Đến nội dung


Chú ý

Hệ thống gửi email của diễn đàn đang gặp vấn đề với một số tài khoản Gmail do chính sách bảo mật tăng cường của Google. Nếu bạn không nhận được email từ diễn đàn, xin hãy tạm thời dùng một địa chỉ email khác ngoài Gmail (trước hết bạn nên kiểm tra thùng rác hoặc thư mục spam của hộp thư, hoặc dùng chức năng tìm kiếm trong hộp thư với từ khoá "diendantoanhoc.org" để chắc chắn là email không nhận được).

BQT đang cố gắng khắc phục, mong các bạn thông cảm.


Hình ảnh

Cấu xạ đi từ một tập đơn hình chiều $\leq k$

simplicial set

  • Please log in to reply
Chưa có bài trả lời

#1 Nxb

Nxb

    Thiếu úy

  • ĐHV Toán học Hiện đại
  • 636 Bài viết
  • Giới tính:Nam

Đã gửi 15-04-2021 - 05:26

Với mỗi tập đơn hình $S_{•}$ chiều $\leq 1,$ ta có đồ thị $Gr(S_{•})$ với các đỉnh là tập $S_0,$ các cạnh là các 1-đơn hình không suy biến. Các ánh xạ từ $S_{•}$ sang $\infty$-phạm trù $\mathcal{C}$ (có lẽ chỉ cần là một vật đơn hình ở đây) song ánh với $Hom(Gr(S_{•}),G(\mathcal{C}))$, với $G(\mathcal{C})$ là một đồ thị có các đỉnh là các vật của $\mathcal{C}$ và các cạnh là các cấu xạ trong $\mathcal{C}.$ Vì vậy mình có thắc mắc sau:

1. Nếu $S_{•}$ có chiều $\leq k,$ các $j$-đơn hình không suy biến với $j\leq k$ có tạo thành cấu trúc nào có nghĩa không? (ví dụ như đồ thị trong trường hợp $k=1$ ở trên.)

2. Nếu có cấu trúc rõ ràng, các ánh xạ từ $S_{•}$ sang $\infty$-phạm trù $\mathcal{C}$ được mô tả thông qua cấu trúc đó như thế nào?

Bài viết đã được chỉnh sửa nội dung bởi Nxb: 15-04-2021 - 05:32





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh