Bài 3:
Ta có
$xy+5y-\sqrt{4y-1}=\frac{7x}{2}-\sqrt{x+1}\Rightarrow 2xy+10y-7x=2(\sqrt{4y-1}-\sqrt{x+1})$
Do $x,y$ là các số nguyên nên $\frac{2xy+10y-7x}{2}$ là số hữu tỉ, do đó $\sqrt{4y-1}-\sqrt{x+1}$ là số hữu tỉ.
Khi đó, ta xét các TH:
TH1: Nếu $\sqrt{4y-1}\neq \sqrt{x+1}$.
Ta chứng minh bổ đề 1: Nếu $\sqrt{a}$ là số hữu tỉ (với a nguyên) thì a là số chính phương.
Thật vậy, ta đặt $\sqrt{a}=\frac{p}{q}(p,q\in N,(p,q)=1)\Rightarrow a=\frac{p^2}{q^2}$ là số nguyên. Do đó $p^2\vdots q^2$, mà $(p,q)=1$ nên $q=1$, ta được a là số chính phương.
Ta chứng minh bổ đề 2: Nếu $\sqrt{c}-\sqrt{d}$ là số hữu tỉ (với c,d nguyên) thì c,d là các số chính phương.
Thật vậy, ta có $\sqrt{c}-\sqrt{d}=\frac{c-d}{\sqrt{c}+\sqrt{d}}$ là số hữu tỉ, do đó $\sqrt{c}+\sqrt{d}$ là số hữu tỉ
Khi đó $\sqrt{c}=\frac{\sqrt{c}-\sqrt{d}+\sqrt{c}+\sqrt{d}}{2}$ là số hữu tỉ, chứng minh tương tự bổ đề 1, ta được c là số chính phương, d cũng là số chính phương.
Đến đây, ta được $4y-1,x+1$ là các số chính phương. Vì $4y-1\equiv 3(mod4)$ nên TH này loại.
TH2: Nếu $\sqrt{4y-1}=\sqrt{x+1}$, khi đó ta được $2xy+10y-7x=0\Rightarrow 2y(x+5)-7(x+5)=-35\Rightarrow (2y-7)(x+5)=-35$
Đến đây, ta tìm được $(x,y)=(2,1)$ 