Đến nội dung


Hình ảnh

Đề thi học sinh giỏi TP Hà Nội lớp 12 Vòng 2 2017


  • Please log in to reply
Chưa có bài trả lời

#1 Uchiha sisui

Uchiha sisui

    Trung sĩ

  • Thành viên
  • 196 Bài viết
  • Giới tính:Nam

Đã gửi 01-10-2017 - 19:01

Đề thi học sinh giỏi lớp 12 TP Hà Nội 

Ngày 30/09/2017

 

Bài 1. (4 điểm) Cho $x, y, z$ là các số hữu tỉ sao cho $x+y^{2}+z^{2}$, $y+z^{2}+x^{2}$ và $z+x^{2}+y^{2}$ đều là các số nguyên. Chứng minh rằng $2x$ là số nguyên.

 

Bài 2. (4 điểm) Cho hàm số $f:R\rightarrow R$ thỏa mãn điều kiện 

$f(tanx)=\frac{1}{2}sin2x-cos2x$       $\forall x\epsilon (-\frac{\pi }{2},\frac{\pi }{2})$

Tìm giá trị lớn nhất là nhỏ nhất của biểu thức  $f(sin^{2}x).f(cos^{2}x)$ $(\forall x\epsilon R)$

 

Bài 3. (4 điểm) Cho tam giác $ABC$ vuông tại $A$ với $AB< AC$. Gọi $M$ là trung điểm của cạnh $AB$, $N$ là điểm nằm trên cạnh $BC$ sao cho $BN=BA$. Đường tròn đường kính $AB$ cắt $(ANC)$ tại $P$. Gọi $E$ là giao điểm của đường thẳng qua $B$ vuông góc với  $MP$ và đường thẳng $AP$, $F$ là giao điểm của đường thẳng qua $B$ song song với $MP$ cắt $PN$ tại $F$. Chứng minh rằng $PC$ chia đôi $EF$.

 

Bài 4. (4 điểm) Tìm tất cả các đa thức $P(x)$ với hệ số thực sao cho: 

$(P(x))^{2}=2P(x^{2}-3)+1$   $(\forall x\epsilon R)$

 

Bài 5. (4 điểm) Với mọi $n\epsilon \left \{ 1,2,3 \right \}$ , ta gọi số tự nhiên $k$ là một số tự nhiên kiểu $n$ nếu $k=0$ hoặc $k$ là một số hạng của dãy $1;n+2;(n+2)^{2};(n+2)^{3};...$ hoặc $k$ là tổng của một số số hạng của dãy trên. Chứng minh rằng bất kì số nguyên dương nào cũng biểu diễn được dưới dạng tổng của một số kiểu 1 với một số kiểu 2 và một số kiểu 3.






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh