Trong topic này mình muốn giới thiệu về K-lý thuyết Milnor (Milnor's K-theory) và kết nối nó với một số lý thuyết đối đồng điều như đối đồng điều Galois, nhóm Bloch-Chow, đối đồng điều motivic. Về mặt lịch sử, ban đầu K-lý thuyết đại số (algebraic K-theory) chỉ định nghĩa được cho $K_0,K_1,K_2$ (Grothendieck định nghĩa $K_0$) và các tính toán trên các nhóm này đã rất phức tạp rồi, về sau K-lý thuyết đại số chỉ được định nghĩa và nghiên cứu một cách có hệ thống từ sau Quillen khi ông đưa lý thuyết đồng luân vào các context khác của toán học. Trước đó một định lý của Matsumoto cho ta mô tả $K_2$ cụ thể dưới dạng phần tử sinh và quan hệ, Milnor dựa trên định nghĩa này đưa ra một định nghĩa ad-hoc cho một K-lý thuyết khác, gọi là K-lý thuyết Milnor, nó chứa một phần thông tin của K-lý thuyết đại số (theo nghĩa Quillen + cổ điển) theo nghĩa sau khi tensor với $\mathbb{Q}$ nó được nhúng vào $K$-lý thuyết đại số.
Để thuận tiện cho người đọc, mình sẽ định nghĩa lại một số nhóm cổ điển $K_0,K_1,K_2$ và một số tính chất cơ bản (không chứng minh).
Nhóm K_0
Cố định một vành $R$ (giao hoán có đơn vị). Nhắc lại rằng một module xạ ảnh là một hạng tử trực tiếp của một module tự do nào đó.
Định nghĩa. Nhóm $K_0(R)$ được định nghĩa bởi công thức sau
$$K_0(R) = \bigoplus \mathbb{Z}[P]/\sim,$$
trong đó tổng trực tiếp lấy trên lớp đẳng cấu các $R$-module xạ ảnh hữu hạn sinh, quan hệ $\sim$ được cho bởi $[P] + [Q] = [P \oplus Q]$. Ta cũng có thể trang bị cho $K_0(R)$ một cấu trúc vành bởi tích tensor $[P][Q] = [P \otimes Q]$, điều này có được do tích tensor của hai module xạ ảnh hữu hạn sinh cũng là một module xạ ảnh hữu hạn sinh. Như vậy thực chất $K_0(R)$ là một vành.
Lưu ý rằng xây dựng $K_0$ có tính hàm tử, tức là nếu $f: R \longrightarrow R'$ là một đồng cấu vành thì ta có một đồng cấu vành tự nhiên $f_*:K_0(R) \longrightarrow K_0(R')$ cho bởi phép đổi cơ sở $[P] \longmapsto [R' \otimes_R P]$. Như vậy nói chung mọi vành $R$ ta có một đồng cấu $K_0(\mathbb{Z}) \longrightarrow K_0(R)$ do $\mathbb{Z}$ là vật đầu trong phạm trù vành giao hoán.
Ví dụ.
- Khi $R=k$ là một trường thì mọi module hữu hạn sinh là một không gian vector hữu hạn chiều, xác định chính xác tới một đẳng cấu bằng số chiều. Như vậy ánh xạ $K_0(k) \longrightarrow \mathbb{R}, V \longmapsto \dim_k(V)$ là một đẳng cấu.
- Khi $R$ là một vành địa phương thì định lý của Kaplansky nói rằng mọi module xạ ảnh hữu hạn sinh trên $R$ là tự do, chứng minh $K_0(R) \simeq \mathbb{Z}$.
Giờ giả sử $R$ được nhúng vào một trường $k$ (luôn làm được ví dụ khi $R$ nguyên, $k=\mathrm{Frac}(R)$ trường các thương của $R$) thì ta có một phân tích
$$K_0(R) \simeq \mathbb{Z} \oplus \mathrm{Ker}(K_0(R) \longrightarrow \mathbb{Z})$$
do $K_0(R) \longrightarrow K_0(k)$ có một chẻ chính là đồng cấu $K_0(\mathbb{Z}) \longrightarrow K_0(R)$. Hạng tử $\mathrm{Ker}(K_0(R) \longrightarrow \mathbb{Z})$ được kí hiệu bởi $\widetilde{K_0}(R)$ và gọi là nhóm $K_0$ rút gọn của $R$.
Một lớp vành khác mà ta có thể tính nhóm $K_0$ là các miền Dedekind (miền Noether, đóng nguyên, chiều Krull một).
Mệnh đề. Cho $R$ là một miền Dedekind, khi đó $K_0(R) \simeq \mathbb{Z} \oplus \widetilde{K_0}(R)$ trong đó $\widetilde{K_0}(R)$ đẳng cấu với nhóm lớp ideal của $R$. Hơn nữa, tích hai phần tử bất kì trong nhóm rút gọn bằng không.
Nhóm Whitehead $K_1$
Cố định vành giao hoán có đơn vị $R$. Kí hiệu $GL(n,R)$ bởi nhóm tuyến tính tổng quát cỡ $n$ trên $R$. Nhóm $GL(n,R)$ được nhúng vào nhóm $GL(n+1,R)$ bởi
$$A \longmapsto \begin{pmatrix}
A & 0 \\
0 &1
\end{pmatrix}$$
Định nghĩa nhóm tuyến tính tổng quát $GL(R)$ là giới hạn (hay hợp thành) trực tiếp của dãy $(GL(n,R))_{n \geq 0}$. Nhóm $GL(R)$ có một tính chất rất đặc biệt, đó là nhóm con $E(R)$ sinh bởi các ma trận cơ bản (elementary matrices) chính là nhóm giao hoán tử của $GL(R)$, do đó là một nhóm con chuẩn tắc.
Định nghĩa. Nhóm Whitehead $K_1(R)$ được định nghĩa là abel hoá $GL(R)^{ab} = GL(R)/E(R)$ của nhóm tuyến tính vô hạn.
Lưu ý rằng nhóm tuyến tính và phép abel hoá đều có tính hàm tử nên $K_1(-)$ có tính hàm tử.
Nhóm Steinberg và hàm tử $K_2$
Cố định một vành giao hoán có đơn vị $R$. Kí hiệu $GL(n,R)$ bởi nhóm tuyến tính tổng quát cỡ $n$ trên $R$. Với $1 \leq i,j \leq n, \lambda \in R$ ta có các ma trận sơ cấp $E^{\lambda}_{i,j}=\mathbb{1}+A^{\lambda}_{i,j}$ trong đó $A^{\lambda}_{i,j}$ có tất cả vị trí bằng $0$ ngoại trừ vị trí $(i,j)$ là $\lambda$. Có thể dễ chứng minh các đẳng thức dưới đây
$$E^{\lambda}_{i,j}E^{\mu}_{i,j} = E^{\lambda+\mu}_{i,j}, \ \ [E_{i,j}^{\lambda},E^{\mu}_{k,l}] = \begin{cases} 1 & j \neq k, i \neq l, \\ E^{\lambda \mu}_{i,l} & j = k, i\neq l, \\ E^{-\mu\lambda}_{k,j} & j\neq k, i = l. \end{cases}$$
Trong đó $[a,b]=aba^{-1}b^{-1}$ là giao hoán tử.
Định nghĩa. Với $n \geq 3$, nhóm Steinberg $St(n,R)$ được định nghĩa là nhóm tự do trên các kí hiệu $X^{\lambda}_{i,j}$ với $\lambda \in R, 1 \leq i,j \leq n$ chia thương cho quan hệ
$$X^{\lambda}_{i,j}X^{\mu}_{i,j} = X^{\lambda+\mu}_{i,j}, \ \ [X_{i,j}^{\lambda},X^{\mu}_{k,l}] = \begin{cases} 1 & j \neq k, i \neq l, \\ X^{\lambda \mu}_{i,l} & j = k, i\neq l, \\ X^{-\mu\lambda}_{k,j} & j\neq k, i = l. \end{cases}$$
Nhắc lại từ phép nhúng $GL(n,R) \longrightarrow GL(n+1,R)$ ta có phép nhúng tương ứng $St(n,R) \longrightarrow St(n+1,R)$ và do đó lấy giới hạn cho ta nhóm Steinberg vô hạn và một đồng cấu $St(R) \longrightarrow GL(R)$ thoả mãn ảnh của đồng cấu này chính là nhóm $E(R)$ các giao hoán tử của $GL(R)$.
Định nghĩa. Nhóm $K_2(R)$ được định nghĩa là $\mathrm{Ker}(St(R) \longrightarrow GL(R))$. Như vậy dễ thấy $K_2(-)$ có tính hàm tử.
Một định lý không tầm thường nói rằng là hạt nhân của $St(R)$. Như vậy $K_2(R)$ là nhóm abel và ta có một dãy khớp
$$1 \longrightarrow K_2(R) \longrightarrow St(R) \longrightarrow GL(R) \longrightarrow K_1(R) \longrightarrow 1.$$
(còn tiếp)