Chứng minh phương trình $\left \{ x^2 \right \}+\left \{ y^2 \right \}=\left \{ z^2 \right \}$ có vô số nghiệm trên tập $\mathbb{Q}\setminus \mathbb{Z}$

Chứng minh phương trình $\left \{ x^2 \right \}+\left \{ y^2 \right \}=\left \{ z^2 \right \}$ có vô số nghiệm trên tập $\math
Bắt đầu bởi Sprouts, 01-06-2023 - 09:40
#1
Đã gửi 01-06-2023 - 09:40

#2
Đã gửi 17-11-2023 - 22:12

Chứng minh phương trình $\left \{ x^2 \right \}+\left \{ y^2 \right \}=\left \{ z^2 \right \}$ có vô số nghiệm trên tập $\mathbb{Q}\setminus \mathbb{Z}$
Gọi $a,b,c$ là các số nguyên dương thỏa mãn
\[2a^2<b^2\quad\text{và}\quad 2a^2+b^2=c^2,\tag{$\ast$}\]
khi đó $2\left(\frac{a}{b}\right)^2+1=\left(\frac{c}{b}\right)^2$. Như vậy với $x=y=\frac{a}{b}$ và $z=\frac{c}{b}$ thì phương trình $\{x^2\}+\{y^2\}=\{z^2\}$ có nghiệm trên $\mathbb{Q}\setminus \mathbb{Z}$.
Phần còn lại là chứng minh có vô số nghiệm, ta sẽ thực hiện điều đó bằng cách chứng tỏ rằng có vô hạn bộ ba số $a,b,c$ đôi một nguyên tố cùng nhau thỏa mãn $(\ast)$. Để ý đẳng thức
\[2(2mn)^2+(2m^2-n^2)^2=(2m^2+n^2)^2.\]
Từ đây ta chọn $a=2mn,b=2m^2-n^2$ và $c=2m^2+n^2$ với $m,n$ là hai số nguyên dương nguyên tố cùng nhau thỏa mãn $n<\frac{m}{2}$ và $n$ lẻ.
Ghi chú. Một bài toán khá tương tự như sau: Chứng minh rằng với mọi số nguyên $n\ge 2$ thì luôn tồn tại các số $x_1,x_2,\dots,x_n,x_{n+1}\in \mathbb{Q}\setminus \mathbb{Z}$ thỏa mãn
\[\left \{ x_1^3 \right \}+\left \{ x_2^3 \right \}+\dots+\left \{ x_n^3 \right \}=\left \{ x_{n+1}^3 \right \}.\]
Bài viết đã được chỉnh sửa nội dung bởi nhungvienkimcuong: 18-11-2023 - 00:07
- perfectstrong yêu thích
Đừng khóc vì chuyện đã kết thúc hãy cười vì chuyện đã xảy ra
Thật kì lạ anh không thể nhớ đến tên mình mà chỉ nhớ đến tên em
Chúa tạo ra vũ trụ của con người còn em tạo ra vũ trụ của anh
1 người đang xem chủ đề
0 thành viên, 1 khách, 0 thành viên ẩn danh