Đến nội dung


Hình ảnh

hinh 9


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 zxcvbnmzxcvbnm

zxcvbnmzxcvbnm

    Lính mới

  • Thành viên
  • 6 Bài viết

Đã gửi 30-05-2011 - 08:23

Cho 3 điểm A,B,C thẳng hàng ( AB+BC= AC). đường tròn (O) thay đổi luon đi qua A,B . vẽ các tiếp tuyến CD, CE với đường tròn (O). H la trung diem cua AB.K laf trung diem cua DE.
1) EH cắt (O) tại F. C/m FD//AB.
2)Khi (O) thay đổi , K chay tren đường nào.
3) Tim min của DE.
4) Tâm đường tròn ngoại tiếp tam giác OHK chay trên đường nào.
5) MN là đường kính của (O)vuong goc voi AB, Q là giao điểm của CM voi (O).
C/m AB,DE, QN đong quy.
6) Cho góc DOE= 2a. Tinh bán kính của đường tròn ngoại tiếp tam giác CAE

Bài viết đã được chỉnh sửa nội dung bởi zxcvbnmzxcvbnm: 02-06-2011 - 08:06


#2 keichan_299

keichan_299

    Thượng sĩ

  • Thành viên
  • 213 Bài viết
  • Giới tính:Nữ
  • Đến từ:nơi nào đó

Đã gửi 31-05-2011 - 17:06

Cho 3 điểm A,B,C thẳng hàng ( AB+BC= AC). đường tròn (O) thay đổi luon đi qua A,B . vẽ các tiếp tuyến CD, CE với đường tròn (O). OH vuông goc vơi AB.OK vuong goc voi DE.
1) EH cắt (O) tại F. C/m FD//AB.



ta CM được : O,K,C thẳng hàng.
OHEC nt nên $ \widehat{EOC} =\widehat{EHC}, \widehat{EOC}=\widehat{EFD} \Rightarrow \widehat{EHC}=\widehat{EFD} \Rightarrow $ FD//AB.
i love keichan 4ever!!!!!!!!!!!

#3 zxcvbnmzxcvbnm

zxcvbnmzxcvbnm

    Lính mới

  • Thành viên
  • 6 Bài viết

Đã gửi 31-05-2011 - 21:22

ta CM được : O,K,C thẳng hàng.
OHEC nt nên $ \widehat{EOC} =\widehat{EHC}, \widehat{EOC}=\widehat{EFD} \Rightarrow \widehat{EHC}=\widehat{EFD} \Rightarrow $ FD//AB.

y nay tui lam dc rui , moi nguoi cung lam nhung y # di nha>>>>>>>>>>>>

#4 345

345

    Binh nhất

  • Thành viên
  • 26 Bài viết

Đã gửi 03-06-2011 - 12:34

Cho 3 điểm A,B,C thẳng hàng ( AB+BC= AC). đường tròn (O) thay đổi luon đi qua A,B . vẽ các tiếp tuyến CD, CE với đường tròn (O). H la trung diem cua AB.K laf trung diem cua DE.
1) EH cắt (O) tại F. C/m FD//AB.
2)Khi (O) thay đổi , K chay tren đường nào.
3) Tim min của DE.
4) Tâm đường tròn ngoại tiếp tam giác OHK chay trên đường nào.
5) MN là đường kính của (O)vuong goc voi AB, Q là giao điểm của CM voi (O).
C/m AB,DE, QN đong quy.
6) Cho góc DOE= 2a. Tinh bán kính của đường tròn ngoại tiếp tam giác CAE


2)DE cắt AC tại I , $\vartriangle CKI \sim \vartriangle CHO \Rightarrow CI.CH = CK.CO $
Mà CK.CO =CD^2 (hệ thức lượng ) suy ra CI.CH =CB.CA do CB ,CA , CH cố định nên I cũng cố định
Vậy K thuộc đường tròn đường kính CI
3) từ hệ thức $\dfrac{1}{DK^2}= \dfrac{1}{DC^2}+ \dfrac{1}{DO^2}$
mà $\vartriangle CDB \sim \vartriangle CAD \Rightarrow CD^2 = CB.CA$ nên CD không đổi
từ đó suy ra DK nhỏ nhất khi DO nhỏ nhất (lúc O trùng H )
4)chạy trên trung trực của HI
5)$CI.CH = CK.CO(cmt)$ mà $CK.CO=CD^2=CQ.CM \Rightarrow \vartriangle CHM \sim \vartriangle CQI \Rightarrow \angle CQI=90^o \Rightarrow $ N , Q , I thẳng hàng.

Bài viết đã được chỉnh sửa nội dung bởi perfectstrong: 03-06-2011 - 17:55
gõ latex





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh