Đến nội dung


Hình ảnh

Đề thi thử chuyên KHTN vòng 2 đợt 2 2021


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 tthnew

tthnew

    Binh nhất

  • Điều hành viên THCS
  • 32 Bài viết
  • Giới tính:Nam

Đã gửi 25-04-2021 - 20:15

Mời các bạn cùng thảo luận đề thi thử chuyên KHTN vòng 2, đợt 2.

177993457_166095508741544_49489989486477

Nhìn chung đề khá nhẹ nhàng. Có thể dễ dàng lấy 7-8 điểm.



#2 tthnew

tthnew

    Binh nhất

  • Điều hành viên THCS
  • 32 Bài viết
  • Giới tính:Nam

Đã gửi 25-04-2021 - 20:27

Lời giải câu III, IV. (Sorry các bạn, mình lười gõ $\LaTeX$ quá).

 

File gửi kèm

  • File gửi kèm  khtnv2.pdf   388.01K   69 Số lần tải


#3 DaiphongLT

DaiphongLT

    Hạ sĩ

  • Thành viên
  • 82 Bài viết
  • Giới tính:Nam
  • Đến từ:Lớp lang tận cùng p2
  • Sở thích:Geometry,number theory

Đã gửi 25-04-2021 - 21:01

I-1
$\Leftrightarrow \left\{\begin{matrix} (x+y)^2(x+2y)=12 & \\ (x+y)(5x+7y)-6(x+y)=12& \end{matrix}\right.$
$\Rightarrow (x+y)^2(x+2y)=(x+y)(5x+7y)-6(x+y)$
x=-y thay vào pt đầu, $x\neq -y\Rightarrow x^2+2y^2+3xy-5x-7y+6=0$
$\Leftrightarrow (x+y-2)(x+2y-3)=0$
I-2
$\Leftrightarrow \sqrt[3]{x+7}+x+7=8x^3+2x$ có dạng $a^3+a=b^3+b$ với a=$\sqrt[3]{x+7}$, b=2x



#4 KietLW9

KietLW9

    Thượng úy

  • Điều hành viên THCS
  • 1180 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Nguyễn Trãi ★ CHUYÊN TOÁN BẤT ĐẲNG THỨC, HÌNH HỌC★
  • Sở thích:Bóng đá, Học toán(Bất đẳng thức, Hình học), Bayern Munich, Lewandowski, Aphonso Davies, Gnabry, Kimmich, Neuer

Đã gửi 01-05-2021 - 06:45

II-2 Câu bất 

Ta có: $(a^4+8a+7)-(2a^2+8a+6)=(a-1)^2(a+1)^2\geqslant 0\Rightarrow a^4+8a+7\geqslant 2a^2+8a+6$

Tương tự, ta được: $\frac{a}{a^4+8a+7}+\frac{b}{b^4+8b+7}+\frac{c}{c^4+8c+7}\leqslant \frac{a}{2(a^2+4a+3)}+\frac{b}{2(b^2+4b+3)}+\frac{c}{2(c^2+4c+3)}\leqslant \frac{1}{8}(\frac{a}{a^2+3}+\frac{1}{4})+\frac{1}{8}(\frac{b}{b^2+3}+\frac{1}{4})+\frac{1}{8}(\frac{c}{c^2+3}+\frac{1}{4})=\frac{1}{8}(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3})+\frac{3}{32}$

Xét bất đẳng thức: $\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}\leqslant \frac{3}{4}(*)$

Thật vậy: $(*)\Leftrightarrow \frac{a(b+c)+b(c+a)+c(a+b)}{(a+b)(b+c)(c+a)}\leqslant \frac{3}{4}\Leftrightarrow (a+b)(b+c)(c+a)\geqslant 8$

Bất đẳng thức cuối đúng do $(a+b)(b+c)(c+a)\geqslant\frac{8}{9}(a+b+c)(ab+bc+ca)\geqslant \frac{8}{9}\sqrt{3(ab+bc+ca)}(ab+bc+ca)=8$

Đẳng thức xảy ra khi $a=b=c=1$


Trong cuộc sống không có gì là đẳng thức , tất cả đều là bất đẳng thức  :ukliam2:   :ukliam2: 

 

 

$\text{LOVE}(\text{KT}) S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \geqslant 0\forall S_a,S_b,S_c\geqslant 0$

 

 

 


#5 Baoriven

Baoriven

    Thượng úy

  • Điều hành viên THPT
  • 1260 Bài viết
  • Giới tính:Nữ
  • Đến từ:$\boxed{\textrm{CTG}}$ $\boxed{\textrm{HCMUS}}$
  • Sở thích:$\mathfrak{MATHS}$

Đã gửi 13-05-2021 - 15:55

Câu II: 1)

PT tương đương: $(x+y)^4=x^4+4x^3+6x^2+3x+2$.

Nhờ các hệ số $1,4,6$ và bậc $4$ của $VP$, ta thấy $x^4<(x+y)^4\leq (x+1)^4$.

Suy ra $x=y=1$ thoả mãn.


$\mathfrak{LeHoangBao - CTG - HCMUS}$





2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh