Đến nội dung


Chú ý

Hệ thống gửi email của diễn đàn đang gặp vấn đề với một số tài khoản Gmail do chính sách bảo mật tăng cường của Google. Nếu bạn không nhận được email từ diễn đàn, xin hãy tạm thời dùng một địa chỉ email khác ngoài Gmail (trước hết bạn nên kiểm tra thùng rác hoặc thư mục spam của hộp thư, hoặc dùng chức năng tìm kiếm trong hộp thư với từ khoá "diendantoanhoc.org" để chắc chắn là email không nhận được).

BQT đang cố gắng khắc phục, mong các bạn thông cảm.


Hình ảnh

Với $p$ là các số nguyên tố khác 3 và $a,b$ là các số nguyên dương thỏa mãn $a+b$ chia hết cho $p$ và $a^3+b^3$ chia hết cho $p^2$


  • Please log in to reply
Chưa có bài trả lời

#1 Matthew James

Matthew James

    Hạ sĩ

  • Thành viên
  • 65 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:N

Đã gửi 24-11-2022 - 19:25

Với $p$ là các số nguyên tố khác 3 và $a,b$ là các số nguyên dương thỏa mãn $a+b$ chia hết cho $p$ và $a^3+b^3$ chia hết cho $p^2$, chứng minh rằng $a+b$ chia hết cho $p^2$ hoặc $a^3+b^3$ chia hết cho $p^3$


Mathematics reveals its secrets only to those who approach it with pure love, for its own beauty. :D 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh