Đến nội dung

Hình ảnh

Với $a,b,c>0$ thỏa mãn $ab+bc+ca=1$, cmr: $\frac{a}{1+a^2}+\frac{b}{1+b^2}\leq \frac{1}{\sqrt{1+c^2}}$

- - - - - bất đẳng thức

  • Please log in to reply
Chủ đề này có 1 trả lời

#1
Matthew James

Matthew James

    Hạ sĩ

  • Thành viên
  • 85 Bài viết

Với $a,b,c>0$ thỏa mãn $ab+bc+ca=1$, chứng minh rằng: 

$\frac{a}{1+a^2}+\frac{b}{1+b^2}\leq \frac{1}{\sqrt{1+c^2}}$


Bài viết đã được chỉnh sửa nội dung bởi Matthew James: 29-12-2022 - 19:54

Mathematics reveals its secrets only to those who approach it with pure love, for its own beauty. :D 


#2
Sangnguyen3

Sangnguyen3

    Trung sĩ

  • Thành viên
  • 146 Bài viết

$\Leftrightarrow \frac{a+ab^2 + b+ a^2b}{(a+b)^{2}(a+c)(b+c)}\leq \frac{1}{\sqrt{(c+a)(c+b)}}$

$\Leftrightarrow \left (\frac{ab+1}{(a+b)(b+c)(c+a)} \right )^{2}\leq \frac{1}{(c+a)(c+b)}$

$\Leftrightarrow (ab+1)^{2}\leq (a+b)(a+c)(b+a)(b+c)$

$\Leftrightarrow (ab+1)^{2}\leq (a^2+1)(b^2+1)$

Điều này luôn đúng 







Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: bất đẳng thức

2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh