Đến nội dung


Chú ý

Hệ thống gửi email của diễn đàn đang gặp vấn đề với một số tài khoản Gmail do chính sách bảo mật tăng cường của Google. Nếu bạn không nhận được email từ diễn đàn, xin hãy tạm thời dùng một địa chỉ email khác ngoài Gmail (trước hết bạn nên kiểm tra thùng rác hoặc thư mục spam của hộp thư, hoặc dùng chức năng tìm kiếm trong hộp thư với từ khoá "diendantoanhoc.org" để chắc chắn là email không nhận được).

BQT đang cố gắng khắc phục, mong các bạn thông cảm.


Hình ảnh
- - - - -

$0$ là điểm giới hạn của $S$ $\iff$ $S$ trù mật trong $\mathbb{R}$

trù mật

  • Please log in to reply
Chưa có bài trả lời

#1 Nesbit

Nesbit

    ...let it be...

  • Quản trị
  • 2251 Bài viết
  • Giới tính:Nam

Đã gửi 23-09-2022 - 20:06

Mệnh đề. Cho $S\subset\mathbb{R}$ thoả mãn: nếu $x\in S$ thì $nx\in S$ với mọi $n\in\mathbb{Z}$. Khi đó:

$$0 \text{ là điểm giới hạn của } S \iff S \text{ trù mật trong }\mathbb{R}.$$ 

 

Bài này mình đã đăng trong một thảo luận ở box Olympic (thảo luận ở đó cũng khá hay). Vừa mới nhớ ra nên đăng lại vào đây, phù hợp hơn.

 

Hệ quả 1. $\mathbb{Q}$ trù mật trong $\mathbb{R}$.

 

Hệ quả 2. Với mọi $r$ vô tỉ, $\{m+nr: m,n\in\mathbb{Z}\}$ trù mật trong $\mathbb{R}$.

 

Kết quả ở trên khá đẹp nhưng thực ra không quá mạnh (chẳng hạn, nó không suy ra được $\{2^m 3^n: m,n\in\mathbb{Z}\}$ trù mật trong $\mathbb{R}$). Nếu anh em có hứng thú thì trong topic này chúng ta sẽ cố gắng tìm được tập $S$ tổng quát nhất có thể thoả mãn tính chất ở trên.


Không đọc tin nhắn nhờ giải toán.

 

Góp ý về cách điều hành của mod

 

 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh