Đến nội dung


Hình ảnh

$\frac{1}{\sqrt{x^6+y^2}}+\frac{1}{\sqrt{y^6+z^2}}+\frac{1}{\sqrt{z^6+y^2}}\leq \frac{3}{\sqrt{2}}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 huyhoang3219

huyhoang3219

    Lính mới

  • Thành viên mới
  • 1 Bài viết

Đã gửi 11-01-2022 - 21:10

Cho x,y,z > 0 sao cho $x^2y^2+y^2z^2+z^2x^2=3z^2y^2z^2$

Chứng minh rằng $\frac{1}{\sqrt{x^6+y^2}}+\frac{1}{\sqrt{y^6+z^2}}+\frac{1}{\sqrt{z^6+y^2}}\leq \frac{3}{\sqrt{2}}$

 



#2 KietLW9

KietLW9

    Thượng úy

  • Điều hành viên THCS
  • 1464 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Nam

Đã gửi 12-01-2022 - 09:30

Đặt $(\frac{1}{x^2},\frac{1}{y^2},\frac{1}{z^2})\rightarrow (a,b,c)$ thì $a+b+c=3$

và $\frac{1}{\sqrt{x^6+y^2}}=\frac{1}{\sqrt{\frac{1}{a^3}+\frac{1}{b}}}=\frac{\sqrt{a^3b}}{\sqrt{a^3+b}}\leqslant \frac{\sqrt[4]{a^6b^2}}{\sqrt{2\sqrt{a^3b}}}=\frac{\sqrt[4]{a^3b}}{\sqrt{2}}\leqslant \frac{3a+b}{4\sqrt{2}}$

Tương tự rồi cộng lại, ta có điều phải chứng minh


Trong cuộc sống không có gì là đẳng thức , tất cả đều là bất đẳng thức  :ukliam2:   :ukliam2: 

 

 

$\text{LOVE}(\text{KT}) S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \geqslant 0\forall S_a,S_b,S_c\geqslant 0$

 

 

 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh