Cảm ơn bạn đã trả lời giúp mình. Hằng số C bằng:
$$C = \int_{0^{+}}^{+\infty}\ln x.e^{-x}dx \simeq -0.577$$
Và có vẻ nó chính là số đối của hằng số Euler. Mình thực sự mới biết đến hằng số này cảm ơn bạn.
Thực ra, tuy không phải là một sinh viên nghành toán nhưng hồi năm nhất đại học mình có nghiên cứu một chút về chuỗi số và tìm được rất nhiều thứ tuyệt vời. Công thức trên thực sự được suy ra từ một công thức tổng quan hơn do mình tìm ra:
$$\left ( \prod_{n=a}^{x}f(n)\right )'= \left ( \prod_{n=a}^{x}f(n)\right ).\left ( C+\sum_{n=b}^{x} \frac{f'(n)}{f(n)}\right ); \left \{a,b\right \}\in \mathbb{R}$$
Với $f(n)=n$; $C$ là hằng số. Thế vào ta sẽ có đẳng thức về đạo hàm giai thừa như trên.
Ngoài phương trình này mình còn phát hiện thêm nhiều thứ thú vị hơn nữa nhưng cũng chưa biết nói với ai nên cũng bức bối lắm
, nếu bạn muốn biết thêm thì kết bạn với mình nhé. Bên cạnh đó mình cũng rất muốn biết cách chứng minh của bạn. Cảm ơn.
Bài viết đã được chỉnh sửa nội dung bởi Roses Cremple: 24-01-2022 - 20:42