Bài toán 1: Cho $p$ là số nguyên tố. Chứng minh tồn tại các số $x,y,z,t$ thỏa mãn :
$x^2+y^2+z^2=p.t$ (Với $0<t<p$)
ta chỉ cần xét $x,y,z$ theo $\left ( \mod\ p \right )$ và khi thay $x$ bởi $p-x$ nên ta chỉ cần xét với $x,y,z< \frac{p}{2}$
Đặt $\mathcal{S}$ là tập bình phương các số dư thì khi đó $\left | \mathcal{S} \right |=\frac{p+1}{2}$
theo định lý $\text{Cauchy-Dacenport}$ ta có
$\left | \mathcal{S}+\mathcal{S}+\mathcal{S} \right |\geq \min\left \{ p,3\left | \mathcal{S} \right |-2 \right \}=\min\left \{ p,3.\frac{p+1}{2}-2 \right \}=p$
do đó
$\exists t_p:x^2+y^2+z^2=pt_p$
$\Rightarrow t_p=\frac{x^2+y^2+z^2}{p}<\frac{3.\left ( \frac{p}{2} \right )^2}{p}$
do đó ta chỉ cần chọn $t=t_p$
Bài toán 2: Cho các số nguyên $a,b,c$ lớn hơn 1. Chứng minh rằng nếu với mỗi số nguyên dương $n$, tồn tại $k$ sao cho $a^k+b^k=2c^n$ thì $a=b$
analysis against number theory.pdf 183.25K
252 Số lần tải
em xem ở $\text{Example}\ 3$ nhé
Bài toán 3: Cho a,b,c là các số nguyên và $a \neq 0$ sao cho $an^2+bn+c$ là số chính phương với mọi $n>2013^{2014}$.
Chứng minh rằng tồn tại $x,y$ nguyên sao cho : $a=x^2,b=2xy,c=y^2$
đây là bài toán khá nổi tiếng
em có thể tham khảo $\text{Example}\ 2$ cùng file trên và cũng một lời giải khác ở đây,ý nghĩa bài toán nó đơn thuần chỉ cần vô hạn và phủ nên 2 lời giải trên đều có thể dùng được