Đến nội dung

Hình ảnh

$\frac{x^2}{(x+1)^2}+\frac{y^2}{(y+1)^2}+\frac{z^2}{(z+1)^2}\geq 1$

bất đẳng thức và cực trị

  • Please log in to reply
Chủ đề này có 6 trả lời

#1
Korosensei

Korosensei

    Hạ sĩ

  • Thành viên
  • 97 Bài viết

Câu 1: cho x,y,z khác 1 sao cho xyz=1. Chứng minh :$\frac{x^2}{(x+1)^2}+\frac{y^2}{(y+1)^2}+\frac{z^2}{(z+1)^2}\geq 1$

Câu 2:  cho a,b,c>0. Chứng minh $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}<\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{b^2+a^2}$

Câu 3: Cho $a,b,c \epsilon \left [ 0;1 \right ]$ Chứng minh :

$\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{b+a+1}+(1-a)(1-b)(1-c)\leq 1$



#2
HieuND

HieuND

    Lính mới

  • Thành viên mới
  • 9 Bài viết

Câu 1: cho x,y,z khác 1 sao cho xyz=1. Chứng minh :$\frac{x^2}{(x+1)^2}+\frac{y^2}{(y+1)^2}+\frac{z^2}{(z+1)^2}\geq 1$

Câu 2:  cho a,b,c>0. Chứng minh $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}<\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{b^2+a^2}$

Câu 3: Cho $a,b,c \epsilon \left [ 0;1 \right ]$ Chứng minh :

$\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{b+a+1}+(1-a)(1-b)(1-c)\leq 1$

 

Bạn xem lại bài 1 đi a. Mình thứ với $x = y = \frac{1}{2}$ và $z = 4$ thì ra kết quả là $\frac{194}{225}<1$



#3
DOTOANNANG

DOTOANNANG

    Đại úy

  • ĐHV Toán Cao cấp
  • 1609 Bài viết

Câu 1: cho x,y,z khác 1 sao cho xyz=1. Chứng minh :$\frac{x^2}{(x+1)^2}+\frac{y^2}{(y+1)^2}+\frac{z^2}{(z+1)^2}\geq 1$

Câu 2:  cho a,b,c>0. Chứng minh $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}<\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{b^2+a^2}$

Câu 3: Cho $a,b,c \epsilon \left [ 0;1 \right ]$ Chứng minh :

$\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{b+a+1}+(1-a)(1-b)(1-c)\leq 1$

3. Không mất tính tổng quát, giả sử $0\leq a\leq b\leq c\leq 1$

Ta có:

$\frac{a}{c+ b+ 1}+ \frac{b}{a+ c+ 1}+ \frac{c}{a+ b+ 1}+ \left ( 1- a \right )\left ( 1- b \right )\left ( 1- c \right )\leq \frac{a}{a+ b+ 1}+ \frac{b}{a+ b+ 1}+ \frac{c}{a+ b+ 1}+ \left ( 1- a \right )\left ( 1- b \right )\left ( 1- c \right )= \frac{a+ b+ c}{a+ b+ 1}+ \frac{\left ( a+ b+ 1 \right )\left ( 1- a \right )\left ( 1- b \right )\left ( 1- c \right )}{a+ b+ 1}\leq \frac{a + b+ c}{a+ b+ 1}+ \frac{1- c}{a+ b+ 1}= 1$


Bài viết đã được chỉnh sửa nội dung bởi DOTOANNANG: 04-02-2018 - 11:50


#4
nmtuan2001

nmtuan2001

    Sĩ quan

  • Thành viên
  • 357 Bài viết

Câu 2:  cho a,b,c>0. Chứng minh $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}<\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{b^2+a^2}$

BĐT tương đương với $\sum (\frac{a^2}{b^2+c^2}-\frac{a}{b+c})>0$.

$$\sum \frac{a^2(b+c)-a(b^2+c^2)}{(b+c)(b^2+c^2)}=\sum \frac{a[b(a-b)+c(a-c)]}{(b+c)(b^2+c^2)}$$

$$=\sum (a-b) \left( \frac{ab}{(b+c)(b^2+c^2)}-\frac{ab}{(c+a)(c^2+a^2)} \right)=\sum ab(a-b)\frac{(c+a)(c^2+a^2)-(b+c)(b^2+c^2)}{(b+c)(c+a)(b^2+c^2)(c^2+a^2)}$$

$$=\sum ab(a-b)\frac{(a-b)(a^2+b^2+c^2+ab+bc+ca)}{(b+c)(c+a)(b^2+c^2)(c^2+a^2)}=\sum (a-b)^2.\frac{ab(a^2+b^2+c^2+ab+bc+ca)}{(b+c)(c+a)(b^2+c^2)(c^2+a^2)}$$

Vì $a,b,c$ nên BĐT hiển nhiên đúng.



#5
Korosensei

Korosensei

    Hạ sĩ

  • Thành viên
  • 97 Bài viết

BĐT tương đương với $\sum (\frac{a^2}{b^2+c^2}-\frac{a}{b+c})>0$.

$$\sum \frac{a^2(b+c)-a(b^2+c^2)}{(b+c)(b^2+c^2)}=\sum \frac{a[b(a-b)+c(a-c)]}{(b+c)(b^2+c^2)}$$

$$=\sum (a-b) \left( \frac{ab}{(b+c)(b^2+c^2)}-\frac{ab}{(c+a)(c^2+a^2)} \right)=\sum ab(a-b)\frac{(c+a)(c^2+a^2)-(b+c)(b^2+c^2)}{(b+c)(c+a)(b^2+c^2)(c^2+a^2)}$$

$$=\sum ab(a-b)\frac{(a-b)(a^2+b^2+c^2+ab+bc+ca)}{(b+c)(c+a)(b^2+c^2)(c^2+a^2)}=\sum (a-b)^2.\frac{ab(a^2+b^2+c^2+ab+bc+ca)}{(b+c)(c+a)(b^2+c^2)(c^2+a^2)}$$

Vì $a,b,c$ nên BĐT hiển nhiên đúng.

cho hỏi, làm sao bạn nghĩ đc ra cách này vậy ?



#6
nmtuan2001

nmtuan2001

    Sĩ quan

  • Thành viên
  • 357 Bài viết

cho hỏi, làm sao bạn nghĩ đc ra cách này vậy ?

mò một tí thôi :)

ko có bí quyết gì.

Mà bài 1 đề bài đúng là thế nào vậy.



#7
minhducndc

minhducndc

    Trung sĩ

  • Thành viên
  • 158 Bài viết

Theo mình đoán thì đề bài 1 là

$\sum \frac{x^{2}}{(x-1)^{2}}\geq 1$

https://diendantoanh...frac1a2a1geq-1/ Bài 7 nhé!


Đặng Minh Đức CTBer






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: bất đẳng thức và cực trị

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh