Give a counter example to the following statement: If $f:X\to Y$ is flat, of finite type with $Y$ locally Noetherian then $f$ is smooth if and only if the fibers $X_y\to \mathrm{Spec}(k(y))$ is smooth for every $y$ ‘’closed’’ in $Y$.
Remark: the above statement is true if $X,Y$ are schemes over a field $k$.
Bài viết đã được chỉnh sửa nội dung bởi Nxb: 05-07-2023 - 13:17