Đến nội dung


Chú ý

Hệ thống gửi email của diễn đàn đang gặp vấn đề với một số tài khoản Gmail do chính sách bảo mật tăng cường của Google. Nếu bạn không nhận được email từ diễn đàn, xin hãy tạm thời dùng một địa chỉ email khác ngoài Gmail (trước hết bạn nên kiểm tra thùng rác hoặc thư mục spam của hộp thư, hoặc dùng chức năng tìm kiếm trong hộp thư với từ khoá "diendantoanhoc.org" để chắc chắn là email không nhận được).

BQT đang cố gắng khắc phục, mong các bạn thông cảm.


Hình ảnh

Tìm giới hạn của $u_{n}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Math04

Math04

    Hạ sĩ

  • Thành viên
  • 86 Bài viết

Đã gửi 31-07-2022 - 17:06

Cho $(u_{n})$ thỏa $u_{1},u_{2} \in (0;1)$ và 
$u_{n+2}=\frac{1}{n}u_{n+1}^2+\frac{n-1}{n}\sqrt{u_{n}}$.
Tìm giới hạn của $u_{n}$.


#2 nhungvienkimcuong

nhungvienkimcuong

    Thiếu úy

  • Thành viên
  • 575 Bài viết
  • Giới tính:Nam
  • Đến từ:Daklak
  • Sở thích:đã từng có

Đã gửi 01-08-2022 - 16:16

Cho $(u_{n})$ thỏa $u_{1},u_{2} \in (0;1)$ và 

$u_{n+2}=\frac{1}{n}u_{n+1}^2+\frac{n-1}{n}\sqrt{u_{n}}$.
Tìm giới hạn của $u_{n}$.

Bổ đề. Cho hai số dương $\alpha,\beta$ có tổng bé hơn $1$. Nếu dãy số $(x_n)$ dương thỏa mãn 

$$x_{n+2}\le \alpha x_{n+1}+\beta x_{n},\quad \forall n\ge n_0$$

thì dãy $(x_n)$ hội tụ và $\lim x_n=0$.

 

Quay lại bài toán.

Dễ dàng chứng minh được $0<u_n<1$ với mọi $n$. Sử dụng bất đẳng thức Cô-si ta có 

$$u_{n+2}=\frac{1}{n}u_{n+1}^2+\frac{n-1}{n}\sqrt{u_n}\ge \sqrt[n]{u_{n+1}^2u_n^{\frac{n-1}{2}}}.$$

Đặt $v_n=-\ln(u_n)>0$ thì bất đẳng thức trên tương đương $v_{n+2}\le \frac{2}{n}v_{n+1}+\frac{n-1}{2n}v_n$. Suy ra

$$v_{n+2}<\frac{2}{5}v_{n+1}+\frac{1}{2}v_n,\quad \forall n\ge 5.$$

Áp dụng bổ đề trên ta có $\lim v_n=0$, dẫn tới $\lim u_n=1$.

 

P/s: Một ví dụ và tài liệu tham khảo liên quan tới bổ đề trên có thể xem ở đây


Đừng khóc vì chuyện đã kết thúc hãy cười vì chuyện đã xảy ra  ~O) 

Thật kì lạ anh không thể nhớ đến tên mình mà chỉ nhớ đến tên em  :wub: 

Chúa tạo ra vũ trụ của con người còn em tạo ra vũ trụ của anh  :ukliam2: 


#3 Math04

Math04

    Hạ sĩ

  • Thành viên
  • 86 Bài viết

Đã gửi 01-08-2022 - 20:55

Bổ đề. Cho hai số dương $\alpha,\beta$ có tổng bé hơn $1$. Nếu dãy số $(x_n)$ dương thỏa mãn 

$$x_{n+2}\le \alpha x_{n+1}+\beta x_{n},\quad \forall n\ge n_0$$

thì dãy $(x_n)$ hội tụ và $\lim x_n=0$.

 

Quay lại bài toán.

Dễ dàng chứng minh được $0<u_n<1$ với mọi $n$. Sử dụng bất đẳng thức Cô-si ta có 

$$u_{n+2}=\frac{1}{n}u_{n+1}^2+\frac{n-1}{n}\sqrt{u_n}\ge \sqrt[n]{u_{n+1}^2u_n^{\frac{n-1}{2}}}.$$

Đặt $v_n=-\ln(u_n)>0$ thì bất đẳng thức trên tương đương $v_{n+2}\le \frac{2}{n}v_{n+1}+\frac{n-1}{2n}v_n$. Suy ra

$$v_{n+2}<\frac{2}{5}v_{n+1}+\frac{1}{2}v_n,\quad \forall n\ge 5.$$

Áp dụng bổ đề trên ta có $\lim v_n=0$, dẫn tới $\lim u_n=1$.

 

P/s: Một ví dụ và tài liệu tham khảo liên quan tới bổ đề trên có thể xem ở đây

Bạn có thể nói rõ chỗ lấy $ln$ làm sao ra được như vậy được không bạn thì mình chưa học tới $ln$ á bạn. Mình chỉ biết sơ về định nghĩa chứ chưa hiểu sâu cụ thể làm sao lấy $ln$ thì ra được vậy mong bạn giúp mình với



#4 nhungvienkimcuong

nhungvienkimcuong

    Thiếu úy

  • Thành viên
  • 575 Bài viết
  • Giới tính:Nam
  • Đến từ:Daklak
  • Sở thích:đã từng có

Đã gửi 02-08-2022 - 10:41

Bạn có thể nói rõ chỗ lấy $ln$ làm sao ra được như vậy được không bạn thì mình chưa học tới $ln$ á bạn. Mình chỉ biết sơ về định nghĩa chứ chưa hiểu sâu cụ thể làm sao lấy $ln$ thì ra được vậy mong bạn giúp mình với

Hàm $\ln$ (lôgarit tự nhiên) có các tính chất sau: Với $a,b>0$ và $t\in \mathbb{R}$ bất kì thì

  1. $\ln(a)\ge \ln(b)\iff a\ge b$,
  2. $\ln(ab)=\ln(a)+\ln(b)$,
  3. $\ln(a^t)=t\ln(a)$.

Quay lại bài toán thì ta có $u_{n+2}\ge \sqrt[n]{u_{n+1}^2u_n^{\frac{n-1}{2}}}=u_{n+1}^{\frac{2}{n}}u_n^{\frac{n-1}{2n}}$, tương đương

\[\begin{align*}\ln(u_{n+2})&\overset{(1)}{\ge} \ln\left(u_{n+1}^{\frac{2}{n}}u_n^{\frac{n-1}{2n}}\right)\\ &\overset{(2)}{=}\ln\left(u_{n+1}^{\frac{2}{n}} \right )+\ln\left(u_n^{\frac{n-1}{2n}} \right )\\ &\overset{(3)}{=}\frac{2}{n}\ln(u_{n+1})+\frac{n-1}{2n}\ln(u_n). \end{align*}\]


Đừng khóc vì chuyện đã kết thúc hãy cười vì chuyện đã xảy ra  ~O) 

Thật kì lạ anh không thể nhớ đến tên mình mà chỉ nhớ đến tên em  :wub: 

Chúa tạo ra vũ trụ của con người còn em tạo ra vũ trụ của anh  :ukliam2: 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh