Đến nội dung


Hình ảnh

Tính số đo góc $AEC$.


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 hoduckhanhgx

hoduckhanhgx

    Hạ sĩ

  • Thành viên
  • 77 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình quê ta ơi

Đã gửi 24-11-2010 - 16:16

Cho hình bình hành $ABCD$.Tia phân giác góc $BAD$ cắt các đuong thẳng $BC, DC$ lần lượt tại $M,N$.Gọi E là giao điểm thứ hai của các đường tròn ngoại tiếp tam giác $BCD$ và $CMN.$ Tính số đo góc $AEC$.



#2 vuducvanno1

vuducvanno1

    Binh nhất

  • Thành viên
  • 36 Bài viết
  • Giới tính:Nam
  • Đến từ:K48 Chuyên sư phạm
  • Sở thích:Inequality

Đã gửi 25-09-2014 - 18:39

Gọi O ,O' lần lượt là tâm đường tròn ngoại tiếp tam giác NCM , DCB 

Ta có :$\widehat{AND}=\widehat{NAB}$ (so le trong) $=\widehat{NAD}=\widehat{NMC}$ (so le trong)$\Rightarrow \triangle ADN$ và $\triangle NCM$ cân.

Ta có: $DN=AD=BC;ON=OC;\widehat{OND}=180^{\circ}-\widehat{ONC}=180^{\circ}-\widehat{OCN}=180^{\circ}-\widehat{OCM}=\widehat{OCB}\Rightarrow \triangle ODN=\triangle OBC$

$\Rightarrow \triangle DOB$ cân tại O $\Rightarrow O\in$ trung trực của DB.Gọi K là giao điểm của DB và AC .$\Rightarrow O;O';K $ thẳng hàng . Có EC là trục đẳng phương $\Rightarrow$ Ô' là trung trực của EC

Gọi I là tâm đường tròn ngoại tiếp tam giác AEC . Có EC là trục đẳng phương 3 đường tròn $\Rightarrow O;O';K;I$ thẳng hàng mà I \in trung trực $AC \Rightarrow I\equiv K \Rightarrow AEC$ là tam giác vuông tại $E \Rightarrow \widehat{AEC}=90^{\circ}$


Bài viết đã được chỉnh sửa nội dung bởi Ispectorgadget: 27-09-2014 - 08:37





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh