Đến nội dung


Hình ảnh
- - - - -

Đại số tuyến tính

ma trận cơ sở

  • Please log in to reply
Chưa có bài trả lời

#1 dung111999

dung111999

    Lính mới

  • Thành viên
  • 8 Bài viết

Đã gửi 24-12-2017 - 17:12

Giả sử ánh xạ tuyến tính $\mu :R^3\rightarrow R^3$ có ma trận trong cơ sở chính tắc $A= \begin{pmatrix} 8 & -1 & -5\\ -2& 3 & 1 \\ 4 & 1& -1 \end{pmatrix}$

a)Tìm số chiều và một cơ sở cho các không gian Ker($\mu$-2id) và ảnh Im($\mu$-2id) trong đó id:$R^3\rightarrow R^3$ là ánh xạ đồng nhất gửi mỗi vecto $v\in R^3$ vào chính nó

b)Tìm một cơ sở của $R^3$ sao cho trong cơ sở này ma trận của $\mu$ có dạng:

$\begin{pmatrix} 2 & 0 & 0\\ 0 & 4 &1 \\ 0 & 0 &1 \end{pmatrix}$

 

Mọi người giúp em bài này với ạ

 


Giả sử ánh xạ tuyến tính $\mu :R^3\rightarrow R^3$ có ma trận trong cơ sở chính tắc $A= \begin{pmatrix} 8 & -1 & -5\\ -2& 3 & 1 \\ 4 & 1& -1 \end{pmatrix}$

a)Tìm số chiều và một cơ sở cho các không gian Ker($\mu$-2id) và ảnh Im($\mu$-2id) trong đó id:$R^3\rightarrow R^3$ là ánh xạ đồng nhất gửi mỗi vecto $v\in R^3$ vào chính nó

b)Tìm một cơ sở của $R^3$ sao cho trong cơ sở này ma trận của $\mu$ có dạng:

$\begin{pmatrix} 2 & 0 & 0\\ 0 & 4 &1 \\ 0 & 0 &1 \end{pmatrix}$

 

Mọi người giúp em bài này với ạ


Bài viết đã được chỉnh sửa nội dung bởi dung111999: 24-12-2017 - 17:13






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: ma trận, cơ sở

2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh