Đến nội dung

Hình ảnh

[Topic] Đại số trung học cơ sở

* * * * - 5 Bình chọn topic

  • Please log in to reply
Chủ đề này có 60 trả lời

#61
nhancccp

nhancccp

    Trung sĩ

  • Thành viên
  • 117 Bài viết

Ta sẽ sử dụng liên hợp (hoặc hàm đặc trưng) để giải quyết bài toán trên

58)ĐK:$y \leq -x^2,x \leq -y^2$

Ta có $(\sqrt{y^2+x}+x)(\sqrt{x^2+y}-y)=y$

$\Leftrightarrow (\sqrt{(y^2+x)(x^2+y)}-y^2-y)+(x\sqrt{x^2+y}-y\sqrt{x+y^2})+(-xy-y+y^2+y)=0$

$\Leftrightarrow \frac{(x-y)(x^2+xy^2+xy+y^3+y^2+y)}{\sqrt{(y^2+x)(x^2+y)}+y^2+y}+\frac{(x-y)(x^3+x^2y+xy^2+xy+y^3)}{x\sqrt{x^2+y}+y\sqrt{x+y^2}}-y(x-y)=0$

$\Leftrightarrow (x-y)\bigg[\frac{(x^2+xy^2+xy+y^3+y^2+y)}{\sqrt{(y^2+x)(x^2+y)}+y^2+y}+\frac{(x^3+x^2y+xy^2+xy+y^3)}{x\sqrt{x^2+y}+y\sqrt{x+y^2}}-y\bigg]=0$

Vậy $x=y$ hoặc $\frac{x^2+xy^2+xy+y^3+y^2+y}{\sqrt{(y^2+x)(x^2+y)}+y^2+y}+\frac{x^3+x^2y+xy^2+xy+y^3}{x\sqrt{x^2+y}+y\sqrt{x+y^2}}-y=0(*)$

Dễ chứng minh Vt(*)>0 nên (*) vô nghiệm với $y \leq -x^2,x \leq -y^2$

Vậy $x=y$


Chuông vẳng nơi nao nhớ lạ lùng
Ra đi ai chẳng nhớ chùa chung
Mái chùa che chở hồn dân tộc 
Nếp sống bao đời của tổ tông
Thích Mãn Giác





Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: topic

7 người đang xem chủ đề

0 thành viên, 7 khách, 0 thành viên ẩn danh