Đến nội dung

Hình ảnh

Tìm Min của $P=\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)}$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1
tienduc

tienduc

    Thiếu úy

  • Điều hành viên THCS
  • 580 Bài viết

Cho $a,b,c>0$ và $abc=1$. Tìm Min của

$P=\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)}$



#2
Element hero Neos

Element hero Neos

    Trung úy

  • Thành viên
  • 943 Bài viết

Cho $a,b,c>0$ và $abc=1$. Tìm Min của

$P=\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)}$

https://mks.mff.cuni...n/isoln952.html



#3
tritanngo99

tritanngo99

    Đại úy

  • Điều hành viên THPT
  • 1644 Bài viết

Cho $a,b,c>0$ và $abc=1$. Tìm Min của

$P=\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)}$

Ta có: $\sum \frac{1}{a^3(b+c)}=\sum \frac{\frac{1}{a^2}}{a(b+c)}\ge \frac{(\sum \frac{1}{a})^2}{2\sum ab}=\frac{(\sum ab)^2}{2\sum ab}(BCS)$.

$=\frac{\sum ab}{2}\ge \frac{3}{2}(Cauchy)\implies Q.E.D$


Bài viết đã được chỉnh sửa nội dung bởi tritanngo99: 09-02-2017 - 20:38


#4
viet9a14124869

viet9a14124869

    Trung úy

  • Thành viên
  • 903 Bài viết

Ta có $\sum \frac{1}{a^3(b+c)}=\sum \frac{a^2b^2c^2}{a^3(b+c)}=\sum \frac{b^2c^2}{ab+ac}$

Đến đây đặt ab=x,bc=y,ca=z rồi dùng cô-si là xong ^-^


                                                                    SÓNG BẮT ĐẦU TỪ GIÓ

                                                                    GIÓ BẮT ĐẦU TỪ ĐÂU ?

                                                                    ANH CŨNG KHÔNG BIẾT NỮA 

                                                                    KHI NÀO...? TA YÊU NHAU .


#5
KietLW9

KietLW9

    Đại úy

  • Điều hành viên THCS
  • 1737 Bài viết

Cho $a,b,c>0$ và $abc=1$. Tìm Min của

$P=\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)}$

Đặt $(\frac{1}{a},\frac{1}{b},\frac{1}{c})\rightarrow (x,y,z)\Rightarrow \left\{\begin{matrix}x,y,z>0 & \\ xyz=1 & \end{matrix}\right.$

Khi đó bất đẳng thức được viết lại thành: $\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\geqslant \frac{3}{2}$

Không mất tính tổng quát, giả sử $x\geqslant y\geqslant z\geqslant 0\Rightarrow \left\{\begin{matrix}x+y\geqslant z+x\geqslant y+z>0 & \\ \frac{x}{y+z}\geqslant \frac{y}{z+x}\geqslant \frac{z}{x+y}>0 & \end{matrix}\right.$

Sử dụng bất đẳng thức Chebyshev cho hai dãy đơn điệu cùng chiều và ngược chiều, ta được: $\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\geqslant \frac{1}{3}(x+y+z)(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y})=\frac{1}{6}[(y+z)+(z+x)+(x+y)](\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y})\geqslant \frac{1}{6}.3.[\frac{x}{y+z}.(y+z)+\frac{y}{z+x}.(z+x)+\frac{z}{x+y}.(x+y)]=\frac{x+y+z}{2}\geqslant \frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}$
Đẳng thức xảy ra khi $a=b=c=1$

Trong cuộc sống không có gì là đẳng thức , tất cả đều là bất đẳng thức  :ukliam2:   :ukliam2: 

 

 

$\text{LOVE}(\text{KT}) S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \geqslant 0\forall S_a,S_b,S_c\geqslant 0$

 

 

 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh