbb{N^*}}$ của $(a_n)_{n\in \mathbb{N^*}}$ chính là dãy cần tìm.

 

Note: $n_{k_i} > n_{k_j}$ thì $\frac{n_{k_i}}{n_{k_j}}\geq 2$






2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh