Đến nội dung

Hình ảnh

Chứng minh $\lim_{x\rightarrow +\infty }{f}'(x)=0$

- - - - -

Lời giải bangbang1412, 30-06-2021 - 23:05

Cho hàm $f:(0,+\infty ]\rightarrow \mathbb{R}$ khả vi bậc hai. Giả sử hàm $x{f}''(x)$ bị chặn và $\lim_{x\rightarrow +\infty }\frac{f(x)}{x}=0$.

Chứng minh rằng: $\lim_{x\rightarrow +\infty }{f}'(x)=0$

Dùng khai triển Taylor, với mỗi $x \in (0, +\infty)$ thì

$$f(2x) - f(x) = f'(x)x + \frac{(f^{''}(\theta))^2}{2}x^2,$$

với $x < \theta <2x$ nào đó, chia hai về cho $x$ ta có

$$2\frac{f(2x)}{2x} - \frac{f(x)}{x} = f'(x) + (\theta f^{''}(\theta))^2 \frac{x}{2\theta^2}.$$

Lấy giới hạn $x \to +\infty$ thì $\theta \to +\infty$ và lưu ý $\theta f^{''}(\theta)$ bị chặn, $x/\theta <1$ nên ta có đpcm.

Lưu ý. Viết $(0,+\infty]$ về cơ bản là không chuẩn.

Đi đến bài viết »


  • Please log in to reply
Chủ đề này có 1 trả lời

#1
poset

poset

    Trung sĩ

  • ĐHV Toán Cao cấp
  • 125 Bài viết

Cho hàm $f:(0,+\infty )\rightarrow \mathbb{R}$ khả vi bậc hai. Giả sử hàm $x{f}''(x)$ bị chặn và $\lim_{x\rightarrow +\infty }\frac{f(x)}{x}=0$.

Chứng minh rằng: $\lim_{x\rightarrow +\infty }{f}'(x)=0$


Bài viết đã được chỉnh sửa nội dung bởi poset: 01-07-2021 - 07:55


#2
bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản lý Toán Cao cấp
  • 1668 Bài viết
✓  Lời giải

Cho hàm $f:(0,+\infty ]\rightarrow \mathbb{R}$ khả vi bậc hai. Giả sử hàm $x{f}''(x)$ bị chặn và $\lim_{x\rightarrow +\infty }\frac{f(x)}{x}=0$.

Chứng minh rằng: $\lim_{x\rightarrow +\infty }{f}'(x)=0$

Dùng khai triển Taylor, với mỗi $x \in (0, +\infty)$ thì

$$f(2x) - f(x) = f'(x)x + \frac{(f^{''}(\theta))^2}{2}x^2,$$

với $x < \theta <2x$ nào đó, chia hai về cho $x$ ta có

$$2\frac{f(2x)}{2x} - \frac{f(x)}{x} = f'(x) + (\theta f^{''}(\theta))^2 \frac{x}{2\theta^2}.$$

Lấy giới hạn $x \to +\infty$ thì $\theta \to +\infty$ và lưu ý $\theta f^{''}(\theta)$ bị chặn, $x/\theta <1$ nên ta có đpcm.

Lưu ý. Viết $(0,+\infty]$ về cơ bản là không chuẩn.


Bài viết đã được chỉnh sửa nội dung bởi bangbang1412: 30-06-2021 - 23:07

$$[\Psi_f(\mathbb{1}_{X_{\eta}}) ] = \sum_{\varnothing \neq J} (-1)^{\left|J \right|-1} [\mathrm{M}_{X_{\sigma},c}^{\vee}(\widetilde{D}_J^{\circ} \times_k \mathbf{G}_{m,k}^{\left|J \right|-1})] \in K_0(\mathbf{SH}_{\mathfrak{M},ct}(X_{\sigma})).$$





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh