Mình muốn xin một bài tập đã giải về hàm tử biểu diễn được để hình dung cách chứng minh và hiểu hơn về đẳng cấu hàm tử

vấn đề về hàm tử biểu diễn được của phạm trù
#2
Đã gửi 03-08-2023 - 00:47

Cho $k$ là một trường. Cho $\mathbf{Vect}_k$ và $\mathbf{Set}$ lần lượt là phạm trù các $k$-không gian véctơ và phạm trù các tập hợp. Cho $n$ là số nguyên dương tùy ý và xét hàm tử $F: \mathbf{Vect}_k \to \mathbf{Set}$ cho bởi:
- Với mỗi không gian véctơ $V$, $F(V)$ là tập hợp $V^n$.
- Với mỗi ánh xạ tuyến tính $f: V \to W$, $F(f): V^n \to W^m$ là ánh xạ cho bởi $(v_1,\ldots,v_n) \mapsto (f(v_1),\ldots,f(v_n))$.
Ta chỉ ra rằng $F$ là hàm tử biểu diễn được, nghĩa là tồn tại không gian véctơ $E$ cùng một đẳng cấu hàm tử $F \cong \text{Hom}_k(E,-)$. Nói cách khác, ta muốn một đẳng cấu $V^n \cong \text{Hom}_k(E,V)$, và đẳng cấu này tự nhiên theo $V$. Bằng chữ, điều này có nghĩa là: "cho một bộ $n$ phần tử của $V$ cũng chính là cho một ánh xạ tuyến tính từ $E$ vào $V$." Không khó để thấy rằng, đại biểu thích hợp cho $E$ là một không gian véctơ $n$-chiều, vì cho một ánh xạ tuyến tính từ một không gian $n$-chiều vào $V$ chính là cho một bộ $n$ phần tử của $V$.
Vậy ta lấy $E = k^n$ và xây dựng đẳng cấu hàm tử $\Phi: F \to \text{Hom}_k(k^n,-)$ như sau. Với mỗi không gian véctơ $V$, ta định nghĩa ánh xạ $\Phi(V): V^n \to \text{Hom}_k(k^n,V)$ bằng cách: với mỗi $(v_1,\ldots,v_n) \in V^n$, $\Phi(V)(v_1,\ldots,v_n): k^n \to V$ là ánh xạ tuyến tính $\alpha$ cho bởi công thức $$\alpha: k^n \to V, \qquad \alpha(a_1,\ldots,a_n) = a_1v_1 + \cdots + a_n v_n,$$ nói cách khác là $\alpha$ được xác định duy nhất bởi công thức $\alpha(e_i) = v_i$ với $i=1,\ldots,n$, trong đó $(e_1,\ldots,e_n)$ là cơ sở chính tắc của $k^n$. Dễ thấy $\Phi(V)$ là một song ánh.
Ta còn phải chỉ ra rằng $\Phi$ là một biến đổi tự nhiên từ hàm tử $F$ vào hàm tử $\text{Hom}_k(k^n,-)$. Điều này có nghĩa là với mỗi ánh xạ tuyến tính $f: V \to W$, ta có biểu đồ giao hoán sau
Thật vậy, xét $(v_1,\ldots,v_n) \in V^n$ tùy ý. Khi đó $\Phi(V)(v_1,\ldots,v_n)$ là ánh xạ tuyến tính $\alpha: k^n \to V$ cho bởi công thức $$\alpha: k^n \to V, \qquad \alpha(a_1,\ldots,a_n) = a_1v_1 + \cdots + a_n v_n.$$ Mặt khác, $\Phi(W)((f(v_1),\ldots,f(v_n))$ là ánh xạ tuyến tính $\beta: k^n \to W$ cho bởi công thức $$\beta: k^n \to W, \qquad \beta(a_1,\ldots,a_n) = a_1 f(v_1) + \cdots + a_n f(v_n).$$ Ta có $f \circ \alpha = \beta$, nên biểu đồ trên giao hoán. Vậy $\Phi$ là một đẳng cấu tự nhiên từ hàm tử $F$ vào hàm tử $\text{Hom}_k(k^n,-)$, nói cách khác là hàm tử $F$ biểu diễn được bởi vật $k^n$.
- perfectstrong, DOTOANNANG và Huyen027557 thích
"Wir müssen wissen, wir werden wissen." - David Hilbert
0 người đang xem chủ đề
0 thành viên, 0 khách, 0 thành viên ẩn danh