Cho dãy các số thực dương $(a_{n})$ thỏa hai tính chất: $\left\{\begin{matrix} a_{n+1}\leq a_{n}+a_{n}^2, \forall n \geq1 & & \\ a_{1}+a_{2}+...+a_{n} < M,\forall n \geq1 & & \end{matrix}\right.$ ($M$ là hằng số dương). Tìm lim$(na_{n})$.

Tìm lim$(na_{n})$
Bắt đầu bởi Math04, 23-11-2022 - 22:30
#2
Đã gửi 29-11-2022 - 14:53

Cho dãy các số thực dương $(a_{n})$ thỏa hai tính chất: $\left\{\begin{matrix} a_{n+1}\leq a_{n}+a_{n}^2, \forall n \geq1 & & \\ a_{1}+a_{2}+...+a_{n} < M,\forall n \geq1 & & \end{matrix}\right.$ ($M$ là hằng số dương). Tìm lim$(na_{n})$.
Xem ở đây
Đừng khóc vì chuyện đã kết thúc hãy cười vì chuyện đã xảy ra
Thật kì lạ anh không thể nhớ đến tên mình mà chỉ nhớ đến tên em
Chúa tạo ra vũ trụ của con người còn em tạo ra vũ trụ của anh
0 người đang xem chủ đề
0 thành viên, 0 khách, 0 thành viên ẩn danh