Đến nội dung


Hình ảnh
* * * * * 7 Bình chọn

Chuyên đề 1 - Bài Toán Đại số với tham số .


  • Please log in to reply
Chủ đề này có 82 trả lời

#81 Le Tuan Canhh

Le Tuan Canhh

    Trung sĩ

  • Thành viên
  • 127 Bài viết
  • Giới tính:Nam
  • Đến từ:Hải Dương
  • Sở thích:lang thang mọi nẻo đường

Đã gửi 23-09-2022 - 20:15

Xét hàm $f(x)=x^{4}-2x^{3}+x$
$\rightarrow f'(x)=4x^{3}-6x^{2}+1$
$f'(x)=0\Leftrightarrow x=\frac{1}{2};x=\frac{1+\sqrt{3}}{2};x=\frac{1-\sqrt{3}}{2}$
BBT

geogebra-export (11).png

Qua đó,suy ra

+) PT vô nghiệm khi  $m< \frac{-1}{4}$

+) PT có 2 nghiệm phân biệt khi $m=\frac{-1}{4}$ hoặc $m > \frac{5}{16}$

+) PT có 3 nghiệm phân biệt khi $m=\frac{5}{16}$

+) PT có 4 nghiệm phân biệt khi $\frac{-1}{4}< m< \frac{5}{16}$


Dư :unsure: Hấu   


#82 supermember

supermember

    Đại úy

  • Hiệp sỹ
  • 1612 Bài viết
  • Giới tính:Nam
  • Đến từ:Quận 7, TP HCM
  • Sở thích:bên em

Đã gửi 23-09-2022 - 22:30

Bài $39$ này lời giải của bạn Le Tuan Canhh ở trên là sai.

 

Đề bài là:

 

Giải và biện luận phương trình theo tham số $m$

 

Bạn đang hiểu sai đề là: biện luận số nghiệm của phương trình theo tham số $m$

 

Nên làm như trên không có điểm. :icon6:


Bài viết đã được chỉnh sửa nội dung bởi supermember: 23-09-2022 - 22:41

Khi bạn là người yêu Toán, hãy chấp nhận rằng bạn sẽ buồn nhiều hơn vui :)

#83 supermember

supermember

    Đại úy

  • Hiệp sỹ
  • 1612 Bài viết
  • Giới tính:Nam
  • Đến từ:Quận 7, TP HCM
  • Sở thích:bên em

Đã gửi Hôm qua, 10:35

Bài 35(Chọn đội tuyển Tỉnh THPT Tây Thụy Anh-Thái Bình) Tìm $m$ để phương trình sau đây có nghiệm
$$\sqrt x + \sqrt {x - 4} - \sqrt {x - 1} - \sqrt {x - 3} = m\sqrt {{x^2} + 9} $$

 

Bài này không sử dụng đạo hàm, mà nó phải dùng đến phương pháp so sánh cơ bản của hàm số đơn điệu:

 

Điều kiện: $ x \geq 4$

Ta viết lại phương trình dưới dạng tương đương:

 

$ \left( \sqrt{x} -  \sqrt{x -3} \right) - \left( \sqrt{x-1} -  \sqrt{x -4} \right) = m \sqrt{x^2+9}$

 

$ \Leftrightarrow \frac{x+3}{ \sqrt{x} +  \sqrt{x -3}} - \frac{x+3}{ \sqrt{x-1} +  \sqrt{x -4}} = m \sqrt{x^2+9}$

 

$  \Leftrightarrow  f(x) = \frac{x+3}{ \sqrt{x^2+9}} \cdot \left( \frac{1}{ \sqrt{x} +  \sqrt{x -3}} - \frac{1}{ \sqrt{x-1} +  \sqrt{x -4}}  \right)= m $

 

Rõ ràng bằng cảm quan, ta đã thấy ngay: 

 

Nhận xét 1: $ g(x) = \frac{1}{ \sqrt{x} +  \sqrt{x -3}} - \frac{1}{ \sqrt{x-1} +  \sqrt{x -4}}  <0$ với mọi $x \geq 4$ và khi $ x $ tiến dần ra $ + \infty$  thì $g(x)$ tiến dần đến $0$

 

Nhận xét 2: $ h(x) = \frac{x+3}{ \sqrt{x^2+9}} >1$  với mọi $x \geq 4$ và khi $ x $ tiến dần ra $ + \infty$  thì $h(x)$ tiến dần đến $1$

 

Nên bài toán sẽ được giải quyết nếu ta chỉ ra được: $g(x)$ đơn điệu tăng trên $ [4; + \infty )$; $h(x)$ đơn điệu giảm trên $ [4; + \infty )$  $(1)$

 

Khi đó ta thấy ngay rằng : giá trị của $m$ chính là đoạn $ [ f(4) ; 0)$ tức là  đoạn: $[ 1 - \sqrt{3} ; 0)$

 

Giờ thì làm chân phương thôi, không màu mè gì đâu:

 

Giả sử $ 4 \leq x_1 <  x_2$ , ta đi chứng minh: $  \frac{1}{ \sqrt{x_1} +  \sqrt{x_1 -3}} - \frac{1}{ \sqrt{x_1-1} +  \sqrt{x_1 -4}} <  \frac{1}{ \sqrt{x_2} +  \sqrt{x_2 -3}} - \frac{1}{ \sqrt{x_2-1} +  \sqrt{x_2 -4}} $ $ \ (*)$

 

Thật vậy ; $(*)$ tương đương với:

 

$ \frac{1}{ \sqrt{x_1} +  \sqrt{x_1 -3}} - \frac{1}{ \sqrt{x_2} +  \sqrt{x_2 -3}}  < \frac{1}{ \sqrt{x_1-1} +  \sqrt{x_1 -4}} - \frac{1}{ \sqrt{x_2-1} +  \sqrt{x_2 -4}} $

 

$  \Leftrightarrow \frac{ \sqrt{x_2} - \sqrt{x_1} + \sqrt{x_2 -3} - \sqrt{x_1 -3}}{ (\sqrt{x_1} +  \sqrt{x_1 -3})(\sqrt{x_2} +  \sqrt{x_2 -3})} <  \frac{ \sqrt{x_2 -1 } - \sqrt{x_1 -1} + \sqrt{x_2 -4} - \sqrt{x_1 -4}}{ (\sqrt{x_1 -1} +  \sqrt{x_1 -4})(\sqrt{x_2 - 1} +  \sqrt{x_2 - 4})}$

 

$ \Leftrightarrow \frac{  \frac{x_2- x_1}{\sqrt{x_2} + \sqrt{x_1}} + \frac{x_2- x_1}{\sqrt{x_2 -3} + \sqrt{x_1 -3}}}{ (\sqrt{x_1} +  \sqrt{x_1 -3})(\sqrt{x_2} +  \sqrt{x_2 -3})} <  \frac{ \frac{x_2 - x_1}{\sqrt{x_2 -1 } + \sqrt{x_1 -1}} + \frac{x_2 - x_1}{\sqrt{x_2 -4} + \sqrt{x_1 -4}}}{ (\sqrt{x_1 -1} +  \sqrt{x_1 -4})(\sqrt{x_2 - 1} +  \sqrt{x_2 - 4})}$

 

$ \Leftrightarrow \frac{  \frac{1}{\sqrt{x_2} + \sqrt{x_1}} + \frac{1}{\sqrt{x_2 -3} + \sqrt{x_1 -3}}}{ (\sqrt{x_1} +  \sqrt{x_1 -3})(\sqrt{x_2} +  \sqrt{x_2 -3})} <  \frac{ \frac{1}{\sqrt{x_2 -1 } + \sqrt{x_1 -1}} + \frac{1}{\sqrt{x_2 -4} + \sqrt{x_1 -4}}}{ (\sqrt{x_1 -1} +  \sqrt{x_1 -4})(\sqrt{x_2 - 1} +  \sqrt{x_2 - 4})}$

 

Bất đẳng thức sau cùng là  đúng, vì rõ ràng: $  \sqrt{x_2} + \sqrt{x_1} > \sqrt{x_2 -1 } + \sqrt{x_1 -1} > 0 ; \sqrt{x_2 -3} + \sqrt{x_1 -3} >  \sqrt{x_2 -4} + \sqrt{x_1 -4}  > 0 $  

 

Suy ra: $  0< \frac{1}{\sqrt{x_2} + \sqrt{x_1}} + \frac{1}{\sqrt{x_2 -3} + \sqrt{x_1 -3}} <  \frac{1}{\sqrt{x_2 -1 } + \sqrt{x_1 -1}} + \frac{1}{\sqrt{x_2 -4} + \sqrt{x_1 -4}} ; (\sqrt{x_1} +  \sqrt{x_1 -3})(\sqrt{x_2} +  \sqrt{x_2 -3}) >  (\sqrt{x_1 -1} +  \sqrt{x_1 -4})(\sqrt{x_2 - 1} +  \sqrt{x_2 - 4}) >0$

 

Bất đẳng thức cuối cùng đúng, do đó $(*)$ đúng, và $g(x)$ theo đó là hàm đơn điệu tăng trên $ [4; + \infty )$

 

Giả sử $ 4 \leq x_1 < x_2$ , ta đi chứng minh: $  \frac{x_1 +3 }{ \sqrt{x^2_1 +  9}} >  \frac{x_2 +3 }{ \sqrt{x^2_2 +  9}} $ $ \ (**)$

 

$  \Leftrightarrow \frac{ \sqrt{x^2_1 +  9}}{x_1 +3 } < \frac{ \sqrt{x^2_2 +  9}}{x_2 +3 }   \Leftrightarrow   \frac{ x^2_1 +  9}{x^2_1 +6x_1 +9 }   < \frac{ x^2_2 +  9}{x^2_2 +6x_2 +9 }$

 

$    \Leftrightarrow  ( x^2_1 +  9) ( x^2_2 +6x_2 +9) < ( x^2_2 +  9) (x^2_1 +6x_1 +9)$

$    \Leftrightarrow 6 x_1 x_2 (x_2 - x_1) + 54 (x_1 - x_2) >0$

$    \Leftrightarrow (x_2 - x_1)\left( 6 x_1 x_2  - 54 \right) >0$

 

Bất đẳng thức cuối cùng luôn đúng, do $   4 \leq x_1 \leq x_2 \implies 6 x_1 x_2  > 6 .9 = 54 \implies 6 x_1 x_2  - 54 >0 $

Bất đẳng thức cuối cùng đúng, do đó $(**)$ đúng, và $h(x)$ theo đó là hàm đơn điệu giảm trên $ [4; + \infty )$

 

Từ các nhận xét & chứng minh trên, ta thấy $(1)$ đúng, Suy ra: giá trị nhỏ nhất của $f(x)$ trên  $ [4; + \infty )$ đạt được tại $x =4$, tương ứng $ f(4) = 1 - \sqrt{3}$

$f(x)$ lại là hàm sơ cấp , xác định trên $ [4; + \infty )$, nên liên tục trên $ [4; + \infty )$, ngoài ra $f(x)$ đơn điệu tăng trên $ [4; + \infty )$ với $ \lim_{ x \to + \infty} f(x) = 0$

 

Nên tập giá trị của $f(x)$ trên $ [4; + \infty )$ sẽ là đoạn: $[ 1 - \sqrt{3} ; 0)$, đây cũng chính là tập những giá trị tham số $m$ thỏa mãn yêu cầu bài toán.

 

Và bài toán theo đó đã được giải quyết hoàn toàn.


Bài viết đã được chỉnh sửa nội dung bởi supermember: Hôm qua, 11:47

Khi bạn là người yêu Toán, hãy chấp nhận rằng bạn sẽ buồn nhiều hơn vui :)




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh