Đến nội dung

Hình ảnh

Phần trong $AD, BD, CD$ không chứa một điểm nào nguyên

- - - - -

  • Please log in to reply
Chủ đề này có 3 trả lời

#1
chuyentoan

chuyentoan

    None

  • Hiệp sỹ
  • 1650 Bài viết
Gọi $L$ là tập các điểm nguyên trên mặt phẳng. Chứng minh rằng với mọi cặp $3$ điểm $A, B, C$ thuộc $L$ thì tồn tại điểm thứ tư $D$ sao cho phần trong của các đoạn thẳng (phần đoạn thẳng trừ đi $2$ đầu mút) $AD, BD, CD$ không chứa một điểm nào thuộc $L$.
The only way to learn mathematics is to do mathematics

#2
hxthanh

hxthanh

    Tín đồ $\sum$

  • Hiệp sỹ
  • 3915 Bài viết
Bài toán đưa về việc chứng minh tồn tại $x_D, y_D$ sao cho
$\left\{\begin{align*} \text{gcd}\left(x_A-x_D; y_A-y_D\right)=1\\ \text{gcd}\left(x_B-x_D; y_B-y_D\right)=1\\ \text{gcd}\left(x_C-x_D; y_C-y_D\right)=1\end{align*}\right.$
Với $x_A,y_A;x_B,y_B;x_C,y_C$ là các số nguyên cho trước (các tọa độ nguyên của $A,B,C$)

#3
PSW

PSW

    Những bài toán trong tuần

  • Quản trị
  • 493 Bài viết
Bài toán này thuộc Gameshow NHỮNG BÀI TOÁN TRONG TUẦN. Bài toán đã được công bố lại nhiều ngày nhưng chưa ai giải được. BTC đã đặt hoa hồng hi vọng @};- cho bài toán này và chọn bài toán này làm bài toán tháng 3.

Hoa hồng hi vọng @};- sẽ mang lại 50 điểm cho người đầu tiên giải đúng được bài toán này.
1) Thể lệ
2) Danh sách các bài toán đã qua: 1-100, 101-200, 201-300, 301-400
Còn chờ gì nữa mà không tham gia! :luoi:

#4
Trungpbc

Trungpbc

    Binh nhất

  • Thành viên
  • 20 Bài viết

Gọi $L$ là tập các điểm nguyên trên mặt phẳng. Chứng minh rằng với mọi cặp $3$ điểm $A, B, C$ thuộc $L$ thì tồn tại điểm thứ tư $D$ sao cho phần trong của các đoạn thẳng (phần đoạn thẳng trừ đi $2$ đầu mút) $AD, BD, CD$ không chứa một điểm nào thuộc $L$.

Nhận xét:

Với hai điểm nguyên $X(a,b)$, $Y(c,d)$ thì đoạn thẳng $XY$ không chứa điểm nguyên nào ngoài hai đầu mút khi và chỉ khi $\gcd(a-c,b-d)=1$

Chứng minh nhận xét này đơn giản, xin không trình bày ở đây.

Trở lại giả bài toán ban đầu:

Giả sử $A(x_{1},y_{1}),B(x_{2},y_{2}),C(x_{3},y_{3})$, sử dụng nhận xét trên, ta thấy yêu cầu của bài toán tương đương với việc chứng minh tồn tại điểm nguyên $D(x,y)$ sao cho: $$\gcd(x-x_{i},y-y_{i})=1,\ \forall i=1,2,3$$ Dễ thấy, có tất cả $4$ điểm nguyên phân biệt theo modulo $2$ là $(0,0);(0,1);(1,0);(1,1)$. Do đó, có thể chọn $x,y$ theo modulo $2$ sao cho: $$(x,y)\neq (x_{i},y_{i})\pmod2,\ \forall i=1,2,3$$ Hoàn toàn tương tự, có thể chọn $x,y$ theo modulo $3$ sao cho: $(x,y)\neq (x_{i},y_{i})\pmod3,\ \forall i=1,2,3$. Theo định lí thặng dư trung hoa tồn tại số nguyên dương $x>\max\left \{ x_{1},x_{2},x_{3} \right \}$ thỏa mãn các điều kiện trên. Chú ý rằng  $T=(x-x_{1})(x-x_{2})(x-x_{3})>0$ nên $T$ có hữu hạn ước nguyên tố. Gọi $p>3$ là một ước nguyên tố bất kì của $T$.  Dễ thấy, có thể chọn $y$ modulo $p$ sao cho: $$y\neq y_{i}\pmod p,\ \forall i=1,2,3$$ Cho $p$ chạy trên tất cả các ước nguyên tố lớn hơn $3$ của $T$, sử dụng định lí thặng dư Trung Hoa, ta thấy tồn tại số nguyên dương $y$ thỏa mãn tất cả các điều kiện trên. Rõ ràng, điểm nguyên $D(x,y)$ thỏa mãn bài toán.


Bài viết đã được chỉnh sửa nội dung bởi Trungpbc: 14-06-2013 - 21:43





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh