Đến nội dung


Hình ảnh

ĐỀ THI CHỌN ĐỘI TUYỂN DỰ THI CẤP QUỐC GIA 2016-2017 - CẦN THƠ


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Thanhwin

Thanhwin

    Binh nhì

  • Thành viên
  • 15 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT năng khiếu TPHCM
  • Sở thích:Toán

Đã gửi 19-10-2016 - 14:19

14805605_1778419335732324_1152893961_n.j


Bài viết đã được chỉnh sửa nội dung bởi Thanhwin: 19-10-2016 - 14:25


#2 Baoriven

Baoriven

    Thượng úy

  • Điều hành viên OLYMPIC
  • 1389 Bài viết
  • Giới tính:Nữ
  • Đến từ:$\boxed{\textrm{CTG}}$ $\boxed{\textrm{HCMUS}}$
  • Sở thích:DS [ÒwÓ]

Đã gửi 19-10-2016 - 18:53

Câu 1: Ta chứng minh $u_n> 1$ bằng quy nạp.

Ta có: $u_1=\frac{3}{2}> 1$.

Giả sử $u_n> 1$, khi đó ta biến đổi tương đương sau: 

$u_{n+1}+1> 2\Leftrightarrow u_{n+1}^2> 4\Leftrightarrow u_n^3+3u_n^2-9u_n+\frac{9n+10}{n+1}> 4$.

$\Leftrightarrow (u_n-1)^2(u_n+5)+\frac{1}{n+1}> 0$ (Đúng).

Theo quy nạp thì $u_n> 1,\forall n\in \mathbb{N}^*$.

Ta chứng minh $(u_n)$ là dãy giảm. Tiếp tục sử dụng quy nạp.

Dễ thấy: $u_2< u_1$.

Giả sử $u_n< u_{n-1}$. Khi đó biến đổi tương đương ta có:

$u_{n+1}< u_n\Leftrightarrow (u_n-u_{n-1})(u_n^2+u_nu_{n-1}+u_{n-1}^2+3u_n+3u_{n-1}-9)+\frac{1}{n+1}-\frac{1}{n}< 0$ 

BĐT cuối đúng.

Dãy số giảm và bị chặn dưới nên có giới hạn hữu hạn. Đặt: $\lim_{n\rightarrow +\infty}u_n=\alpha$.

Từ công thức đề cho $\alpha$ là nghiệm phương trình: $\alpha =\sqrt{\alpha^3+3\alpha^2-9\alpha+9}-1\Leftrightarrow \alpha=1$.

Vậy $\lim_{n\rightarrow +\infty}u_n=1$.


$\mathfrak{LeHoangBao - CTG - HCMUS}$

#3 MiTiBAM

MiTiBAM

    Binh nhì

  • Thành viên mới
  • 15 Bài viết

Đã gửi 02-10-2021 - 09:19

14805605_1778419335732324_1152893961_n.j

File ảnh bị lỗi rồi ạ. Có ai khôi phục được hoặc có đề chọn đội tuyển Cần Thơ 2016-2017 cho em xin lại với ạ 






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh