Đến nội dung

Hình ảnh

David Hilbert (23/01/1862 – 14/02/1943)

- - - - -

  • Please log in to reply
Chủ đề này có 2 trả lời

#1
Ban Biên Tập

Ban Biên Tập

    Ban Biên Tập

  • Thành viên
  • 70 Bài viết
David Hilbert (23 tháng 1, 1862, Wehlau, Đông Phổ – 14 tháng 2, 1943, Göttingen, Đức) là một nhà toán học người Đức, được công nhận như là một trong những nhà toán học có ảnh hưởng rộng lớn nhất của thế kỉ 19 đầu thế kỉ 20.

Hình đã gửi
Ông thiết lập tên tuổi như là một nhà toán học và nhà khoa học vĩ đại bằng cách phát minh hay phát triển một loạt các ý tưởng khác nhau, chẳng hạn như là lý thuyết bất biến, tiên đề hóa hình học, và khái niệm không gian Hilbert, một trong những nền tảng của giải tích hàm. Hilbert và các học sinh của ông đã xây dựng đủ hạ tầng cơ sở toán học cần thiết cho cơ học lượng tử và thuyết tương đối rộng. Ông là một trong những sáng lập viên của lý thuyết chứng minh, logic toán học và sự phân biệt giữa toán học và meta-toán học. Ông sử dụng và bảo vệ lý thuyết tập hợp của Cantor và các số siêu hạn (transfinite number). Một ví dụ nổi tiếng về vai trò lãnh đạo thế giới toán học là bài phát biểu năm 1900 về danh sách các bài toán quyết định hướng đi của nghiên cứu toán học trong thế kỉ thứ 20.


Cuộc đời
Hilbert được sinh ra ở Wehlau, gần Königsberg, Đông Prussia (ngày nay là Znamensk, gần Kaliningrad, Nga). Ông tốt nghiệp lyceum (phổ thông trung học) ở thành phố quê nhà và đăng kí vào Đại học Königsberg. Ông nhận bằng tiến sỹ năm 1885, với một luận văn, viết dưới sự hướng dẫn của Ferdinand von Lindemann, với tựa đề Über invariante Eigenschaften specieller binärer Formen, insbesondere der Kugelfunctionen ("Về các tính chất bất biến của các dạng nhị phân đặc biệt, đặc biệt là các hàm vòng"). Hermann Minkowski cũng là thí sinh tiến sỹ cùng một trường đại học vào thời gian đó, và ông và Hilbert trở thành bạn thân, và cả hai đã ảnh hưởng lẫn nhau ở nhiều thời điểm khác nhau trong sự nghiệp khoa học của họ.

Hilbert ở lại Đại học Königsberg như là một giáo sư từ 1886 đến năm 1895, khi, là kết quả của sự can thiệp của Felix Klein ông đạt được vị trí Trưởng khoa Toán tại Đại học Göttingen, vào thời gian đó là trung tâm nghiên cứu toán học tốt nhất thế giới và ông ở lại đó cho đến cuối đời.


Định lý hữu hạn
Công trình đầu tiên của Hilbert về các hàm bất biến đã dẫn đến những kết quả trong năm 1888 về định lý hữu hạn nổi tiếng của ông. Hai mươi năm trước đó, Paul Gordan đã chứng minh định lý về sự hữu hạn của các phần tử phát sinh cho các dạng nhị phân sử dụng một tiếp cận tính toán phức tạp. Những cố gắng tổng quát hóa phương pháp của ông cho hàm số có trên hai biến thất bại vì những khó khăn trong các tính toán liên quan. Hilbert nhận ra rằng cần phải đi theo một hướng hoàn toàn khác. Kết quả, ông chứng minh được định lý cơ sở Hilbert: cho thấy sự tồn tại của một tập hợp hữu hạn các phần tử phát sinh, cho những bất biến của những dạng quantic với số lượng biến bất kì, nhưng một dưới dạng trừu tượng. Nghĩa là, trong khi chứng minh sự tồn tại của một tập hợp như vậy, ông không sử dụng thuật toán mà chỉ đưa ra một định lý về sự tồn tại.

Hilbert gửi kết quả của mình cho tạp chí Mathematische Annalen. Gordan, chuyên gia của lý thuyết về các bất biến của tạp chí Mathematische Annalen, đã không đánh giá cao bản chất có tính cách mạng của định lý của Hilbert và từ chối bài báo, phê phán về cách trình bày là không đủ chi tiết. Lời phê của ông là:

Đây là Thần học, không phải Toán học!

Klein, mặt khác, nhận ra sự quan trọng của kết quả này, và bảo đảm rằng bài báo sẽ được xuất bản mà không bị thay đổi gì cả. Được khuyến khích bởi Klein và những lời phê của Gordan, Hilbert trong bài báo thứ hai mở rộng phương pháp của ông, đưa ra những đánh giá về bậc cao nhất của tập nhỏ nhất của các phần tử phát sinh, và ông gửi một lần nữa cho tạp chí Annalen. Sau khi đọc xong bản thảo, Klein trả lời thư, rằng:
Không nghi ngờ gì đây là một trong những công trình quan trọng nhất về đại số nói chung mà tạp chí Annalen đã từng xuất bản.

Sau này, sau khi sự hữu dụng của phương pháp của Hilbert được công nhận rộng rãi, chính Gordan đã nói rằng:
Tôi phải thừa nhận là ngay cả thần học cũng có giá trị của nó.


Tiên đề hóa hình học
Cuốn sách Grundlagen der Geometrie (Nền tảng của Hình học) xuất bản bởi Hilbert vào năm 1899 đưa ra một tập hợp chuẩn, bao gồm 21 tiên đề, thay cho các tiên đề Euclid truyền thống. Chúng tránh đi những điểm yếu đã được chỉ ra trong các tiên đề Euclid, mà các tác phẩm của ông lúc đó vẫn được xem như sách giáo khoa. Độc lập và cùng thời gian, một học sinh Mỹ 19 tuổi tên là Robert Lee Moore cũng xuất bản một tập các tiên đề tương tự. Một số các tiên đề trùng hợp nhau, trong khi một số tiên đề trong hệ thống của Moore là các định lý trong hệ thống tiên đề của Hilbert và ngược lại.

Cách tiếp cận của Hilbert đánh dấu sự chuyển đổi sang hệ thống phương pháp tiên đề hiện đại. Các tiên đề không được xem như là các sự thật hiển nhiên. Hình học có thể xử lý các đối tượng, về những thứ mà chúng ta có trực giác mạnh, nhưng không cần phải gán cho một nghĩa rõ ràng về những khái niệm chưa được định nghĩa. Những phần tử, chẳng hạn như điểm, đường thẳng, mặt phẳng, và những thứ khác, có thể được thay thế, như Hilbert nói, bởi bàn, ghế, các ly bia và các đối tượng khác. Chính là những quan hệ được định nghĩa giữa chúng mà chúng ta bàn luận.

Hilbert đầu tiên liệt kê các khái niệm chưa định nghĩa: điểm, đường thẳng, mặt phẳng, nằm trên (một quan hệ giữa các điểm và các mặt phẳng),sự nằm giữa, sự đồng dạng giữa các cặp điểm, và sự đồng dạng giữa các góc. Những tiên đề này thống nhất cả hình học phẳng và hình học không gian của Euclid trong một hệ thống duy nhất.

Ông đưa ra một danh sách có ảnh hưởng lớn nhất của 23 bài toán chưa giải được tại Đại hội Toán học thế giới ở Paris vào năm 1900. Danh sách này được nhìn nhận là một trong những tổng kết thành công và sâu sắc nhất của các bài toán chưa có lời giải tạo ra bởi chỉ cá nhân một nhà toán học.

Sau khi tái thiết lập các nền tảng của hình học cổ điển, Hilbert có thể làm tương tự cho phần còn lại của toán học. Tuy nhiên cách tiếp cận của ông khác với nhà 'nền tảng học' Russell-Whitehead hay nhà 'từ điển học' Nicolas Bourbaki sau này, và khác với người đương thời Giuseppe Peano. Cộng đồng toán học nói chung có thể thêm vào danh sách các bài toán, mà ông cho là những khía cạnh quan trọng trong các ngành toán quan trọng.

Những bài toán này được đưa ra tại hội thảo "Những bài toán trong Toán học" trình bày trong suốt Hội nghị toán học Quốc tế lần thứ 2 tổ chức tại Paris. Đây là phần giới thiệu của bài phát biểu mà Hilbert đã đọc:

Ai trong chúng ta mà không cảm thấy vui sướng khi vén lên bức màn mà tương lai ẩn đằng sau đó; nhìn thẳng vào những phát triển sắp xảy đến của khoa học và những bí ẩn của sự phát triển trong những thế kỉ kế tiếp? Mục đích cuối cùng mà tinh thần của các nhà toán học tương lai hướng tới sẽ là gì? Những phương pháp mới nào, những sự kiện mới nào mà thế kỉ mới sẽ tiết lộ trong lĩnh vực bao la và phì nhiêu của các ý tưởng toán học?

Ông trình bày ít hơn phân nửa tổng số bài toán tại Đại hội, được xuất bản trong các báo cáo của Đại hội. Trong các bài báo kế tiếp, ông mở rộng danh sách, và dừng lại ở hình thức bây giờ là dạng chính tắc của 23 Bài toán của Hilbert. Toàn văn danh sách là quan trọng, bởi vì sự diễn giải của các bài toán vẫn là một vấn đề không tránh khỏi sự tranh cãi, khi được hỏi là bao nhiêu bài toán đã được giải.

Một số bài đã được giải trong một thời gian ngắn. Một số khác đã được thảo luận suốt trong thế kỉ 20, với một số bây giờ xem như là không thích hợp vì là bài toán mở. Một số tiếp tục vẫn là thách thức cho đến hôm nay cho các nhà toán học.

Hình thức hóa
Trở thành quy chuẩn vào giữa thế kỉ, danh sách các bài toán của Hilbert cũng là một dạng tuyên ngôn, mở ra con đường cho sự phát triển của trường phái hình thức hóa, một trong ba trường phái lớn của toán học trong thế kỉ 20. Theo những người thuộc trường phái hình thức hóa, toán học là một trò chơi với các kí hiệu bị làm mất đi ý nghĩa riêng theo những quy luật mang tính hình thức được đồng ý trước. Do vậy nó là một hoạt động độc lập của suy nghĩ. Tuy vậy vẫn có nhiều người nghi ngờ về quan điểm của chính Hilbert liệu là chỉ đơn giản như vậy theo những người theo chủ nghĩa hình thức.

Chương trình của Hilbert
Vào năm 1920 ông đề nghị một dự án nghiên cứu rõ ràng (về metamathematics, như là nó được gọi) mà sau đó được biết đến như là chương trình Hilbert. Ông muốn toán học phải được hệ thống hóa trên một nền tảng logic vững chắc và đầy đủ. Ông tin rằng về nguyên tắc điều này có thể làm được, bằng cách chứng minh rằng:
- tất cả toán học có thể suy ra từ một hệ thống hữu hạn các tiên đề được chọn ra một cách đúng đắn;
- một hệ thống tiên đề như vậy là có thể chứng minh được tính nhất quán của nó.

Ông dường như là có cả những lý do kỹ thuật và triết học trong việc hình thức hóa đề nghị này. Nó khẳng định về sự không thích của ông đối với thứ được biết là ignorabimus, vẫn là một vấn đề tồn tại trong suy nghĩ của người Đức trong thời đó, và suy ngược về nguồn gốc từ Emil du Bois-Reymond.

Chương trình này vẫn được công nhận là nổi tiếng nhất về triết học của toán học, nơi mà nó thường được gọi là hình thức hóa. Ví dụ, nhóm Bourbaki lựa cách đi theo kiểu trên-xuống đủ cho những yêu cầu cho dự án đôi của họ (a) một bộ bách khoa toàn thư có tính nền tảng và (b) giúp cho phương pháp tiên đề như là một công cụ nghiên cứu. Cách tiếp cận này đã thành công và có ảnh hưởng liên quan đến các công trình của Hilbert trong đại số và giải tích hàm, nhưng thất bại trong cách tiếp cận tương tự với vật lý và logic của ông.

Công trình của Gödel
Hilbert và các nhà toán học tài năng làm việc cùng nhóm với ông đã dành hết tâm huyết cho dự án này. Cố gắng của ông để ủng hộ nền toán học được xây trên các tiên đề và các nguyên lý xác định trước, làm loại bỏ những bất định trong lý thuyết, tuy nhiên đã thất bại.

Gödel đã chứng minh rằng bất kì một hệ thống hình thức không chứa đựng mâu thuẫn nào, đủ phức tạp để chứa đụng ít nhất là số học, không thể chứng minh sự toàn vẹn của nó bằng các tiên đề của chính nó. Vào năm 1931 định lý bất toàn của Gödel đã cho thấy rằng chương trình vĩ đại của Hilbert là không thể như đã phát biểu. Điểm thứ hai không thể kết nối một cách hợp lý với điểm thứ nhất, miễn là hệ thống tiên đề thực sự là hữu hạn.

Dù sao đi nữa, định lý bất toàn không nói lên gì cả về việc biểu diễn sự toàn vẹn của toán học bằng một hệ thống hình thức hóa khác. Những thành tựu sau đó của lý thuyết chứng minh ít nhất là làm rõ thêm sự nhất quán khi nó liên hệ đến các lý thuyết nằm trong tầm quan tâm chung của các nhà toán học. Công trình của Hilbert đã khởi đầu cho logic trên hướng đi làm rõ này; sự cần thiết hiểu rõ công trình của Gödel sau này dẫn đến sự phát triển của lý thuyết đệ quy và sau đó là logic toán học như là một ngành độc lập trong thập kỉ 1930-1940. Cơ sở cho lý thuyết khoa học máy tính sau này, trong các công trình của Alonzo ChurchAlan Turing cũng phát triển trục tiếp từ 'tranh luận' này.

Trường phái Göttingen
Trong các học trò của Hilbert, có Hermann Weyl, kiện tướng cờ vua Emanuel LaskerErnst Zermelo. John von Neumann là trợ lý của ông. Tại Đại học Göttingen, ông được bao quanh bởi một nhóm các nhà toán học quan trọng của thế kỉ 20, chẳng hạn như Emmy NoetherAlonzo Church.

Giải tích hàm
Vào khoảng 1909, Hilbert dành thời gian nghiên cứu phương trình vi phân và phương trình tích phân; các công trình của ông có những ảnh hưởng trực tiếp đến giải tích hàm hiện đại. Để tiến hành các nghiên cứu này, Hilbert giới thiệu khái niệm không gian Euclid vô hạn chiều, sau này gọi là không gian Hilbert. Các công trình của ông trong phần này của giải tích đã cung cấp những đóng góp quan trọng cho toán dùng trong vật lý cho hai mươi năm sau đó, mặc dù theo một hướng không dụ đoán trước. Sau này, Stefan Banach mở rộng khái niệm này, định nghĩa không gian Banach. Không gian Hilbert là một ý tưởng quan trọng trong lĩnh vực giải tích hàm phát triển xung quanh đó trong suốt thế kỉ 20.

Vật lý
Cho đến 1912, Hilbert hầu như là một nhà toán học thuần túy. Khi chuẩn bị ghé thăm từ Bonn, nơi đang đắm chìm trong nghiên cứu vật lý, nhà toán học bạn ông là Hermann Minkowski đùa rằng ông phải khử trùng 10 ngày trước khi có khả năng ghé thăm Hilbert. Thực ra, Minkowski dường như có trách nhiệm trong hầu hết các nghiên cứu về vật lý của Hilbert trước năm 1912, kể cả buổi hội thảo hợp tác giữa hai ông trong năm 1905.

Vào năm 1912, ba năm sau khi bạn qua đời, ông quay sang tập trung nghiên cứu môn này gần như là hầu hết thời gian. Ông bố trí để có một người đến giảng riêng về vật lý cho ông. Ông bắt đầu nghiên cứu Lý thuyết khí động và chuyến sang lý thuyết bức xạ và lý thuyết phân tử của vật chất. Ngay cả sau khi chiến tranh nổ ra vào năm 1914, ông tiếp tục các hội thảo và các lớp học nơi mà các công trình của Einstein và những người khác được theo dõi một cách cặn kẽ.

Hilbert mời Einstein đến ĐH Göttingen để giảng trong một tuần trong tháng 6 và 7 năm 1915 về lý thuyết tương đối và lý thuyết về trọng lực mà ông đang phát triển (Sauer 1999, Folsing 1998). Sự trao đổi các ý tưởng đã dẫn đến dạng cuối cùng của những phương trình về trường của thuyết tương đối, đó là phương trình trường Einstein và tác động Einstein-Hilbert. Mặc cho sự kiện là EinsteinHilbert không bao giờ tranh nhau giữa công chúng, có một vài bàn cãi về sự khám phá các phương trình trường.

Thêm vào đó, các công trình của Hilbert dự đoán và giúp cho một số tiến triển trong toán học hóa cơ học lượng tử. Công trình của ông là một khía cạnh quan trọng của các công trình của Hermann WeylJohn von Neumann về sự tương đương toán học của cơ học ma trận của Werner Heisenberg và phương trình sóng của Erwin Schrödinger và khái niệm không gian Hilbert đóng một vai trò quan trọng trong lý thuyết lượng tử. Vào năm 1926 von Neuman chứng minh rằng nếu các trạng thái của nguyên tử được hiểu như là các vectơ trong không gian Hilbert, thì chúng sẽ tương ứng với cả lý thuyết phương trình sóng của Schrodinger và ma trận của Heisenberg.

Suốt cả quá trình đắm chìm trong vật lý, ông đã đặt sự chặt chẽ vào toán học trong vật lý. Trong khi phụ thuộc nhiều vào toán cao cấp, các nhà vật lý thường là không chính xác khi sử dụng chúng. Đối với một nhà toán học thuần túy như Hilbert, điều này ảnh hưởng đến sự trình bày và làm cho lý thuyết khó hiểu. Khi ông bắt đầu hiểu ra vật lý và các nhà vật lý sử dụng toán như thế nào, ông phát triển một lý thuyết toán chặt chẽ cho những gì mà ông khám phá ra, quan trọng nhất là trong ngành phương trình tích phân. Khi đồng nghiệp của ông là Richard Courant viết cuốn sách kinh điển Các phương pháp Toán Vật lý gồm luôn một số ý tưởng của Hilbert, ông thêm tên Hilbert vào như là đồng tác giả mặc dù Hilbert không đóng góp trực tiếp vào quá trình viết sách. Hilbert nói "Vật lý là quá khó cho các nhà vật lý", ngụ ý rằng các toán học cần thiết là vượt quá khả năng của họ; cuốn sách của Courant-Hilbert làm nó dễ dàng hơn cho họ.

Số học
Hilbert thống nhất ngành số học đại số (algebraic number theory) với tác phẩm năm 1897 Zahlbericht (dịch sát là "báo cáo về các con số"). Ông bác bỏ bài toán Waring theo nghĩa rộng. Ông sau đó xuất bản thêm một số kết quả; nhưng sự vượt lên của dạng modular Hilbert (Hilbert modular form) trong luận văn của một học sinh làm tên ông liên quan xa hơn trong một lãnh vục lớn.

Ông có một loạt các phỏng đoán về lý thuyết lớp và trường (class field theory). Những khái niệm này có nhiều ảnh hưởng lớn, và đóng góp của ông được thấy trong các tên Hilbert class field và kí hiệu Hilbert của lý thuyết class field địa phương. Các kết quả về chúng được chứng minh hầu hết cho đến hết năm 1930, sau khi các công trình xuyên phá của Teiji Takagi thiết lập tên tuổi ông như một trong những nhà toán học Nhật có tầm cỡ thế giới đầu tiên.

Hilbert không làm việc với các ngành trung tâm của giải tích số học (analytic number theory), nhưng tên của ông được biết đến qua phỏng đoán Hilbert-Pólya, vì những lý do mà không ai biết rõ.

Các đóng góp khác
Nghịch lý về Grand Hotel của Hilbert, một suy nghĩa về những tính chất kỳ lạ của các khái niệm vô hạn, thường được nói đến trong dân gian về những số đếm (cardinal number) vô hạn.

Những năm sau này
Hilbert sống cho đến ngày nhìn thấy quân phát xít Đức loại trừ nhiều giáo sư nổi tiếng tại Đại học Göttingen, vào năm 1933. Trong số những người bi buộc thôi việc có Hermann Weyl, người nắm chức vụ của Hilbert khi ông về hưu vào năm 1930, Emmy NoetherEdmund Landau. Một trong những người phải rời Đức là Paul Bernays, cộng sự của Hilbert trong logic toán học, và là đồng tác giả trong cuốn sách quan trọng Grundlagen der Mathematik (cuối cùng xuất hiện dưới hai tập, vào năm 1934 và 1939). Đây là phần kế tiếp theo của cuốn Những nguyên lý của lý thuyết logic bởi Hilbert-Ackermann từ năm 1928.

Khoảng một năm sau, ông tham dự một bữa chiêu đãi, và được đặt ngồi cạnh Bộ trưởng Giáo dục mới, Bernhard Rust. Rust hỏi rằng, "Toán học ở Göttingen bây giờ ra sao sau khi đã được giải phóng khỏi sự ảnh hưởng của Do Thái?" Hilbert trả lời, "Toán học ở Göttingen? Thực ra chẳng còn gì ở đó nữa".

Cho đến khi Hilbert mất vào năm 1943, phát xít Đức đã gần như tổ chức lại trường đại học, nhiều giáo sư trước đây hoặc là Do Thái hoặc lập gia đình với Do Thái. Đám tang của Hilbert được tham dự với dưới mười hai người, chỉ có hai người là giáo sư đại học.

Trên bia mộ, tại Göttingen, người ta có thể đọc dòng chữ ông để lại:
Wir müssen wissen, wir werden wissen - Chúng ta phải biết, chúng ta sẽ biết.

Trớ trêu thay, ngay ngày trước khi Hilbert thốt lên câu đó, Kurt Gödel đã trình bày luận án của mình, chứa đựng định lý bất toàn nổi tiếng: có những thứ chúng ta biết là sự thật, nhưng chúng ta không thể chứng minh được.

#2
nguyendinh_kstn_dhxd

nguyendinh_kstn_dhxd

    Đỉnh Quỷ Đỏ

  • Thành viên
  • 1167 Bài viết
DAVID HILBERT Nhà Toán học lớn của Đức(Konigsberg 1862 - Gottingen 1943)

Nhà Toán học Đức David HILBERT đã từng sống qua thời niên thiếu ở Konigsberg,kết bạn với MINKOWSKI từ lúc còn ngồi ghế nhà trường,và cũng chính ở thành phố quê hương này ông được bổ nhiệm dạy Đại học từ năm 22 tuổi rồi nhanh chóng nổi tiếng.Từ năm 1895 ông dạy ở Đại học Gottingen cho đến 1930 nhưng vẫn giữ đều liên lạc với thế giới toán học.Nhưng thời bấy giờ chủ nghĩa phát xít Hitler đã là một đám mây đen phủ lên bầu trời nước Đức.Các nhà Khoa học bạn bè của ông có nguồn gốc Do Thái,một số bị giết hại,một số bị chết dần ở trại tập trung,một số lánh nạn sang Hoa Kỳ hoặc một nơi nào đó.

HILBERT quan tâm đến hầu như tất cả các lĩnh vực của Toán học,lý thuyết cũng như ứng dụng.Nhưng ông chú ý nhieu đến Lý thuyết Số,Cơ sở Toán học,Lý thuyết Phương trình vi phân,Hình học,ngoài ra ông còn quan tâm đến Vật lý-Toán,đến bài toán ba vật thể.Nhưng đặc biệt là ông đã trình bày tại Hội nghị Toán học ở Paris(1900) 23 bài toán nổi tiếng,mà theo ông là những hướng nghiên cứu Toán học lý thú cho các nhà Toán học thế giới ở thế kỷ XX.Hơn 100 năm trôi qua đã minh chứng cho ý kiến của HILBERT là đúng và một số những bài toán còn lại chưa có người giải được vẫn còn là nguồn "cảm hứng" cho các nhà Toán học thế kỷ XXI! Nhưng HILBERT mở đầu cho sự nghiệp Toán học của đời mình bằng "Lý thuyết các bất biến" và đó cũng là nội dung Luận án của ông.Trước HILBERT,các nhà Toán học CAYLEY và GORDAN cũng đã nhận xét rằng:trong mọi trường hợp,các bất biến là những đa thức của một số hữu hạn của chúng.HILBERT tìm cách hình thức hoá kết quả này và đưa đến một bài toán về sự hữu hạn(problème de finitude) trong các vành đa thức.HILBERT chứng tỏ rằng người ta có thể tìm được một số p các bất biến sao cho mọi bất biến là một đa thức của các bất biến nói trên.Tập các đa thức thích hợp tạo thành một idéal của vành cac đa thức có p bất định.Vấn đề còn lại là chứng tỏ rằng mọi idéal của một vành đa thức trên một trường là có dạng hữu hạn.Lý thuyết các bất biến không còn nữa và trở nên một trường hợp riêng của việc khảo sát các vành đa thức.Có lần,HILBERT chứng minh lại những kết quả mà GORDAN đã làm nhưng đơn giản và hay hơn đến nỗi GORDAN phải thốt lên:"Đây không còn là Toán học nữa mà là 'Thần học'",có lần GORDAN khoái chí:"Tôi hoàn toàn bị chinh phục rằng 'Thần học' đôi lúc cũng có lợi đấy chứ",và vì vốn khâm phục HILBERT từ trước nên GORDAN tiếp tục những công việc của HILBERT.HILBERT quay về Lý thuyết số.Năm 1893,ông đã đưa ra một chứng minh đơn giản rằng cơ số e của logarithe Neper và π(pi) là 2 số siêu việt(số siêu việt là số mà nó không thể là nghiệm của bất kỳ phương trình đại số nào)dù rằng trước đó nhà Toán học người Pháp Charles HERMITE(1822-1901) đã chứng minh e là số siêu việt và Ferdinand LINDEMANN(1852-1939)người Đức đã chứng minh được đối với π(và từ kết quả này LINDEMANN chứng minh việc cầu phương một hình tròn là không làm được bằng thước và compas).Sau đó,HILBERT cũng chứng minh được conjecture(phỏng đoán) của WARING.Người ta còn biết ơn HILBERT về các conjectures(bài toán 7 và 9 trong 23 bài toán của HILBERT đề xướng)đã mở đường cho TAKAGI,ARTIN,CHEVALLEY.

HILBERT còn tổng quát hoá bài toán của DIRICHLET(bài toán 20).Phương pháp mà ông dùng năm 1900 đã mở đường cho một cách tiếp cận mới loại bài toán mới này,và chính COURANT là một trong những ngươi biết tận dụng.Năm 1901 HILBERT quay về Lý thuyết Phương trình tích phân và quan tâm nghiên cứu đến bài toán mà POINCARÉ đã đặt ra(bài toán 20). Ngay ở đó người ta cũng thấy manh nha nhiều phương pháp mới.HILBERT còn chứng minh lại những kết quả của FREDHOLM nhờ sự trực giao hoá các hệ phương trình.Ông đã tìm cách hình thức hoá cách tiến hành và nhờ Hình học Phi EUCLIDE gợi ý,ông đã đưa ra "những dạng toàn phương" có vô số số hạng.Điều này cần cho sự hội tụ của các bình phương của các thành phần.Ông còn có sáng kiến đưa ra khái niệm về sự "đầy đủ hoá"(complétude) và để ý đến phổ các toán tử.Chính vì thế mà SCHMIDT và VON NEUMANN lấy lại ý kiến của ông để lâp nên Lý thuyết về các không gian HILBERT.

Trong khi thiết lập các cơ sở Toán học,HILBERT được xem như người đứng đầu phái những nhà Toán học có tư tưởng hình thức nghĩa là những nhà Toán học xây dựng Lý thuyết trên cơ sở Tiên đề,áp dụng vào các đối tượng và ý nghĩa được xem la thứ yếu(PEANO được xem là đồng minh tích cực của ông trong lĩnh vực này).Chính vì vậy mà HILBERT đã lập ra Hình học bằng một hệ Tiên đề.Ông đã bổ sung cho Hình học EUCLIDE những Tiên đề ẩn tàng(implicite).Để chứng minh cho sự cách biệt giữa thực tế vật lý của thế giới và sự Tiên đề hóa này,ông đưa ra ý nghĩ độc đáo rằng theo cách suy nghĩ và cách làm của ông thì ta có thể nghĩ:điểm có thể là một ly bia hay đường thẳng là một cái bàn; và như vậy thì khi Tiên đề được nghiệm đúng thí kết luận cũng sẽ đúng.Những định lý của GODEL đã cho một cú quyết định vào hy vọng của ông sáng tạo một lý thuyết mới bằng cách chứng tỏ sự phi mâu thuẫn của nó.Cả cuộc đời,HILBERT luôn quan tâm đến sự tổng quát hoá và không ngừng tìm ra phương pháp mới để đưa thế giới Toán học tiến lên,vì vậy ông được giới Toán học tôn vinh là nhà Toán học của thế kỷ,có vai trò cơ bản trong sự nghiệp phát triển Toán học thế giới.

Hai mươi ba bài toán của David HILBERT(Bài toán đã có lời giải được đánh dấu* )

-*Bài toán 1:
Giả thuyết continuum có được nghiệm đúng? Có thể có một thứ tự tốt trên?

-*Bài toán 2:
Có thể chứng minh bằng các phương pháp hữu hạn(procédés finistes)sự bền vững của Số học?

-*Bài toán 3:
Có thể ứng dụng phương pháp phân tích thành đa diện để tính thể tích được không?

-Bài toán 4:
Hãy tìm các Hinh học trong đó đường ngắn nhất đi từ điểm này đến điểm kia là đoạn thẳng?

-*Bài toán 5:
Có những nhóm LIE liên tục không? Nói cách khác,giả thiết tính khả vi có cần trong định nghĩa nhóm LIE?

-Bài toán 6:
Có thể toán học hoá các Tiên đề trong Vật lý? (Câu hỏi này chưa thật thích hợp với quan niệm hiện đại về 2 môn Toán và Lý).

-*Bài toán 7:
Ta nói gì về tính siêu việt của ab với a là đại số,b là vô tỷ khác 0?

-Bài toán 8:giả thiết RIEMANN
Tất cả các zéros ảo của hàm dzeta có một phần ảo là ½ .

-*Bài toán 9:
Cho A là vành các số nguyên của một trường đại số và J là một idéal nguyên tố của A.Với a thuộc A,ta ký hiệu L(J/a) là số nghiệm của phương trình x²≡a(mod j) trừ đi 1.Đây là bài toán về tính nghịch đảo toàn phương,nghĩa là dáng điệu của L(J/a) phụ thuộc vào J.

-*Bài toán 10:
Có thể nào tìm được một thuật toán giúp ta xác định,sau một số hữu hạn bước,rằng một phương trình DIOPHANTE có nghiệm nguyên? (Bài toán này được nghiên cứu trong khuôn khổ các hàm đệ quy).

-*Bài toán 11:
Hãy thiết lập bảng phân loại các dạng toàn phương có hệ số trong một vành các số nguyên đại số.

-Bài toán 12:
Hãy tổng quát hoá bài toán số 9 và nghiên cứu cách xây dựng các trường của lớp.

-*Bài toán 13:
Người ta chứng tỏ rằng ở bậc n=6 các nghiệm của phương trình bậc n được biểu diễn như là sự chồng chất(superposition)các hàm liên tục có 2 biến của các hệ số của phương trình .Ví dụ các nghiệm của phương trình xX²+2Yx+z=0 được viết dưới dạng f(y,h(x,z) với h(x,z)=xz và f(y,u)=-y±√(y²-u).Kết quả này sẽ sai trong trường hợp n=7

-*Bài toán 14:
Cho K là một trường,L là một sự nới rộng của K va M=K(X1...Xn).Ta giả sử rằng L con M.Giao L∩K[X1...Xn] có phải là một Đại số hữu hạn không?

-*Bài toán 15:
Hãy cho một cơ sở chặt chẽ vào kết quả dùng tính liên tục trong những bài toán Hình có dạng: Tìm số đường thẳng của không gian gặp 4 đường thẳng cho trước? (Bài toán này ngày nay được nghiên cứu trong khuôn khổ của Hình học-Đại số).

-Bài toán 16:
Hãy nghiên cứu sự sắp đặt các nhánh của một đường cong không kỳ dị,đặc biệt là các đường cong tích phân của những phương trình vi phân xác định bởi đa thức homogènes(đẳng cấp)bậc n.

-*Bài toán 17:
Mọi phân số hữu tỷ có hệ số thực,dương hoặc bằng 0 tại miền xác định của nó,có thể biểu diễn dưới dạng tổng các bình phương của các phân số hữu tỷ?

-*Bài toán 18:
Tìm các pavages của không gian Rⁿbằng những đa diện congruents(toàn đẳng).

-Bài toán 19:
Hãy nghiên cứu tính chất giải tích của các nghiệm của phương trình vi phân thường hoặc phương trình đạo hàm riêng.

-*Bài toán 20:
HILBERT đề nghị tổng quát hóa bài toán của DIRICHLET cho những lớp hàm rộng hơn.

-*Bài toán 21:
Hãy mở rộng công trình của FUCHS vào nghiên cứu các phương trình vi phân thoả mãn những điều kiện cho truớc.

-*Bài toán 22:
Hãy chính xác hóa chứng minh của POINCARÉ về tính đều hóa các hàm giải tích phức.

-Bài toán 23:
Hãy nghiên cứu tính trơn(régularité)của các nghiệm của phương trình đạo hàm riêng xuất phát từ phép tính biến thiên.
Theo http://olympia.net.vn/forum/

tset

tsst

#3
Polytopie

Polytopie

    Trung sĩ

  • Thành viên
  • 151 Bài viết
Bài này là ai viết thế bác nguyendinh? Em thấy viết sai khá nhiều chỗ- nói chung cần sửa lại. Ví dụ đoạn Gordan nói về cái Invariantentheorie (hay Nullstellensatz- em không nhớ chắc) của Hilbert. Ban đầu- khoảng 1889 gì đó- Hilbert đưa ra những kết quả này- nhưng không có chứng minh cụ thể. Gordan- vốn là nhà đại số và nghiên cứu bất biến số một nước Đức thời đó (và là thầy của Emmy Noether nổi tiếng về sau), đọc bài của Hilbert và nói rằng: "đây là thần học chứ không phải toán học"- ý chỉ trích Hilbert không chứng minh được kết quả một chắc chặt chẽ. Trong 3 năm sau đó từ 1890-1893 Hilbert tập trung vào mấy kết quả này và tìm cách chứng minh được các kết quả của mình một cách chặt chẽ- nên sau đó Gordan mới phát biểu lại rằng: "nhưng đôi khi thần học cũng có tác dụng". Sự thật là vậy chứ không như trong bài viết trên.
Hồi trước em đọc trong một cuốn sách đại số- hình như cuốn Galois theory của một tác giả Mỹ- thấy ông này cũng trách là: "người ta gán cái định lý: "Nếu K là noetherian ring thì K[x] cũng noetherian" cho là công trình của Hilbert, trong khi Noether mới chỉ active trong đại số từ những năm 1920- khi mà Hilbert đã không nghiên cứu mấy hướng này nữa rồi". Nhưng hóa ra là ông này cũng không biết gì mà nói lung tung. Nguyên nhân là vì cái gọi là Noetherian ring thực chất là kết quả của Hilbert hồi trước (những năm 1890s)- nhưng Noether là người có công nhận thấy sự quan trọng của các kết quả ấy- viết lại sạch sẽ, nêu ra sự quan trọng của nó- cho nên người ta về sau gọi nó với cái tên Noetherian ring- để kỷ niệm Noether. Tức là không phải Hilbert được gán cho các kết quả không phải của mình, mà thậm chí ngược lại.

Về việc viết cuốn sách nền tảng hình học của Hilbert: thì bài viết trên càng nhập nhằng nói sai. Hilbert không chỉ bổ sung một số tiên đề kiểu implicite - hay có thể gọi rõ hơn là: định nghĩa kiểu gián tiếp. Mà ông ấy làm một công việc kinh khủng hơn nhiều: thay đổi toàn bộ quan điểm về hình học. Từ thời trước Euclid, đến Euclid và đến tận trước Hilbert- người ta vẫn chấp nhận hệ thống định nghĩa cực kỳ lắm vấn đề của Euclid. Ví dụ các bạn nào mà đã từng biết định nghĩa của Euclid về mấy khái niệm đơn giản nhất như: "một điểm là một cái mà không thể phân chia thêm ra được nữa"- cũng đã đủ gây ra những mâu thuẫn không bao giờ giải quyết nổi rồi. Đó là chưa kể- theo cách định nghĩa của Euclid thì thậm chí đường thẳng là thứ không bao giờ định nghĩa đúng được (!!). Các bạn không tin có thể tìm cuốn Elements của Euclid trên mạng đọc xem cái định nghĩa đường thẳng của Euclid buồn cười thế nào. Suốt mấy ngàn năm người ta tìm cách sửa chữa lại, định nghĩa lại nhưng đều thất bại hết- vì sự thật là càng định nghĩa càng mâu thuẫn. Mãi đến Hilbert- cái nhìn mới thay đổi. Hilbert thấy sự mâu thuẫn này làm cho toàn bộ tòa nhà toán học trở nên ngớ ngẩn, cho nên ông quyết định thay đổi hẳn quan điểm về định nghĩa các khái niệm cơ sở đó. Thay vì định nghĩa trực tiếp điểm, đường thẳng .v.v., Hilbert chỉ giữ lại các định nghĩa gián tiếp kiểu như: "qua 2 điểm thì kẻ được một đường thẳng", "ở giữa 2 điểm bất kỳ bao giờ cũng nhét được vào thêm 1 điểm nữa" mà không hề định nghĩa trực tiếp điểm, đường thẳng... là cái gì. Cái nhìn này ban đầu bị Frege phản đối- nhưng càng ngày nó càng cho thấy Hilbert có lý- từ lúc đó cơ sở hình học trở nên phi mâu thuẫn- (và chỉ có cái gì phi mâu thuẫn thì mới được giữ lại- đó là philosophy của Hilbert). Tóm lại- Hilbert chính là người làm cho quan điểm: quan hệ giữa các đối tượng quan trọng hơn chính bản thân các đối tượng. Về sau- theo mình nghĩ- Category theory hay toàn bộ hình học đại số à la Grothendieck cũng là những thứ đi theo quan điểm này của Hilbert.

Việc Hilbert được dạy đại học từ 22 tuổi cũng là một câu phát biểu khá nhập nhằng- dễ gây hiểu lầm. Hilbert học đại học ở Koenigsberg cùng với Minkowski. Ngày đó Minkowski đã được coi là một thiên tài mới nổi của toán học rồi (năm 19 tuổi đọc giải nhất của cuộc thi ở Paris)- còn Hilbert vốn là người toàn bộ thời gian học phổ thông không hề học toán, mà chỉ quan tâm đến triết học và thần học. Thế nên khi ông ấy quyết định học toán (chứ không học thần học hay triết học) và kết bạn với Minkowski- bố của Hilbert- vốn là một nhà thần học- đã mắng Hilbert rằng: "mày làm sao mà đua được với thằng Minkowski đó mà học toán". Nhưng ông ấy không biết rằng Hilbert là một thiên tài theo kiểu khác- không giống kiểu Minkowski. Trong 5 năm học đại học ở đó- Hilbert thường xuyên trao đổi và học hỏi Hurwitz với Minkowski- họ thường đi dạo và thảo luận về toán học với nhau. Trong khi Minkowski là người đặc biệt nhanh- có khả năng lĩnh hội rất cao và luôn hào hứng với các ý tưởng mới trong toán học, thì Hilbert là người phải gặm từng tí kiến thức một để hiểu và hầu như tất cả mọi thứ ông ấy học được, ông ấy đều phải tự ngồi kiểm tra, tính toán lại cho rõ. Nói ẩu thả như chúng ta ngày nay thì Minkowski là dạng thiên tài, còn Hilbert là dạng cần cù bù trí tuệ. Còn nói đúng ra thì là Hilbert là một dạng triết gia của toán học- ông ấy thiên về chiều sâu hơn là chiều rộng như Minkowski.
Sau đó Hilbert tốt nghiệp và làm tiếp tiến sĩ- trong thời gian đó có lẽ ông ấy chỉ được làm vị trí trợ giảng (Assistent) hay thậm chí thấp hơn (Mitarbeiter) thôi- chứ không phải khi mới 22 tuổi đã được phong làm giảng viên (Dozent) hay giáo sư (Prof.) gì cả. Mãi về sau- khi xong Habil năm 26 tuổi- Hilbert mới bắt đầu được làm giảng viên- và cũng phải vài năm sau đó khi ngoài 30 tuổi- sau khi đưa ra cắi Nullstellensatz nổi tiếng- ông ấy mới được Klein gọi về Göttingen làm chân giáo sư.

Ví dụ tạm vậy đã.. :leq

tset

Bài viết đã được chỉnh sửa nội dung bởi E. Galois: 13-02-2012 - 10:07

Tôi tư duy nên Tôi không tồn tại.




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh